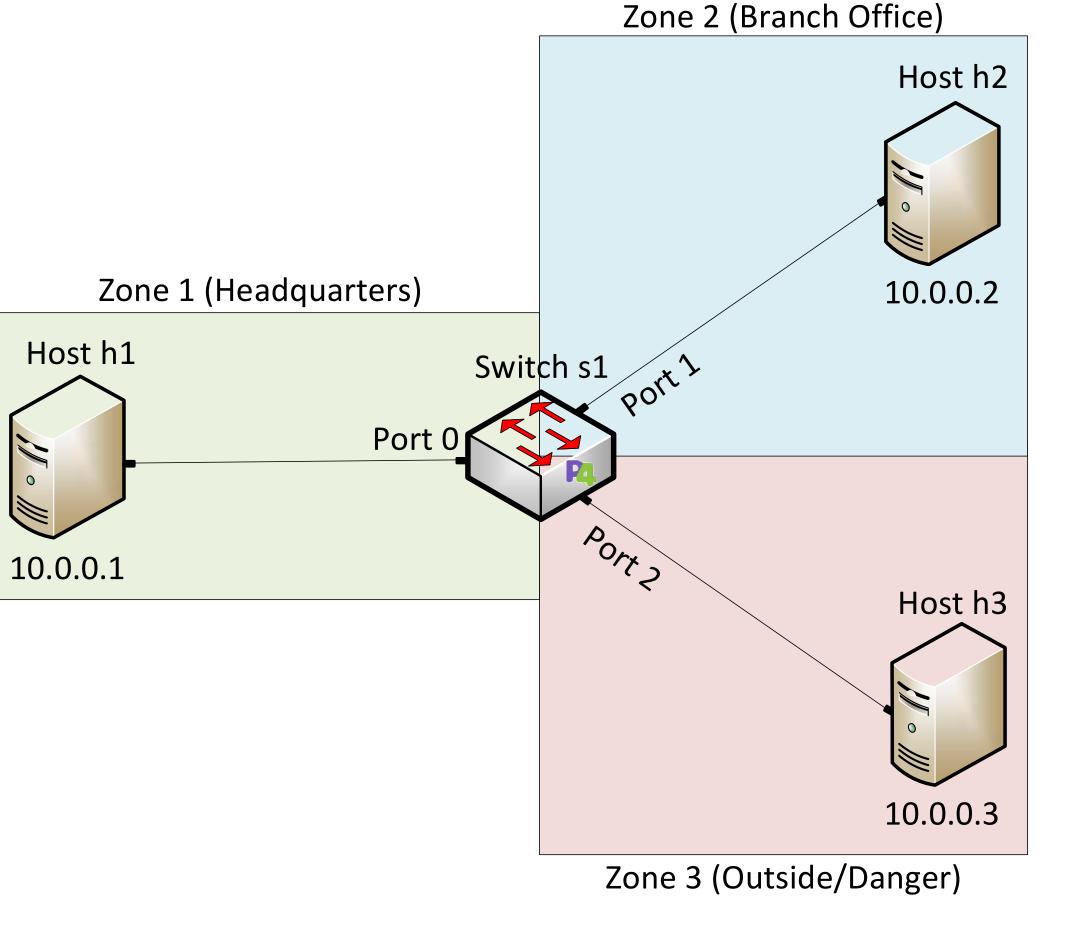


Implementing a Packet Filter using a P4 Programmable Switch

Caroline Boozer, Anaia Prather, Camila Pereira


Advisors: Ali Mazloum, Jose Gomez, Jorge Crichigno

Integrated Information Technology Department, University of South Carolina, Columbia, South Carolina

