

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

OPEN VIRTUAL SWITCH
 LAB SERIES

Book Version: 09-30-2021

Principal Investigator: Jorge Crichigno

	 	
	 	

 Open Virtual Switch Lab Series

Contents

Lab 1: Introduction to Linux Namespaces and Open vSwitch
Lab 2: Introduction to Mininet
Lab 3: Introduction to Open vSwitch
Lab 4: Open vSwitch Flow Table
Exercise 1: OpenFlow Basic Operations
Lab 5: Implementing Routing in Open vSwitch
Lab 6: Implementing Routing using Multiple Flow Tables
Exercise 2: Implement Routing using Multiple Flow Tables
Lab 7: Configuring Stateless Firewall using ACLs
Lab 8: Configuring Stateful Firewall using Connection Tracking
Exercise 3: Configuring Stateless and Stateful Firewalls in Open vSwitch
Lab 9: Quality of Service (QoS)
Exercise 4: Configuring Quality of Service (QoS)
Lab 10: Open vSwitch Database Management Protocol (OVSDB)
Lab 11: Open vSwitch Kernel Datapath
Lab 12: Implementing Virtual Local Area Network (VLANs) in Open vSwitch
Lab 13: VLAN trunking in Open vSwitch
Exercise 5: Configuring Virtual Local Area Network (VLAN)
Lab 14: Configuring GRE Tunnel
Lab 15: Configuring IPsec Tunnel

OPEN VIRTUAL SWITCH

Lab 1: Introduction to Linux namespaces and
Open vSwitch

Document Version: 03-31-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Linux namespaces .. 4

1.2 Open vSwitch networking with Linux namespaces .. 4

2 Lab topology.. 5

2.1 Lab settings... 5

3 Creating Linux namespaces and Open vSwitch .. 6

4 Linking the namespaces to the Open vSwitch .. 9

4.1 Creating veth peers .. 9

4.2 Attaching veth peer to namespaces ... 11

4.3 Attaching veth peer to switch s1 .. 13

5 Assigning IP addresses to the hosts .. 15

6 Verifying configuration ... 16

References .. 18

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 3

Overview

This lab discusses the concept of Linux namespaces, which is an isolated network stack in
the kernel. Logically, it creates another copy of the network stack with its interfaces,
routes, and firewall rules. This lab aims to configure network namespaces required to
connect through one instance of Open Virtual Switch (Open vSwitch).

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of Linux namespaces.
2. Understand the basic operation of an Open vSwitch.
3. Create Linux namespaces, tunnels, Open vSwitches, and ports.
4. Verify the routes between network namespaces.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Creating Linux namespaces and Open vSwitch.
4. Section 4: Linking namespaces to the Open vSwitch.
5. Section 5: Assigning IP addresses on the hosts.
6. Section 6: Verifying configuration.

1 Introduction

The increasing number of services based on virtualization presents a significant change in
datacenter networking. The migration from physical ports to virtual ports moved a
substantial part of the workload to virtual switches in a hypervisor. In addition to what
traditional software switches provide, virtual switches have been developed to improve

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 4

the performance and to provide advanced features. Some of these features include high
flexibility, vendor independence, low costs, and conceptual benefits for switching without
Ethernet limitations1. By consolidating multiple servers and storage devices into a single
host machine, virtualization benefits the organization by reducing physical hardware.

1.1 Linux namespaces

Namespaces are a feature that partitions Linux resources. The Linux operating system has
a single routing table and a set of network interfaces. In Linux namespaces, you can isolate
the global system resources between processes. Any changes to the global resource will
only be visible to other processes that are members of the namespace but are invisible to
other processes. Linux namespaces provide independent instances of networks that
enable network isolation and independent operations. Each network namespace has its
own networking devices, IP addresses, routing tables, and firewall rules1.

Each network namespace has its own set of IP tables (for both IPv4 and IPv6). These tables
can apply different security rules to flows that share the same IP address but have
different namespaces and forwarding routes.

Namespace 1 (net
interfaces, routing tables,

iptables)

Hardware

Namespace 2 (net
interfaces, routing tables,

iptables)

Linux kernel global namespace (net interfaces, routing tables, IP
stack, iptables)

Figure 1. Linux namespace architecture.

Consider Figure 1. This figure shows network isolation and independent operation of
multiple network instances. Each network namespace is independent, having individual
processes with separate network interfaces, routing tables, and IP tables.

1.2 Open vSwitch networking with Linux namespaces

Open vSwitch is an open-source software switch used in virtualized environments. It can
forward traffic between different virtual machines (VMs) on the same physical host. It
includes most of the physical switch features and provides some advanced features such
as NetFlow, IPFIX, and sFlow2. It can also operate entirely in userspace without assistance
from a kernel module.

The Open vSwitch daemon runs on the root namespace. It listens to netlink event
messages from all networking namespaces. Each netlink message contains the network
namespace identifier as ancillary data used to match the event to the corresponding port3.

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 5

Root namespace

Namespace 1
Host 1

Namespace 2
Host 2

Open vSwitch

eth0

veth1

eth0

veth2

Figure 2. Open vSwitch connected with Linux namespace hosts.

Consider Figure 2. This figure shows two namespaces connected via Open vSwitch. The
network interface within namespaces interconnects with Open vSwitch via virtual
Ethernet (veth) port peer. Veth ports are equivalent to pair of physical Ethernet interfaces.
These ports are considered as tunnels that run on the link layer (layer 2) and connect
Open vSwitch with the namespaces. Each namespace has its own network interface , and
the connection with the Open vSwitch is done through these interfaces.

2 Lab topology

Consider Figure 3. Two network namespaces, h1 and h2, are linked to one instance of
Open vSwitch, s1. Switch s1 acts as a layer 2 switch enabling connectivity between two
namespaces. The network environments of hosts h1 and h2 are isolated from each other
and the root namespace.

 s1

h1

Namespace h1

192.168.1.10/24

h2

Namespace h2

192.168.1.20/24

Figure 3. Lab topology.

2.1 Lab settings

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 6

The hosts should be configured according to Table 2.

Table 2. Topology information.
Host Interface IIP Address Subnet

h1 h1-eth0 192.168.1.10 /24

h2 h2-eth0 192.168.1.20 /24

3 Creating Linux namespaces and Open vSwitch

In this section, you will create two Linux namespaces called h1 and h2. Additionally, you
will create a virtual switch (i.e., Open vSwitch), s1.

Step 1. Open the Linux terminal.

Figure 4. Opening Linux terminal.

Step 2. Type the following command in the terminal to elevate the entire command
session to root privileges. The obtained privileges are necessary to run the commands
needed to create Linux namespaces and the Open vSwitch. When prompted for a
password, type password, password.

sudo su

Figure 5. Elevating command session to root privileges.

Step 3. Type the following command to display all the interfaces that exist in the root
namespace.

ip link

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 7

Figure 6. Displaying root namespace interfaces.

Step 4. Type the following command to create a namespace, h1.

ip netns add h1

Figure 7. Creating a namespace.

Step 5. Type the following command to create another namespace, h2.

ip netns add h2

Figure 8. Creating a namespace.

Step 6. Type the following command to display all the available namespaces in the kernel.

ip netns

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 8

Figure 9. Displaying all the available namespaces.

Consider the figure above. The figure shows the list of namespaces, h1 and h2.

Step 7. Type the following command to display all the interfaces that exist in namespace
h1.

ip netns exec h1 ip link

Figure 10. Displaying h1 namespace interfaces.

Consider the figure above. Only the loopback interface is listed in the namespace h1.

Step 8. Type the following command to create a virtual switch, s1.

ovs-vsctl add-br s1

Figure 11. Creating a virtual switch.

Step 9. Type the following command to display all the interfaces that exist in the root
namespace.

ip link

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 9

Figure 12. Displaying root namespace interfaces.

Consider the figure above. Open vSwitch s1 is added to the root namespace.

At this point, the network namespaces and the Open vSwitch have been created.
However, the namespaces are not connected to the Open vSwitch.

4 Linking the namespaces to the Open vSwitch

In this section, in order to link the namespaces to the switch s1, you will create two virtual
Ethernet (veth) peers. The veth peer will act as a tunnel between namespaces and the
switch. One end point of the veth peer will be attached to the particular namespace
whereas, the other end point will be connected to the switch s1.

4.1 Creating veth peers

Step 1. In order to create a veth peer, type the following command.

ip link add h1-eth0 type veth peer name s1-eth1

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 10

Figure 13. Creating veth peer.

Consider the figure above. The veth peer has been created but not connected to the
namespaces and the switch. Interface h1-eth0 will be attached to namespace h1, and the
other point, s1-eth1, will be attached to the switch s1 in the following section.

Step 2. To create a veth peer, type the following command.

ip link add h2-eth0 type veth peer name s1-eth2

Figure 14. Creating veth peer.

Consider the figure above. The veth peer has been created but not connected to the
namespaces and the switch. Interface h2-eth0 will be attached to namespace h2, and the
other point s1-eth2 will be attached to the switch s1 in the following section.

Step 3. Type the following command to display all the interfaces available in the root
namespace.

ip link

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 11

Figure 15. Displaying root namespace interfaces.

Consider the figure above. Both peers are visible in the root namespace.

4.2 Attaching veth peer to namespaces

In this section, you will attach h1-eth0 to namespace h1 and h2-eth0 to namespace h2.

Step 1. Type the following command to link one of the peers, h1-eth0, to the namespace
h1.

ip link set h1-eth0 netns h1

Figure 16. Linking namespace h1 to veth peer h1-eth0.

Another peer s1-eth1 will be attached to switch s1 in the following section.

Step 2. Type the following command to display all the interfaces available in the root
namespace.

ip link

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 12

Figure 17. Displaying root namespace interfaces.

Consider the figure above. The interface, h1-eth0, is not available in the root namespace
anymore.

Step 3. Type the following command to display all the interfaces available in the
namespace h1.

ip netns exec h1 ip link

Figure 18. Displaying namespace h1 interfaces.

Consider the figure above. The interface h1-eth0 belongs to the namespace h1.

Step 4. Type the following command to link one of the peers, h2-eth0, to the namespace
h2.

ip link set h2-eth0 netns h2

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 13

Figure 19. Linking namespace h2 to veth peer h2-eth0.

Another peer s1-eth2 will be attached to switch s1 in the following section.

Repeat steps 2 and 3 to verify that interface h2-eth0 is not in the root namespace
anymore.

4.3 Attaching veth peer to switch s1

In this section, you will link s1-eth1 and s1-eth2 to the switch s1.

Step 1. Type the following command to connect veth peer s1-eth1 to switch s1.

ovs-vsctl add-port s1 s1-eth1

Figure 20. Linking switch s1 to veth peer s1-eth1.

Step 2. Type the following command to display switch s1 configuration.

ovs-vsctl show

Figure 21. Displaying Open vSwitch configuration.

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 14

Consider the figure above. You will notice that s1-eth1 is connected to Open vSwitch s1.

Step 3. Type the following command to connect veth peer s1-eth2 to switch s1.

ovs-vsctl add-port s1 s1-eth2

Figure 22. Linking switch s1 to veth peer s1-eth2.

Step 4. Type the following command to activate the interface s1-eth1.

ip link set s1-eth1 up

Figure 23. Turning up the interface, s1-eth1.

Step 5. Type the following command to verify the status of the interface s1-eth1.

ip link

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 15

Figure 24. Displaying root namespace interfaces.

Consider the figure above. You will notice the status of the interface s1-eth1 has changed
from DOWN to UP.

Step 6. Type the following command to turn up the interface s1-eth2.

ip link set s1-eth2 up

Figure 25. Turning up the interface, s1-eth2.

5 Assigning IP addresses to the hosts

Step 1. Type the following command to turn up the interface h1-eth0 in the namespace
h1.

ip netns exec h1 ip link set dev h1-eth0 up

Figure 26. Turning up the interface, h1-eth0.

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 16

Step 2. Type the following command to assign an IP address to the interface h1-eth0.

ip netns exec h1 ip address add 192.168.1.10/24 dev h1-eth0

Figure 27. Assigning IP address to the interface h1-eth0.

Step 3. Type the following command to turn up the interface h2-eth0 in the namespace
h2.

ip netns exec h2 ip link set dev h2-eth0 up

Figure 28. Turning up the interface h2-eth0.

Step 4. Type the following command to assign an IP address to interface h2-eth0.

ip netns exec h2 ip address add 192.168.1.20/24 dev h2-eth0

Figure 29. Assigning IP address to the interface h2-eth0.

6 Verifying configuration

Step 1. Type the following command to verify the IP address on namespace h1. You will
verify the interface status is up, and the IP address is 192.168.1.10/24.

ip netns exec h1 ip address

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 17

Figure 30. Verifying IP address for interface h1-eth0.

Step 2. Type the following command to display the routing table of namespace h1. You
will notice that network 192.168.1.0/24 is available.

ip netns exec h1 ip route

Figure 31. Displaying namespace h1’s routing table.

Step 3. Type the following command to display the routing table of the root namespace.

ip route

Figure 32. Displaying root namespace routing table.

Consider the figure above. The root namespace is not aware of network 192.168.1.0/24.
This is due to the isolation of the namespaces from the root namespace.

Step 4. Type the following command to start a bash shell within namespace h1, where
you can run all the commands on the particular namespace.

ip netns exec h1 bash

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 18

Figure 33. Starting a bash shell within namespace h1.

Step 5. Test the connectivity between namespaces h1 and h2 using the ping command.
To stop the test, press Ctrl+c.

ping 192.168.1.20

Figure 34. Output of the ping command.

The figure shows successful connectivity between two namespaces.

Step 6. You can also run a traceroute test between namespaces using the traceroute
command.

traceroute 192.168.1.20

Figure 35. Output of the traceroute command.

This concludes Lab 1. You can exit the Linux terminal.

References

Lab 1: Introduction to Linux namespaces and Open vSwitch

 Page 19

1. Toptal, “Separation anxiety: A tutorial for isolating your system with Linux
namespaces”, [Online]. Available: https://www.toptal.com/linux/separation-
anxiety-isolating-your-system-with-linux-namespaces

2. Linux foundation, “Open vSwitch”, [Online]. Available: http://openvSwitch.org.
3. Linux foundation, “Open vSwitch”, [Online]. Available:

https://docs.openvswitch.org/en/latest/topics/networking-namespaces/
4. RFC 4047, “The open vSwitch database management protocol”, Dec 2013.
5. IBM, “Archived | virtual networking in Linux”, [Online]. Available:

https://developer.ibm.com/tutorials/l-virtual-networking/
6. Konstantin Ivanov, “Containerization with LXC”, Feb 2017.
7. Mininet walkthrough, [Online]. Available: http://mininet.org.
8. Cisco, “Introduction to Cisco IOS Netflow – A technical overview”, May 2012.
9. RFC 7011, “Specification of the IP Flow information export (IPFIX) protocol for the

exchange of flow information”, Sep 2013.
10. sFlow, [Online]. Available: https://sflow.org/
11. Red Hat, “What is virtualization?”, [Online]. Available:

https://www.redhat.com/en/topics/virtualization/what-is-virtualization

OPEN VIRTUAL SWITCH

Lab 2: Introduction to Mininet

Document Version: 03-31-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 2: Introduction to Mininet

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to Mininet .. 3

2 Invoke Mininet using the CLI .. 5

2.1 Invoke Mininet using the default topology .. 5

2.2 Test connectivity .. 9

3 Build and emulate a network in Mininet using the GUI ... 10

3.1 Build the network topology ... 11

3.2 Test connectivity .. 13

3.3 Automatic assignment of IP addresses .. 16

3.4 Save and load a Mininet topology ... 18

4 Configure router r1 ... 19

4.1 Verify end-hosts configuration... 20

4.2 Configure router’s interface ... 21

4.3 Verify router r1 configuration .. 25

4.4 Test connectivity between end-hosts .. 26

References .. 26

Lab 2: Introduction to Mininet

 Page 3

Overview

This lab provides an introduction to Mininet, a virtual testbed used for testing network
tools and protocols. It demonstrates how to invoke Mininet from the command-line
interface (CLI) utility and build and emulate topologies using a graphical user interface
(GUI) application. In this lab, you will use Containernet, a Mininet network emulator fork
that uses Docker containers as hosts in emulated network topologies. However, all the
concepts covered are bounded to Mininet.

Objectives

By the end of this lab, you should be able to:

1. Understand what Mininet is and why it is useful for testing network topologies.
2. Invoke Mininet from the CLI.
3. Construct network topologies using the GUI.
4. Save/load Mininet topologies using the GUI.
5. Configure the interfaces of a router using the CLI.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Mininet.
2. Section 2: Invoke Mininet using the CLI.
3. Section 3: Build and emulate a network in Mininet using the GUI.
4. Section 4: Configure router r1.

1 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools and
protocols. With a single command, Mininet can create a realistic virtual network on any
type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides

Lab 2: Introduction to Mininet

 Page 4

an inexpensive solution and streamlined development running in line with production
networks1. Mininet offers the following features:

• Fast prototyping for new networking protocols.

• Simplified testing for complex topologies without the need of buying expensive
hardware.

• Realistic execution as it runs real code on the Unix and Linux kernels.

• Open-source environment backed by a large community contributing extensive
documentation.

Figure 1. Hardware network vs. Mininet emulated network.

Mininet is useful for development, teaching, and research as it is easy to customize and
interact with it through the CLI or the GUI. Mininet was originally designed to experiment
with OpenFlow2 and Open Virtual Network (Open vSwitch)3. This lab, however, only
focuses on emulating a simple network environment without Open vSwitch devices.

Mininet’s logical nodes can be connected into networks. These nodes are sometimes
called containers, or more accurately, network namespaces. Containers consume
sufficiently fewer resources that networks of over a thousand nodes have created,
running on a single laptop. A Mininet container is a process (or group of processes) that
no longer has access to all the host system’s native network interfaces. Containers are
then assigned virtual Ethernet interfaces, which are connected to other containers
through a virtual switch4. Mininet connects a host and a switch using a virtual Ethernet
(veth) link. The veth link is analogous to a wire connecting two virtual interfaces, as
illustrated below.

Figure 2. Network namespaces and virtual Ethernet links.

h1 s1 h2s2

s3

Hardware NetworkMininet Emulated Network

Lab 2: Introduction to Mininet

 Page 5

Each container is an independent network namespace, a lightweight virtualization feature
that provides individual processes with separate network interfaces, routing tables, and
Address Resolution Protocol (ARP) tables.
Mininet provides network emulation opposed to simulation, allowing all network
software at any layer to be simply run as is, i.e. nodes run the native network software of
the physical machine. On the other hand, in a simulated environment applications and
protocol implementations need to be ported to run within the simulator before they can
be used.

2 Invoke Mininet using the CLI

The first step to start Mininet using the CLI is to start a Linux terminal.

2.1 Invoke Mininet using the default topology

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 3. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. To start a minimal topology, enter the command shown below. When prompted
for a password, type password and hit enter. Note that the password will not be visible
as you type it.

sudo mn

Lab 2: Introduction to Mininet

 Page 6

Figure 4. Starting Mininet using the CLI.

The above command starts Mininet with a minimal topology, which consists of a switch
connected to two hosts as shown below.

h1

10.0.0.1

s1 h2

10.0.0.2

s1-eth1

h1-eth0

s1-eth2

h2-eth0

10.0.0.0/8

c0

Figure 5. Mininet’s default minimal topology.

When issuing the sudo mn command, Mininet initializes the topology and launches its
command line interface which looks like this:

containernet>

Step 3. To display the list of Mininet CLI commands and examples on their usage, type the
following command:

help

Lab 2: Introduction to Mininet

 Page 7

Figure 6. Mininet’s help command.

Step 4. To display the available nodes, type the following command:

nodes

Figure 7. Mininet’s nodes command.

The output of this command shows that there is a controller, two hosts (host h1 and host
h2), and a switch (s1).

Step 5. It is useful sometimes to display the links between the devices in Mininet to
understand the topology. Issue the command shown below to see the available links.

Lab 2: Introduction to Mininet

 Page 8

net

Figure 8. Mininet’s net command.

The output of this command shows that:

1. Host h1 is connected using its network interface h1-eth0 to the switch on interface
s1-eth1.

2. Host h2 is connected using its network interface h2-eth0 to the switch on interface
s1-eth2.

3. Switch s1:
a. has a loopback interface lo.
b. connects to h1-eth0 through interface s1-eth1.
c. connects to h2-eth0 through interface s1-eth2.

4. Controller c0 is the brain of the network, where it has a global knowledge about
the network. A controller instructs the switches on how to forward/drop packets
in the network.

Mininet allows you to execute commands on a specific device. To issue a command for a
specific node, you must specify the device first, followed by the command.

Step 6. To proceed, issue the command:

h1 ifconfig

Lab 2: Introduction to Mininet

 Page 9

Figure 9. Output of h1 ifconfig command.

This command executes the ifconfig Linux command on host h1. The command shows
host h1’s interfaces. The display indicates that host h1 has an interface h1-eth0 configured
with IP address 10.0.0.1, and another interface lo configured with IP address 127.0.0.1
(loopback interface).

2.2 Test connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1
and host h2, respectively. To test connectivity between them, you can use the command
ping. The ping command operates by sending Internet Control Message Protocol (ICMP)
Echo Request messages to the remote computer and waiting for a response. Information
available includes how many responses are returned and how long it takes for them to
return.

Step 1. On the CLI, type the command shown below. This command tests the connectivity
between host h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a
successful connectivity test. Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2) and
successfully received the expected responses.

h1 ping 10.0.0.2

Lab 2: Introduction to Mininet

 Page 10

Figure 10. Connectivity test between host h1 and host h2.

Step 2. Stop the emulation by typing the following command:

exit

Figure 11. Stopping the emulation using exit.

The command sudo mn -c is often used on the Linux terminal (not on the Mininet CLI)
to clean a previous instance of Mininet (e.g., after a crash).

3 Build and emulate a network in Mininet using the GUI

In this section, you will use the application MiniEdit5 to deploy the topology illustrated
below. MiniEdit is a simple GUI network editor for Mininet.

Figure 12. Lab topology.

Lab 2: Introduction to Mininet

 Page 11

3.1 Build the network topology

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 13. MiniEdit desktop shortcut.

MiniEdit will start, as illustrated below.

Figure 14. MiniEdit Graphical User Interface (GUI).

Lab 2: Introduction to Mininet

 Page 12

The main buttons in this lab are:

1. Select: allows selection/movement of the devices. Pressing Del on the keyboard
after selecting the device removes it from the topology.

2. Host: allows addition of a new host to the topology. After clicking this button, click
anywhere in the blank canvas to insert a new host.

3. Legacy switch: allows addition of a new legacy switch to the topology. After
clicking this button, click anywhere in the blank canvas to insert the switch.

4. Link: connects devices in the topology (mainly switches and hosts). After clicking
this button, click on a device and drag to the second device to which the link is to
be established.

5. Run: starts the emulation. After designing and configuring the topology, click the
run button.

6. Stop: stops the emulation.

Step 2. To build the topology illustrated in Figure 12, two hosts and one switch must be
deployed. Deploy these devices in MiniEdit, as shown below.

Figure 15. MiniEdit’s topology.

Use the buttons described in the previous step to add and connect devices. The
configuration of IP addresses is described in Step 3.

Step 3. Configure the IP addresses of host h1 and host h2. Host h1’s IP address is
10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the
right click and selecting properties on the device. For example, host h2 is assigned the IP
address 10.0.0.2/8 in the figure below.

Lab 2: Introduction to Mininet

 Page 13

Figure 16. Configuration of a host’s properties.

3.2 Test connectivity

Before testing the connection between host h1 and host h2, the emulation must be
started.

Step 1. Click on the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 17. Starting the emulation.

Step 2. Open a terminal on host h1 by holding the right click on host h1 and selecting
Terminal. This opens a terminal on host h1 and allows the execution of commands on the
host h1. Repeat the procedure on host h2.

Lab 2: Introduction to Mininet

 Page 14

Figure 18. Opening a terminal on host h1.

The network and terminals at host h1 and host h2 will be available for testing.

Figure 19. Terminals at host h1 and host h2.

Step 3. On host h1’s terminal, type the command shown below to display its assigned IP
addresses. The interface h1-eth0 at host h1 should be configured with the IP address
10.0.0.1 and subnet mask 255.0.0.0.

ifconfig

Lab 2: Introduction to Mininet

 Page 15

Figure 20. Output of ifconfig command on host h1.

Repeat Step 3 on host h2. Its interface h2-eth0 should be configured with IP address
10.0.0.2 and subnet mask 255.0.0.0.

Step 4. On host h1’s terminal, type the command shown below. This command tests the
connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The figure
below shows a successful connectivity test. Host h1 (10.0.0.1) sent six packets to host h2
(10.0.0.2) and successfully received the expected responses.

ping 10.0.0.2

Figure 21. Connectivity test using ping command.

Step 5. Stop the emulation by clicking on the Stop button.

Lab 2: Introduction to Mininet

 Page 16

Figure 22. Stopping the emulation.

3.3 Automatic assignment of IP addresses

In the previous section, you manually assigned IP addresses to host h1 and host h2. An
alternative is to rely on Mininet for an automatic assignment of IP addresses (by default,
Mininet uses automatic assignment), which is described in this section.

Step 1. Remove the manually assigned IP address from host h1. Hold right-click on host
h1, Properties. Delete the IP address, leaving it unassigned, and press the OK button as
shown below. Repeat the procedure on host h2.

Figure 23. Host h1 properties.

Step 2. Click on Edit, Preferences button. The default IP base is 10.0.0.0/8. Modify this
value to 15.0.0.0/8, and then press the OK button.

Figure 24. Modification of the IP Base (network address and prefix length).

Lab 2: Introduction to Mininet

 Page 17

Step 3. Run the emulation again by clicking on the Run button. The emulation will start
and the buttons of the MiniEdit panel will be disabled.

Step 4. Open a terminal on host h1 by holding the right click on host h1 and selecting
Terminal.

Figure 25. Opening a terminal on host h1.

Step 5. Type the command shown below to display the IP addresses assigned to host h1.
The interface h1-eth0 at host h1 now has the IP address 15.0.0.1 and subnet mask
255.0.0.0.

ifconfig

Figure 26. Output of ifconfig command on host h1.

You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host
h2’s terminal. The corresponding interface h2-eth0 at host h2 has now the IP address
15.0.0.2 and subnet mask 255.0.0.0.

Lab 2: Introduction to Mininet

 Page 18

Step 6. Stop the emulation by clicking on Stop button.

Figure 27. Stopping the emulation.

3.4 Save and load a Mininet topology

In this section you will save and load a Mininet topology. It is often useful to save the
network topology, particularly when its complexity increases. MiniEdit enables you to
save the topology to a file.

Step 1. Save the current topology by clicking on File then Save. Provide a name for the
topology and save it in the local folder. In this case, we used myTopology as the topology
name.

Figure 28. Saving the topology.

Step 2. Load the topology by clicking on File then Open. Search for the topology file called
lab2.mn and click on Open. A new topology will be loaded to MiniEdit.

Lab 2: Introduction to Mininet

 Page 19

Figure 29. Opening a topology.

