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• This project presents a packet filter implemented using a P4 programmable
switch.

• P4 is a programming language to describe the behavior of the data plane.
• The data plane is structured as a pipeline that processes a stream of bits.
• With P4, the programmer specifies how the pipeline will manipulate the

information contained in packet headers to make decisions.
• In this project, a P4 programmable switch inspects the content of packet headers

to decide whether to drop or allow them to pass.
• This decision is based on predefined rules that the network administrator

established as security policies.
• Results show that P4 facilitates implementing a packet filter that allows the

network administrator to configure security policies.
• Moreover, this project implements the concepts of security zones, which consists

of applying different security policies for each switch’s interface.
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• A packet filter is a network device that examines each datagram in isolation and
determines whether the datagram should be allowed to pass or dropped based
on administrator-specific rules.

• Filtering decisions are typically based on:
• IP source or destination address.
• Protocol type in IP datagram field: TCP, UDP, ICMP, and others.
• TCP or UDP source and destination port.
• TCP flag bits: SYN, ACK, and other flags.
• ICMP message type.
• Different rules for datagrams leaving and entering the network.
• Different rules for the different router interfaces.

• This project aims at implementing a packet filter on a programmable switch using
the P4 language.

• The packet filter will enable the network administrator to block packets based on
physical ingress and/or egress interfaces, IP source or destination address,
protocol type in the IP datagram field (TCP, UDP, ICMP), and TCP or UDP source
and destination port.
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• P4 programmable data planes emerge as a natural evolution of Software-Defined
Networking (SDN).

• In the SDN context, the software describes how packets are processed,
conceived, tested, and deployed in a much shorter time span by operators,
engineers, researchers, and practitioners in general.

• SDN fostered significant advances by separating the switch into two logical
components: the control and data planes.

• The control plane implements the switch intelligence, for instance, computing the
states of a routing protocol (e.g., BGP, OSPF), running a machine learning
algorithm (e.g., classifiers), and processing digests from the data plane.

• The data plane governs the forwarding behavior of a P4 switch by manipulating
packets at line rate.

• This project uses the V1 model, a P4 programming model comprising a
programmable parser, an ingress pipeline, an egress pipeline, a deparser, and a
non-programmable component, the traffic manager (TM).

• The parser extracts the information from packet headers so that the other
following stages can make decisions.

• The ingress and egress pipelines execute actions with match-action tables.
• Examples of actions in the data plane can be modifying the destination IP address

and decrementing the time-to-live (TTL) field in the IPv4 header.
• The deparser reassembles and emits the packet processed by the previous

stages.
• The traffic manager handles operations related to the switch’s queue and the

sending rate.

• This project implements a packet filter using the behavioral model version 2
(BMv2) software switch that implements the V1 model.

• The topology comprises three hosts and a P4 switch that acts as the packet filter.
• Host h1 represents a device in a company’s headquarters (Zone 3), host h2 is a

device in a branch office (Zone 2), and host h3 represents a device that is not
managed by the company (Zone 3).

• Packets going from host h1 to host h2 and vice versa are subject to different
security policies than packets going to host h3.

• Switch s1 leverages match-action tables to forward or drop packets based on the
destination IPv4 address, the destination port, the transport protocol (e.g., TCP,
UDP), and ICMP requests.

• The P4 program implemented in switch S1 allows ICMP requests from host h2
but denies those from host h3.

• This work was supported by the Office of Naval Research (ONR), grant N00014-
20-1-2797: “Enhancing the Preparation of Next-generation Cyber Professionals”

• The following scenarios were implemented using match-action tables to test the
packet filter:

• Scenario 1: Filtering packets based on the destination IP address.
• The table forwarding is populated with the following rules:

• These rules forward packets with destination IP addresses 10.0.0.1 and
10.0.0.2 (rules 1 and 2) but drops packets with destination IP address 10.0.0.3
(i.e., rule 3).

• Scenario 2: Dropping segments going to the TCP port 80.
• This scenario requires two match-action tables: filter_TCP_dstPort and

forwarding.
• The match-action table filter_TCP_dstPort drops packets going to port

80, whereas the match-action table forwarding forwards packets to
their respective destination IP address.

• Scenario 3: Restricting ICMP requests coming from a specific security zone.
• Two match-action tables implement this filter: filter_ICMP_protocol and

forwarding.
• ICMP requests from Zone 3 (Danger) to Zone 1 (Headquarters) are

blocked, whereas requests from Zone 2 (Branch Office) to Zone 1 are
allowed.

• Learned how to implement a packet filter using P4.
• Leveraged match-action tables to implement security policies.
• Applied the concept of security zones using a P4 switch.
• Validated the implementation of the security policies in the Netlab environment.
• Understood the flexibility of P4 programmable switches in implementing security

features.

Rule # Key (Dst. IP) Action Action data (egress port)

1 10.0.0.1 forward 0
2 10.0.0.2 forward 1

3 10.0.0.3 drop

Table name: forwarding.

Rule # Key (Dst. IP) Action Action data (egress port)

1 10.0.0.1 forward 0
2 10.0.0.2 forward 1

3 10.0.0.3 forward 2

Table name: filter_TCP_dstPort.

Table name: forwarding.

Rule # Key (Dst. Port) Action Action data 
1 80 drop

Rule # Key (ICMP protocol) Action Action data (ingress port)

1 8 drop 2

Table name: filter_ICMP_protocol

Rule # Key (Dst. IP) Action Action data (egress port)

1 10.0.0.1 forward 0
2 10.0.0.2 forward 1

3 10.0.0.3 forward 2

Table name: forwarding.

• Results show that packets were successfully filtered.
• The ping command was used to verify the first scenario.
• Packets with destination IP address 10.0.0.3 were dropped.
• The nanolog tool also corroborated that the match-action table was applied

correctly.

• In the second scenario, the sender used the hping3 tool to create a TCP packet.
• The nanolog tool displayed that packets going to port 80 were dropped.

• Finally, the third scenario was tested using the ping tool.
• The output confirmed that packets host h3 could not send ICMP requests to host

h1.

• This project implemented a packet filter using the P4 programming language.
• P4 provides the tools to define how packets are processed in the data plane.
• With P4, the programmer can implement custom security policies.
• Match-action tables are valuable constructs to perform actions on a per-packet

basis.
• Future works can include more complex packet processing using other

constructs available in P4.

Switch s1Host h1

10.0.0.1

Host h2

10.0.0.2

10.0.0.3

Host h3

Zone 1 (Headquarters)

Zone 2 (Branch Office)

Zone 3 (Outside/Danger)

Port 0