Abstract	Test System	Results	
 This project presents a packet filter implemented using a P4 programmable switch. P4 is a programming language to describe the behavior of the data plane. The data plane is structured as a pipeline that processes a stream of bits. With P4, the programmer specifies how the pipeline will manipulate the information contained in packet headers to make decisions. In this project, a P4 programmable switch inspects the content of packet headers to decide whether to drop or allow them to pass. This decision is based on predefined rules that the network administrator established as security policies. Results show that P4 facilitates implementing a packet filter that allows the network administrator to configure security policies. Moreover, this project implements the concepts of security zones, which consists of applying different security policies for each switch's interface. 	 This project implements a packet filter using the behavioral model version 2 (BMv2) software switch that implements the V1 model. The topology comprises three hosts and a P4 switch that acts as the packet filter. Host h1 represents a device in a company's headquarters (Zone 3), host h2 is a device in a branch office (Zone 2), and host h3 represents a device that is not managed by the company (Zone 3). Packets going from host h1 to host h2 and vice versa are subject to different security policies than packets going to host h3. Switch s1 leverages match-action tables to forward or drop packets based on the destination IPv4 address, the destination port, the transport protocol (e.g., TCP, UDP), and ICMP requests. The P4 program implemented in switch S1 allows ICMP requests from host h2 but denies those from host h3. 	 Results show that packets were successfully filtered. The ping command was used to verify the first scenario. Packets with destination IP address 10.0.0.3 were dropped. The nanolog tool also corroborated that the match-action table was applied correctly. root@s1:/behavioral-model - • • • • root@s1:/behavioral-model - • • • root@s1:/behavioral-model - • • • root@s1:/behavioral-model - • • • • root@s1:/behavioral-model - • • • • root@s1:/behavioral-model - • • • • root@s1:/behavioral-model - • • • •	

Project Description

- A packet filter is a network device that examines each datagram in isolation and determines whether the datagram should be allowed to pass or dropped based on administrator-specific rules.
- Filtering decisions are typically based on:
 - IP source or destination address.
 - Protocol type in IP datagram field: TCP, UDP, ICMP, and others.
 - TCP or UDP source and destination port.
 - TCP flag bits: SYN, ACK, and other flags.
 - ICMP message type.
 - Different rules for datagrams leaving and entering the network.
 - Different rules for the different router interfaces.
- This project aims at implementing a packet filter on a programmable switch using the P4 language.
- The packet filter will enable the network administrator to block packets based on

• In the second scenario, the sender used the *hping3* tool to create a TCP packet.

• The nanolog tool displayed that packets going to port 80 were dropped.

PIPELINE_DONE, pipeline_id: 0 (ingress)

X	root@s1: /behavioral-model - 、
root@	<pre>s1:/behavioral-model# nanomsg_client.py</pre>
50	<pre>cket' not provided, using ipc:///tmp/bm-log.ipc (obtained from switch)</pre>
Obtai	ning JSON from switch
Done	
type:	PACKET IN, port in: 0
type:	PARSER START, parser id: 0 (parser)
type:	PARSER EXTRACT, header id: 2 (ethernet)
type:	PARSER EXTRACT, header id: 3 (ipv4)
type:	PARSER EXTRACT, header id: 5 (tcp)
type:	PARSER DONE, parser id: 0 (parser)
type:	PIPELINE START, pipeline id: 0 (ingress)
type:	CONDITION EVAL, condition id: 0 (node 2), result: True
type:	TABLE HIT, table id: 0 (MyIngress.forwarding), entry hdl: 1
type:	ACTION EXECUTE, action id: 4 (MyIngress.forward)
type:	TABLE MISS, table id: 1 (MyIngress.filter IP protocol)
type:	ACTION EXECUTE, action id: 1 (NoAction)
type:	TABLE HIT, table id: 2 (MyIngress.filter TCP dstPort), entry hdl: 0
type:	ACTION EXECUTE, action id: 7 (MyIngress.drop)
type:	CONDITION EVAL, condition id: 1 (node 6), result: False
	PIPELINE_DONE, pipeline_id: 0 (ingress)

• Finally, the third scenario was tested using the *ping* tool.