4 Configure router r1

In the previous section, you loaded a topology that consists of two networks directly
connected to router r1. Consider Figure 30. In this topology two LANs, defined by switch
s1 and switch s2 are connected to router r1. Initially, host h1 and host h2 do not have
connectivity thus, you will configure router r1’s interfaces in order to establish
connectivity between the two networks.

Figure 30. Topology.

Table 2 summarized the IP addresses used to configure router r1 and the end-hosts.

Table 2. Topology information.
Device Interface IIP Address Subnet Default

gateway

 r1

r1-eth0 192.168.1.1 /24 N/A

r1-eth1 192.168.2.1 /24 N/A

 h1 h1-eth0 192.168.1.10 /24 192.168.1.1

Lab 2: Introduction to Mininet

 Page 20

 h2 h2-eth0 192.168.2.10 /24 192.168.2.1

Step 1. Click on the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 31. Starting the emulation.

4.1 Verify end-hosts configuration

In this section, you will verify that the IP addresses are assigned according to Table 2.
Additionally, you will check routing information.

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 32. Opening a terminal on host h1.

Step 2. In host h1 terminal, type the command shown below to verify that the IP address
was assigned successfully. You will verify that host h1 has two interfaces, h1-eth0
configured with the IP address 192.168.1.10 and the subnet mask 255.255.255.0 and, the
loopback interface lo configured with the IP address 127.0.0.1.

ifconfig

Lab 2: Introduction to Mininet

 Page 21

Figure 33. Output of ifconfig command.

Step 3. In host h1 terminal, type the command shown below to verify that the default
gateway IP address is 192.168.1.1.

route

Figure 34. Output of route command.

Step 4. In order to verify host 2 default route, proceed similarly by repeating from step 1
to step 3 in host h2 terminal. Similar results should be observed.

4.2 Configure router’s interface

Step 1. In order to configure router r1, hold right-click on router r1 and select Terminal.

Lab 2: Introduction to Mininet

 Page 22

Figure 35. Opening a terminal on router r1.

Step 2. In this step, you will start zebra daemon, which is a multi-server routing software
that provides TCP/IP based routing protocols. The configuration will not be working if you
do not enable zebra daemon initially. In order to start the zebra, type the following
command:

zebra

Figure 36. Starting zebra daemon.

Step 3. After initializing zebra, vtysh should be started in order to provide all the CLI
commands defined by the daemons. To proceed, issue the following command:

vtysh

Figure 37. Starting vtysh on router r1.

Step 4. Type the following command in the router r1 terminal to enter in configuration
mode.

configure terminal

Lab 2: Introduction to Mininet

 Page 23

Figure 38. Entering in configuration mode.

Step 5. Type the following command in the router r1 terminal to configure interface r1-
eth0.

interface r1-eth0

Figure 39. Configuring interface r1-eth0.

Step 6. Type the following command on router r1 terminal to configure the IP address of
the interface r1-eth0.

ip address 192.168.1.1/24

Figure 40. Configuring an IP address to interface r1-eth0.

Step 7. Type the following command exit from interface r1-eth0 configuration.

exit

Lab 2: Introduction to Mininet

 Page 24

Figure 41. Exiting from configuring interface r1-eth0.

Step 8. Type the following command on router r1 terminal to configure the interface r1-
eth1.

interface r1-eth1

Figure 42. Configuring interface r1-eth1.

Step 9. Type the following command on router r1 terminal to configure the IP address of
the interface r1-eth1.

ip address 192.168.2.1/24

Figure 43. Configuring an IP address to interface r1-eth1.

Step 10. Type the following command to exit from r1-eth1 interface configuration.

Lab 2: Introduction to Mininet

 Page 25

exit

Figure 44. Exiting from configuring interface r1-eth1.

4.3 Verify router r1 configuration

Step 1. Exit from router r1 configuration mode issuing the following command:

exit

Figure 45. Exiting from configuration mode.

Step 2. Type the following command on router r1 terminal to verify the routing
information of router r1. It will be showing all the directly connected networks.

show ip route

Lab 2: Introduction to Mininet

 Page 26

Figure 46. Displaying routing information of router r1.

4.4 Test connectivity between end-hosts

In this section you will run a connectivity test between host h1 and host h2.

Step 1. In host h1 terminal type the command shown below. Notice that according to
Table 2, the IP address 192.168.2.10 is assigned to host h2. To stop the test press ctrl+c

ping 192.168.2.10

Figure 47. Connectivity test between host h1 and host h2.

This concludes Lab 2. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. Mininet walkthrough. [Online]. Available: http://Mininet.org.
2. N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.

Shenker, and J. Turner, “OpenFlow,” ACM SIGCOMM computer Communication
review, vol. 38, no. 2, p. 69, 2008.

3. Linux foundation, [Online]. Available: http://openvSwitch.org.
4. P. Dordal, “An introduction to computer networks,”. [Online]. Available:

https://intronetworks.cs.luc.edu/.
5. B. Lantz, G. Gee, “MiniEdit: a simple network editor for Mininet,” 2013. [Online].

Available: https://github.com/Mininet/Mininet/blob/master/examples.

OPEN VIRTUAL SWITCH

Lab 3: Introduction to Open vSwitch

Document Version: 06-29-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 3: Introduction to Open vSwitch

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to Open vSwitch .. 4

2 Lab topology.. 5

2.1 Lab settings... 6

2.2 Loading a topology ... 6

3 Querying switches and daemon information ... 8

4 Open vSwitch fail-modes .. 10

5 Inspecting the state of the switch .. 15

References .. 17

Lab 3: Introduction to Open vSwitch

 Page 3

Overview

This lab introduces Open Virtual Switch (Open vSwitch, or OVS), an open-source software
switch used in virtualization environments. This lab aims to show the basic features of
Open vSwitch through the utility tools (ovs-vsctl, ovs-ofctl, ovs-appctl). Such tools allow
querying and configuring the switch’s daemon, as well as administering the switch state
which includes flow table entries.

Objectives

By the end of this lab, you should be able to:

1. Understand the architecture of an Open vSwitch.
2. Explore Open vSwitch utility tools.
3. Understand the different modes of an Open vSwitch.
4. Display and modify basic parameters of the switch daemon.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Querying switches and daemon information.
4. Section 4: Open vSwitch fail-modes.
5. Section 5: Inspecting the state of the switch.

1 Introduction

Virtualization has changed the way of computing over the past few years. It can combine
various physical networks into one virtual network. Virtualization provides simplicity,
agility, and security by automating many of the data center network processes. By

Lab 3: Introduction to Open vSwitch

 Page 4

consolidating multiple servers and storage devices into a single host machine,
virtualization benefits the organization by reducing physical hardware.

Software switches form an integral part of any virtualized computing setup. They provide
network access for virtual machines (VMs) by linking virtual and physical network
interfaces. The deployment of software switches in virtualized environments has led to
the term virtual switches and paved the way for the mainstream adoption of software
switches2, which did not receive much attention before. Virtual switches have been
developed to meet the requirements in a virtualized environment. In addition to the
traditional benefits of software switches such as high flexibility, vendor independence,
low costs, and conceptual benefits for switching without Ethernet limitations, these
devices focus on the performance and provide advanced features1.

vNIC

pNIC

Hypervisor

Virtual Machine
(VM)

Virtual Switch

Virtual Machine
(VM)

Virtual Machine
(VM)

vNIC vNIC

veth veth veth

Physical Switch

Figure 1. Virtual switch architecture.

Consider Figure 1. The figure shows virtual switch architecture where VMs are attached
to a virtual switch through virtual Network Interface Cards (vNICs). Virtual switch uses
virtual Ethernet link (veth) to connect VMs. The hypervisor permits communication to the
physical networking infrastructure by attaching the server’s physical NICs (pNICs) to the
hypervisor’s logical infrastructure, permitting efficient communication among VMs within
the hypervisor as well as efficient communication to the external network.

1.1 Introduction to Open vSwitch

Open vSwitch is an open-source software switch in virtual environments. Open vSwitch is
able to forward traffic between different VMs on either the same physical host or on
different hosts. It includes most of the features provided by regular switches, and
provides advanced features such as NetFlow, IPFIX, and sFlow1. It can also operate
entirely in userspace without assistance from a kernel module, at the cost of degradation
in the performance. The most vital components of Open vSwitch are the switch daemon
(ovs-vswitchd) and a kernel module5.

Figure 2 depicts the architecture of Open vSwitch, all the components are described
below:

Lab 3: Introduction to Open vSwitch

 Page 5

Kernel Module: The kernel module is designed for handling switching and tunneling.
When a packet is received, it looks for a match in the kernel table. When a match is found,
required actions are executed. Otherwise, packets are sent to the userspace.

Open vSwitch Database: The Open vSwitch Database (OVSDB) contains switch
configuration and keeps track of created and modified interfaces. All the configuration is
stored on persistent storage and survives a reboot. The OVSDB-server communicates with
ovs-vswitchd and the controller using the OVSDB management protocol.

Open vSwitch Daemon: The Open vSwitch daemon (ovs-vswitchd) is one of the major
components of Open vSwitch. It communicates with the controller using OpenFlow and
with the OVSDB-server through the OVSDB management protocol. The ovs-vswitchd
communicates with the kernel module over netlink (a Linux kernel interface used for
creating a connection between userspace processes and the kernel). It supports multiple
independent data paths, known as bridges.

Controller: The controller is remotely connected to switches and OVSDB-server. It
controls the switch and manages the routing.

Control cluster

OpenFlow

ovs-vswitchdOVSDB-server

Kernel module

Netlink

OVSDB

Userspace

Kernel

Figure 2. Open vSwitch architecture.

2 Lab topology

Consider Figure 3. The topology consists of two hosts and one switch. The hosts belong
to the network 10.0.0.0/8.

Lab 3: Introduction to Open vSwitch

 Page 6

h1

h1-eth0

s1-eth1 s1-eth2

h2-eth0

 s1

h2

10.0.0.1/8

Figure 3. Lab topology.

2.1 Lab settings

The hosts are configured according to Table 2.

Table 2. Topology information.
Host Interface IIP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

2.2 Loading a topology

Step 1. Start by launching MiniEdit by clicking on the desktop’s shortcut. When prompted
for a password, type password.

Figure 4. MiniEdit shortcut.

Lab 3: Introduction to Open vSwitch

 Page 7

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Locate
the lab3.mn topology file in the default directory, /home/ovs/OVS_Labs/lab3 and click on
Open.

Figure 5. MiniEdit’s Open dialog.

Figure 6. MiniEdit’s topology.

Step 3. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 7. Starting the emulation.

Step 4. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Lab 3: Introduction to Open vSwitch

 Page 8

Figure 8. Opening Mininet’s terminal.

Step 5. Issue the following command to display the links between the interfaces in the
topology.

links

Figure 9. Displaying network interfaces.

In Figure 9, the link displayed within the gray box indicates that interface eth0 of host h1
connects to interface eth1 of switch s1 (i.e., h1-eth0<->s1-eth1).

3 Querying switches and daemon information

In this section, you will use ovs-vsctl command line tool to query the Open vSwitch
daemon for information pertaining to the running switches. You will also query general
information such as the installed Open vSwitch version.

Step 1. Open the Linux terminal.

Figure 10. Opening Linux terminal.

Step 2. In order to show the version of the installed Open vSwitch on the system, type the
following command. When prompted for a password, type password. You can verify that
the installed version of Open vSwitch is 2.12.0.

sudo ovs-vsctl -V

Lab 3: Introduction to Open vSwitch

 Page 9

Figure 11. Verifying Open vSwitch version.

Step 3. To list all the switches that are currently running in your system, type the following
command. Note that a switch is also referred to as a bridge.

sudo ovs-vsctl list-br

Figure 12. Verifying Open vSwitch list.

The figure above shows that there is a single switch s1 that is running in the system. The
output verifies the lab’s topology which consists of a single switch.

Step 4. Type the following command to list all the ports within switch s1. You will see that
two ports are connected to the switch. These ports connect hosts h1 and h2 to the switch.

sudo ovs-vsctl list-ports s1

Figure 13. Listing switch s1 ports.

Step 5. The ports that were returned in the previous command, which correspond to
regular interfaces in Linux, can also be inspected by using the ifconfig tool as follows.

ifconfig s1-eth1; ifconfig s1-eth2

Lab 3: Introduction to Open vSwitch

 Page 10

Figure 14. Displaying Open vSwitch interfaces through ifconfig.

The figure above confirms that the switches’ interfaces are visible in the operating system.
This is useful because we can use management, monitoring, and traffic shaping tools, and
apply them on the switch’s interfaces. For instance, we can use the Network Emulator
(netem) with the traffic control tool (tc) to emulate various network conditions such as
delays, packet losses, jitter, etc.

Step 6. The switch daemon (ovs-vswitchd) stores its configuration in a database. Type the
following command to print a brief overview of the database contents.

sudo ovs-vsctl show

Figure 15. Printing an overview of database contents.

The figure above displays the bridge name (i.e., switch s1) and its connected interfaces
(s1, s1-eth1, and s1-eth2). The interface s1 is internal and can be used to assign an IP
address to the bridge itself. The other interfaces connect the hosts h1 and h2 to the switch.
Finally, the fail_mode is set to standalone, which we describe next.

4 Open vSwitch fail-modes

Lab 3: Introduction to Open vSwitch

 Page 11

Open vSwitch maintains flow tables that are consulted to determine how to forward
traffic. The flow tables entries are typically populated by a controller. A controller is a
centralized software that provides services to the forwarding planes. It might be the case
where there is no connection to the controller, and hence, tables would not be populated,
causing packets to be dropped at the switch.

Open vSwitch offers the option to operate in a standalone fail-mode. This means that if
no connection to the controller is possible, or if messages have not been received from
the controller for a time interval, Open vSwitch will take over responsibility for setting up
flows. Consequently, the switch will operate as a regular MAC-learning switch. In this
section, we will display and modify the fail-mode of the switch and understand its impact
on traffic forwarding.

Step 1. By default, when adding a LegacySwitch from Miniedit, the Open vSwitch will
operate in standalone fail-mode. When adding an OpenFlow switch from Miniedit, the
Open vSwitch will operate in secure fail-mode. The figure below shows the LegacySwitch
and the OpenFlow icons in MiniEdit and their corresponding fail-modes. Note that both
switches are in fact OpenFlow switches.

Figure 16. LegacySwitch and OpenFlow icons in Miniedit and their corresponding fail-modes.

Step 2. In this step, we will verify that the switch is operating as a standalone. Issue the
command below to display the fail-mode of switch s1.

sudo ovs-vsctl get-fail-mode s1

Lab 3: Introduction to Open vSwitch

 Page 12

Figure 17. Displaying switch s1 operating mode.

The figure above confirms that the switch is running in standalone fail-mode.

Step 3. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 18. Opening host h1 terminal.

Step 4. Run a connectivity test between hosts h1 and h2 to check if the switch is
successfully forwarding packets without the help of a controller. Type the command
below on the terminal of host h1 to issue a ping test to host h2. Press ctrl+c to stop the
test.

ping 10.0.0.2

Figure 19. Running a connectivity test between h1 and h2.

The following figure shows a successful connectivity test. This means that the switch is
acting as a MAC-learning switch and can forward packets without having the controller to
populate its flow tables.

Lab 3: Introduction to Open vSwitch

 Page 13

Step 5. In this step, we will modify the switch fail-mode to secure. The secure fail-mode
causes the switch not to set up flows on its own when the controller connection fails.
Issue the command below to modify the fail-mode of switch s1 to secure.

sudo ovs-vsctl set-fail-mode s1 secure

Figure 20. Changing the switch’s mode from fail-mode to secure-mode.

Step 6. Run a connectivity test between hosts h1 and h2 to check if the switch is
successfully forwarding packets without the help of a controller. Open the terminal of
host h1 and type the command below to issue a ping test to host h2. Press ctrl+c to stop
the test.

ping 10.0.0.2

Figure 21. Running a connectivity test between h1 and h2.

The figure above shows that there is no connectivity between hosts h1 and h2. Since we
did not configure a controller in this lab, and since the switch is set to the secure fail-
mode, the tables in the switch are not getting populated. Consequently, packets arriving
to the switch are getting dropped.

Step 7. Type the following command to dump the flow table of switch s1.

sudo ovs-ofctl dump-flows s1

Figure 22. Showing the active flow entries of switch s1.

Consider the figure above. The flow table of switch s1 is empty which indicates that switch
s1 does not know how to forward the traffic.

Lab 3: Introduction to Open vSwitch

 Page 14

Step 8. Change the fail-mode of the switch back to standalone by issuing the following
command.

sudo ovs-vsctl set-fail-mode s1 standalone

Figure 23. Changing back the switch’s mode from secure-mode to fail-mode.

Step 9. Verify that the connectivity between hosts h1 and h2 is restored by issuing the
following command on host h1 terminal.

ping 10.0.0.2

Figure 24. Running a connectivity test between h1 and h2.

The figure above confirms that the connectivity between the hosts h1 and h2 is restored.

Step 10. Type the following command to dump the flow table of switch s1.

sudo ovs-ofctl dump-flows s1

Figure 25. Showing the active flow entries of switch s1.

The figure above shows the following information:

• cookie: a 64-bit number associated with a certain flow. The cookie field can be
specified when adding/modifying flows. If not specified (as in the scenario above),
the default cookie value of 0x0 is used.

• duration: the number of seconds since the entry was added.

Lab 3: Introduction to Open vSwitch

 Page 15

• table: the table number (0 in this case). Table 0 corresponds to the first table in
the pipeline and is matched against its entries when a packet arrives to the switch.

• n_packets: the number of packets that had a hit on the flow entry.

• n_bytes: the total number of bytes of packets that hit the flow entry.

• priority: a number between 0 and 65535 that indicates the priority of match in
comparison to other matching entries. A higher value will match before a lower
one.

actions: the action to take when a flow hits the entry. In the scenario above, the action is
NORMAL, indicating that the packet is subject to the device’s normal L2/L3 processing.
This is why we have connectivity between the hosts h1 and h2.

5 Inspecting the state of the switch

In this section, you will use ovs-ofctl command line tool to inspect the state of the
switch. The state in this context includes capabilities, configuration, and table entries.

Step 1. Issue the command below to display information pertaining to switch s1.

sudo ovs-ofctl show s1

Figure 26. Showing switch s1 information.

Consider the figure above. Switch s1 has three interfaces. Each interface displays the
Media Access Control (MAC) address (addr) and other information, such as the current
state of the switch.

Step 2. It is possible to inspect the learned MAC entries on the switch. Type the following
command to display the MAC addresses that were learned on switch s1.

sudo ovs-appctl fdb/show s1

Lab 3: Introduction to Open vSwitch

 Page 16

Figure 27. Verifying MAC addresses on switch s1.

Consider the figure above. The table contains each MAC address/VLAN pair learned by
switch s1, along with the port on which it was learned. Aging time defines the period an
entry is in the table, in seconds. The default VLAN ID is set to 0. The MAC addresses of
ports 1 and 2 shown in the output above refer to the MAC address of hosts h1 and h2,
respectively.

Perform the connectivity test between hosts h1 and h2 again if you do not get the
expected output since MAC entries are deleted after a certain period of time.

Step 3. Type the following command to display flow information for all interfaces. This
command aggregates the stats of all ports and display the totals.

sudo ovs-ofctl dump-aggregate s1

Figure 28. Displaying flow information in switch s1.

Consider the figure above. The figure shows the information about all interfaces (total
packets, bytes, drop, errors). You will notice the number of total packets (20), bytes (1736)
received in switch s1.

Step 4. Type the following command to display statistics for the flow tables in switch s1.

sudo ovs-ofctl dump-tables s1

Lab 3: Introduction to Open vSwitch

 Page 17

Figure 29. Displaying flow tables in switch s1.

Consider the figure above. By default, Open vSwitch uses OpenFlow table 0 to save the
flows. The figure shows the number of lookup (20) and the number of matches (18) found
in table 0.

You might get different output depending on how many packets were transferred
between hosts h1 and h2.

This concludes Lab 3. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. Paul Emmerich, Daniel Raumer, Florian Wohlfart, Georg Carle, “Performance
characteristics of virtual switching”, IEEE 3rd International conference on cloud
networking (CloudNet), 2014.

2. Linux foundation, “Open vSwitch”, [Online]. Available: http://openvSwitch.org.
3. RFC 7047, “The open vSwitch database management protocol”, Dec 2013.
4. IBM, “Virtual networking in Linux”, [Online]. Available:

https://developer.ibm.com/tutorials/l-virtual-networking/
5. B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, S. Shenker, “Extending

networking into the virtualization layer”, 8th ACM Workshop on Hot Topics in
Networks (HotNets-VIII). New York City, NY, 2009.

6. Mininet walkthrough, [Online]. Available: http://mininet.org.

OPEN VIRTUAL SWITCH

Lab 4: Open vSwitch Flow Table

Document Version: 06-29-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 4: Open vSwitch Flow Table

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to OpenFlow .. 4

1.2 OpenFlow architecture .. 4

1.3 OpenFlow flow table and packet matching ... 5

2 Lab topology.. 6

2.1 Lab settings... 6

2.2 Loading a topology ... 6

2.3 Loading the configuration file .. 8

3 Verifying IP addresses on the hosts .. 9

4 Enabling traditional switch forwarding operation .. 11

5 Enabling traffic forwarding using layer 1 data .. 13

6 Enabling traffic forwarding using layer 2 data .. 14

7 Enabling traffic forwarding using layer 3 data .. 16

8 Enabling traffic forwarding using layer 4 data .. 18

9 Setting match priority ... 20

References .. 24

Lab 4: Open vSwitch Flow Table

 Page 3

Overview

This lab discusses the concept of OpenFlow, a protocol designed to manage and direct
traffic among routers and switches manufactured by various vendors. This lab aims to
demonstrate how to manage flows manually in an Open Virtual Switch (Open vSwitch)
connected to two emulated hosts.

Objectives

By the end of this lab, you should be able to:

1. Understand the behavior of the OpenFlow protocol.
2. Inspect the flow table entries.
3. Enable packet forwarding by inserting flow entries manually.
4. Set match priorities over existing flows.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Verifying IP addresses on the hosts.
4. Section 4: Enabling traditional switch forwarding operation.
5. Section 5: Enabling traffic forwarding using layer 1 data.
6. Section 6: Enabling traffic forwarding using layer 2 data.
7. Section 7: Enabling traffic forwarding using layer 3 data.
8. Section 8: Enabling traffic forwarding using layer 4 data.
9. Section 9: Setting match priority.

1 Introduction

Lab 4: Open vSwitch Flow Table

 Page 4

Traditional routing schemes do not change flow paths once the paths are selected. Due
to network topology's irregularity and the randomness of traffic, some switches have
more flows passing through than other switches. Therefore, these switches' flow-table
utilization is usually higher than others, which becomes the bottleneck of the network1.
OpenFlow addresses bottlenecks to high performance and scalability. In a traditional
switch, packet forwarding (the data plane) and routing (the control plane) occur on the
same device. While in OpenFlow, the data plane is decoupled from the control plane,
providing more efficiency and operational agility7.

1.1 Introduction to OpenFlow

OpenFlow is the communication protocol between OpenFlow switches and controllers.
An OpenFlow switch communicates with a controller which is responsible for managing
the switch via the OpenFlow protocol. An OpenFlow switch consists of one or more flow
tables which perform packet lookups and forwarding operations. Using the OpenFlow
protocol, the controller can manipulate the flow entries in flow tables.

Consider Figure 1. There is an OpenFlow controller that communicates with one or more
OpenFlow switches. When a packet arrives at a switch, the switch looks for matched flow
entries in the flow tables and executes the corresponding lists of actions. If no match is
found, the packet is sent to the controller. The controller responds with a new flow entry
for handling the packet.

s1

c0

s2 s3 s5s4

Figure 1. OpenFlow components.

1.2 OpenFlow architecture

OpenFlow switches perform packet forwarding using the packet-matching function within
the flow table. Thus, once a packet arrives at the switch, the latter will look up in its flow
table and check if there is a match. Consequently, the switch will decide which action to
take based on the flow table8. The action could be:

• Forward the packet to another port.

Lab 4: Open vSwitch Flow Table

 Page 5

• Drop the packet.

• Pass the packet to the controller.

The flows can be installed manually within the switch if there is no controller connected
to it. The flows are installed in Open vSwitch daemon (Open vSwitch-vSwitchd) that
controls the switch and implements the OpenFlow protocol. ovs-ofctl command line
tool is required for monitoring and administering switches that support OpenFlow
protocol.

Figure 2 shows the basic functions of an OpenFlow switch and its relationship to a
controller. When the data plane does not match the incoming packet, it sends a packet_in
message to the controller. The control plane runs routing and switching protocols and
other logic to determine the forwarding tables and logic in the data plane. Consequently,
when the controller has a data packet to forward through the switch, it uses the
OpenFlow packet_out message. The flow entry is then stored in the flow table located in
the switch. If there is no controller connected to the switch, the switch will look up into
its flow table and takes action based on the flow entries manually stored in the switch. If
there is no match in the flow table, the switch will drop the packet.

OpenFlow controller

Flow table

Packet_in

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6

OpenFlow switch

Packet-matching
function

OpenFlow protocol

Packet_out

Figure 2. OpenFlow packet forwarding architecture.

1.3 OpenFlow flow table and packet matching

Each flow table contains a set of flow entries that consist of match fields, counters, and a
set of instructions. An Open vSwitch may contain more than one flow table. The switch
starts matching at the first flow table and continues to check additional flow tables to find
a match. By default, all the flow entries are stored in the first table (table 0), if the table
number is not specified for an entry. Packets match against the packet header fields such
as switch input port, VLAN ID, Ethernet source/destination addresses, IP
source/destination addresses, IP protocol, source/destination ports. If a matching entry

Lab 4: Open vSwitch Flow Table

 Page 6

is found in the table, the instructions associated with that specific flow entry are
executed8.

Flow entries match packets in priority order, higher priority entries must match before
lower priority ones. If multiple flow entries have the same priority, the switch will choose
any order.

2 Lab topology

Consider Figure 3. The topology consists of two hosts and one switch. All the hosts belong
to the same network, 10.0.0.0/8.

h1

 s1

h2

10.0.0.1/8 10.0.0.2/8

Figure 3. Lab topology.

2.1 Lab settings

The hosts are configured according to Table 2.

Table 2. Topology information.

Host Interface IP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

2.2 Loading a topology

Step 1. Start by launching MiniEdit by clicking on desktop’s shortcut. When prompted for
a password, type password.

Lab 4: Open vSwitch Flow Table

 Page 7

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Locate
the Lab4.mn topology file in the default directory, /home/ovs/OVS_Labs/lab4 and click
on Open.

Figure 5. MiniEdit’s Open dialog.

Figure 6. MiniEdit’s topology.

Lab 4: Open vSwitch Flow Table

 Page 8

Step 3. To proceed with the emulation, click on the Run button located in the lower left-
hand side.

Figure 7. Starting the emulation.

Step 4. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 8. Opening Mininet’s terminal.

Step 5. Issue the following command to display the interface names and connections.

links

Figure 9. Displaying network interfaces.

In Figure 9, the link displayed within the gray box indicates that interface eth0 of host h1
connects to interface eth1 of switch s1 (i.e., h1-eth0<->s1-eth1).

