
Implementing a Packet Filter using a P4

Programmable Switch
Caroline Boozer, Anaia Prather, Camila Pereira

Advisors: Ali Mazloum, Jose Gomez, Jorge Crichigno

Integrated Information Technology Department, University of South Carolina, Columbia, South Carolina

Test System

• This project presents a packet filter implemented using a P4 programmable
switch.

• P4 is a programming language to describe the behavior of the data plane.
• The data plane is structured as a pipeline that processes a stream of bits.
• With P4, the programmer specifies how the pipeline will manipulate the

information contained in packet headers to make decisions.
• In this project, a P4 programmable switch inspects the content of packet headers

to decide whether to drop or allow them to pass.
• This decision is based on predefined rules that the network administrator

established as security policies.
• Results show that P4 facilitates implementing a packet filter that allows the

network administrator to configure security policies.
• Moreover, this project implements the concepts of security zones, which consists

of applying different security policies for each switch’s interface.

Abstract

Project Description

Background on P4 programmable switches

Experimentation

Acknowledgement

Results

Lessons Learned

Conclusion

• A packet filter is a network device that examines each datagram in isolation and
determines whether the datagram should be allowed to pass or dropped based
on administrator-specific rules.

• Filtering decisions are typically based on:
• IP source or destination address.
• Protocol type in IP datagram field: TCP, UDP, ICMP, and others.
• TCP or UDP source and destination port.
• TCP flag bits: SYN, ACK, and other flags.
• ICMP message type.
• Different rules for datagrams leaving and entering the network.
• Different rules for the different router interfaces.

• This project aims at implementing a packet filter on a programmable switch using
the P4 language.

• The packet filter will enable the network administrator to block packets based on
physical ingress and/or egress interfaces, IP source or destination address,
protocol type in the IP datagram field (TCP, UDP, ICMP), and TCP or UDP source
and destination port.

h1 h2

port 0 port 1

s1

Rules (e.g., Security policies)

Sender Receiver

Control planeControl plane

P4 Switch

TM.. ..

Parser Ingress pipeline Egress pipeline Deparser

Data plane

• P4 programmable data planes emerge as a natural evolution of Software-Defined
Networking (SDN).

• In the SDN context, the software describes how packets are processed,
conceived, tested, and deployed in a much shorter time span by operators,
engineers, researchers, and practitioners in general.

• SDN fostered significant advances by separating the switch into two logical
components: the control and data planes.

• The control plane implements the switch intelligence, for instance, computing the
states of a routing protocol (e.g., BGP, OSPF), running a machine learning
algorithm (e.g., classifiers), and processing digests from the data plane.

• The data plane governs the forwarding behavior of a P4 switch by manipulating
packets at line rate.

• This project uses the V1 model, a P4 programming model comprising a
programmable parser, an ingress pipeline, an egress pipeline, a deparser, and a
non-programmable component, the traffic manager (TM).

• The parser extracts the information from packet headers so that the other
following stages can make decisions.

• The ingress and egress pipelines execute actions with match-action tables.
• Examples of actions in the data plane can be modifying the destination IP address

and decrementing the time-to-live (TTL) field in the IPv4 header.
• The deparser reassembles and emits the packet processed by the previous

stages.
• The traffic manager handles operations related to the switch’s queue and the

sending rate.

• This project implements a packet filter using the behavioral model version 2
(BMv2) software switch that implements the V1 model.

• The topology comprises three hosts and a P4 switch that acts as the packet filter.
• Host h1 represents a device in a company’s headquarters (Zone 3), host h2 is a

device in a branch office (Zone 2), and host h3 represents a device that is not
managed by the company (Zone 3).

• Packets going from host h1 to host h2 and vice versa are subject to different
security policies than packets going to host h3.

• Switch s1 leverages match-action tables to forward or drop packets based on the
destination IPv4 address, the destination port, the transport protocol (e.g., TCP,
UDP), and ICMP requests.

• The P4 program implemented in switch S1 allows ICMP requests from host h2
but denies those from host h3.

• This work was supported by the Office of Naval Research (ONR), grant N00014-
20-1-2797: “Enhancing the Preparation of Next-generation Cyber Professionals”

• The following scenarios were implemented using match-action tables to test the
packet filter:

• Scenario 1: Filtering packets based on the destination IP address.
• The table forwarding is populated with the following rules:

• These rules forward packets with destination IP addresses 10.0.0.1 and
10.0.0.2 (rules 1 and 2) but drops packets with destination IP address 10.0.0.3
(i.e., rule 3).

• Scenario 2: Dropping segments going to the TCP port 80.
• This scenario requires two match-action tables: filter_TCP_dstPort and

forwarding.
• The match-action table filter_TCP_dstPort drops packets going to port

80, whereas the match-action table forwarding forwards packets to
their respective destination IP address.

• Scenario 3: Restricting ICMP requests coming from a specific security zone.
• Two match-action tables implement this filter: filter_ICMP_protocol and

forwarding.
• ICMP requests from Zone 3 (Danger) to Zone 1 (Headquarters) are

blocked, whereas requests from Zone 2 (Branch Office) to Zone 1 are
allowed.

• Learned how to implement a packet filter using P4.
• Leveraged match-action tables to implement security policies.
• Applied the concept of security zones using a P4 switch.
• Validated the implementation of the security policies in the Netlab environment.
• Understood the flexibility of P4 programmable switches in implementing security

features.

Rule # Key (Dst. IP) Action Action data (egress port)

1 10.0.0.1 forward 0
2 10.0.0.2 forward 1

3 10.0.0.3 drop

Table name: forwarding.

Rule # Key (Dst. IP) Action Action data (egress port)

1 10.0.0.1 forward 0
2 10.0.0.2 forward 1

3 10.0.0.3 forward 2

Table name: filter_TCP_dstPort.

Table name: forwarding.

Rule # Key (Dst. Port) Action Action data 
1 80 drop

Rule # Key (ICMP protocol) Action Action data (ingress port)

1 8 drop 2

Table name: filter_ICMP_protocol

Rule # Key (Dst. IP) Action Action data (egress port)

1 10.0.0.1 forward 0
2 10.0.0.2 forward 1

3 10.0.0.3 forward 2

Table name: forwarding.

• Results show that packets were successfully filtered.
• The ping command was used to verify the first scenario.
• Packets with destination IP address 10.0.0.3 were dropped.
• The nanolog tool also corroborated that the match-action table was applied

correctly.

• In the second scenario, the sender used the hping3 tool to create a TCP packet.
• The nanolog tool displayed that packets going to port 80 were dropped.

• Finally, the third scenario was tested using the ping tool.
• The output confirmed that packets host h3 could not send ICMP requests to host

h1.

• This project implemented a packet filter using the P4 programming language.
• P4 provides the tools to define how packets are processed in the data plane.
• With P4, the programmer can implement custom security policies.
• Match-action tables are valuable constructs to perform actions on a per-packet

basis.
• Future works can include more complex packet processing using other

constructs available in P4.

Switch s1Host h1

10.0.0.1

Host h2

10.0.0.2

10.0.0.3

Host h3

Zone 1 (Headquarters)

Zone 2 (Branch Office)

Zone 3 (Outside/Danger)

Port 0