• The output confirmed that packets host h3 could not send ICMP requests to host h1.

physical ingress and/or egress interfaces, IP source or destination address, protocol type in the IP datagram field (TCP, UDP, ICMP), and TCP or UDP source and destination port.

Background on P4 programmable switches

- P4 programmable data planes emerge as a natural evolution of Software-Defined Networking (SDN).
- In the SDN context, the software describes how packets are processed, conceived, tested, and deployed in a much shorter time span by operators, engineers, researchers, and practitioners in general.
- SDN fostered significant advances by separating the switch into two logical components: the control and data planes.
- The control plane implements the switch intelligence, for instance, computing the states of a routing protocol (e.g., BGP, OSPF), running a machine learning algorithm (e.g., classifiers), and processing digests from the data plane.
- The data plane governs the forwarding behavior of a P4 switch by manipulating packets at line rate.
- This project uses the V1 model, a P4 programming model comprising a programmable parser, an ingress pipeline, an egress pipeline, a deparser, and a non-programmable component, the traffic manager (TM).
- The parser extracts the information from packet headers so that the other following stages can make decisions.
- The ingress and egress pipelines execute actions with match-action tables.
- Examples of actions in the data plane can be modifying the destination IP address

Experimentation

- The following scenarios were implemented using match-action tables to test the packet filter:
- Scenario 1: Filtering packets based on the destination IP address.
- The table *forwarding* is populated with the following rules:

Table name: forwarding.				
Rule #	Key (Dst. IP)	Action	Action data (egress port)	
1	10.0.0.1	forward	0	
2	10.0.0.2	forward	1	
3	10.0.0.3	drop		

- These rules forward packets with destination IP addresses 10.0.0.1 and 10.0.0.2 (rules 1 and 2) but drops packets with destination IP address 10.0.0.3 (i.e., rule 3).
- Scenario 2: Dropping segments going to the TCP port 80.
 - This scenario requires two match-action tables: *filter_TCP_dstPort* and forwarding.
 - The match-action table *filter_TCP_dstPort* drops packets going to port 80, whereas the match-action table *forwarding* forwards packets to their respective destination IP address.

Table name: filter_TCP_dstPort.

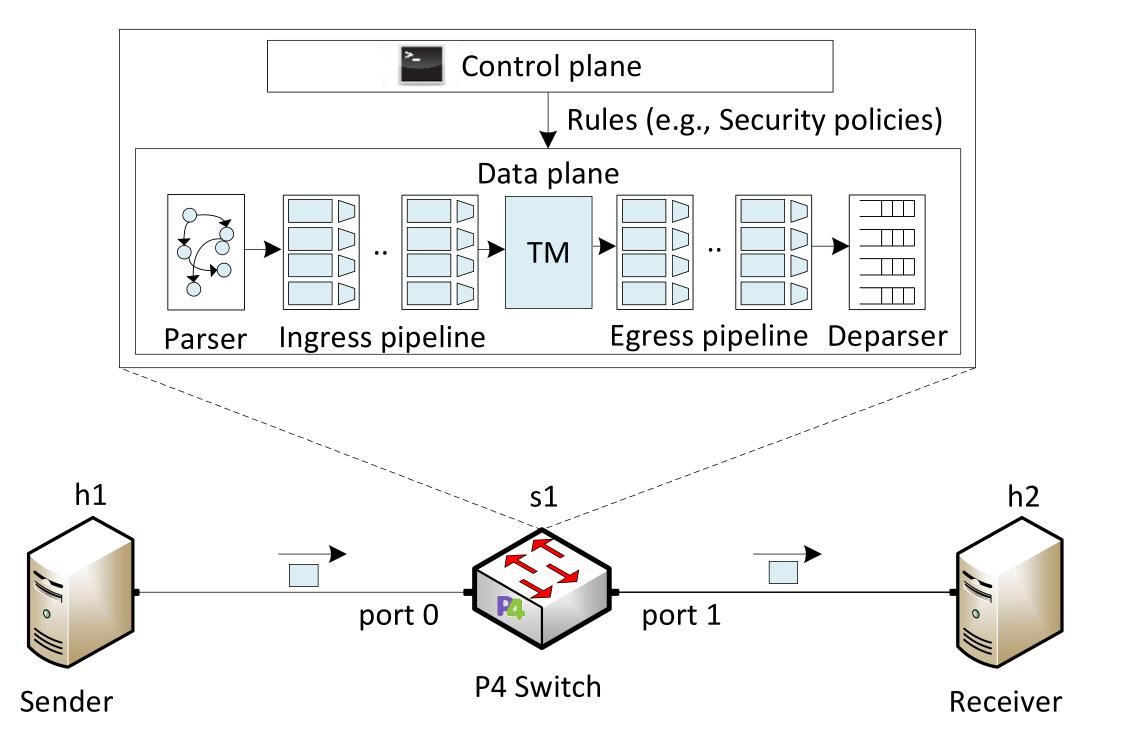
Rule #	Key (Dst. Port)	Action	Action data
1	80	drop	