2.3 Loading the configuration file

Step 1. Open the Linux terminal.

Figure 10. Opening Linux terminal.

Lab 4: Open vSwitch Flow Table

 Page 9

Step 2. Click on the Linux’s terminal and navigate into OVS_Labs/lab4 directory by issuing
the following command.

cd OVS_Labs/lab4

Figure 11. Entering to the OVS_Labs/lab4 directory.

Step 3. This folder contains a configuration file that will assign easy-to-read Media Access
Control (MAC) addresses to the hosts’ interfaces. To execute the shell script, type the
following command. When prompted for a password, type password.

./set_MACs.sh

Figure 12. Executing the shell script to load the configuration.

Step 4. Type the following command to exit from the lab4 directory and go back to the
home directory.

cd

Figure 13. Exiting from the directory.

3 Verifying IP addresses on the hosts

In this section, you will verify that the IP addresses on the hosts are assigned according to
table 2.

Lab 4: Open vSwitch Flow Table

 Page 10

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 14. Opening a terminal on host h1.

Step 2. In host h1 terminal, type the following command to verify that the IP address was
assigned successfully. You will verify the host interface h1-eth0 is configured with the IP
address 10.0.0.1 and the subnet mask 255.0.0.0. You will also verify the MAC address,
00:00:00:00:00:01.

ifconfig

Figure 15. Verifying the IP address, subnet mask, and MAC address of the host.

Step 3. In host h2 terminal, type the following command to verify that the IP address was
assigned successfully. You will verify the host interface h2-eth0 is configured with the IP
address 10.0.0.2 and the subnet mask 255.0.0.0. You will also verify the MAC address,
00:00:00:00:00:02.

ifconfig

Lab 4: Open vSwitch Flow Table

 Page 11

Figure 16. Verifying the IP address, subnet mask, and MAC address of the host.

Step 4. On host h1 terminal, test the connectivity between host h1 and host h2 using
the ping command. To stop the test, press Ctrl+c.

ping 10.0.0.2

Figure 17. Output of ping command.

Hosts cannot ping each other as the fail_mode of the switch is secure and the flow table
in the switch is empty at this point. In secure fail_mode, the flow table in the switch will
not be populated if there is no connection to the controller.

4 Enabling traditional switch forwarding operation

In this section, you will enable the traditional switch forwarding operation in switch s1.

Step 1. Type the following command to add a flow in switch s1. The ovs-ofctl program
is a command-line tool for monitoring and administering OpenFlow switches. An action of
a flow indicates an action to take when a packet matches the flow entry. A normal action
allows the device to conduct normal layer 2/layer 3 packet processing.

Lab 4: Open vSwitch Flow Table

 Page 12

sudo ovs-ofctl add-flow s1 action=normal

Figure 18. Adding normal flow in switch s1.

Step 2. On host h1 terminal, test the connectivity between host h1 and host h2 using
the ping command.

ping 10.0.0.2

Figure 19. Output of ping command.

The figure shows a successful connectivity test. To stop the test, press Ctrl+c.

Step 3. Type the following command to verify the flow installation. This command prints
the flow table entries in switch s1. The output depicts the configuration parameters when
the forwarding action is set to normal.

sudo ovs-ofctl dump-flows s1

Figure 20. Verifying flow in switch s1.

Consider the figure above. The normal action allows the switch to conduct normal layer
2/layer 3 packet processing.

Step 4. Type the following command to delete all existing flows in switch s1 so that you
can add another flow entry in the following section.

sudo ovs-ofctl del-flows s1

Lab 4: Open vSwitch Flow Table

 Page 13

Figure 21. Deleting existing flows from switch s1.

5 Enabling traffic forwarding using layer 1 data

In this section, you will work at the physical ports level. You will program the switch so
that everything that comes at switch s1 from port 1 is sent out to port 2, and vice versa.

Step 1. Type the following command to add a flow in switch s1. The command indicates
the traffic coming from port 1 (s1-eth1) has to be forwarded to port 2 (s1-eth2).

sudo ovs-ofctl add-flow s1 in_port=1,action=output:2

Figure 22. Adding a port forwarding flow entry.

Step 2. Type the following command to add a flow in switch s1. The command indicates
the traffic coming from port 2 (s1-eth2) has to be forwarded to port 1 (s1-eth1).

sudo ovs-ofctl add-flow s1 in_port=2,action=output:1

Figure 23. Adding a port forwarding flow entry.

Step 3. On host h1 terminal, test the connectivity between host h1 and host h2 using
the ping command.

ping 10.0.0.2

Lab 4: Open vSwitch Flow Table

 Page 14

Figure 24. Output of ping command.

The figure shows a successful connectivity test. To stop the test, press Ctrl+c.

Step 4. Type the following command to verify the flow installation This command prints
the flow table entries in switch s1.

sudo ovs-ofctl dump-flows s1

Figure 25. Verifying flows in switch s1.

You will notice two flow entries installed on the switch. Packets coming from port s1-eth1
are sent out to port s1-eth1, and vice versa.

Step 5. Type the following command to delete all existing flows in switch s1 so that you
can add another flow entry in the following section.

sudo ovs-ofctl del-flows s1

Figure 26. Deleting existing flows from switch s1.

6 Enabling traffic forwarding using layer 2 data

In this section, you will create flow entries based on the MAC addresses of the hosts.

Step 1. Type the following command to insert a flow entry in switch s1.

Lab 4: Open vSwitch Flow Table

 Page 15

sudo ovs-ofctl add-flow s1 dl_dst=00:00:00:00:00:01,action=output:1

Figure 27. Adding a MAC based flow entry.

Consider the figure above. The flow specifies that the switch will match against MAC
destination address. Traffic going to the destination host h1 will be forwarded to switch
port s1-eth1.

Step 2. Type the following command to insert a flow entry in switch s1.

sudo ovs-ofctl add-flow s1 dl_dst=00:00:00:00:00:02,action=output:2

Figure 28. Adding a MAC based flow entry.

Consider the figure above. The flow specifies that the switch will match against MAC
address. Traffic going to the destination host h2 will be forwarded to switch port s1-eth2.

Hosts cannot ping at this moment since Address Resolution Protocol (ARP) is required to
find out the MAC address of a different host. You will add a flow that allows ARP requests
in the following step in order to get successful connectivity between hosts.

Step 3. Type the following command to add a flow to allow ARP requests.

sudo ovs-ofctl add-flow s1 arp,action=normal

Figure 29. Adding a flow to allow ARP requests.

Consider the figure above. The command adds a flow that sends ARP requests to all the
switch ports.

Step 4. In host h1 terminal, test the connectivity between host h1 and host h2 using
the ping command.

ping 10.0.0.2

Lab 4: Open vSwitch Flow Table

 Page 16

Figure 30. Output of ping command.

The figure shows a successful connectivity test. To stop the test, press Ctrl+c.

Step 5. Type the following command to delete all existing flows in the switch s1 so that
you can add another flow entry in the following section.

sudo ovs-ofctl del-flows s1

Figure 31. Deleting existing flows from switch s1.

7 Enabling traffic forwarding using layer 3 data

In this section, you will create flow entries based on IP addresses.

Step 1. Type the following command to insert a flow entry in switch s1.

sudo ovs-ofctl add-flow s1 ip,nw_dst=10.0.0.1,action=output:1

Figure 32. Adding an IP-based flow entry.

Consider the figure above. The flow specifies that the switch will match against
destination IP 10.0.0.1. Traffic going to the destination 10.0.0.1 will be forwarded to
switch port s1-eth1.

Step 2. Type the following command to insert a flow entry in switch s1.

sudo ovs-ofctl add-flow s1 ip,nw_dst=10.0.0.2,action=output:2

Lab 4: Open vSwitch Flow Table

 Page 17

Figure 33. Adding an IP-based flow entry.

Consider the figure above. The flow specifies that the switch will match against
destination IP 10.0.0.2. Traffic going to the destination 10.0.0.2 will be forwarded to
switch port s1-eth2.

Step 3. Type the following command to add a flow to allow ARP requests.

sudo ovs-ofctl add-flow s1 arp,action=normal

Figure 34. Adding an ARP flow entry.

Step 4. In host h1 terminal, test the connectivity between host h1 and host h2 using
the ping command.

ping 10.0.0.2

Figure 35. Output of ping command.

The figure shows a successful connectivity test. To stop the test, press Ctrl+c.

Step 5. Type the following command to verify the flow installation in switch s1.

sudo ovs-ofctl dump-flows s1

Lab 4: Open vSwitch Flow Table

 Page 18

Figure 36. Verifying flow in switch s1.

Consider the figure above. IP based flow entries are installed in the flow table.

Step 6. Type the following command to delete all existing flows in switch s1 so that you
can add another flow entry in the following section.

sudo ovs-ofctl del-flows s1

Figure 37. Deleting existing flows from switch s1.

8 Enabling traffic forwarding using layer 4 data

In this section, you will work at the application layer. A simple python web server will
be executed in host h2, and host h1 will connect to that server that runs at port 80.

Step 1. Type the following command to start an HTTP server in host h2 named
SimpleHTTPServer which is listening to port 80.

python -m SimpleHTTPServer 80 &

Figure 38. Starting a python web server.

Consider the figure above. Host h2 is serving as an HTTP server, listening to port 80.

Step 2. Type the following command to insert an ARP flow in switch s1.

sudo ovs-ofctl add-flow s1 arp,action=normal

Lab 4: Open vSwitch Flow Table

 Page 19

Figure 39. Adding a flow to allow ARP requests.

Consider the figure above. The command adds a flow that sends ARP requests to all the
switch ports.

Step 3. Type the following command to add a flow that forwards all TCP traffic with
destination port 80 (tp_dst=80), to the switch port s1-eth2.

sudo ovs-ofctl add-flow s1 tcp,tp_dst=80,action=output:2

Figure 40. Adding a flow entry.

Step 4. Type the following command to add a flow in switch s1.

sudo ovs-ofctl add-flow s1 ip,nw_src=10.0.0.2,action=output:1

Figure 41. Adding a flow entry.

Consider the figure above. The IP based flow will be matched against source address. If
there is a match, the traffic will be forwarded to switch port s1-eth1.

Step 5. In host h1 terminal, issue an HTTP request to host h2 using curl command.

curl 10.0.0.2

Lab 4: Open vSwitch Flow Table

 Page 20

Figure 42. Output of curl command.

Consider the figure above. This is a basic example of curl command that simulates a GET
request for a website URL. This command shows the output of the HTTP response from
host h2 in HTML format.

Step 6. In host h2 terminal, see the output for the curl command.

Figure 43. Output of curl command.

The figure shows the response sending to host h1 (10.0.0.1).

Step 7. Type the following command to delete all existing flows in switch s1 so that you
can add another flow entry in the following section.

sudo ovs-ofctl del-flows s1

Figure 44. Deleting existing flows from switch s1.

9 Setting match priority

Lab 4: Open vSwitch Flow Table

 Page 21

In OpenFlow, packets are matched against flow entries based on prioritization. A priority
has a value of 0 to 65535. Higher priority entries must match before lower priority ones.
In this section, you will add a flow that has priority over an existing flow and verify how
the higher priority works over the lower ones.

Step 1. Type the following command to add a MAC based flow entry in switch s1 with a
priority. The command indicates that the traffic going to the destination host h2 will be
forwarded to the port s1-eth2.

sudo ovs-ofctl add-flow s1

priority=400,dl_dst=00:00:00:00:00:02,action=output:2

Figure 45. Adding a MAC based flow entry.

Step 2. Type the following command to insert a MAC based flow entry in switch s1 with a
priority. The command indicates that the traffic going to the destination host h1 will be
forwarded to the port s1-eth1.

sudo ovs-ofctl add-flow s1

priority=400,dl_dst=00:00:00:00:00:01,action=output:1

Figure 46. Adding a MAC based flow entry.

Step 3. Type the following command to add an IP based flow entry in switch s1 with higher
priority. The command indicates that the traffic going to the destination host h2 will be
dropped.

sudo ovs-ofctl add-flow s1 ip,priority=500,nw_dst=10.0.0.2,action=drop

Figure 47. Adding a flow in switch s1.

Consider the command above. The priority has been set to 500, greater than the previous
flow (400). Based on the flow definition, there will be no connectivity between hosts h1
and h2 since the flow has a higher priority.

Lab 4: Open vSwitch Flow Table

 Page 22

Step 4. Type the following command to insert an ARP flow in switch s1.

sudo ovs-ofctl add-flow s1 arp,action=normal

Figure 48. Adding a flow to allow ARP requests.

Step 5. Type the following command to verify flow installation in switch s1.

sudo ovs-ofctl dump-flows s1

Figure 49. Verifying flows in switch s1.

The figure above shows flows with different priorities.

Step 6. In host h1 terminal, test the connectivity between hosts h1 and h2 using the ping
command. There is no connectivity between hosts h1 and h2 since the switch is dropping
the traffic. To stop the test, press Ctrl+c.

ping 10.0.0.2

Figure 50. Output of ping command.

Step 7. Type the following command to delete an existing flow with higher priority.

sudo ovs-ofctl del-flows s1 ip

Lab 4: Open vSwitch Flow Table

 Page 23

Figure 51. Deleting an existing flow from switch s1.

Consider the figure above. We can delete flows from the flow table based on match
priorities. The command indicates to delete all the IP based flows. The IP based flow with
priority 500 should be deleted from the flow table.

Step 8. Type the following command to verify flow installation in switch s1.

sudo ovs-ofctl dump-flows s1

Figure 52. Verifying flows in switch s1.

Consider the figure above. The IP based flow with priority 500 does not exist in the flow
table anymore. Only MAC based flows with priority 400 are present in the table. Hosts h1
and h2 should have successful connectivity between them at this point.

Step 9. In host h1 terminal, test the connectivity between host h1 and host h2 using
the ping command.

ping 10.0.0.2

Figure 53. Output of ping command.

The figure shows a successful connectivity test. To stop the test, press Ctrl+c.

This concludes Lab 4. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

Lab 4: Open vSwitch Flow Table

 Page 24

References

1. Zehua Guo, Yang Xu, Ruoyan Liu, Andrey Gushchin, Kuan-yin Chen, Anwar Walid, H.
Jonathan Chao, “Balancing flow table occupancy and link utilization in software-defined
networks”, Dec 2018.

2. Linux Foundation, “Open vSwitch”, [Online]. Available: http://openvSwitch.org.
3. RFC 7047, “The open vSwitch database management protocol”, Dec 2013.
4. IBM, “Archived | Virtual networking in Linux”, [Online]. Available:

https://developer.ibm.com/tutorials/l-virtual-networking/
5. Mininet walkthrough, [Online]. Available: http://mininet.org.
6. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.

Shenker, and J. Turner. “OpenFlow: enabling innovation in campus networks.” ACM
SIGCOMM Computer Communication Review 38, no.2 (2008):69-74.

7. Aria Zhu, “OpenFlow switch: what is it and how does it work?”, [Online]. Available:
https://medium.com/@AriaZhu/openflow-switch-what-is-it-and-how-does-it-work-
7589ea7ea29c#:~:text=OpenFlow%20switch%20is%20designed%20to,hardware%20it
%27s%20intended%20to%20control.

8. Open Networking Foundation, “OpenFlow Switch Specification”, [Online]. Available:
https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf

OPEN VIRTUAL SWITCH

Exercise 1: OpenFlow Basic Operations

Document Version: 09-17-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Exercise 1: OpenFlow Basic Operations

 Page 2

Contents

1 Exercise topology .. 3

1.1 Topology settings ... 3

1.2 Credentials ... 3

2 Deliverables ... 4

Exercise 1: OpenFlow Basic Operations

 Page 3

1 Exercise topology

Consider Figure 1. The topology consists of three hosts and three switches. All the hosts
belong to the same network, 10.0.0.0/8.

The goal of this exercise is to manage the flow entries in Open vSwitches using ovs-ofctl
command line tool.

s1

s2

s3

h1

h2

h3

h1-eth0 s1-eth1

s2-eth1

s3-eth1

h2-eth0

h3-eth010.0.0.1/8

10.0.0.3/8

10.0.0.2/8

Figure 1. Exercise topology.

1.1 Topology settings

The devices are already configured according to Table 1.

Table 1. Topology information.
Host Interface IP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

h3 h3-eth0 10.0.0.3 /8

1.2 Credentials

The information in Table 2 provides the credentials to access the Client’s virtual machine.

Table 2. Credentials to access the Client’s virtual machine.

Device

Account

Password

Exercise 1: OpenFlow Basic Operations

 Page 4

Client admin password

2 Deliverables

Follow the steps below to complete the exercise.

a) Start MiniEdit by clicking on MiniEdit’s shortcut. Load the topology Exercise1.mn
located at ~/OVS_Labs/Exercise1 as shown in the figure below.

Figure 2. Loading the topology file in Mininet.

b) Run the emulation in Mininet.

c) In the Mininet terminal, launch the command that displays the interface names and
connections of the current topology. Verify that links conform to the topology in Figure 1.

d) ~/OVS_Labs/Exercise1 folder contains a script set_MACs.sh responsible for loading the
MAC addresses. Execute the script using the following command:

cd OVS_Labs/Exercise1

./set_MACs.sh

e) Configure port based forwarding in switches s2 and s3. Traffic generated from host h1
should be forwarded to host h2/h3, and vice versa.

f) In switch s1, create flow entries based on the MAC addresses of the hosts. Verify
connectivity between the hosts using the ping command.

g) Delete all the flow entries in switch s1. Create flow entries based on destination IP
addresses. Verify connectivity between the hosts using the ping command.

Exercise 1: OpenFlow Basic Operations

 Page 5

h) Delete all the flow entries in switch s1.

i) Consider hosts h2 and h3 as FTP and HTTP servers, respectively. In switch s1, create
flow entries to match against TCP port numbers (port 21 for FTP, port 80 for HTTP).
Whenever there is a match against port 21, the switch will forward the traffic to host h2.
If there is a match against port 80, the destination host is h3.

j) Verify the configuration between hosts h1 and h2. Run an iperf test where host h2 is
running as an FTP server and host h1 is running as an FTP client. Following figures show
how to run an iperf test between two hosts.

k) Run an iperf test where host h3 is running as an HTTP server (port 80) and host h1 is
running as a client.

OPEN VIRTUAL SWITCH

Lab 5: Implementing Routing in Open vSwitch

Document Version: 07-13-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 5: Implementing Routing in Open vSwitch

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Routing in Open vSwitch .. 4

2 Lab topology.. 5

2.1 Lab settings... 5

2.2 Loading a topology ... 6

2.3 Loading the configuration file .. 8

3 Verifying IP addresses on the hosts .. 9

4 Enabling routing in switch s1 .. 13

5 Enabling routing in switch s2 .. 14

6 Verifying configuration ... 16

References .. 21

Lab 5: Implementing Routing in Open vSwitch

 Page 3

Overview

This lab aims to demonstrate how to manually configure routing tables in Open vSwitch
to enable packet forwarding between different networks.

Objectives

By the end of this lab, the student should be able to:

1. Understand the concept of routing.
2. Understand OpenFlow protocol.
3. Understand how Open vSwitch implements routing between two different

networks.
4. Configure manual flows to enable packet forwarding between different networks.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Verifying IP addresses on the hosts.
4. Section 4: Enabling routing in switch s1.
5. Section 5: Enabling routing in switch s2.
6. Section 6: Verifying configuration.

1 Introduction

A router is responsible for delivering packets across different networks. It requires a
routing protocol to exchange routing information with other routers1. This information
changes over time-based on the network configuration. If any link fails, routers can pick
a new route to a particular network. An end device cannot communicate directly with
devices outside of the local network. When a host sends a packet to another host on a

Lab 5: Implementing Routing in Open vSwitch

 Page 4

different network, the packet is forwarded to the default gateway, which routes traffic
out of the local network.

1.1 Routing in Open vSwitch

Open vSwitch relies on OpenFlow protocol to implement routing. OpenFlow switches
perform packet forwarding using the packet-matching function within the flow table.
Thus, once a packet arrives at the switch, the latter will look up in its flow table and check
if there is a match. Consequently, the switch will decide which action to take based on
the flow table11. The action could be:

• Forward the packet out to another port.

• Drop the packet.

• Pass the packet to the controller.

The flows can be installed manually within the switch if there is no controller connected
to the switch. The flows are installed in the Open vSwitch daemon (Open vSwitch-
vSwitchd) that controls the switch and implements the OpenFlow protocol. ovs-ofctl
command-line tool is required for monitoring and administering switches that support
OpenFlow protocol.

Each flow table contains a set of flow entries that consist of match fields, counters, and a
set of instructions. An Open vSwitch may contain more than one flow table. The switch
starts matching at the first flow table and continues to check additional flow tables to find
a match. By default, all the flow entries are stored in the first table (table 0) if the table
number is not specified for an entry. Packets match against the packet header fields such
as switch input port, VLAN ID, Ethernet source/destination addresses, IP
source/destination addresses, IP protocol, source/destination ports. If a matching entry
is found in a table, the instructions associated with that specific flow entry are executed11.

Figure 1 shows the basic functions of an OpenFlow switch and its relationship to a
controller. When the data plane does not match the incoming packet, it sends a packet_in
message to the controller. The control plane runs routing and switching protocols and
other logic to determine the forwarding tables and logic in the data plane. Consequently,
when the controller has a data packet to forward out through the switch, it uses the
OpenFlow packet_out message. The flow entry is then stored in the flow table located in
the switch. If there is no controller connected to the switch, the switch will look up in its
flow table and takes action based on the flow entries manually stored in the switch. If
there is no match in the flow table, the switch will drop the packet.

Lab 5: Implementing Routing in Open vSwitch

 Page 5

OpenFlow controller

Flow table

Packet_in

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6

OpenFlow switch

Packet-matching
function

OpenFlow protocol

Packet_out

Figure 1. OpenFlow packet forwarding architecture.

2 Lab topology

Consider Figure 2. The topology consists of two end-hosts and two switches. Hosts h1 and
h2 belong to the networks 192.168.1.0/24 and 192.168.2.0/24, respectively.

192.168.1.0/24

s1-eth2 s2-eth2

s1-eth1 s2-eth1

h1-eth0 h2-eth0

s1 s2

h1 h2

192.168.2.0/24

.10 .10

Figure 2. Lab topology.

2.1 Lab settings

The devices are already configured according to Table 2.

Table 2. Topology information.

Lab 5: Implementing Routing in Open vSwitch

 Page 6

Device Interface IP Address Subnet Default
gateway

h1 h1-eth0 192.168.1.10 /24 192.168.1.1

h2 h2-eth0 192.168.2.10 /24 192.168.2.1

2.2 Loading a topology

Step 1. Start by launching MiniEdit by clicking on desktop’s shortcut. When prompted for
a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Locate
the Lab5.mn topology file in the default directory, /home/ovs/OVS_Labs/lab5 and click
on Open.

Figure 4. MiniEdit’s Open dialog.

Lab 5: Implementing Routing in Open vSwitch

 Page 7

Figure 5. MiniEdit’s topology.

Step 3. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 6. Starting the emulation.

Step 4. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 7. Opening Mininet’s terminal.

Step 5. Issue the following command to display the interface names and connections.

links

Figure 8. Displaying network interfaces.

In Figure 8, the link displayed within the gray box indicates that interface eth1 of switch
s1 connects to interface eth0 of host h1 (i.e., s1-eth1<-> h1-eth0).

Lab 5: Implementing Routing in Open vSwitch

 Page 8

2.3 Loading the configuration file

Step 1. Open the Linux terminal.

Figure 9. Opening Linux terminal.

Step 2. Navigate into OVS_Labs/lab5 directory by issuing the following command. This
folder contains a configuration file and the script responsible for loading the
configuration. The configuration file will assign the MAC addresses to the hosts’
interfaces. The cd command is short for change directory followed by an argument that
specifies the destination directory.

cd OVS_Labs/lab5

Figure 10. Entering to the OVS_Labs/lab5 directory.

Step 3. To execute the shell script, type the following command. The argument of the
program corresponds to the configuration zip file that will be loaded in all the hosts and
switches in order to set the manual MAC address. When prompted for a password, type
password.

./set_MACs.sh

Figure 11. Executing the shell script to load the configuration.

Step 4. Type the following command to exit from the lab5 directory.

cd

Lab 5: Implementing Routing in Open vSwitch

 Page 9

Figure 12. Exiting from the directory.

3 Verifying IP addresses on the hosts

In this section, you will verify that IP addresses on the hosts are assigned according to
table 2.

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 13. Opening a terminal on host h1.

Step 2. In host h1 terminal, type the following command to verify that the IP address was
assigned successfully. You will verify the host interface, h1-eth0 configured with the IP
address 192.168.1.10 and the subnet mask 255.255.255.0. You will also verify the MAC
address, 00:00:00:00:00:01.

ifconfig

Lab 5: Implementing Routing in Open vSwitch

 Page 10

Figure 14. Verifying IP and MAC addresses on the host.

Step 3. On host h1 terminal, type the following command to verify that the default
gateway IP address is 192.168.1.1.

ip route

Figure 15. Verifying default gateway on the host.

Step 4. On host h2 terminal, type the following command to verify that the IP address
was assigned successfully. You will verify the host interface, h2-eth0 configured with the
IP address 192.168.2.10 and the subnet mask 255.255.255.0. You will also verify the MAC
address, 00:00:00:00:00:02.

ifconfig

Lab 5: Implementing Routing in Open vSwitch

 Page 11

Figure 16. Verifying IP and MAC addresses on the host.

Step 5. Type the following command to verify that the default gateway IP address is
192.168.2.1.

ip route

Figure 17. Verifying default gateway on the host.

Step 6. On the Linux terminal, type the following command to verify the MAC addresses
of the switches. You will verify the switch interfaces, s1-eth2 and s2-eth2 are configured
with MAC addresses 00:00:00:00:00:03 and 00:00:00:00:00:04, respectively.

ifconfig s1-eth2;ifconfig s2-eth2

Figure 18. Verifying MAC addresses of the switches.

Lab 5: Implementing Routing in Open vSwitch

 Page 12

Step 7. On the Linux terminal, type the following command to verify the flow installation
on switch s1. The fail-mode of the switch is secure, and the flow table of the switch is
empty at this point.

sudo ovs-ofctl dump-flows s1

Figure 19. Verifying flow on switch s1.

Step 8. Test the connectivity between hosts h1 and host h2 using the ping command.
There is no connectivity between hosts since switch s1 does not know how to process the
traffic. To stop the test, press Ctrl+c.

ping 192.168.2.10

Figure 20. Output of ping command.

Step 9. On the Linux terminal, type the following command to add an IP address to the
switch, s1. The IP address is the gateway (192.168.1.1) of host h1.

sudo ifconfig s1 192.168.1.1/24 up

Figure 21. Adding IP address in the switch.

Step 10. Type the following command to add an IP address to the switch, s2. The IP
address is the gateway (192.168.2.1) of host h2.

sudo ifconfig s2 192.168.2.1/24 up

Lab 5: Implementing Routing in Open vSwitch

 Page 13

Figure 22. Adding IP address in the switch.

4 Enabling routing in switch s1

In this section, you will configure routing in switch s1. You will configure the switch so
that traffic coming from host h1 is sent out to switch s2. Additionally, you will add flows
so that switch s1 will be responsible for delivering any data received from switch s2 to the
required destination (host h1).

Step 1. Type the following command to manually insert an ARP flow entry in the switch
s1.

sudo ovs-ofctl add-flow s1 arp,action=normal

Figure 23. Manually adding a flow entry.

Consider the figure above. The flow is for the ARP request. The command adds a flow that
sends ARP requests to all the switch ports.

Step 2. Type the following command to manually insert a flow entry in switch s1 for the
traffic going to the destination host h1 (192.168.1.10).

sudo ovs-ofctl add-flow s1

ip,nw_dst=192.168.1.10,actions=mod_dl_dst=00:00:00:00:00:01,output:1

Figure 24. Manually adding a flow entry.

Consider the figure above. Whenever switch s1 receives any traffic going to the
destination host h1 (192.168.1.10), the traffic will be forwarded to port s1-eth1.
mod_dl_dst is responsible for changing the MAC address to the correct MAC address of
host h1 (00:00:00:00:00:01).

Lab 5: Implementing Routing in Open vSwitch

 Page 14

Step 3. Type the following command to manually insert a flow entry in switch s1 for the
traffic going to the destination network 192.168.2.0/24.

sudo ovs-ofctl add-flow s1

ip,nw_dst=192.168.2.0/24,actions=mod_dl_src=00:00:00:00:00:03,mod_dl_dst=00:00:

00:00:00:04,dec_ttl,output:2

Figure 25. Manually adding a flow entry.

Consider the figure above. Whenever switch s1 receives traffic going to the destination
network 192.168.2.0/24, the traffic will be forwarded to port s1-eth2. The source and
destination MAC will be changed to 00:00:00:00:00:03 (s1-eth2) and 00:00:00:00:00:04
(s2-eth2). The TTL value will be decreased by one.

Step 4. Type the following command to verify the flow installation. This command prints
the flow table entries in switch s1.

sudo ovs-ofctl dump-flows s1

Figure 26. Verifying flow table in switch s1.

Consider the figure above. You will notice all the manual flows have been installed in the
flow table.

5 Enabling routing in switch s2

In this section, you will configure routing in switch s2. You will configure the switch so
that traffic coming from host h2 is sent out to switch s1. Additionally, you will install flows
so that switch s2 will be responsible for delivering any data receiving from switch s1 to
the required destination (host h2).

Step 1. Type the following command to manually insert an ARP flow entry in switch s2.

sudo ovs-ofctl add-flow s2 arp,action=normal

Lab 5: Implementing Routing in Open vSwitch

 Page 15

Figure 27. Manually adding a flow entry.

Consider the figure above. The flow is for the ARP request. The command adds a flow that
sends ARP requests to all the switch ports.

Step 2. Type the following command to manually insert a flow entry in switch s2 for the
traffic going to the destination host h2 (192.168.2.10).

sudo ovs-ofctl add-flow s2

ip,nw_dst=192.168.2.10,actions=mod_dl_dst=00:00:00:00:00:02,output:1

Figure 28. Manually adding a flow entry.

Consider the figure above. Whenever switch s2 receives any traffic going to the
destination host h2 (192.168.2.10), the traffic will be forwarded to port s2-eth1.
mod_dl_dst is responsible for changing the MAC address to the correct MAC address of
host h2 (00:00:00:00:00:02).

Step 3. Type the following command to manually insert a flow entry in switch s2 for the
traffic going to the destination network 192.168.1.0/24.

sudo ovs-ofctl add-flow s2

ip,nw_dst=192.168.1.0/24,actions=mod_dl_src=00:00:00:00:00:04,mod_dl_dst=00:00:

00:00:00:03,dec_ttl,output:2

Figure 29. Manually adding a flow entry.

Consider the figure above. Whenever switch s2 receives traffic going to the destination
network 192.168.1.0/24, the traffic will be forwarded to port s2-eth2. The source and
destination MAC will be changed to 00:00:00:00:00:04 (s2-eth2) and 00:00:00:00:00:03
(s1-eth2). The TTL value will be decreased by one.

Step 4. Type the following command to verify the flow installation. This command prints
the OpenFlow table entries in switch s2.

Lab 5: Implementing Routing in Open vSwitch

 Page 16

sudo ovs-ofctl dump-flows s2

Figure 30. Verifying flow table in switch s2.

Consider the figure above. You will notice all the manual flows have been installed in the
flow table.

6 Verifying configuration

Step 1. On the Linux terminal, start the Wireshark packet analyzer by issuing the following
command. A new window will emerge.

sudo wireshark

Figure 31. Starting Wireshark packet analyzer.

Step 2. Click on interface s1-eth1 then, click on the icon located on the upper left-hand
side to start capturing packets on this interface.

Lab 5: Implementing Routing in Open vSwitch

 Page 17

Figure 32. Starting packet capture.

Step 3. On the Linux terminal, go to the file option and open a new terminal tab (showed
in the following figure) or press Ctrl+Shift+T.

Figure 33. Opening a new terminal.

Step 4. On the Linux terminal, start the Wireshark packet analyzer again by issuing the
following command. A new window will emerge. When prompted for a password, type
password.

sudo wireshark

Lab 5: Implementing Routing in Open vSwitch

 Page 18

Figure 34. Starting Wireshark packet analyzer.

Step 5. Click on interface s1-eth2 then, click on the icon located on the upper left-hand
side to start capturing packets on this interface.

Figure 35. Starting packet capture.

Step 6. Test the connectivity between host h1 and host h2 using the ping command. To
stop the test, press Ctrl+c.

ping 192.168.2.10

Figure 36. Output of ping command.

The figure shows a successful connectivity test.

Step 7. Verify packet capturing on interface s1-eth1. Click on any ICMP packet having
source IP 192.168.1.10. Click on the arrow located on the leftmost side of the field called
Ethernet II. A list will be displayed.

Lab 5: Implementing Routing in Open vSwitch

 Page 19

Figure 37. Verifying MAC addresses.

Consider the figure above. Whenever traffic is forwarding from host h1 to the interface
s1-eth1, the source MAC address is 00:00:00:00:00:01 (host h1) and the destination MAC
address is 00:00:00:00:00:03 (s1-eth2).

Step 8. Verify packet capturing on interface s1-eth1. Click on the arrow located on the
leftmost side of the field called Internet Protocol Version 4. A list will be displayed.

Figure 38. Verifying TTL value.

Consider the figure above. You will notice that the Time To Live (TTL) value is 64.

Lab 5: Implementing Routing in Open vSwitch

 Page 20

Step 9. Verify packet capturing on interface s1-eth2. Click on any ICMP packet having
source IP 192.168.1.10. Click on the arrow located on the leftmost side of the field called
Ethernet II. A list will be displayed.

Figure 39. Verifying MAC addresses.

Consider the figure above. Whenever the traffic is forwarded from interface s1-eth2 to
the interface s2-eth2, the source MAC address is 00:00:00:00:00:03 (s1-eth2) and the
destination MAC address is 00:00:00:00:00:04 (s2-eth2).

Step 10. Verify packet capturing on interface s1-eth2. Click on the arrow located on the
leftmost side of the field called Internet Protocol Version 4. A list will be displayed.

Figure 40. Verifying TTL value.

Consider the figure above. You will notice the TTL value has been decreased by one (63).

Lab 5: Implementing Routing in Open vSwitch

 Page 21

Step 11. Now you will use another tool provided by Open vSwitch to trace the packet as
it traverses the switch. ovs-appctl is the tracing tool that can be used to determine what
is happening with packets as they go through the data plane processing (e.g., modified
fields, output port, etc.). Type the command below to issue a packet with the following
fields’ values:

• Input port: 1

• Network layer protocol: IP

• Source IP address: 192.168.1.10

• Destination IP address: 192.168.2.10

• Source MAC address: 00:00:00:00:00:01

• Time-to-live (TTL): 64

sudo ovs-appctl ofproto/trace s1

in_port=1,ip,nw_src=192.168.1.10,nw_dst=192.168.2.10,dl_src=00:00:00:00:00:01,

nw_ttl=64

Figure 41. Tracing the packet processing.

Consider the figure above. The first gray box shows the flow fields’ values before the flow
is sent to the switch. Note that if a field is not specified (e.g., dl_src, or the source MAC
address), the tool uses the value 0 for that field. The values here match those specified in
the command by the user. The second gray box shows the rule that was matched in the
flow table. The third gray box shows the final flow fields’ values after the packet was
processed in the switch. The values here match those that were shown in the Wireshark
capture of the previous steps.

This concludes Lab 5. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. Router Freak, “Understanding Network Routing Protocols”, April 2010, [online].
Available: https://www.routerfreak.com/network-fundamentals/page/4/

2. Linux Foundation, “Open vSwitch”, [Online]. Available: http://openvSwitch.org.

Lab 5: Implementing Routing in Open vSwitch

 Page 22

3. B.Pfaff, B. Davie, Ed, “The Open vSwitch Database Management Protocol”, RFC 7047,
Dec 2013.

4. IBM, “Archived | Virtual networking in Linux”, [Online]. Available:
https://developer.ibm.com/tutorials/I-virtual-networking/

5. Mininet walkthrough, [Online]. Available: http://mininet.org.
6. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.

Shenker, and J. Turner. “OpenFlow: enabling innovation in campus networks.” ACM
SIGCOMM Computer Communication Review 38, no.2 (2008):69-74.

7. PicOS Documentation, [Online]. Available:
https://docs.pica8.com/pages/viewpage.action?pageId=3083175

8. Cisco, “IP Addressing: ARP Configuration Guide”, [Online]. Available:
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_arp/configuration/15-
s/arp-15-s-book/Configuring-Address-Resolution-Protocol.html

9. Grandmetric, “How does a switch work?”, [Online]. Available:
https://www.grandmetric.com/2018/03/08/how-does-switch-work-2/

10. Juniper Networks, “Layer 2 Networking”, [Online]. Available:
https://www.junip er.net/documentation/en_US/junos/topics/topic-map/layer-2-
understanding.html

11. Open Networking Foundation, “OpenFlow Switch Specification”, [Online]. Available:
https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf

OPEN VIRTUAL SWITCH

Lab 6: Implementing Routing using multiple Flow
Tables

Document Version: 08-17-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 6: Implementing Routing using multiple Flow Tables

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Open vSwitch Routing .. 4

1.2 OpenFlow pipeline processing ... 4

2 Lab topology.. 5

2.1 Lab settings... 5

2.2 Loading a topology ... 5

2.3 Loading the configuration file .. 7

3 Verifying IP addresses on the hosts .. 9

4 Table 0 - Classifier ... 13

5 Table 1 – Layer 3 Forwarding .. 15

6 Table 2 – Layer 2 Forwarding .. 16

7 Verifying configuration ... 18

References .. 20

Lab 6: Implementing Routing using multiple Flow Tables

 Page 3

Overview

This lab aims to demonstrate how to manually configure multiple flow tables to enable
packet forwarding between different networks.

Objectives

By the end of this lab, the student should be able to:

1. Understand OpenFlow pipeline processing.
2. Understand how Open vSwitch implements routing between two different

networks.
3. Configure multiple flow tables to enable packet forwarding between different

networks.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Verifying IP addresses on the hosts.
4. Section 4: Table 0 – Classifier.
5. Section 5: Table 1 – Layer 3 Forwarding.
6. Section 6: Table 2 – Layer 2 Forwarding.
7. Section 7: Verifying configuration.

1 Introduction

OpenFlow has been widely used for the low-cost configuration and optimization of traffic
flows in Data-center and Campus networks since it decouples the control and data
forwarding plane. The packets of traffic flow are processed against the flow entry in the
flow table where a flow entry is identified by the match fields and priority. The structure

Lab 6: Implementing Routing using multiple Flow Tables

 Page 4

of match fields is becoming more complex in the new Internet architecture, new
application type, and new media format. Thus, the single flow table of OpenFlow
implementation can lead to fast storage space growth, and finally cause table-overflow.
Multiple flow tables can address this problem to improve network performance5.

1.1 Open vSwitch Routing

Open vSwitch relies on OpenFlow protocol to implement routing. OpenFlow switches
perform packet forwarding using the packet-matching function within the flow table.
Thus, once a packet arrives at the switch, the latter will look up in its flow table and check
if there is a match. Consequently, the switch will decide which action to take based on
the flow table4. The action could be:

• Forward the packet out to another port.

• Drop the packet.

• Pass the packet to the controller.

The flows can be installed manually within the switch if there is no controller connected
to it. The flows are installed in the Open vSwitch daemon (Open vSwitch-vSwitchd) that
controls the switch and implements the OpenFlow protocol. ovs-ofctl command-line
tool is required for monitoring and administering switches that support OpenFlow
protocol.

1.2 OpenFlow pipeline processing

An Open vSwitch may contain more than one flow table which is referred to as OpenFlow
pipeline. Each flow table contains a set of flow entries that consist of match fields,
counters, and a set of instructions. The flow tables of an OpenFlow switch are sequentially
numbered, starting at 0. The packet is first matched with flow entries of the first flow
table, which is flow table 0. A flow entry can only direct a packet to a flow table number
that is greater than its own flow table number. Packets match against the packet header
fields such as switch input port, Virtual Local Area Network (VLAN) ID, Ethernet
source/destination addresses, IP source/destination addresses, IP protocol,
source/destination ports. When a packet matches a flow entry, the OpenFlow switch
updates the action set for the packet and passes the packet to the next flow table. When
pipeline processing stops, the packet is processed with its associated action set and
usually forwarded4.

Open vSwitch

Packet_in Packet_outTable 0
Classifier

Table 1
L3 Routing

Table 2
L2 Forwarding

Lab 6: Implementing Routing using multiple Flow Tables

 Page 5

Figure 1. OpenFlow forwarding workflow.

Figure 1 shows OpenFlow pipeline processing. For an incoming packet, matching starts in
table 0 and check all the entries in the flow table. Each flow entry contains a set of
instructions that are executed when a packet matches an entry. These instructions result
in changes to the packet, action set and/or pipeline processing. Table 0 is referred to as
classifier. For any IP packet, the switch is instructed to check the next table (table 1). In
table 1, routing will be placed based on the destination IP address. The source and
destination MACs are modified and Time-To-Live (TTL) is decreased. In table 2, Layer 2
lookup will be placed, and the packet will be forwarded out to the correct port.

2 Lab topology

Consider Figure 2. The topology consists of two end-hosts and two switches. Hosts h1 and
h2 belong to the networks 192.168.1.0/24 and 192.168.2.0/24, respectively.

192.168.1.0/24

s1-eth2 s2-eth2

s1-eth1 s2-eth1

h1-eth0 h2-eth0

s1 s2

h1 h2

192.168.2.0/24

.10 .10

Figure 2. Lab topology.

2.1 Lab settings

The devices are already configured according to Table 2.

Table 2. Topology information.

Device Interface IP Address Subnet Default
gateway

h1 h1-eth0 192.168.1.10 /24 192.168.1.1

h2 h2-eth0 192.168.2.10 /24 192.168.2.1

2.2 Loading a topology

Lab 6: Implementing Routing using multiple Flow Tables

 Page 6

Step 1. Start by launching MiniEdit by clicking on desktop’s shortcut. When prompted for
a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Locate
the Lab6.mn topology file in the default directory, /home/ovs/OVS_Labs/lab6 and click
on Open.

Figure 4. MiniEdit’s Open dialog.

Figure 5. MiniEdit’s topology.

Lab 6: Implementing Routing using multiple Flow Tables

 Page 7

Step 3. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 6. Starting the emulation.

Step 4. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 7. Opening Mininet’s terminal.

Step 5. Issue the following command to display the interface names and connections.

links

Figure 8. Displaying network interfaces.

In Figure 8, the link displayed within the gray box indicates that interface eth1 of switch
s1 connects to interface eth0 of host h1 (i.e., s1-eth1<-> h1-eth0).

2.3 Loading the configuration file

Step 1. Open the Linux terminal.

Lab 6: Implementing Routing using multiple Flow Tables

 Page 8

Figure 9. Opening Linux terminal.

Step 2. Click on the Linux terminal and navigate into OVS_Labs/lab6 directory by issuing
the following command. This folder contains a configuration file and the script
responsible for loading the configuration. The configuration file will assign the MAC
addresses to the hosts’ interfaces. The cd command is short for change directory
followed by an argument that specifies the destination directory.

cd OVS_Labs/lab6

Figure 10. Entering to the OVS_Labs/lab6 directory.

Step 3. To execute the shell script, type the following command. The argument of the
program corresponds to the configuration zip file that will be loaded in all the hosts and
switches in order to set the manual MAC address. When prompted for a password, type
password.

./set_MACs.sh

Figure 11. Executing the shell script to load the configuration.

Step 4. Type the following command to exit from the lab6 directory.

cd

Lab 6: Implementing Routing using multiple Flow Tables

 Page 9

Figure 12. Exiting from the directory.

3 Verifying IP addresses on the hosts

In this section, you will verify that IP addresses on the hosts are assigned according to
table 2.

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 13. Opening a terminal on host h1.

Step 2. In host h1 terminal, type the following command to verify that the IP address was
assigned successfully. You will verify the host interface, h1-eth0 configured with the IP
address 192.168.1.10 and the subnet mask 255.255.255.0. You will also verify the MAC
address, 00:00:00:00:00:01.

ifconfig

Lab 6: Implementing Routing using multiple Flow Tables

 Page 10

Figure 14. Verifying IP and MAC addresses on the host.

Step 3. On host h1 terminal, type the following command to verify that the default
gateway IP address is 192.168.1.1.

ip route

Figure 15. Verifying default gateway on the host.

Step 4. On host h2 terminal, type the following command to verify that the IP address
was assigned successfully. You will verify the host interface, h2-eth0 configured with the
IP address 192.168.2.10 and the subnet mask 255.255.255.0. You will also verify the MAC
address, 00:00:00:00:00:02.

ifconfig

Lab 6: Implementing Routing using multiple Flow Tables

 Page 11

Figure 16. Verifying IP and MAC addresses on the host.

Step 5. Type the following command to verify that the default gateway IP address is
192.168.2.1.

ip route

Figure 17. Verifying default gateway on the host.

Step 6. On the Linux terminal, type the following command to verify the MAC addresses
of the switches. You will verify the switch interfaces, s1-eth1, s2-eth1, s1-eth2 and s2-eth2
are configured with MAC addresses 00:00:00:00:00:03, 00:00:00:00:00:04,
00:00:00:00:00:05 and 00:00:00:00:00:06, respectively.

ifconfig

Lab 6: Implementing Routing using multiple Flow Tables

 Page 12

Figure 18. Verifying MAC addresses of the switches.

Step 7. On the Linux terminal, type the following command to verify the flow installation
on switch s1. The fail-mode of the switch is secure, and the flow table of the switch is
empty at this point.

sudo ovs-ofctl dump-flows s1

Figure 19. Verifying flow on switch s1.

Step 8. Test the connectivity between hosts h1 and host h2 using the ping command.
There is no connectivity between hosts since switch s1 does not know how to process the
traffic. To stop the test, press Ctrl+c.

ping 192.168.2.10

Lab 6: Implementing Routing using multiple Flow Tables

 Page 13

Figure 20. Output of ping command.

Step 9. On the Linux terminal, type the following command to add an IP address to the
switch, s1. The IP address is the gateway (192.168.1.1) of host h1.

sudo ifconfig s1 192.168.1.1/24 up

Figure 21. Adding IP address in the switch.

Step 10. Type the following command to add an IP address to the switch, s2. The IP
address is the gateway (192.168.2.1) of host h2.

sudo ifconfig s2 192.168.2.1/24 up

Figure 22. Adding IP address in the switch.

4 Table 0 - Classifier

In this section, you will configure table 0 which is the default table in Open vSwitch.
Address Resolution Protocol (ARP) is handled in table 0. For the routing part, whenever
there is match against IP, the switch will use other tables to look for further instructions
to forward the traffic.

Step 1. Type the following command to manually insert an ARP flow entry in the switch
s1.

sudo ovs-ofctl add-flow s1 “table=0,arp,action=normal”

Lab 6: Implementing Routing using multiple Flow Tables

 Page 14

Figure 23. Manually adding a flow entry.

Consider the figure above. The flow is for the ARP request. The command adds a flow that
sends ARP requests to all the switch ports.

Step 2. Type the following command to manually insert a flow entry in switch s1. If there
is a match against IP in table 0, the switch will check table 1 for further instruction.

sudo ovs-ofctl add-flow s1 “table=0,ip,action=goto_table=1”

Figure 24. Manually adding a flow entry.

Consider the figure above. If there is a match against IP in table 0, the switch will check
table 1 for further instruction.

Step 3. Type the following command to manually insert an ARP flow entry in the switch
s2.

sudo ovs-ofctl add-flow s2 “table=0,arp,action=normal”

Figure 25. Manually adding a flow entry.

Consider the figure above. The flow is for the ARP request. The command adds a flow that
sends ARP requests to all the switch ports.

Step 4. Type the following command to manually insert a flow entry in switch s2.

sudo ovs-ofctl add-flow s2 “table=0,ip,action=goto_table=1”

Lab 6: Implementing Routing using multiple Flow Tables

 Page 15

Figure 26. Manually adding a flow entry.

Consider the figure above. If there is a match against IP in table 0, the switch will check
table 1 for further instruction.

5 Table 1 – Layer 3 Forwarding

In this section, you will modify the source and destination MAC addresses, Decrement TTL
and push to table 2 for forwarding.

Step 1. Type the following command to manually insert a flow entry in switch s1 for the
traffic going to the destination host h1 (192.168.1.10).

sudo ovs-ofctl add-flow s1

“table=1,ip,nw_dst=192.168.1.10,action=mod_dl_src=00:00:00:00:00:05,

mod_dl_dst=00:00:00:00:00:01,dec_ttl,goto_table=2”

Figure 27. Manually adding a flow entry.

Consider the figure above. Whenever switch s1 receives any traffic and the destination
host is 192.168.1.10, the source and destination MAC addresses are modified to
00:00:00:00:00:05 and 00:00:00:00:00:01, respectively. TTL value will be decreased by
one. The switch will check table 2 for further instruction.

Step 2. Type the following command to manually insert a flow entry in switch s1 for the
traffic going to the destination network 192.168.2.0/24.

sudo ovs-ofctl add-flow s1

“table=1,ip,nw_dst=192.168.2.0/24,action=mod_dl_src=00:00:00:00:00:01,

mod_dl_dst=00:00:00:00:00:05,dec_ttl,goto_table=2”

Figure 28. Manually adding a flow entry.

Consider the figure above. Whenever switch s1 receives any traffic and the destination
network is 192.168.2.0/24, the source and destination MAC addresses are modified to
00:00:00:00:00:01 and 00:00:00:00:00:05, respectively. TTL value will be decreased by
one. The switch will check table 2 for further instruction.

Lab 6: Implementing Routing using multiple Flow Tables

 Page 16

Step 3. Type the following command to manually insert a flow entry in switch s2 for the
traffic going to the destination host h2 (192.168.2.10).

sudo ovs-ofctl add-flow s2

“table=1,ip,nw_dst=192.168.2.10,action=mod_dl_src=00:00:00:00:00:06,

mod_dl_dst=00:00:00:00:00:02,dec_ttl,goto_table=2”

Figure 29. Manually adding a flow entry.

Consider the figure above. Whenever switch s2 receives any traffic and the destination
host is 192.168.2.10, the source and destination MAC addresses are modified to
00:00:00:00:00:06 and 00:00:00:00:00:02, respectively. TTL value will be decreased by
one. The switch will check table 2 for further instruction.

Step 4. Type the following command to manually insert a flow entry in switch s2 for the
traffic going to the destination network 192.168.1.0/24.

sudo ovs-ofctl add-flow s2

“table=1,ip,nw_dst=192.168.1.0/24,action=mod_dl_src=00:00:00:00:00:02,

mod_dl_dst=00:00:00:00:00:06,dec_ttl,goto_table=2”

Figure 30. Manually adding a flow entry.

Consider the figure above. Whenever switch s2 receives any traffic and the destination
network is 192.168.1.0/24, the source and destination MAC addresses are modified to
00:00:00:00:00:02 and 00:00:00:00:00:06, respectively. TTL value will be decreased by
one. The switch will check table 2 for further instruction.

6 Table 2 – Layer 2 Forwarding

In this section, you will specify the forwarding ports for each destination MAC address.

Step 1. Type the following command to manually insert a flow entry in switch s1 to specify
the forwarding port for destination MAC address 00:00:00:00:00:01.

sudo ovs-ofctl add-flow s1 “table=2,dl_dst=00:00:00:00:00:01,action=output:1”

Lab 6: Implementing Routing using multiple Flow Tables

 Page 17

Figure 31. Manually adding a flow entry.

Consider the figure above. To forward any packet to the destination MAC
00:00:00:00:00:01, switch s1 will use interface s1-eth1.

Step 2. Type the following command to manually insert a flow entry in switch s1 to specify
the forwarding port for destination MAC address 00:00:00:00:00:05.

sudo ovs-ofctl add-flow s1 “table=2,dl_dst=00:00:00:00:00:05,action=output:2”

Figure 32. Manually adding a flow entry.

Consider the figure above. To forward any packet to the destination MAC
00:00:00:00:00:05, switch s1 will use interface s1-eth2.

Step 3. Type the following command to manually insert a flow entry in switch s2 to specify
the forwarding port for destination MAC address 00:00:00:00:00:02.

sudo ovs-ofctl add-flow s2 “table=2,dl_dst=00:00:00:00:00:02,action=output:1”

Figure 33. Manually adding a flow entry.

Consider the figure above. To forward any packet to the destination MAC
00:00:00:00:00:02, switch s2 will use interface s2-eth1.

Step 4. Type the following command to manually insert a flow entry in switch s2 to specify
the forwarding port for destination MAC address 00:00:00:00:00:06.

sudo ovs-ofctl add-flow s2 “table=2,dl_dst=00:00:00:00:00:06,action=output:2”

Lab 6: Implementing Routing using multiple Flow Tables

 Page 18

Figure 34. Manually adding a flow entry.

Consider the figure above. To forward any packet to the destination MAC
00:00:00:00:00:06, switch s2 will use interface s2-eth2.

7 Verifying configuration

Step 1. Type the following command to verify the flow installation. This command prints
the flow table entries in switch s1.

sudo ovs-ofctl dump-flows s1

Figure 35. Verifying flow table in switch s1.

Consider the figure above. You will notice there are three different tables and flows
associated with the tables.

Resubmit (,table_id) refers to goto_table=table_id.

Step 2. Type the following command to verify the flow installation. This command prints
the flow table entries in switch s2.

sudo ovs-ofctl dump-flows s2

Lab 6: Implementing Routing using multiple Flow Tables

 Page 19

Figure 36. Verifying flow table in switch s2.

Consider the figure above. You will notice all the manual flows have been installed in the
flow tables.

Step 3. Test the connectivity between host h1 and host h2 using the ping command.

ping 192.168.2.10

Figure 37. Output of ping command.

The figure shows a successful connectivity test. To stop the test, press Ctrl+c.