Table name: forwarding.

root@s1: /behavioral-model

ot@s1:/behavioral-model# nanomsg_client.py -socket' not provided, using ipc:///tmp/bm-log.ipc (obtained from switch) taining JSON from switch...

: PACKET IN, port in: 2 PARSER START, parser id: 0 (parser) PARSER EXTRACT, header id: 2 (ethernet) PARSER EXTRACT, header id: 3 (ipv4) PARSER EXTRACT, header id: 6 (icmp) : PARSER DONE, parser id: 0 (parser) PIPELINE START, pipeline id: 0 (ingress) CONDITION EVAL, condition id: 0 (node 2), result: True TABLE MISS, table id: 0 (MyIngress.forwarding) ACTION_EXECUTE, action_id: 3 (MyIngress.drop) CONDITION EVAL, condition id: 1 (node 4), result: True TABLE_HIT, table_id: 1 (MyIngress.filter_ICMP_protocol), entry_hdl: ACTION EXECUTE, action id: 4 (MyIngress.drop /pe: PIPELINE DONE, pipeline id: 0 (ingress)


Lessons Learned

- Learned how to implement a packet filter using P4.
- Leveraged match-action tables to implement security policies. • Applied the concept of security zones using a P4 switch.
- Validated the implementation of the security policies in the Netlab environment.
- Understood the flexibility of P4 programmable switches in implementing security features.

Conclusion

and decrementing the time-to-live (TTL) field in the IPv4 header.

- The deparser reassembles and emits the packet processed by the previous stages.
- The traffic manager handles operations related to the switch's queue and the sending rate.

Rule #	Key (Dst. IP)	Action	Action data (egress port)
1	10.0.0.1	forward	0
2	10.0.0.2	forward	1
3	10.0.0.3	forward	2

- Scenario 3: Restricting ICMP requests coming from a specific security zone. • Two match-action tables implement this filter: *filter_ICMP_protocol* and forwarding.
 - ICMP requests from Zone 3 (Danger) to Zone 1 (Headquarters) are blocked, whereas requests from Zone 2 (Branch Office) to Zone 1 are allowed.

Table name: filter_ICMP_protocol Rule # Key (ICMP protocol) Action Action data (ingress port) drop

Table name: forwarding.			
Rule #	Key (Dst. IP)	Action	Action data (egress port)
1	10.0.0.1	forward	0
2	10.0.0.2	forward	1
3	10.0.0.3	forward	2

• This project implemented a packet filter using the P4 programming language. • P4 provides the tools to define how packets are processed in the data plane. • With P4, the programmer can implement custom security policies. • Match-action tables are valuable constructs to perform actions on a per-packet basis.

• Future works can include more complex packet processing using other constructs available in P4.

Acknowledgement

• This work was supported by the Office of Naval Research (ONR), grant NOO014-20–1–2797: "Enhancing the Preparation of Next-generation Cyber Professionals"