Step 4. Now you will use another tool provided by Open vSwitch to trace the packet as it
traverses the switch. ovs-appctl is the tracing tool that can be used to determine what
is happening with packets as they go through the data plane processing (e.g., modified
fields, output port, etc.). Type the command below to issue a packet with the following
fields’ values:

• Network layer protocol: IP

• Source IP address: 192.168.1.10

• Destination IP address: 192.168.2.10

• Source MAC address: 00:00:00:00:00:01

• Time-to-live (TTL): 64

sudo ovs-appctl ofproto/trace s1

ip,nw_src=192.168.1.10,nw_dst=192.168.2.10,dl_src=00:00:00:00:00:01,nw_ttl=64

Lab 6: Implementing Routing using multiple Flow Tables

 Page 20

Figure 38. Tracing the packet processing.

Consider the figure above. The first gray box shows the flow fields’ values before the flow
is sent to the switch. Note that if a field is not specified (e.g., dl_dst, or the destination
MAC address), the tool uses the value 0 for that field. The values here match those
specified in the command by the user. The second gray box shows the rules that were
matched in the flow tables. The third gray box shows the final flow fields’ values after the
packet was processed in the switch.

This concludes Lab 6. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. Linux Foundation, “Open vSwitch”, [Online]. Available: http://openvSwitch.org.
2. B.Pfaff, B. Davie, Ed, “The Open vSwitch Database Management Protocol”, RFC 7047,

Dec 2013.
3. Mininet walkthrough, [Online]. Available: http://mininet.org.
4. Open Networking Foundation, “OpenFlow Switch Specification”, [Online]. Available:

https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
5. Zhi Chen, Yulei Wu, Jingguo Ge, “A new lookup model for multiple flow tables of

OpenFlow with implementation and optimization considerations”, Sep 2014.

OPEN VIRTUAL SWITCH

Exercise 2: Implementing Routing using Multiple
Flow Tables

Document Version: 09-22-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Exercise 2: Implementing Routing using Multiple Flow Tables

 Page 2

Contents

1 Exercise topology .. 3

1.1 Topology settings ... 3

1.2 Credentials ... 3

2 Deliverables ... 4

Exercise 2: Implementing Routing using Multiple Flow Tables

 Page 3

1 Exercise topology

The goal of this exercise is to manually configure multiple flow tables to enable packet
forwarding between different networks.

Consider Figure 1. The topology consists of two end-hosts and four switches. Hosts h1 and
h2 belong to the networks 192.168.1.0/24 and 192.168.2.0/24, respectively. Bandwidth
for interface s1-eth2 is set to 1 Gbps. High volume traffic more than 1 Gbps will pass
through interface s1-eth3.

192.168.1.0/24 192.168.2.0/24

s1-eth1
s2-eth1

h1-eth0 h2-eth0

s1 s2

h1
h2

s4

.10 .10

s3

s1-eth2 s3-eth1 s3-eth2 s2-eth2

Figure 1. Exercise topology.

1.1 Topology settings

The devices are already configured according to Table 1.

Table 1. Topology information.
Host Interface IP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

1.2 Credentials

The information in Table 2 provides the credentials to access the Client’s virtual machine.

Table 2. Credentials to access the Client’s virtual machine.

Exercise 2: Implementing Routing using Multiple Flow Tables

 Page 4

Device

Account

Password

Client admin password

2 Deliverables

Follow the steps below to complete the exercise.

a) Start MiniEdit by clicking on MiniEdit’s shortcut. Load the topology Exercise2.mn
located at ~/OVS_Labs/Exercise2 as shown in the figure below.

Figure 2. Loading the topology file in Mininet.

b) Run the emulation in Mininet.

c) In the Mininet terminal, launch the command that displays the interface names and
connections of the current topology. Verify that links conform to the topology in Figure 1.

d) ~/OVS_Labs/Exercise2 folder contains two scripts set_MACs.sh and config_switches.sh
responsible for loading the MAC addresses and the configuration needed for the exercise.
Execute the script using the following command:

cd OVS_Labs/Exercise2

./set_MACs.sh

./config_switches.sh

e) Add IP addresses to the switches s1 (192.168.1.1/24) and s2 (192.168.2.1/24).

Exercise 2: Implementing Routing using Multiple Flow Tables

 Page 5

f) Enable the traditional switch forwarding operation in switches s3 and s4.

g) Configure table 0 as classifier in switches s1 and s2. Set ARP flow to normal action. For
any other traffic, switches s1 and s2 will check table 1.

h) Configure table 1 for Layer 3 forwarding in switches s1 and s2. You will configure the
switches so that IP traffic will take path s1<->s3<->s2. For any TCP traffic, the path is s1<-
>s4<->s2.

i) Configure table 2 in switches s1 and s2 for Layer 2 forwarding.

j) Verify the connectivity between hosts h1 and h2 using ping command.

k) Run an iperf3 test between the hosts where host h2 is acting as an FTP server and h1
is an FTP client. Explain the result. What is the throughput?

l) Verify the configuration using ovs-appctl command to trace the packet as it traverses
switch s1.

• Issue one packet with Network layer protocol: IP, Source IP address: 192.168.1.10,
Destination IP address: 192.168.2.10, Source MAC address: 00:00:00:00:00:01
and Time-to-live (TTL): 64.

• Issue another packet with Network layer protocol: TCP, TCP port=21, Source IP
address: 192.168.1.10, Destination IP address: 192.168.2.10, Source MAC
address: 00:00:00:00:00:01 and Time-to-live (TTL): 64.

Explain the results. Which path does the switch take for each packet?

OPEN VIRTUAL SWITCH

Lab 7: Configuring Stateless Firewall using
Access Control Lists (ACLs)

Document Version: 09-07-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 7: Configuring Stateless Firewall using ACLs

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Access Control Lists (ACLs) ... 4

1.2 ACL implementation in Open vSwitch .. 5

2 Lab topology.. 6

2.1 Lab settings... 6

2.2 Loading a topology ... 7

2.3 Loading the configuration file .. 9

3 Verifying IP addresses on the hosts .. 10

4 Configuring ACLs in switch s1 ... 11

5 Verifying configuration ... 13

References .. 15

Lab 7: Configuring Stateless Firewall using ACLs

 Page 3

Overview

This lab discusses the concept of Access Control Lists (ACLs), a set of rules that acts as a
firewall to control incoming and outgoing traffic. The lab aims to configure ACLs in Open
Virtual Switch (Open vSwitch) that controls whether to accept or deny traffic based on
the source and destination IP addresses.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of a firewall.
2. Understand the concept of ACL.
3. Explain the ACL implementation in OpenFlow.
4. Configure and verify ACLs in Open vSwitch.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Verifying IP addresses on the hosts.
4. Section 4: Configuring ACLs in switch s1.
5. Section 5: Configuring traditional forwarding in the switch.
6. Section 6: Verifying configuration.

1 Introduction

Network security is one of the most important aspects to consider while protecting
company assets when working over the Internet. An efficient and robust network security

Lab 7: Configuring Stateless Firewall using ACLs

 Page 4

system is essential to protect online information and data since no network is immune to
attacks. Network attacks can cause huge financial and operational losses to any
organization1.

Firewalls are a primary line of defense in network security. Network designers use
firewalls to shield networks from unauthorized users. A firewall is used to establish a
barrier between a trusted network and an untrusted network. It keeps destructive and
disruptive forces out and controls the incoming and outgoing network traffic supported
by predetermined security rules2. A firewall protects many potentially exploitable internal
programs from danger by limiting the traffic that crosses the network boundary to only
authorized traffic.

1.1 Access Control Lists (ACLs)

ACLs are widely utilized in computer networking and network security to mitigate
network attacks and control network traffic. It performs packet filtering and consists of
sequential series of statements called Access Control Entry (ACE). Each ACE specifies a
matching criterion and an action that can be either permit or deny. Packet filtering can
restrict users' access and devices to a network, providing a measure of security and saving
network resources by reducing traffic3. ACLs can allow one host to access a part of the
network and prevent another host from accessing the same area. The matching criteria
refer to packets match against the packet header fields such as Ethernet
source/destination addresses, IP source/destination addresses, IP protocol,
source/destination ports. A router configured with an ACL extracts the source address
from the packet header. The router starts at the top of the ACL and compares the address
to each ACE sequentially. When a match is made, the router carries out the instruction,
either permitting or denying the packet. After a match is made, the remaining ACEs in the
ACL are not analyzed. If the source IP address does not match any ACEs in the ACL, the
packet is discarded.

r1

h3
10.0.0.3

h1
10.0.0.1

h2
10.0.0.2

Figure 1. Packet filtering using ACLs.

Lab 7: Configuring Stateless Firewall using ACLs

 Page 5

Consider Figure 1. There are three hosts connected to router r1. ACLs are configured in
router r1 to deny connection from host h3 to host h1 and allow any other traffic. Router
r1 will allow any other traffic.

Table 2. ACL table.

Source Destination Protocol Access

10.0.0.3 10.0.0.1 any Deny

any any any permit

Consider Table 2. The table contains ACLs running in router r1. If host h3 (10.0.0.3)
generates traffic for the destination host h1 (10.0.0.1), router r1 will analyze the table,
and the first entry will be a match. Since the match has been found, the router will discard
the packet. If host h2 wants to communicate with host h1, the second entry will be a
match, and the router will permit the traffic. If the second entry is considered as the first
entry (permit any source), whenever host h3 wants to communicate with host h1, the
first entry will be the match and the traffic will be allowed. Therefore, it is important to
order all ACL statements from most specific (deny traffic generated by host h3 for the
destination host h1) to least specific (permit any traffic) since the match is sequential.

1.2 ACL implementation in Open vSwitch

In an OpenFlow-based firewall, the rules are pre-installed onto the switch’s flow table.
Each packet header is checked against the firewall rule from highest to lowest priority. In
Open vSwitch, packets match against the packet header fields such as switch input port,
Virtual Local Area Network (VLAN) ID, Ethernet source/destination addresses, IP
source/destination addresses, IP protocol, source/destination ports. If a matching entry
is found in a table, the instructions associated with that specific flow entry are executed.
Any unmatched packets are dropped4.

s1
h1 h2

h3

10.0.0.1

10.0.0.3

10.0.0.2

Figure 2. Packet filtering in Open vSwitch.

Lab 7: Configuring Stateless Firewall using ACLs

 Page 6

Consider Figure 2. Three hosts are connected to an Open vSwitch, s1. Switch s1 will act as
a packet filtering firewall. All the flows are installed in the switch. If host h3 (10.0.0.3)
generates traffic for the destination host h1 (10.0.0.1), switch s1 will analyze the flow
tables and the traffic will be blocked. All other traffic will be allowed.

Table 3. Open vSwitch ACL table.

Priority Table Source Destination Protocol Action

40000 0 10.0.0.3 10.0.0.1 any drop

32768 0 any any any Goto_table=1

Table 4. Open vSwitch Forwarding table.

Priority Table Source Destination Protocol Action

32768 1 any any any Normal

Consider Table 3 and Table 4. The tables contain firewall rules in switch s1. If host h3
wants to communicate with host h1, switch s1 will analyze the table based on the priority
and the first entry from table 0 will be a match, and the traffic will be dropped. For any
other traffic, the second entry will be a match, and the switch will check table 1 to forward
the traffic.

2 Lab topology

Consider Figure 3. The topology consists of three hosts and one switch. Hosts h1, h2, and
h3 belong to the same network, 10.0.0.0/8.

s1

h1 h2

h3

10.0.0.1

10.0.0.3

10.0.0.2

s1-eth1 s1-eth2

s1-eth3

h1-eth0 h2-eth0

h3-eth0

Figure 3. Lab topology.

2.1 Lab settings

Lab 7: Configuring Stateless Firewall using ACLs

 Page 7

The hosts are configured according to Table 4.

Table 4. Topology information.

Host Interface IIP Address Subnet Default
gateway

h1 h1-eth0 10.0.0.1 /8 N/A

h2 h2-eth0 10.0.0.2 /8 N/A

h3 h3-eth0 10.0.0.3 /8 N/A

2.2 Loading a topology

Step 1. Start by launching MiniEdit by clicking on the desktop’s shortcut. When prompted
for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File, then open to load the lab’s topology. Locate
the lab7.mn topology file in the default directory, /home/ovs/OVS_Labs/lab7 and click on
Open.

Lab 7: Configuring Stateless Firewall using ACLs

 Page 8

Figure 5. MiniEdit’s Open dialog.

Figure 6. MiniEdit’s topology.

Step 3. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 7. Starting the emulation.

Step 4. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 8. Opening Mininet’s terminal.

Lab 7: Configuring Stateless Firewall using ACLs

 Page 9

Step 5. Issue the following command to display the interface names and connections.

links

Figure 9. Displaying network interfaces.

In Figure 9, the link displayed within the gray box indicates that interface eth0 of host h1
connects to interface eth1 of host s1 (i.e., h1-eth0<->s1-eth1).

2.3 Loading the configuration file

Step 1. Open the Linux terminal.

Figure 10. Opening Linux terminal.

Step 2. Click on the Linux terminal and navigate into OVS_Labs/lab7 directory by issuing
the following command. This folder contains a configuration file and the script
responsible for loading the configuration. The configuration file will assign the Media
Access Control (MAC) addresses to the hosts’ interfaces. The cd command is short for
change directory, followed by an argument that specifies the destination directory.

cd OVS_Labs/lab7

Figure 11. Entering to the OVS_Labs/lab7 directory.

Lab 7: Configuring Stateless Firewall using ACLs

 Page 10

Step 3. To execute the shell script, type the following command. The program's argument
corresponds to a file that will be loaded in all the hosts to set a manual MAC address.
When prompted for a password, type password.

./set_MACs.sh

Figure 12. Executing the shell script to load the configuration.

Step 4. Type the following command to exit the lab directory.

cd

Figure 13. Exiting from the lab directory.

3 Verifying IP addresses on the hosts

In this section, you will verify that IP and MAC addresses on the hosts are assigned
according to table 4.

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Lab 7: Configuring Stateless Firewall using ACLs

 Page 11

Figure 14. Opening a terminal on host h1.

Step 2. In host h1 terminal, type the following command to verify that the IP address was
assigned successfully. You will verify the host interface, h1-eth0 configured with the IP
address 10.0.0.1 and the subnet mask 255.0.0.0. You will also verify the MAC address,
00:00:00:00:00:01.

ifconfig

Figure 15. Verifying IP and MAC address in the host.

Step 3. You can also repeat steps 1-2 to verify hosts h2 and h3. You will notice the MAC
addresses of hosts h2 and h3 are 00:00:00:00:00:02 and 00:00:00:00:00:03, respectively.

4 Configuring ACLs in switch s1

In this section, you will configure switch s1 so that the switch blocks the traffic when the
source address is 10.0.0.3 and the destination address is 10.0.0.1.

Step 1. Type the following command to manually insert a flow into switch s1.

sudo ovs-ofctl add-flow s1

“table=0,priority=40000,ip,nw_src=10.0.0.3,nw_dst=10.0.0.1,action=drop”

Lab 7: Configuring Stateless Firewall using ACLs

 Page 12

Figure 16. Manually adding a flow entry.

Consider the figure above. Whenever host h3 (10.0.0.3) generates traffic for the
destination host h1 (10.0.0.1), switch s1 will drop the traffic. The priority value for this
entry is 40000.

Step 2. Type the following command to manually insert a flow into switch s1.

sudo ovs-ofctl add-flow s1 “table=0,action=goto_table=1”

Figure 17. Manually adding a flow entry.

Consider the figure above. Switch s1 is instructed to check table 1 for further instruction
if there is any traffic. The priority value for this entry is 32768 which is the default priority
value in Open vSwitch.

Note that, there are two flow entries in table 0. Packets will be matched against flow
entries based on priority. Whenever host h3 (10.0.0.3) generates traffic for the
destination host h1 (10.0.0.1), the entry with higher priority (40000) in table 0 will be a
match and the traffic will be dropped. For any other traffic, flow entry with default priority
(32768) will be a match and the switch will check table 1 for further instruction.

Step 3. Type the following command to manually insert a flow into switch s1.
A normal action allows the device to conduct normal layer 2/layer 3 packet processing
like a traditional switch.

sudo ovs-ofctl add-flow s1 “table=1,action=normal”

Figure 18. Adding normal flow in switch s1.

Lab 7: Configuring Stateless Firewall using ACLs

 Page 13

There are multiple ways to configure flow tables. You can configure flow tables based on
different protocols, source/destination addresses and ports. For simplicity, normal action
has been used in this lab. To explore more about OpenFlow implementation, you can
check out labs 10, 11, 12 of this series.

5 Verifying configuration

Step 1. Type the following command to verify the flow installation. This command prints
the flow table entries in switch s1.

sudo ovs-ofctl dump-flows s1

Figure 19. Verifying flow table in switch s3.

Consider the figure above. You will notice there are two different tables and flows
associated with the tables.

Resubmit (,table_id) refers to goto_table=table_id.

Step 2. Test the connectivity between host h1 and host h2 using the ping command.

ping 10.0.0.2

Figure 20. Output of ping command.

The figure shows a successful connectivity test. To stop the test, press Ctrl+c.

Step 3. Test the connectivity between host h1 and host h3 using the ping command.

ping 10.0.0.3

Lab 7: Configuring Stateless Firewall using ACLs

 Page 14

Figure 21. Output of ping command.

You will notice that there is no connectivity between hosts h1 and h3. To stop the test,
press Ctrl+c.

Step 4. Test the connectivity between host h2 and host h3 using the ping command.

ping 10.0.0.3

Figure 22. Output of ping command.

The figure shows a successful connectivity test. To stop the test, press Ctrl+c.

Step 5. Now you will use another tool provided by Open vSwitch to trace the packet as it
traverses the switch. ovs-appctl is the tracing tool that can be used to determine what
is happening with packets as they go through the data plane processing (e.g., modified
fields, output port, etc.). Type the command below to issue a packet with the following
fields’ values:

• Network layer protocol: IP

• Source IP address: 10.0.0.1

• Destination IP address: 10.0.0.3

• Source MAC address: 00:00:00:00:00:01

• Destination MAC address: 00:00:00:00:00:03

sudo ovs-appctl ofproto/trace s1

ip,nw_src=10.0.0.1,nw_dst=10.0.0.3,dl_src=00:00:00:00:00:01,

dl_dst=00:00:00:00:00:03

Lab 7: Configuring Stateless Firewall using ACLs

 Page 15

Figure 23. Tracing the packet processing.

Consider the figure above. The gray box shows the rules that were matched in the flow
tables. There was a match in table 0 and the switch was instructed to check table 1. From
table 1, the switch chooses the normal action, and the packet is forwarded to the
destination port.

Step 6. Type the following command to trace another packet as it traverses switch s1.

sudo ovs-appctl ofproto/trace s1

ip,nw_src=10.0.0.3,nw_dst=10.0.0.1,dl_src=00:00:00:00:00:03,

dl_dst=00:00:00:00:00:01

Figure 24. Tracing the packet processing.

Consider the figure above. Whenever switch s1 receives traffic where the source address
is 10.0.0.3 and the destination address is 10.0.0.1, the traffic will be dropped in table 0.

Switch s1 will allow traffic generated by host h1 for the destination host h3. Whenever
host h3 is generating reply packet for the destination host h1, the traffic will be blocked.

This concludes Lab 7. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. Cisco, “What is network security?”, [Online], Available:
https://www.cisco.com/c/en/us/products/security/what-is-network-security.html

Lab 7: Configuring Stateless Firewall using ACLs

 Page 16

2. Comodo antivirus, “What is firewall and types of firewall”, May 2020.
3. U.S Patent, “Method for configuring ACLs on network device based on flow

information”, Oct 2012.
4. Open networking foundation, “OpenFlow switch specification”, Sep 2012.
5. James F. Kurose, Keith W. Ross, “Computer networking: A top-down approach”, 7th

edition, 2017.
6. Cisco, “Security configuration guide: access control lists, Cisco IOS XE release 3S”,

[Online]. Available: https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/sec_data_acl/configuration/xe-3s/sec-data-acl-xe-3s-book/sec-acl-
named.html

7. Linux foundation, “Open vSwitch”, [Online]. Available: http://openvSwitch.org.
8. RFC 7047, “The Open vSwitch database management protocol”, Dec 2013.
9. IBM, “Virtual networking in Linux”, [Online]. Available:

https://developer.ibm.com/tutorials/l-virtual-networking/
10. Mininet walkthrough, [Online]. Available: http://mininet.org.

OPEN VIRTUAL SWITCH

Lab 8: Configuring Stateful Firewall using
Connection Tracking (conntrack)

Document Version: 09-13-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Stateful Firewall.. 4

1.2 Connection Tracking System (conntrack)... 5

2 Lab topology.. 6

2.1 Lab settings... 6

2.2 Loading a topology ... 6

2.3 Loading the configuration file .. 8

3 Verifying IP addresses on the hosts .. 10

4 Configuring stateful firewall in switch s1 .. 11

5 Verifying configuration ... 13

6 Monitoring conntrack state table ... 16

References .. 19

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 3

Overview

This lab introduces the concept of stateful firewall, a firewall that monitors the full state
of active network connections. This lab also introduces the Connection Tracking system
(conntrack), a feature of Linux kernel responsible for monitoring the state of the
connection. This lab aims to configure a stateful firewall in Open Virtual Switch (Open
vSwitch) using conntrack.

Objectives

By the end of this lab, you should be able to:

1. Explain the limitation of stateless firewall.
2. Understand the concept of stateful firewall.
3. Understand the concept of Connection Tracking (conntrack).
4. Explore conntrack features.
5. Configure stateful firewall in Open vSwitch using conntrack.
6. Monitor conntrack state table to verify the configuration.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Verifying IP addresses on the hosts.
4. Section 4: Configuring conntrack in the switches.
5. Section 5: Verifying configuration.
6. Section 6: Monitoring conntrack state table.

1 Introduction

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 4

The main goal of a firewall is to manage network traffic across different areas of a given
local network. It establishes a barrier between a trusted and an untrusted network.
Within the stateless firewall, the filtering actions (accepting or rejecting packets) are
taken according to a set of static configuration rules. These rules are based on the
information contained within the packet itself, like network addresses (source and
destination), ports, and protocols. The main advantage of stateless firewalls is their
filtering operations speed. However, since they cannot keep track of the state of a
connection, they fail at handling some vulnerabilities that benefit from the position of a
packet within existing streams of traffic1.

Internet

Host h1 Server

Outgoing traffic

Incoming traffic
Figure 1. Stateless Firewall.

Consider Figure 1. Traffic originated from host h1 is permitted. To get a reply from the
server, it will allow the incoming packet. Stateless firewalls only examine the packet
header. On the contrary, stateful firewalls keep track of the state of active network
connections while analyzing incoming traffic. Since the filtering action cannot
differentiate if the traffic is trusted or not, it is easy for attackers to perform IP spoofing
because the packet headers can be easily forged.

1.1 Stateful Firewall

A stateful firewall keeps track of the state of the network connections for applying the
firewall policy. It is important to monitor the state and context of network
communications because this information can be used to identify threats—either based
on where they are coming from, where they are going, or the content of their data
packets.

This stateful inspection within the firewall occurs at layers 3 and layer 4 of the Open
System Interconnected (OSI) model. Whenever a packet is to be sent across the firewall,
information about the source and destination IP addresses, port numbers, and
connection status are stored within the state table, which is used to determine which
network packets should be allowed through the firewall3. A stateful firewall can refuse to
accept any packet from a remote host to a local host unless the local host has previously
sent a packet to the remote host2. It provides a better fine-grained filtering capability and
protects against more complex attacks, like denial of service (DOS) and IP Spoofing.

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 5

Internet

Host h1 Server

Outgoing traffic

Incoming traffic

Incoming reply traffic

State table

Figure 2. Stateful Firewall.

Consider Figure 2. Traffic originating from host h1 is permitted and inspected as it travels
toward the public network (e.g., the Internet). Inspected traffic returning from the public
network and associated with traffic that originated from host h1 is permitted. When the
connection ends, that opening is closed. Traffic originating from the public network and
traveling to host h1 will be blocked.

1.2 Connection Tracking System (conntrack)

In Linux, Iptables is a command-line firewall utility that uses policy to allow or block traffic.
Iptables in the firewall works by interacting with the Netfilter which is a packet filtering
framework in Linux6.

Connection tracking (conntrack) is one of the main features of the Linux kernel’s
networking stack, allowing the kernel to keep track of all network connections or flows.
Conntrack stores information about the state of a connection (TCP/UDP/ICMP) in a state
table that contains the source and destination IP addresses, port number pairs, protocol
types, state, and timeout. A more intelligent filtering policy can be defined with this
information. This state table is used by iptables to accept/drop packets based on the
characteristic of the connection they belong to6.

s1 s2

h1 h2

Figure 3. Open vSwitch conntrack.

Consider Figure 3. Manual flows and conntrack are configured in the switches. Switch s1
will allow all outgoing traffic (new) and permits only reply traffic from switch s2
(established). If host h1 generates a new packet for the destination host h2, switch s1 will

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 6

store the flow as a new connection and send a request to host h2. Host h2 will reply, and
switch s1 will monitor the flow. Since it is the reply packet, the state of the connection is
established and allowed through the firewall. Any new packet generated from host h2 for
the destination host h1 will be dropped.

2 Lab topology

Consider Figure 4. The topology consists of three hosts and one switch. Hosts h1, h2, and
h3 belong to the same network, 10.0.0.0/8.

s1

h1 h2

h3

10.0.0.1

10.0.0.3

10.0.0.2

s1-eth1 s1-eth2

s1-eth3

h1-eth0 h2-eth0

h3-eth0

Figure 4. Lab topology.

2.1 Lab settings

The hosts are configured according to Table 2.

Table 2. Topology information.

Host Interface IIP Address Subnet Default
gateway

h1 h1-eth0 10.0.0.1 /8 N/A

h2 h2-eth0 10.0.0.2 /8 N/A

h3 h3-eth0 10.0.0.3 /8 N/A

2.2 Loading a topology

Step 1. Start by launching MiniEdit by clicking on the desktop’s shortcut. When prompted
for a password, type password.

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 7

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File, then open to load the lab’s topology. Locate
the lab8.mn topology file in the default directory, /home/ovs/OVS_Labs/lab8 and click on
Open.

Figure 6. MiniEdit’s Open dialog.

Figure 7. MiniEdit’s topology.

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 8

Step 3. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 8. Starting the emulation.

Step 4. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 9. Opening Mininet’s terminal.

Step 5. Issue the following command to display the interface names and connections.

links

Figure 10. Displaying network interfaces.

In Figure 10, the link displayed within the gray box indicates that interface eth0 of host h1
connects to interface eth1 of host s1 (i.e., h1-eth0<->s1-eth1).

2.3 Loading the configuration file

Step 1. Open the Linux terminal.

Figure 11. Opening Linux terminal.

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 9

Step 2. Click on the Linux terminal and navigate into OVS_Labs/lab8 directory by issuing
the following command. This folder contains a configuration file and the script
responsible for loading the configuration. The configuration file will assign the Media
Access Control (MAC) addresses to the hosts’ interfaces. The cd command is short for
change directory, followed by an argument that specifies the destination directory.

cd OVS_Labs/lab8

Figure 12. Entering to the OVS_Labs/lab8 directory.

Step 3. To execute the shell script, type the following command. The program's argument
corresponds to a file that will be loaded in all the hosts to set a manual MAC address.
When prompted for a password, type password.

./set_MACs.sh

Figure 13. Executing the shell script to load the configuration.

Step 4. Type the following command to exit the lab8 directory.

cd

Figure 14. Exiting from the lab directory.

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 10

3 Verifying IP addresses on the hosts

In this section, you will verify that IP addresses on the hosts are assigned according to
table 2.

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 15. Opening a terminal on host h1.

Step 2. In host h1 terminal, type the following command to verify that the IP address was
assigned successfully. You will verify the host interface, h1-eth0 configured with the IP
address 10.0.0.1 and the subnet mask 255.0.0.0. You will also verify the MAC address,
00:00:00:00:00:01.

ifconfig

Figure 16. Verifying IP and MAC address in the host.

Step 3. You can also repeat steps 1-2 to verify IP and MAC addresses in hosts h2 and h3.
You will notice the MAC addresses of hosts h2 and h3 are 00:00:00:00:00:02 and
00:00:00:00:00:03, respectively.

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 11

4 Configuring stateful firewall in switch s1

In this section, you will configure switch s1 so that the switch blocks the traffic generated
from host h3 (10.0.0.3) for the destination host h1 (10.0.0.1). Host h3 will be able to send
reply if any traffic is generated from host h1.

Step 1. Type the following command to manually insert a flow into switch s1.

sudo ovs-ofctl add-flow s1 “table=0,action=normal”

Figure 17. Manually adding a flow entry.

Consider the figure above. A normal action allows the device to conduct normal layer
2/layer 3 packet processing like a traditional switch. The priority value for this entry is
32768 which is the default priority value in Open vSwitch.

Step 2. Type the following command to manually insert a flow into switch s1.

sudo ovs-ofctl add-flow s1

“table=0,priority=40000,ip,nw_src=10.0.0.1,nw_dst=10.0.0.3,ct_state=-

trk,action=ct(table=1)”

Figure 18. Manually adding a flow entry.

Consider the figure above. The ct_state parameter refers to the state of the conntrack.
The -trk parameter is used so that if host h1 (10.0.0.1) generates traffic for the
destination host h3 (10.0.0.3), conntrack will start tracking the packet, and the switch will
check table 1 for further instruction. The flow entry has a higher priority value which is
40000.

Step 3. Type the following command to manually insert a flow into switch s1.

sudo ovs-ofctl add-flow s1

“table=0,priority=40000,ip,nw_src=10.0.0.3,nw_dst=10.0.0.1,ct_state=-

trk,action=ct(table=1)”

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 12

Figure 19. Manually adding a flow entry.

Consider the figure above. If host h3 (10.0.0.3) generates traffic for the destination host
h1 (10.0.0.1), conntrack will start tracking the packet, and the switch will check table 1 for
further instruction. The flow entry has a higher priority value which is 40000.

Step 4. Type the following command to manually insert a flow into switch s1.

sudo ovs-ofctl add-flow s1

“table=1,ip,nw_src=10.0.0.1,nw_dst=10.0.0.3,ct_state=+trk+new,action=ct(commit)

,3”

Figure 20. Manually adding a flow entry.

Consider the figure above. If host h1 generates traffic for destination host h3, switch s1
will forward the traffic to port 3, (s1-eth3). If any host generates a new packet for any
destination host, the traffic is considered as new. The ct action sends the packet through
the connection tracker. The commit parameter is used so that conntrack module will store
information for a certain time beyond the lifetime of packets. If host h1 wants to send
data to destination host h3, the traffic will be monitored by conntrack, and the
information will be stored.

Step 5. Type the following command to manually insert a flow into switch s1.

sudo ovs-ofctl add-flow s1

“table=1,ip,nw_src=10.0.0.1,nw_dst=10.0.0.3,ct_state=+trk+est,action=output:3”

Figure 21. Manually adding a flow entry.

Consider the figure above. If host h1 generates reply traffic for destination host h3, switch
s1 will forward the traffic to port 3, (s1-eth3). If any host generates a reply packet for any
destination host, the traffic is considered as est (established).

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 13

Step 6. Type the following command to manually insert a flow into switch s1.

sudo ovs-ofctl add-flow s1

“table=1,ip,nw_src=10.0.0.3,nw_dst=10.0.0.1,ct_state=+trk+new,action=drop”

Figure 22. Manually adding a flow entry.

Consider the figure above. If host h3 generates new traffic for destination host h1, switch
s1 will drop the traffic.

Step 7. Type the following command to manually insert a flow into switch s1.

sudo ovs-ofctl add-flow s1

“table=1,ip,nw_src=10.0.0.3,nw_dst=10.0.0.1,ct_state=+trk+est,action=output:1”

Figure 23. Manually adding a flow entry.

Consider the figure above. If host h3 generates reply traffic for destination host h1, switch
s1 will forward the traffic to port 1, (s1-eth1).

5 Verifying configuration

In this section, you will verify the firewall configuration.

Step 1. Type the following command to verify the flow installation. This command prints
the flow table entries in switch s1.

sudo ovs-ofctl dump-flows s1

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 14

Figure 24. Verifying flows in switch s1.

Consider the figure above. You will notice all the flows added in switch s1.

Step 2. In h1 terminal, test the connectivity between host h1 and host h2 using the ping
command.

ping 10.0.0.2

Figure 25. Output of ping command.

The result in the figure above shows a successful connectivity between the hosts. To stop
the test, press Ctrl+c.

Step 3. In h1 terminal, test the connectivity between host h1 and host h3 using the ping
command.

ping 10.0.0.3

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 15

Figure 26. Output of ping command.

The result in the figure above shows a successful connectivity between the hosts. To stop
the test, press Ctrl+c.

Step 4. Type the following command to show conntrack state table for the IP address
10.0.0.1.

sudo ovs-dpctl dump-conntrack | grep “10.0.0.1”

Figure 27. Displaying conntrack state table.

Consider the figure above. The figure shows the state of conntrack state table. Source
host h1 generated a ping request (ICMP packet) for the destination host h3, 10.0.0.3
where id=41501, host h1 receives a reply from the destination host h3 using the same id
(41501).

Verify conntrack state table right after pinging since the table information is deleted after
a certain period of time. If you do not get expected result, run the test again and see the
conntrack table.

Step 5. In host h3 terminal, test the connectivity between host h3 and host h1 using the
ping command.

ping 10.0.0.1

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 16

Figure 28. Output of ping command.

To stop the test, press Ctrl+c.

Consider the figure above. Host h3 cannot communicate with host h1 since switch s1
drops incoming traffic generated from host h3 for destination host h1.

6 Monitoring conntrack state table

In this section, you will run a TCP test and verify how conntrack monitors each flow and
store the information in the state table.

Step 1. Go to file option and open a new terminal tab (showed in the following figure) or
press Ctrl+Shift+T.

Figure 29. Opening a new terminal.

Step 2. Type the following command to show conntrack event updates for IP address
10.0.0.1. When prompted for a password, type password.

sudo conntrack -E | grep “10.0.0.1”

Figure 30. Displaying conntrack events.

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 17

Consider the figure above. Currently, there is no event for the IP address 10.0.0.1.

Step 3. In h3 terminal, type the following command to run the host in server mode.

iperf -s

Figure 31. Running host h2 in server mode.

Consider the figure above. The figure shows that host h3 is acting as a server and listening
to TCP port 5001.

Step 4. In h1 terminal, type the following command to run the host in client mode and
run a TCP test between hosts h1 and h3.

iperf -c 10.0.0.3

Figure 32. Running host h1 in client mode.

Consider the figure above. The figure shows that host h1 is acting as a client and a TCP
test has been done between the client and the server.

Step 5. Go back to the Linux terminal. Type the following command immediately after
running the TCP test to show the state of the conntrack.

sudo ovs-dpctl dump-conntrack | grep “10.0.0.1”

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 18

Figure 33. Displaying conntrack state table.

Consider the figure above. The figure shows the TCP test. You will notice that source h1
generates the TCP session using source port 39246 and destination port 5001. This flow
will be stored. Whenever host h3 is sending a reply to host h1 using source port 5001 and
destination port 39246, switch s1 will allow the traffic since the source, and destination
ports are the same.

You might notice different port number since the port numbers are generated randomly.

You need to verify the state table immediately after running the TCP test to see the
ESTABLISHED connection. Otherwise, the established connection will be changed to
TIME_WAIT if the TCP session is complete.

If you encounter this, you can rerun the TCP test and see the results.

Step 6. In host h3 terminal, press Ctrl+c to stop the TCP session.

Step 7. Go to another terminal to verify the conntrack events for the IP address 10.0.0.1.

Figure 34. Displaying conntrack events.

Consider the figure above. The figure shows that a new TCP session was generated.
Unreplied refers to nonpersistent flow. Once the session is stopped, the flow will be
destroyed. You will notice that the session has been destroyed at the end.

The destroy session may take a bit longer (2-3 minutes) to appear.

Step 8. Type the following command to show the state of the conntrack.

sudo ovs-dpctl dump-conntrack | grep “10.0.0.1”

Lab 8: Configuring Stateful Firewall using Connection Tracking (conntrack)

 Page 19

Figure 35. Displaying conntrack state table.

Consider the figure above. Once the session is completed, the conntrack state will be
changed. The figure shows that the state has been changed to TIME_WAIT (ending of a
TCP session).

This concludes Lab 8. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, S. Martinez, J. Cabot,
“Management of statefull firewall misconfiguration”, 2013.

2. M. Gouda, A. Liu, “A model of stateful firewalls and its properties”, 2005.
3. Cisco, “The Cisco learning network”, [Online]. Available:

https://learningnetwork.cisco.com/s/question/0D53i00000Ksup8/stateful-firewall-
overview

4. Red Hat, “How connection tracking in Open vSwitch helps OpenStack performance”,
July 2016.

5. ScienceDirect “Stateful inspection”, 2020. [Online]. Available:
https://www.sciencedirect.com/topics/computer-science/stateful-
inspection#:~:text=However%2C%20a%20stateful%20firewall%20also,ends%2C%2
0that%20opening%20is%20closed.

6. J. Ellingwood, “A deep dive into iptables and netfilter architecture”, Aug 2015.
7. Linux foundation, “Open vSwitch”, [Online]. Available: http://openvSwitch.org.
8. Mininet walkthrough, [Online]. Available: http://mininet.org.

OPEN VIRTUAL SWITCH

Exercise 3: Configuring Stateless and Stateful
Firewalls in Open vSwitch

Document Version: 09-23-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Exercise 3: Configuring Stateless and Stateful Firewalls in Open vSwitch

 Page 2

Contents

1 Exercise topology .. 3

1.1 Topology settings ... 3

1.2 Credentials ... 3

2 Deliverables ... 4

Exercise 3: Configuring Stateless and Stateful Firewalls in Open vSwitch

 Page 3

1 Exercise topology

Consider Figure 1. The topology consists of four hosts and two switches. All the hosts
belong to the same network, 10.0.0.0/8.

The goal of this lab is to implement stateless and stateful firewalls in switch s1.

.1

s1

s1-eth3

h1

.3

s2

s2-eth3

h3 h4h2

.2

10.0.0.0/8

.4

10.0.0.0/8

Figure 1. Exercise topology.

1.1 Topology settings

The devices are already configured according to Table 1.

Table 1. Topology information.
Host Interface IP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

h3 h3-eth0 10.0.0.3 /8

h4 h4-eth0 10.0.0.4 /8

1.2 Credentials

The information in Table 2 provides the credentials to access the Client’s virtual machine.

Table 2. Credentials to access the Client’s virtual machine.

Device

Account

Password

Exercise 3: Configuring Stateless and Stateful Firewalls in Open vSwitch

 Page 4

Client admin password

2 Deliverables

Follow the steps below to complete the exercise.

a) Start MiniEdit by clicking on MiniEdit’s shortcut. Load the topology Exercise3.mn
located at ~/OVS_Labs/Exercise3 as shown in the figure below.

Figure 2. Loading the topology file in Mininet.

b) Run the emulation in Mininet.

c) In the Mininet terminal, launch the command that displays the interface names and
connections of the current topology. Verify that links conform to the topology in Figure 1.

d) Enable the traditional switch forwarding operation in switch s2.

e) Configure table 0 in switch s1.

• Enable the traditional switch forwarding operation.

• Add a flow entry with a higher priority to block traffic coming from host h4 to h2.

f) Verify the stateless firewall configuration using ping and ovs-appctl commands.
Explain the result. What happens when host h4 generates traffic for the destination host
h2? Do you see successful connectivity between other hosts?

g) Configure table 0 in switch s1 for stateful firewall. Add flow entries with higher
priorities and start tracking packets where source and destination IP addresses are

Exercise 3: Configuring Stateless and Stateful Firewalls in Open vSwitch

 Page 5

10.0.0.1 and 10.0.0.3 and vice versa. The switch will be instructed to check table 1 for
further instructions.

h) Configure table 1 in switch s1 so that new traffic generated from host h3 for the
destination host h1 will be blocked. Host h3 will be able to send reply if any traffic is
generated from host h1.

i) Verify the stateful firewall configuration using ping command. Explain the result. What
happens when host h1 generates traffic for the destination host h3? What happens when
host h3 generates traffic for the destination host h1?

OPEN VIRTUAL SWITCH

Lab 9: Configuring Quality of Service (QoS) in
Open vSwitch

Document Version: 07-22-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to QoS .. 4

1.2 Hierarchical Token Bucket (HTB) algorithm ... 4

1.3 QoS shaping and policing ... 5

1.4 QoS metering ... 6

2 Lab topology.. 6

2.1 Lab settings... 6

2.2 Loading a topology ... 7

2.3 Verifying default traffic rate ... 9

3 Configuring QoS policing in switch s1 ... 10

4 Configuring Single-Rate Two-Colors Traffic Policing in switch s1 13

5 Verifying metering configuration .. 14

6 Configuring QoS shaping in switch s1 ... 17

7 Verifying QoS shaping configuration .. 19

7.1 Verifying QoS and traffic rate for individual hosts ... 19

7.2 Verifying traffic rate for competing hosts .. 22

References .. 24

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 3

Overview

This lab introduces Quality of Service (QoS), a set of protocols aimed at manipulating the
traffic, such that network devices forward it according to the application's requirement
(e.g., low latency, low loss rate, bounded jitter, and guaranteed bandwidth). The lab's
focus is to configure QoS in Open Virtual Switch (Open vSwitch), where the switch will
establish the bandwidth allocation for each flow.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of QoS.
2. Explore QoS mechanisms.
3. Understand how QoS works in Open vSwitch.
4. Configure and verify the QoS shaping method in Open vSwitch to limit the traffic

flow.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Configuring QoS policing in switch s1.
4. Section 4: Configuring Single-Rate Two-Colors Traffic Policing in switch s1.
5. Section 5: Verifying metering configuration.
6. Section 6: Configuring QoS shaping in switch s1.
7. Section 7: Verifying QoS shaping configuration.

1 Introduction

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 4

When a router receives an IP packet, it looks for the destination in the routing table and
forwards the packet toward the destination. All the packets are served in the same order
as they arrive in the queue. This method is known as First-In-First-Out (FIFO). When data
and voice traffic are transmitted simultaneously, the router will enqueue packets waiting
to be transmitted. But the queue is limited. Once the queue is full, the router will start
dropping packets1.

1.1 Introduction to QoS

QoS manages network resources by prioritizing specific types of data to maximize the
experience of end-users. In a switched packet network, all the traffic is treated in the
same way independently of the services that they are carrying. Using QoS, we can define
how forwarding devices can manage different types of packets. QoS allows organizations
to use their existing bandwidths more efficiently2.

QoS prioritize packets in a way that ensures that the bandwidth meets the traffic
requirements3. For instance, packets belong to a video call would be prioritized over
packets belong to an email or a file download because a video call is a more synchronous
form of communication and needs to happen in real-time, whereas emailing is not
necessarily time-sensitive. If packets are dropped or delayed during a video chat, the end-
user may experience jitter or latency. On the other hand, if packets are delayed in the
emailing process, they can still be sent after, and the end-user will not experience any
lapse in service. The QoS classifier reads the packet header to prioritize packets and
determines that a packet is related to video streaming and prioritizes it over less time-
sensitive packets. QoS allows organizations to use their existing bandwidths more
efficiently.

1.2 Hierarchical Token Bucket (HTB) algorithm

Consider Figure 1. The HTB algorithm can control the outbound bandwidth on a given link
by defining several slower links. The user specifies how to slice the physical link and
defines the bandwidth for each of the slices. HTB shapes traffic using the Token Bucket
Filter (TBF) algorithm, which does not depend on interface characteristics and does not
need to know the underlying bandwidth of the outgoing interface.

The classes are configured as a tree according to relationships of traffic aggregations. Only
leaf classes have a queue to buffer the packets that belong to the class. Children's classes
borrow bandwidth from their parents when the configured rate is exceeded. A child will
continue to attempt to borrow bandwidth until it reaches ceil, which is the maximum
bandwidth available for that class. Under each class, the user can specify other queueing
disciplines, namely Token Bucket Filter (TBF), Stochastic Fair Queuing (SFQ), Controlled
Delay (CoDel), etc. It will depend on the service that such class is intended to provide. If
there is no queueing discipline, HTB sets First-in, First-out (FIFO) as the default queueing
discipline.

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 5

Figure 1. Hierarchical Token Bucket Structure.

1.3 QoS shaping and policing

Open vSwitch supports traffic policing and shaping. Policing is a method that drops
packets received more than the configured rate. Shaping is a technique that allows
higher-priority traffic to flow at an optimal level even when the link is overutilized.
Shaping is used for outbound traffic where policing is required to apply for inbound
traffic4. Egress shaping limits the rate at which traffic is allowed to transmit from a
physical interface. On the other hand, ingress policing limits the rate at which traffic will
be received on a switch.

h1

Queue 1

Sc
h

ed
u

le
r

h2

h3

h4s1 s2

Match Action

Port 80 Queue 1

Queue 2Port 443
...

...

Packets

Queue 2

OVS QoS

M-A Table

Figure 2. QoS queues for different data types.

Consider Figure 2. The QoS shaping is implemented by separating in different queues.
Once the corresponding type of traffic occupies the queues, a scheduler will decide which
order and rate the packets are sent. In this example, Qos is enabled within switch s1, and
traffic is matching against port numbers. Whenever the port number is 80, instructions
associated with Queue 1 will be executed.

HTB root

Class 1 ...Class 2 Class N

qdisc 1 (TBF) qdisc 2 (SFQ) qdisc N (FIFO)

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 6

1.4 QoS metering

Metering and color marking is another tool which is used in QoS policing to increase
granularity. The tool allows to measure the traffic arrival rate and assigns different colors
to the traffic according to the rate. Metering compares the actual rate of the traffic with
Committed information rate (CIR) which is the guaranteed rate and Peak information rate
(PIR) which is the maximum allowed traffic rate7. It measures the traffic comparing these
two values and marks the traffic with colors that identify whether the traffic is in-contract
or out-of-contract:

• Green: Traffic rate is below the CIR and is in-contract.

• Yellow: Traffic rate falls between CIR and PIR and is out-of-contract.

• Red: Traffic is above PIR and is out-of-contract.

Though Open vSwitch supports three color marking, our version of Open vSwitch only
supports two color marking (green and red).

2 Lab topology

Consider Figure 3. The topology consists of two switches and four end-hosts. Hosts h2 and
h4 are acting as File Transfer Protocol (FTP) and Hypertext Transfer Protocol (HTTP)
servers, whereas hosts h1 and h3 are competing clients.

10.0.0.3/8

s2-eth3

s1

h3

10.0.0.1/8

h1

10.0.0.4/8

s2

h4

h2

s1-eth3 BW=100 Mbps

10.0.0.2/8

Figure 3. Lab topology.

2.1 Lab settings

The hosts are configured according to Table 2.

Table 2. Topology information.

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 7

Hosts Interface IP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

h3 h3-eth0 10.0.0.3 /8

h4 h4-eth0 10.0.0.4 /8

2.2 Loading a topology

Step 1. Start by launching MiniEdit by clicking on the desktop’s shortcut. When prompted
for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File, then open to load the lab’s topology. Locate
the Lab9.mn topology file in the default directory, /home/ovs/OVS_Labs/lab9 and click
on Open.

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 8

Figure 5. MiniEdit’s open dialog.

Figure 6. MiniEdit’s topology.

Step 3. Click on the Run button to start the emulation. The emulation will start, and the
MiniEdit panel buttons will gray out, indicating that they are currently disabled.

Figure 7. Starting the emulation.

Step 4. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 8. Opening Mininet’s terminal.

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 9

Step 5. Issue the following command to display the interface names and connections.

links

Figure 9. Displaying network interfaces.

In Figure 9, the link displayed within the gray box indicates that interface eth0 of host h1
connects to interface eth1 of switch s1 (i.e., h1-eth0<->s1-eth1).

2.3 Verifying default traffic rate

Step 1. To open the host h2 terminal, hold right-click on host h2 and select Terminal.

Figure 10. Opening a terminal on host h2.

Step 2. In the host h2 terminal, type the following command to run the host as an FTP
server using port 21.

iperf3 -s -p 21

Figure 11. Running host h2 in server mode.

Step 3. In order to open host h1 terminal, hold right-click on host h1 and select Terminal.

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 10

Figure 12. Opening a terminal on host h1.

Step 4. In the host h1 terminal, type the following command to run the host in client
mode and run a throughput test between hosts h1 and h2.

iperf3 -c 10.0.0.2 -p 21

Figure 13. Running throughput test between hosts h1 and h2.

Consider the figure above. By default, the bitrate for the test is 43.9 Gbps.

The throughput can vary depending on the resources assigned to the Virtual Machine
(VM).

3 Configuring QoS policing in switch s1

Step 1. Click on the icon below to open the Linux terminal.

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 11

Figure 14. Opening Linux terminal.

Step 2. Type the following command to set the ingress policy rate for the interface s1-
eth1 to 10 megabits per second (Mbps) which means the maximum incoming rate is 10
Mbps. If the password is required, type password.

sudo ovs-vsctl set interface s1-eth1 ingress_policing_rate=10000

Figure 15. Configuring QoS policing.

Step 3. In the host h1 terminal, type the following command to run a throughput test
between hosts h1 and h2.

iperf3 -c 10.0.0.2 -p 21

Figure 16. Running throughput test between hosts h1 and h2.

The figure above shows that the bitrate is 10.6 Mbps.

Step 4. Type the following command to delete the QoS policy. This command is
responsible for deleting all the running QoS configurations.

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 12

sudo ovs-vsctl -- --all destroy QoS

Figure 17. Deleting all QoS.

Step 5. Type the following command to set the ingress policy rate for the interface s1-
eth1 to 500Mb.

sudo ovs-vsctl set interface s1-eth1 ingress_policing_rate=500000

Figure 18. Configuring QoS policing.

Step 6. In the host h1 terminal, type the following command to run a throughput test
between hosts h1 and h2.

iperf3 -c 10.0.0.2 -p 21

Figure 19. Running throughput test between hosts h1 and h2.

The figure above shows that the bitrate is 79.1 Mbps though the maximum rate is 500
Mbps. This happens because traffic policing interacts poorly with some network protocols

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 13

and can have surprising results4. This is a limitation of ingress policing and occurs mostly
with higher rates like 500 Mbps.

Step 7. Type the following command to delete the QoS policy.

sudo ovs-vsctl -- --all destroy QoS

Figure 20. Deleting all QoS.

4 Configuring Single-Rate Two-Colors Traffic Policing in switch s1

In this section, you will configure single-rate two-colors traffic policing where the policer
meters the traffic stream and classifies packets into two categories, green for conforming
packets and red for nonconforming packets.

Step 1. Type the following command to show metering features supported by Open
vSwitch. You will notice band_types: drop which means it supports single rate two colors
metering.

sudo ovs-ofctl -O OpenFlow15 meter-features s1

Figure 21. Displaying Open vSwitch metering features.

Step 2. Type the following command to add a meter in switch s1 and limit the rate to 300
Mbps.

sudo ovs-ofctl -O OpenFlow15 add-meter s1

meter=1,kbps,band=type=drop,rate=300000

Figure 22. Adding a meter policy to limit ingress rate.

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 14

Step 3. Type the following command to install a manual flow in switch s1.

sudo ovs-ofctl -O OpenFlow15 add-flow s1 tcp,tp_dst=21,actions=meter:1,output:3

Figure 23. Installing a manual flow entry.

Consider the figure above. The flow matches on the TCP port (21), meter is set to 1 and
the output interface is s1-eth3. Whenever the flow matches on the TCP port, switch s1
will limit the rate to 300Mbps.

Step 4. Type the following command to install a manual flow in switch s1.

sudo ovs-ofctl -O OpenFlow15 add-flow s1 tcp,tp_dst=80,actions=meter:1,output:3

Figure 24. Installing a manual flow entry.

Consider the figure above. The flow matches on the TCP port (80), meter is set to 1 and
the output interface is s1-eth3.

Since one meter is applied to multiple flow entries, all the flow entries will share the meter
rate.

5 Verifying metering configuration

Step 1. To open the host h4 terminal, hold right-click on host h4 and select Terminal.

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 15

Figure 25. Opening a terminal on host h4.

Step 2. In the host h4 terminal, type the following command to run the host as an HTTP
server using port 80.

iperf3 -s -p 80

Figure 26. Running host h4 in server mode.

Step 3. To open host h3 terminal, hold right-click on the host h3 and select Terminal.

Figure 27. Opening a terminal on host h3.

Step 4. In the host h3 terminal, type the following command to run a throughput test
between hosts h3 and h4. -b refers to the rate which is 300Mbps.

iperf3 -c 10.0.0.4 -p 80 -b 300mb

Figure 28. Running throughput test between hosts h3 and h4.

Do not start the test.

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 16

Step 5. In the host h1 terminal, type the following command to run a throughput test
between hosts h1 and h2. -b refers to the rate which is 300Mbps.

iperf3 -c 10.0.0.2 -p 21 -b 300mb

Figure 29. Running throughput test between hosts h1 and h2.

Execute two commands immediately one after another.

Step 6. Execute the command in host h1.

Figure 30. Running throughput test between hosts h1 and h2.

Execute command on host h3 immediately. The test will be running for 10 seconds. The
output is summarized in the figure above.

Consider the figure above. In host h1, the bitrate is approximately 200 Mbps.

Step 7. Execute the command in host h3.

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 17

Figure 31. Running throughput test between hosts h3 and h4.

Consider the figure above. Host h3 is competing with host h1 and the bitrate is approx.
170 Mbps. Though switch s1 received 600 Mbps from two hosts, approx. 370 Mbps was
allowed and marked as green. The remaining flows were marked as red and dropped by
switch s1.

Step 8. Type the following command to delete the QoS policy.

sudo ovs-vsctl -- --all destroy QoS

Figure 32. Deleting all QoS.

6 Configuring QoS shaping in switch s1

To configure QoS in an Open vSwitch, you will assign maximum bandwidth and create
queues with different priorities. The next step is to add these queues to the ports on the
switch s1 where you want to implement the QoS. Finally, you will map the required queue
ID with the flow. For simplicity, you will use a script to configure QoS shaping in switch s1.

Step 1. To visualize the QoS commands used in the lab, type the following command:

cat QoS_config

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 18

Figure 33. Displaying QoS commands.

Following commands will be executed in the script:

ovs-vsctl -- set port s1-eth3 \
qos=@newqos -- --id=@newqos \
create qos type=linux-htb other-config:max-rate=100000000 \
queues=1=@q1,2=@q2 \
-- --id=@q1 create queue other-config:min-rate=70000000 \
-- --id=@q2 create queue other-config:min-rate=30000000

In the figure above, a QoS shaping is created with a maximum data transfer rate of 100
Mbps and attached to port s1-eth3. Two queues, q1 with queue id = 1 and q2 with queue
id = 2 have been created. Queue 1 (q1) has a minimum transfer rate of 70 Mbps. q2 has
a minimum transfer rate of 30 Mbps. The QoS method is egress only which means these
rates will be applied when the packets are being forwarded out from the port.

Step 2. To configure QoS in switch s1, type the following command to execute the script.

sudo ./QoS_config

Figure 34. Configuring QoS in switch s1.

Step 3. Type the following command to install a manual flow entry in switch s1.

sudo ovs-ofctl add-flow s1 tcp,tp_dst=21,actions=set_queue:1,normal

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 19

Figure 35. Adding a manual flow in the switch.

Consider the figure above. The flow matches on the TCP port (21), sets up the appropriate
queue (q1) and executes the normal action, which performs the traditional switching
operation.

Step 4. Type the following command to install a manual flow entry in switch s1.

sudo ovs-ofctl add-flow s1 tcp,tp_dst=80,actions=set_queue:2,normal

Figure 36. Adding a manual flow in the switch.

Consider the figure above. The flow matches on the TCP port (80), sets up the appropriate
queue (q2), and executes the normal action, which performs the traditional switching
operation.

7 Verifying QoS shaping configuration

In this section, you will verify the QoS shaping configuration. In section 7.1, you will verify
the traffic rate for individual hosts. In section 7.2, you will verify that host h1 will get
higher priority when competing with host h3.

7.1 Verifying QoS and traffic rate for individual hosts

Step 1. Type the following command to verify QoS configuration for the interface s1-eth3.

sudo ovs-appctl -t ovs-vswitchd qos/show s1-eth3

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 20

Figure 37. Verifying QoS configuration.

Consider the figure above. It lists all the information regarding QoS queues. You will notice
two queues, q1 and q2 are added to the list. By default, Open vSwitch uses the default
queue where the min_rate is 12,000 and max_rate is 100,000,000.

Step 2. In the host h1 terminal, type the following command to run a throughput test
between hosts h1 and h2. At this point, host h1 should be able to utilize maximum
bandwidth, 100 Mbps.

iperf3 -c 10.0.0.2 -p 21

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 21

Figure 38. Running throughput test between hosts h1 and h2.

The figure above shows that the bitrate is ~95.6 Mbps.

Step 3. To open the host h4 terminal, hold right-click on host h4 and select Terminal.

Figure 39. Opening a terminal on host h4.

Step 4. In the host h4 terminal, type the following command to run the host as an HTTP
server using port 80.

iperf3 -s -p 80

Figure 40. Running host h4 in server mode.

Step 5. To open host h3 terminal, hold right-click on the host h3 and select Terminal.

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 22

Figure 41. Opening a terminal on host h3.

Step 6. In the host h3 terminal, type the following command to run the host in client
mode and run a throughput test between hosts h3 and h4. At this point, host h3 should
be able to utilize maximum bandwidth, 100 Mbps.

iperf3 -c 10.0.0.4 -p 80

Figure 42. Running throughput test between hosts h3 and h4.

The figure above shows that the bitrate is ~95.6 Mbps.

7.2 Verifying traffic rate for competing hosts

Step 1. In the host h1 terminal, type the following command to run a throughput test
between hosts h1 and h2 for 20 seconds.

iperf3 -c 10.0.0.2 -t 20 -p 21

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 23

Do not start the test.

Figure 43. Running throughput test between hosts h1 and h2.

Step 2. In the host h3 terminal, type the following command to run a throughput test
between hosts h3 and h4 for 20 seconds.

iperf3 -c 10.0.0.4 -t 20 -p 80

Figure 44. Running throughput test between hosts h3 and h4.

Execute two commands immediately one after another.

Step 3. Execute the command in host h1.

Figure 45. Running throughput test between hosts h1 and h2.

Execute command on host h3 immediately. The test will be running for 20 seconds. The
output is summarized in the figure above.

Consider the figure above. In host h1, the first bitrate is approximately 100 Mbps.
Whenever host h3 started sharing the link with host h1, the bitrate dropped to
approximately 70 Mbps (68.4 Mbps for the figure above).

Lab 9: Configuring Quality of Service (QoS) in Open vSwitch

 Page 24

Step 4. Execute the command in host h3.

Figure 46. Running throughput test between hosts h3 and h4.

Consider the figure above. Host h3 is competing with host h1 and the bitrate is approx.
30 Mbps (32.0 Mbps for the figure above) since host h1 gets higher priority than host h3.

This concludes Lab 9. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. Network lessons, “Introduction to QoS”, [Online], Available:
https://networklessons.com/quality-of-service/introduction-qos-quality-service

2. T. Szigeti, R. Barton, C. Hatting, K. Briley, “End-to-End QoS Network Design”, 2nd
Edition.

3. TechTarget, “Quality of service (QoS)”, [Online], Available:
https://searchunifiedcommunications.techtarget.com/definition/QoS-Quality-of-
Service#:~:text=Quality%20of%20service%20(QoS)%20refers,and%20jitter%20on%
20a%20network.&text=Organizations%20can%20reach%20a%20QoS,jitter%20buff
er%20and%20traffic%20shaping.

4. Linux foundation, “Quality of service (QoS)”, [Online], Available:
https://docs.openvswitch.org/en/latest/faq/qos/#:~:text=Q%3A%20Does%20OVS
%20support%20Quality,excess%20of%20the%20configured%20rate.

5. Palo alto networks, “What is Quality of Service”, [Online], Available:
https://www.paloaltonetworks.com/cyberpedia/what-is-quality-of-service-qos

6. Mininet walkthrough, [Online]. Available: http://mininet.org.
7. Juniper Networks, “Learn about Quality of Service (QoS)”, [Online]. Available:

https://www.juniper.net/documentation/en_US/learn-about/LA_QoS.pdf

OPEN VIRTUAL SWITCH

Exercise 4: Configuring Quality of Service (QoS)

Document Version: 09-27-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Exercise 4: Configuring Quality of Service (QoS)

 Page 2

Contents

1 Exercise topology .. 3

1.1 Topology settings ... 3

1.2 Credentials ... 3

2 Deliverables ... 4

Exercise 4: Configuring Quality of Service (QoS)

 Page 3

1 Exercise topology

Consider Figure 1. The topology consists of six hosts and two switches. All the hosts belong
to the same network, 10.0.0.0/8.

The goal of this lab is to configure Quality of Service (QoS) in Open vSwitch.

10.0.0.1/8

s1-eth4 s2-eth4

s1-eth1
s2-eth1

h1-eth0

s2-eth2

s1 s2

h1 h4

h5-eth0h2-eth0 s1-eth2

h2

s1-eth3

h3-eth0 h6-eth0

s2-eth3

h4-eth0

10.0.0.2/8

h3

10.0.0.3/8

h6

10.0.0.6/8

h5

10.0.0.5/8

10.0.0.4/8
Figure 1. Exercise topology.

1.1 Topology settings

The devices are already configured according to Table 1.

Table 1. Topology information.
Host Interface IP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

h3 h3-eth0 10.0.0.3 /8

h4 h4-eth0 10.0.0.4 /8

h5 h5-eth0 10.0.0.5 /8

h6 h6-eth0 10.0.0.6 /8

1.2 Credentials

Exercise 4: Configuring Quality of Service (QoS)

 Page 4

The information in Table 2 provides the credentials to access the Client’s virtual machine.

Table 2. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

2 Deliverables

Follow the steps below to complete the exercise.

a) Start MiniEdit by clicking on MiniEdit’s shortcut. Load the topology Exercise4.mn
located at ~/OVS_Labs/Exercise4 as shown in the figure below.

Figure 2. Loading the topology file in Mininet.

b) Run the emulation in Mininet.

c) Set the ingress policy rate for the interface s1-eth1 to 20 megabits per second (Mbps).
Verify the configuration by running a throughput test between hosts h1 and h4. Explain
the result. What is the throughput?

d) Delete the QoS policy.

e) Add a meter in switch s1 and limit the rate to 500 Mbps.

f) Add a flow entry in switch s1 which matches on TCP port (21), add the meter to the
action.

Exercise 4: Configuring Quality of Service (QoS)

 Page 5

g) Add a flow entry in switch s1 which matches on source IP address (10.0.0.2), add the
meter to the action.

h) Add a flow entry in switch s1 which matches on destination IP address (10.0.0.6), add
the meter to the action.

i) Run a throughput test between hosts h1 and h4 using tcp port 21 for 20 seconds. Run a
throughput test between hosts h2 and h5 for 20 seconds. Run a throughput test between
hosts h3 and h6 for 20 seconds. Explain the result. Explain the throughput?

Run all the test immediately one after another.

j) Delete the QoS policy.

k) Configure QoS shaping with a maximum data transfer rate of 100 Mbps and attach to
port s1-eth4. Create three queues, q1 with queue id = 1, q2 with queue id = 2 and q3 with
queue id = 3. Configure q1, q2 and q3 with minimum transfer rate of 80, 10 and 10 Mbps,
respectively.

l) Add a flow entry in switch s1 which matches on TCP port (21), set queue, q1 in the action
and execute normal forwarding.

m) Add a flow entry in switch s1 which matches on source IP address (10.0.0.2), set queue,
q2 in the action and execute normal forwarding.

n) Add a flow entry in switch s1 which matches on destination IP address (10.0.0.6), set
queue, q3 in the action and execute normal forwarding.

o) Repeat i) and explain the result. What is the throughput?

p) Delete flow entry that matches against TCP. Use the following command to delete the
flow:

sudo ovs-ofctl del-flows s1 tcp

q) Run a throughput test between hosts h2 and h5 for 20 seconds. Run a throughput test
between hosts h3 and h6 for 20 seconds. Explain the result. What is the throughput?

Run all the test immediately one after another.

OPEN VIRTUAL SWITCH

Lab 10: Open vSwitch Database (OVSDB)

Document Version: 09-15-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Traditional Database .. 4

1.2 OVSDB in Open vSwitch ... 4

2 Lab topology.. 5

2.1 Lab settings... 6

2.2 Loading a topology ... 6

3 Visualizing and monitoring OVSDB using ovs-vsctl tool ... 9

4 Visualizing and monitoring OVSDB using ovsdb-client tool...................................... 11

References .. 17

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 3

Overview

This lab discusses the concept of Open Virtual Switch Database Management Protocol
(OVSDB), a network-accessible database system used for configuring and monitoring
Open vSwitch. The lab aims to demonstrate how to manage and manipulate OVSDB using
command-line interface (CLI) tools.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of a database.
2. Understand OVSDB.
3. Understand Open vSwitch CLI tools.
4. Visualize and monitor OVSDB using ovs-vsctl tool.
5. Access, edit, and manage OVSDB using ovsdb-client tool.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Visualizing and monitoring OVSDB using ovs-vsctl tool.
4. Section 4: Visualizing and monitoring OVSDB using ovsdb-client tool.

1 Introduction

Open vSwitch is an open-source software switch designed to be used as a virtual switch
which is open to programmatic extension. OVSDB was introduced to create a modern,
programmatic management protocol interface3. Other than Open vSwitch, it is supported
by more switch platforms, such as Cumulus, Arista, and Dell. By supporting OVSDB, these

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 4

vendors are integrating their hardware platforms with SDN and network virtualization
solutions.

1.1 Traditional Database

A database is a combination of data entries and the Database Management Systems
(DBMS). A database is stored in a file (entity) or a set of files1. Each file has a list of records
that consists of one or more fields. Fields are the data storage units, and each field
contains information about the entity described by the database. Records are also
organized into tables that have information about relationships between various fields.

Doctor

Name

Gender

 ID

Patient

Name

Address

Gender

Phone

Visit

Name

Date

Time

Figure 1. Database entry for patient visit.

The figure above shows a database entry for a patient visit. There are three entities,
Doctor, Patient, and Visit. If a patient wants to visit a doctor, the record will be stored in
these three tables. The patient information is stored in the patient entity, where the
patient’s name, gender, address, and phone number are also stored. The doctor who is
going to serve the patient will have his information stored in the database. The entity Visit
will have the name of the patient, name, and date of the visit stored in the database.

1.2 OVSDB in Open vSwitch

OVSDB is a network-accessible database system. OVSDB schema specifies the tables in a
database. The types of columns can include data, uniqueness, and referential integrity
constraints. OVSDB clients and servers use JavaScript Object Notation (JSON) based
protocol to communicate with each other. OVSDB allows clients to monitor the content
of the database. If any monitored portion of the database changes, the server notifies the

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 5

client about the modification (if any row was added or modified or deleted)2. Thus, OVSDB
clients can easily keep track of the newest contents of any part of the database.

The primary use of OVSDB is to configure and monitor Open vSwitch daemon ovs-
vswitchd, using the schema that holds the configuration for one Open vSwitch daemon.

OVS Kernel Module

Control Cluster

ovs-vswitchd ovsdb-server

Userspace

Kernel

OpenFlow

OVSDB
Mgmt

JSON RPC

ovs-vsctl

Remote

ovsdb-client

Netlink

Figure 2. Open vSwitch Architecture.

Figure 2 illustrates the architecture of Open vSwitch. The ovs-vswitchd and the ovsdb-
server are within the userspace. The CLI tool, ovsdb-client is responsible for
communicating with ovsdb-server using JSON RPC protocol. The tool ovs-vsctl is used
to configure bridges, ports, and tunnels. All the information is stored in the ovsdb-server.
ovs-vswitchd is connected to ovsdb-server using the OVSDB management protocol to
retrieve all the information. The switch configuration is stored on a persistent storage and
survives a reboot.

2 Lab topology

Consider Figure 3. The topology consists of two switches and two hosts. Two switches are
connected to each other. Each switch is connected to an end-host. They all belong to a
single network (10.0.0.0/8).

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 6

10.0.0.1/8 10.0.0.2/8

s1-eth2 s2-eth2

s1-eth1
s2-eth1

h1-eth0 h2-eth0

s1 s2

h1
h2

Figure 3. Lab topology.

2.1 Lab settings

The hosts are configured according to Table 2.

Table 2. Topology information.

Host Interface IIP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

2.2 Loading a topology

Step 1. Start by launching MiniEdit by clicking on the desktop’s shortcut. When prompted
for a password, type password.

Figure 4. MiniEdit shortcut.

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 7

Step 2. On MiniEdit’s menu bar, click on File, then open to load the lab’s topology. Locate
the lab10.mn topology file in the default directory, /home/ovs/OVS_Labs/lab10 and click
on Open.

Figure 5. MiniEdit’s Open dialog.

Figure 6. MiniEdit’s topology.

Step 3. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 7. Starting the emulation.

Step 4. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 8

Figure 8. Opening Mininet’s terminal.

Step 5. Issue the following command to display the interface names and connections.

links

Figure 9. Displaying network interfaces.

In Figure 9, the link displayed within the gray box indicates that interface eth1 of switch
s1 is connected to interface eth0 of host h1 (i.e., s1-eths<->h1-eth0).

Step 6. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 10. Opening a terminal on host h1.

Step 7. Test the connectivity between hosts h1 and h2 using the ping command. In host
h1, type the command specified below. The following figure shows a successful test.

ping 10.0.0.2

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 9

Figure 11. Output of the ping command.

Press ctrl+c to stop the test.

3 Visualizing and monitoring OVSDB using ovs-vsctl tool

In this section, you will visualize how ovs-vsctl manages the switch through interaction
with ovsdb-server.

Step 1. Open the Linux terminal.

Figure 12. Opening Linux terminal.

Step 2. Type the following command to show all the available commands for ovs-vsctl
tool. When prompted for a password, type password.

sudo ovs-vsctl -h

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 10

Figure 13. Printing a brief help message.

Consider the figure above. The figure shows all the available commands to configure the
Open vSwitch. In the following step, you will use the show command to print an overview
of the database contents.

Step 3. Type the following command to print a brief overview of the database contents.

sudo ovs-vsctl show

Figure 14. Printing an overview of the database contents.

Consider the figure above. The figure displays two bridges (s1 and s2) and the interfaces
attached to the bridges. Fail_mode is set to standalone since no controller is connected,
and switches are responsible for forwarding packets.

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 11

Step 4. Type the following command to add a bridge br0.

sudo ovs-vsctl add-br br0

Figure 15. Adding a bridge.

Step 5. Type the following command to print a brief overview of the database contents.

sudo ovs-vsctl show

Figure 16. Printing an overview of database contents.

Consider the figure above. The figure shows the new bridge br0 is added to the database.

4 Visualizing and monitoring OVSDB using ovsdb-client tool

In this section, you will visualize how the client can access, edit, and manage the ovsdb-
server using ovsdb-client tool.

Step 1. Type the following command to show all the available commands for ovsdb-
client tool.

sudo ovsdb-client -h

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 12

Figure 17. Printing a brief help message.

Consider the figure above. It shows all the available commands to manipulate the
database server. The list-tables command connects to the server and prints a table listing
each table's name within the database. The list-columns command connects to the server
and prints a table listing each column's name and type. If the table is specified, only
columns in that particular table are listed; otherwise, it includes all the tables.

Step 2. Type the following command to show the list of the database entity. The following
command is responsible for connecting to the server and printing a table that lists each
table's name within the database.

sudo ovsdb-client list-tables

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 13

Figure 18. Listing database entities.

Consider the figure above. The command prints all the database entities (i.e., Tables).
Each table contains all the components to configure the entity. Bridge table contains all
the information about the bridges running currently. Port table will list all the information
about the ports. Open_vSwitch contains information about all the tables.

Step 3. Type the following command to show the elements of Bridge table. The following
command prints out all the columns in the bridge table in a list format. Bridge table refers
to the configuration for a bridge within an Open vSwitch. -f list refers to the list format.

sudo ovsdb-client -f list list-columns Bridge

Figure 19. Listing Bridge table elements.

Consider the figure above. The figure shows the elements of the table, including the type
of each column. The first column refers to the bridge name, and the type for the name
will be a string value. Flood_vlans refers to the VLAN configuration where VLAN ID can be
set up to 4,096 integers, in the range 0 to 4,095.

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 14

Step 4. Type the following command to show the Bridge table from the database in a list
format. The following command connects to the server, retrieves all of the data, and
prints it as a table series.

sudo ovsdb-client -f list dump Bridge

Figure 20. Printing Open vSwitch data from the server.

Consider the figure above. The figure shows the bridges br0, s1, and s2, including the
name, uuid, datapath_id, and other columns related to the Bridge table.

Step 5. Type the following command to monitor the port table in real-time.

sudo ovsdb-client monitor Port

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 15

Figure 21. Monitoring Port table.

Consider the figure above. The command allows to monitor all the ports. Whenever a
monitored portion of the database changes, the server notifies the client about the
modification.

Step 6. Click on the File option and select + New Tab or press Ctrl+Shift+T.

Figure 22. Opening a new terminal tab.

Step 7. Type the following command to delete port s1-eth1. When prompted for a
password, type password.

sudo ovs-vsctl del-port s1 s1-eth1

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 16

Figure 23. Deleting a port from the database.

Step 8. Go back to the previous terminal. You will see a notification showing that port s1-
eth1 has been deleted.

Figure 24. Monitoring Port table.

Step 9. In host h1 terminal, test the connectivity between hosts h1 and h2 using the ping
command. In host h1, type the command specified below.

ping 10.0.0.2

Figure 25. Output of the ping command.

Press ctrl+c to stop the test.

Consider the figure above. The figure shows that hosts h1 and h2 are not pingable since
port, s1-eth1 has been deleted.

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 17

Step 10. In the Linux terminal, type the following command to run a script. The ovsdb-
client will send raw JSON requests to show the information about the bridges. If

required, the password is password.

sudo ./show_Bridge.cmd

Figure 26. Displaying database information from bridge table.

Consider the figure above. The figure shows all the data stored in the Bridge. You will
notice the list of bridges br0, s1, and s2, including all the data (uuid, datapath_id,
fail_mode) stored in the database.

The command that the script show_Bridge.cmd executes is:

sudo ovsdb-client -v transact ‘[“Open_vSwitch”, {“op” : “select”, “table” : “Bridge”,
“where”: []}]’ > bridge.json

This concludes Lab 10. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. C. Singh, “Introduction to DBMS”, BeginnersBook, [Online]. Available:
https://beginnersbook.com/2015/04/dbms-introduction/

2. Linux foundation, “Open vSwitch”, [Online]. Available: http://openvSwitch.org
3. RFC-7047, “The Open vSwitch Database Management Protocol”, Dec 2013.
4. IBM, “Virtual networking in Linux”, [Online]. Available:

https://developer.ibm.com/tutorials/l-virtual-networking/
5. Mininet walkthrough, [Online]. Available: http://mininet.org
6. Open vSwitch Manual, “Open vSwitch database schema”, [Online]. Available:

http://www.openvswitch.org//ovs-vswitchd.conf.db.5.pdf
7. Rikvin, “Importance of data in your business”, [Online]. Available:

https://www.rikvin.com/blog/why-data-is-important-to-a-business-performance/

Lab 10: Open vSwitch Database Management Protocol (OVSDB)

 Page 18

8. Open vSwitch manual, “ovsdb-client – command-line interface to ovsdb-server”,
[Online]. Available:
http://www.openvswitch.org/support/dist-docs/ovsdb-client.1.txt

OPEN VIRTUAL SWITCH

Lab 11: Open vSwitch Kernel Datapath

Document Version: 09-15-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 11: Open vSwitch Kernel Datapath

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Open vSwitch kernel datapath ... 4

1.2 Kernel datapath forwarding process .. 4

2 Lab topology.. 5

2.1 Lab settings... 6

2.2 Loading a topology ... 6

2.3 Load the configuration file ... 8

3 Visualizing kernel datapath features .. 9

4 Conducting connectivity test between hosts and verifying the flow table 11

5 Displaying kernel datapath statistics .. 14

References .. 16

Lab 11: Open vSwitch Kernel Datapath

 Page 3

Overview

This lab introduces Open Virtual Switch (Open vSwitch) datapath, a kernel module that is
associated with the flow tables populated from the userspace and responsible for packet
forwarding. The lab aims to show how to visualize the flows characteristics using the
command-line interface (CLI).

Objectives

By the end of this lab, you should be able to:

1. Understand the architecture of Open vSwitch.
2. Understand the concept of kernel datapath.
3. Explore kernel datapath features using ovs-dpctl tool.
4. Monitor flow installation within the kernel flow table using the CLI.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client Admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Visualizing kernel datapath features.
4. Section 4: Conducting connectivity between hosts and verifying the flow

table.
5. Section 5: Displaying kernel datapath statistics.

1 Introduction

The increasing number of services based on virtualization presents a significant change in
datacenter networking. The migration from physical ports to virtual ports moved a
significant part of the workload to virtual switches in a hypervisor. Virtual switches have
been developed to improve performance and provide advanced features and the

Lab 11: Open vSwitch Kernel Datapath

 Page 4

traditional benefits of software switches. Some of these features include high flexibility,
vendor independence, low costs, and conceptual benefits for switching without Ethernet
limitations1. By consolidating multiple servers and storage devices into a single host
machine, virtualization benefits the organization by reducing physical hardware.

1.1 Open vSwitch kernel datapath

Open vSwitch includes two modules for packet forwarding. Open vSwitch-vswitchd is a
daemon in the userspace that controls the switch and implements the OpenFlow protocol.
The other is the datapath kernel module, which runs in the kernel. It is directly connected
to Open vSwitch-vswitchd via netlink. ovs-dpctl is a tool for configuring the switch
kernel module.

OVSDB-server

 Kernel Module

Control Cluster

Open vSwitch-vswitchd

Userspace

Kernel

OpenFlow

OVSDB
Mgmt

ovs-dpctl

Remote

Netlink

Figure 1. Open vSwitch Architecture.

Figure 1 illustrates the architecture of Open vSwitch. The Open vSwitch-vswitchd and the
OVSDB-server lie within the userspace, and the kernel datapath module comes under the
kernel space. The kernel module handles functions such as switching and tunneling. When
an incoming packet matches an entry in the flow table, the corresponding actions are
executed, and the counters are updated. Otherwise, packets are sent to the userspace4.

1.2 Kernel datapath forwarding process

The datapath is implemented in the kernel module, the primary packet forwarding
module of Open vSwitch. The flow table is located in the userspace daemon (Open
vSwitch-vswitchd) which is required to make the forwarding decisions. Kernel module
also maintains a table known as kernel flow table. Whenever the kernel module receives
a frame from an interface, it performs a lookup on its flow table to determine its actions.
If the packet does not match any entry in the kernel flow table, the datapath sends the
packet to the Open vSwitch-vswitchd. The userspace makes the decision about the
actions to be taken against the packet according to OpenFlow entries stored in the flow
table. It sends the packet back to the kernel with a list of actions. This process is known
as the slow path. The kernel module is instructed to make the same list of actions

Lab 11: Open vSwitch Kernel Datapath

 Page 5

whenever a similar flow packet comes in. The action entry is stored in the kernel flow
table, which is used to forward subsequent packets, making the forwarding faster (fast
path). The kernel module can implement multiple datapaths8.

Figure 2. Kernel datapath forwarding.

Figure 2 depicts how Open vSwitch components work together to forward packets. The
datapath module receives the packets from a physical network interface controller (NIC)
or the virtual NIC of a virtual machine (VM). Since there is no flow entry in the flow table
initially, the kernel module directs the packet to the userspace, which sends the
forwarding decision for subsequent packets into the kernel.

2 Lab topology

Consider Figure 3. Two switches are connected to each other. Each switch is connected
to a host. All the hosts belong to the network 10.0.0.0/8.

10.0.0.1/8 10.0.0.2/8

s1-eth2 s2-eth2

s1-eth1
s2-eth1

h1-eth0 h2-eth0

s1 s2

h1 h2.10 .10

Figure 3. Lab topology.

Lab 11: Open vSwitch Kernel Datapath

 Page 6

2.1 Lab settings

The hosts are configured according to Table 2.

Table 2. Topology information.

Host Interface IIP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

2.2 Loading a topology

Step 1. Start by launching MiniEdit by clicking on the desktop’s shortcut. When prompted
for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then, open to load the lab’s topology. Locate
the lab11.mn topology file in the default directory, /home/ovs/OVS_Labs/lab11 and click
on Open.

Lab 11: Open vSwitch Kernel Datapath

 Page 7

Figure 5. MiniEdit’s Open dialog.

Figure 6. MiniEdit’s topology.

Step 3. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 7. Starting the emulation.

Step 4. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 8. Opening Mininet’s terminal.

Step 5. Issue the following command to display the interface names and connections.

Lab 11: Open vSwitch Kernel Datapath

 Page 8

links

Figure 9. Displaying network interfaces.

In Figure 9, the link displayed within the gray box indicates that interface eth1 of switch
s1 connects to interface eth0 of host h1 (i.e., s1-eth1<->h1-eth0).

2.3 Load the configuration file

Step 1. Open the Linux terminal.

Figure 10. Opening Linux terminal.

Step 2. Click on the Linux’s terminal and navigate into OVS_Labs/lab11 directory by
issuing the following command.

cd OVS_Labs/lab11

Figure 11. Entering to the OVS_Labs/lab11 directory.

Step 3. This folder contains a configuration file that will assign easy-to-read Media Access
Control (MAC) addresses to the hosts’ interfaces. To execute the shell script, type the
following command. When prompted for a password, type password.

./set_MACs.sh

Lab 11: Open vSwitch Kernel Datapath

 Page 9

Figure 12. Executing the shell script to load the configuration.

Step 4. Type the following command to exit from the lab11 directory and go back to the
home directory.

cd

Figure 13. Exiting from the lab11 directory.

3 Visualizing kernel datapath features

In this section, you will visualize some of the kernel datapath features.

Step 1. Type the following command to show available datapaths.

sudo ovs-dpctl dump-dps

Figure 14. Displaying kernel datapath.

Consider the figure above. You will notice the datapath called system@ovs-system, which
is the default in Open vSwitch and shared by all the bridges. The datapath holds the kernel
flow table.

Step 2. Type the following command to show all the datapath features for switch s1.

Lab 11: Open vSwitch Kernel Datapath

 Page 10

sudo ovs-appctl dpif/show-dp-features s1

Figure 15. Displaying all datapath features.

Consider the command above. The output of the command shows the features of the
datapath including their state. The first feature is Masked set action which allows
modification of an arbitrary subset of the header bits without requiring the rest to be
matched. The second feature refers to tunneling, which is disabled at this moment. The
third one refers to a unique flow ID (Ufid) for each flow in the kernel.

Step 3. Type the following command to verify the flow installation. This command prints
the flow table entries in switch s1.

sudo ovs-ofctl dump-flows s1

Figure 16. Verifying flow in switch s1.

Consider the figure above. A normal action allows the device to conduct normal layer
2/layer 3 packet processing. All the flows will match at this point.

Step 4. Type the following command to verify the flow installation in the kernel.

sudo ovs-dpctl dump-flows

Lab 11: Open vSwitch Kernel Datapath

 Page 11

Figure 17. Verifying flow entry in the kernel.

Consider the figure above. Initially, the flow table will be empty since the hosts did not
exchange any packet yet.

4 Conducting connectivity test between hosts and verifying the flow
table

In this section, you will perform a connectivity test between the hosts and verify the
kernel flow table again. New flows will be added to the flow table once the hosts start
exchanging packets.

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 18. Opening a terminal on host h1.

Step 2. Type the following command to verify IP address, subnet mask, and MAC address
on host h1.

ifconfig

Lab 11: Open vSwitch Kernel Datapath

 Page 12

Figure 19. Verifying IP address and subnet mask in the host.

Consider the figure above. Interface h1-eth0 has an IP address 10.0.0.1/8 and a MAC
address 00:00:00:00:00:01.

Step 3. Type the following command to verify IP address, subnet mask, and MAC address
on host h2.

ifconfig

Figure 20. Verifying IP address and subnet mask in the host.

Consider the figure above. Interface h2-eth0 has an IP address 10.0.0.2/8 and a MAC
address 00:00:00:00:00:02.

Step 4. Test the connectivity between hosts h1 and h2 using the ping command. On host
h1, type the command specified below. The following figure shows a successful
connectivity between two hosts. Do not stop the test.

Lab 11: Open vSwitch Kernel Datapath

 Page 13

ping 10.0.0.2

Figure 21. Output of the ping command.

Step 5. Type the following command to print a summary of configured datapaths.

sudo ovs-dpctl show

Figure 22. Printing a summary of the datapath.

Consider the figure above. The figure shows that eight flows are added to the flow table.
You may also notice that each interface has a port number assigned by the kernel.

You may observe a different number of flows.

Step 6. On the Linux terminal, type the following command to verify the flow installation
in the kernel.

sudo ovs-dpctl dump-flows

Lab 11: Open vSwitch Kernel Datapath

 Page 14

Figure 23. Verifying flow entry in the kernel.

Consider the figure above. Initially, the kernel flow table was empty, thus, the incoming
packet took the slow path. Consequently, flows are sent from the userspace and added
to the kernel flow table. The first flow refers to the packets coming from port 5 (s2-eth1)
having the source MAC address 00:00:00:00:00:02 and destination MAC address
00:00:00:00:00:01. The eth_type=0x0800 refers to IP packet whereas eth_type=0x0806
refers to Address Resolution Protocol (ARP) packet.

Open vSwitch deletes kernel flow entries whenever many flows are coming. If you cannot
see the flows, perform the connectivity test, and verify the flow table again.

Step 7. In host h1 terminal, press Ctrl+c to stop the test.

5 Displaying kernel datapath statistics

In this section, you will use iPerf3 to generate network traffic between hosts h1 and h2
and inspect some kernel datapath statistics. iPerf3 is a tool for active measurements that
supports various features, such as establishing a Transmission Control Protocol (TCP) or
User Datagram Protocol (UDP), specifying the sending rate, and launching parallel flows10.

Step 1. On host h2 terminal, type the following command to run the host in server mode.

iperf3 -s

Figure 24. Running host h2 in server mode.

Lab 11: Open vSwitch Kernel Datapath

 Page 15

Consider the figure above. The figure shows that host h2 is acting as a server and listening
to port 5201.

Step 2. In host h1 terminal, type the following command to run an iperf3 test between
host h1 and h2, host h1 is running in client mode.

iperf3 -c 10.0.0.2

Figure 25. Running host h1 in client mode.

Step 3. On the Linux terminal, Type the following command to print a summary of the
configured datapaths.

sudo ovs-dpctl show

Figure 26. Printing a summary of the datapath.

Consider the figure above. The figure shows the number of flows in the kernel flow table.
The hit tag refers to the number of packets that matched against existing flows. The

Lab 11: Open vSwitch Kernel Datapath

 Page 16

missed tag refers to the number of packets not matching any existing flow and requires
userspace processing. The lost tag refers to the number of packets destined for userspace
process but subsequently dropped before reaching userspace.

You may observe a different number of flows since Open vSwitch deletes kernel flow
entries whenever it encounters many flows.

This concludes Lab 11. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. P. Emmerich, D. Raumer, F. Wohlfart, G. Carle, “Performance characteristics of
virtual switching”, IEEE 3rd International conference on cloud networking (CloudNet),
2014.

2. B. Munch, “Hype cycle for networking and communications”, Jul 2013.
3. Linux foundation, “Open vSwitch”, [Online]. Available: http://openvSwitch.org.
4. B. Pfaff, B. Davie, Ed, “The open vSwitch database management protocol”, RFC 7047,

Dec 2013.
5. IBM, “Virtual networking in Linux”, [Online]. Available:

https://developer.ibm.com/tutorials/l-virtual-networking/
6. B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, S. Shenker, “Extending

networking into the virtualization layer”, Jan 2009.
7. Mininet walkthrough, [Online]. Available: http://mininet.org.
8. Open vSwitch manual, “ovs-dpctl – administer Open vSwitch datapaths”, [Online].

Available: http://www.openvswitch.org/support/dist-docs/ovs-dpctl.8.txt
9. Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, “The design and

implementation of Open vSwitch”, USENIX association, May 2015.
10. iPerf, “iPerf - The ultimate speed test tool for TCP, UDP and SCTP”. [Online].

Available: https://iperf.fr/

OPEN VIRTUAL SWITCH

Lab 12: Implementing Virtual Local Area Networks
(VLANs) in Open vSwitch

Document Version: 09-15-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 12: Implementing Virtual Local Area Networks (VLANs) in Open vSwitch

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 VLAN overview ... 4

1.2 VLAN tag architecture .. 4

2 Lab topology.. 5

2.1 Lab settings... 5

2.2 Loading a topology ... 6

3 Configuring VLANs .. 9

4 Verifying the configuration ... 10

References .. 13

Lab 12: Implementing Virtual Local Area Networks (VLANs) in Open vSwitch

 Page 3

Overview

This lab introduces Virtual Local Area Network (VLAN), which separates an existing
physical network into multiple logical networks. Thus, each VLAN creates its broadcast
domain. The lab aims to configure VLAN to isolate network traffic within an emulated
environment.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of VLAN.
2. Isolate network traffic by setting VLAN tags.
3. Verify VLAN configuration.
4. Analyze the benefits provided of network segmentation using VLANs.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Configuring VLANs.
4. Section 4: Verifying the configuration.

1 Introduction

The Local Area Networks (LANs) allow hosts within an organization to be connected
together. To ensure the integrity of the information transmitted through the network, the
hosts usually rely on IEEE 802.31, known as Ethernet. In modern LANs, the hosts are
usually configured according to hierarchy, where each group of hosts is attached to a
switched LAN. Each switched LAN is interconnected using a switch that is upper in the

Lab 12: Implementing Virtual Local Area Networks (VLANs) in Open vSwitch

 Page 4

hierarchy. However, this approach presents issues such as the lack of traffic isolation,
inefficient use of switches, and managing users more difficult2.

1.1 VLAN overview

The issues mentioned above are mitigated if the switch supports VLANs3. This feature
supports multiple VLANs to be created by using a single LAN infrastructure. Thus, hosts in
the same VLAN can communicate as if they are connected to a single switch. VLAN traffic
isolation allows broadcasting packets such as the ones used by the Address Resolution
Protocol (ARP) or the Dynamic Host Configuration Protocol (DHCP) to be no longer
required to traverse the whole network, which improves performance and security.

Consider Figure 1. Switch s1 is directly attached to four hosts configured to handle the
traffic for two VLANs, VLAN 10 and VLAN 20. These two VLANs are isolated from each
other, although they are connected to the same switch and belong to the same network
10.0.0.0/24. The network manager can add or change a host's membership by changing
the VLAN tag in switch s1.

VLAN 10

10.0.0.1/24

VLAN 20

10.0.0.2/24

VLAN 10

10.0.0.3/24

VLAN 20

10.0.0.4/24

s1

Figure 1. Defining VLAN group.

1.2 VLAN tag architecture

The protocol IEEE 802.1Q1 defines the VLAN frame. The VLAN tag is 4-bytes long and is
directly added to the Ethernet frame header. This tag contains the information that
associates each frame with a specific VLAN. Additionally, there might be cases where a
frame does not belong to any VLAN. In such a situation, the switch associates those
packets to default VLAN.

The 4-bytes VLAN tag field is composed of the following fields:

Type: A 2-byte value called the tag protocol ID (TPID) value.

User priority: A 3-bit value that supports level or service implementation.

Lab 12: Implementing Virtual Local Area Networks (VLANs) in Open vSwitch

 Page 5

Canonical Format Identifier (CFI): A 1-bit identifier that indicates whether the VLAN
identifier conforms to Ethernet or not.

VLAN ID (VID): A 12-bit VLAN identification number that supports up to 4096 VLAN IDs.

Figure 2. Ethernet 802.1Q frame.

Figure 2 shows the fields of a VLAN tag added to an Ethernet frame.

2 Lab topology

Consider Figure 3. The topology consists of four hosts and one switch. All the hosts belong
to the network, 10.0.0.0/24. Two different VLANs (VLAN 10 and VLAN 20) are running on
the network to isolate the network traffic.

 s1

h1
VLAN 10

10.0.0.1/24

h2
VLAN 20

10.0.0.2/24

h3
VLAN 10

10.0.0.3/24

h4
VLAN 20

10.0.0.4/24

Figure 3. Lab topology.

2.1 Lab settings

Dst MAC Src MAC VLAN Tag

Type
(0x8100)

Pri CFI VID

Dst MAC Src MAC

2 bytes 3 bits 1 bit 12 bits

Type/Length Data FCS

Type/Length Data FCS

Lab 12: Implementing Virtual Local Area Networks (VLANs) in Open vSwitch

 Page 6

The hosts are configured according to Table 2.

Table 2. Topology information.
Host Interface IIP Address Subnet VLAN

h1 h1-eth0 10.0.0.1 /24 10

h2 h2-eth0 10.0.0.2 /24 20

h3 h3-eth0 10.0.0.3 /24 10

h4 h4-eth0 10.0.0.4 /24 20

2.2 Loading a topology

Step 1. Start by launching MiniEdit by clicking on the desktop’s shortcut. When prompted
for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File, then open to load the lab’s topology. Locate
the lab12.mn topology file in the default directory, /home/ovs/OVS_Labs/lab12 and click
on Open.

Lab 12: Implementing Virtual Local Area Networks (VLANs) in Open vSwitch

 Page 7

Figure 5. MiniEdit’s opening dialog

Figure 6. MiniEdit’s topology.

Step 3. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 7. Starting the emulation.

Step 4. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 8. Opening Mininet’s terminal.

Step 5. Issue the following command to display the interface names and connections.

Lab 12: Implementing Virtual Local Area Networks (VLANs) in Open vSwitch

 Page 8

links

Figure 9. Displaying network interfaces.

In Figure 9, the link displayed within the gray box indicates that interface eth0 of host h1
is connected to interface eth1 of switch s1 (i.e., h1-eth0<->s1-eth1).

Step 6. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 10. Opening a terminal on host h1.

Step 7. In host h1 terminal, type the following command to verify that the IP address was
assigned successfully. You will verify the host interface, h1-eth0 configured with the IP
address 10.0.0.1 and the subnet mask 255.255.255.0. You will also verify the MAC address,
de:15:87:1f:4d:f3.

ifconfig

Lab 12: Implementing Virtual Local Area Networks (VLANs) in Open vSwitch

 Page 9

Figure 11. Verifying IP address and subnet mask on the host.

You may notice a different MAC address since MAC addresses are assigned randomly.

Step 8. Repeat step 6 and step 7 to verify IP addresses on hosts h2, h3 and h4.

3 Configuring VLANs

In this section, you will configure VLANs according to the topology information (Table 2).
You will configure the switch ports attached to hosts h1 and h3 to VLAN 10 and switch
ports attached to hosts h2 and h4 to VLAN 20.

Step 1. Open the Linux terminal.

Figure 12. Opening Linux terminal.

Step 2. Type the following command to assign port s1-eth1 (connected to host h1) to
VLAN 10. When prompted for a password, type password.

sudo ovs-vsctl set port s1-eth1 tag=10

Figure 13. Assigning port s1-eth1 to VLAN 10.

Lab 12: Implementing Virtual Local Area Networks (VLANs) in Open vSwitch

 Page 10

Consider the command above. VLAN tag 10 has been assigned to interface s1-eth1.

To remove the tag, you might use the following command:

sudo ovs-vsctl remove port s1-eth1 tag 10

Step 3. Type the following command to assign port s1-eth2 (connected to host h2) to
VLAN 20.

sudo ovs-vsctl set port s1-eth2 tag=20

Figure 14. Assigning port s1-eth2 to VLAN 20.

Step 4. Type the following command to assign port s1-eth3 (connected to host h3) to
VLAN 10.

sudo ovs-vsctl set port s1-eth3 tag=10

Figure 15. Assigning port s1-eth3 to VLAN 10.

Step 5. Type the following command to assign port s1-eth4 (connected to host h4) to
VLAN 20.

sudo ovs-vsctl set port s1-eth4 tag=20

Figure 16. Assigning port s1-eth4 to VLAN 20.

4 Verifying the configuration

Lab 12: Implementing Virtual Local Area Networks (VLANs) in Open vSwitch

 Page 11

In this section, you will verify the VLAN configuration.

Step 1. Type the following command to print a brief overview of the database contents.

sudo ovs-vsctl show

Figure 17. Printing an overview of database contents.

Consider the figure above. Two different domains have been created, and VLAN tags are
attached to the interfaces of switch s1.

Step 2. Test the connectivity between hosts h1 and h3 using the ping command. In host
h1, type the command specified below.

ping 10.0.0.3

Figure 18. Output of the ping command.

Press ctrl+c to stop the test.

Lab 12: Implementing Virtual Local Area Networks (VLANs) in Open vSwitch

 Page 12

Consider the figure above. The figure shows successful connectivity. Both hosts (h1 and
h3) belong to the same VLAN (i.e., VLAN 10).

Step 3. Test the connectivity between hosts h1 and h2 using the ping command. In host
h1, type the command specified below.

ping 10.0.0.2

Figure 19. Output of the ping command.

Press ctrl+c to stop the test.

Consider the figure above. There is no connectivity between the hosts since they belong
to different VLANs.

Step 4. Test the connectivity between hosts h2 and h4 using the ping command. In host
h2, type the command specified below.

ping 10.0.0.4

Figure 20. Output of the ping command.

Press ctrl+c to stop the test.

Consider the figure above. The figure shows successful connectivity. Both hosts (h2 and
h4) belong to the same VLAN (i.e., VLAN 20).

Step 5. In the Linux terminal, type the following command to verify the Media Access
Control (MAC) address table of switch s1.

Lab 12: Implementing Virtual Local Area Networks (VLANs) in Open vSwitch

 Page 13

sudo ovs-appctl fdb/show s1

Figure 21. Verifying MAC addresses on switch s1.

Consider the figure above. The table contains each MAC address/VLAN pair learned by
switch s1, along with the port on which it was learned. Aging time defines the period of
an entry in the table in seconds. You will notice that each port belongs to a particular
VLAN. Ports 1 and 3 are assigned to VLAN 10, whereas the rest of the ports are assigned
to VLAN 20.

The MAC table changes every 60 seconds. If all the MAC addresses do not appear in the
table initially, repeat the connectivity tests using the ping command (step 2 and step 4)
and verify the MAC table again.

This concludes Lab 12. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. IEEE Standard, “IEEE 802.3 working group”, [Online]. Available:
https://www.ieee802.org/3/.

2. James F. Kurose, Keith W. Ross, “Computer networking a top-down approach”, 6th
Edition, Mar 2017.

3. IEEE Standard, "IEEE standards for local and metropolitan area networks: virtual
bridged local area networks," in IEEE Std 802.1Q-1998, March 1999.

4. Juniper Networks, “Bridging and VLANs”, Jun 2020.
5. Dhurgham Abdulridha Jawad AL-Khaffaf, “Improving LAN performance based on

IEEE802.1Q VLAN switching techniques”, Journal of university of babylon,
engineering sciences, Vol. (26), No. (1): 2018.

6. Juniper Networks, “Layer 2 Networking”, Jun 2020.
7. Linux Foundation, “Open vSwitch”, [Online]. Available: http://openvSwitch.org.
8. Juniper Networks, “Layer 2 VLANs overview”, Dec 2017.
9. IBM, “Archived | Virtual networking in Linux”, [Online]. Available:

https://developer.ibm.com/tutorials/l-virtual-networking/
10. Mininet walkthrough, [Online]. Available: http://mininet.org.

OPEN VIRTUAL SWITCH

Lab 13: VLAN Trunking in Open vSwitch

Document Version: 09-15-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 13: VLAN Trunking in Open vSwitch

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 VLAN access and trunk mode ... 4

1.2 VLAN trunking .. 4

2 Lab topology.. 5

2.1 Lab settings... 5

2.2 Loading a topology ... 6

3 Verifying IP addresses on the hosts .. 8

4 Configuring VLANs .. 10

5 Verifying configuration ... 12

References .. 18

Lab 13: VLAN Trunking in Open vSwitch

 Page 3

Overview

This lab introduces Virtual Local Area Network (VLAN) trunking, a point-to-point link
between two network devices (e.g., switches) that carry frames from more than one VLAN.
This lab aims to configure multiple VLANs to isolate network traffic within an emulated
environment and verify how trunk ports can differentiate multiple VLANs to forward
traffic to the intended destination.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of VLAN.
2. Understand the concept of VLAN trunking.
3. Isolate network traffic by using VLAN.
4. Configure an Open vSwitch port to operate as a VLAN trunk.
5. Use Wireshark network analyzer to capture VLAN traffic.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Verifying IP addresses on the hosts.
4. Section 4: Configuring VLANs.
5. Section 5: Verifying configuration.

1 Introduction

The switches must have a dedicated port configured to interconnect VLANs. In this way,
a more scalable approach is attained for physically distributed networks, but they require
to be logically connected. For instance, within a campus network, a department might

Lab 13: VLAN Trunking in Open vSwitch

 Page 4

operate in different locations. Still, the devices need to be connected to the same VLAN
to access the network's features in that department. The standard 802.1Q supports a
feature called VLAN trunking to address this requirement.

1.1 VLAN access and trunk mode

Ethernet interfaces can be configured either as access ports or trunk ports. An access port
can only have a VLAN, and it is required to specify which VLAN will carry the traffic for
that interface to configure a port in access mode11.

A trunk port can have more than one VLAN configured on an interface. It can carry traffic
for multiple VLANs simultaneously.

VLAN 20

20.0.0.1/24

VLAN 10

10.0.0.1/24

VLAN 20

20.0.0.2/24

VLAN 10

10.0.0.2/24

h2

h1

h3

h4

s1

s3

s2

 Trunk port
VLAN 10, 20

Access port
VLAN 10

Access port
VLAN 20

Figure 1. VLAN access and trunk mode.

Figure 1 shows that a single VLAN is configured in access ports, whereas the trunk port
can carry VLAN 10 and 20 simultaneously.

1.2 VLAN trunking

A VLAN trunk uses a port dedicated to forward frames corresponding to any VLAN so that
the VLANs can communicate via a trunking connection. When a switch port is configured
to function as a trunk port, it adds unique identification tags defined in the protocol IEEE
802.1Q2 to the frames to forward traffic between switches. The standard IEEE802.1Q, also
referred to as DOT1Q or 1Q, is the networking standard that supports virtual LANs
(VLANs) on an IEEE 802.33 Ethernet network and, it is the most widely used encapsulation
method for VLAN tagging.

Consider Figure 2. Switch s1 and switch s2 are configured with two VLANs (VLAN 10 and
VLAN 20). Assume that switches s1 and s2 are in different locations, and they are linked
via switch s3. The link that connects switch s1 to switch s3 is configured as a VLAN trunk.
Similarly, the link between s3 and s2 is configured as a trunk.

Lab 13: VLAN Trunking in Open vSwitch

 Page 5

VLAN 20

20.0.0.1/24

VLAN 10

10.0.0.1/24

VLAN 20

20.0.0.2/24

VLAN 10

10.0.0.2/24

h2

h1

h3

h4

s1

s3

s2

VLAN Trunk: 10, 20

Figure 2. VLAN trunking.

2 Lab topology

Consider Figure 3. The topology consists of four hosts and three switches. Hosts h1 and
h3 belong to network 10.0.0.0/24 whereas, hosts h2 and h4 belong to network
20.0.0.0/24. Two different VLANs (VLAN 10 and VLAN 20) run on the networks to isolate
network traffic.

VLAN 20

20.0.0.1/24

VLAN 10

10.0.0.1/24

VLAN 20

20.0.0.2/24

VLAN 10

10.0.0.2/24

h2

h1

h3

h4

s1

s3

s2

Figure 3. Lab topology.

2.1 Lab settings

The hosts are configured according to Table 2.

Table 2. Topology information.

Lab 13: VLAN Trunking in Open vSwitch

 Page 6

Host Interface IP Address Subnet VLAN

h1 h1-eth0 10.0.0.1 /24 10

h2 h2-eth0 20.0.0.1 /24 20

h3 h3-eth0 10.0.0.2 /24 10

h4 h4-eth0 20.0.0.2 /24 20

2.2 Loading a topology

Step 1. Start by launching MiniEdit by clicking on the desktop’s shortcut. When prompted
for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File, then open to load the lab’s topology. Locate
lab13.mn topology file in the default directory, /home/ovs/OVS_Labs/lab13 and click on
Open.

Lab 13: VLAN Trunking in Open vSwitch

 Page 7

Figure 5. MiniEdit’s Open dialog.

Figure 6. MiniEdit’s topology.

Step 3. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 7. Starting the emulation.

Step 4. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 8. Opening Mininet’s terminal.

Step 5. Issue the following command to display the interface names and connections.

Lab 13: VLAN Trunking in Open vSwitch

 Page 8

links

Figure 9. Displaying network interfaces.

In Figure 9, the link displayed within the gray box indicates that interface eth0 of host h1
connects to interface eth1 of switch s1 (i.e., h1-eth0<->s1-eth1).

3 Verifying IP addresses on the hosts

In this section, you will verify that IP addresses on the hosts are assigned according to
table 2.

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 10. Opening a terminal on host h1.

Step 2. In host h1 terminal, type the following command to verify that the IP address was
assigned successfully. You will verify the host interface, h1-eth0 configured with the IP
address 10.0.0.1 and the subnet mask 255.255.255.0. You will also verify the MAC address,
da:fe:7a:66:23:20.

ifconfig

Lab 13: VLAN Trunking in Open vSwitch

 Page 9

Figure 11. Verifying IP address and subnet mask on the host.

You may notice a different MAC address since MAC addresses are assigned randomly.

Step 3. Hold right-click on host h2 and select Terminal. This opens the terminal of host h2
and allows the execution of commands on that host.

Figure 12. Opening a terminal on host h2.

Step 4. In host h2 terminal, type the following command to verify that the IP address was
assigned successfully. You will verify the host interface, h2-eth0 configured with the IP
address 20.0.0.1 and the subnet mask 255.255.255.0. You will also verify the MAC address,
c2:63:ce:ed:1a:50.

ifconfig

Lab 13: VLAN Trunking in Open vSwitch

 Page 10

Figure 13. Verifying IP address and subnet mask on the host.

Step 5. Follow step 3 and step 4 to verify IP addresses on hosts h3 and h4.

4 Configuring VLANs

In this section, you will configure VLANs according to the topology information (Table 2).
You will assign the switch ports attached to hosts h1 and h3 to VLAN 10 and switch ports
attached to hosts h2 and h4 to VLAN 20. You will also configure the trunk ports on the
switches.

Step 1. Open the Linux terminal.

Figure 14. Opening Linux terminal.

Step 2. Type the following command to assign port s1-eth1 (connected to h1) to VLAN 10.
When prompted for a password, type password.

sudo ovs-vsctl set port s1-eth1 tag=10

Figure 15. Assigning port s1-eth1 to VLAN 10.

Consider the command above. VLAN tag 10 has been assigned to the interface s1-eth1.

Lab 13: VLAN Trunking in Open vSwitch

 Page 11

Step 3. Type the following command to assign port s1-eth2 (connected to h2) to VLAN 20.

sudo ovs-vsctl set port s1-eth2 tag=20

Figure 16. Assigning port s1-eth2 to VLAN 20.

Step 4. Type the following command to configure port s1-eth3 as a trunk port. The
interface is set to trunk mode, where the VLAN traffic can pass through the link. By default,
Open vSwitch forwards all VLAN traffic. Using the following command, you are restricting
the switch to forward traffic only for particular VLANs.

sudo ovs-vsctl set port s1-eth3 trunk=10,20

Figure 17. Configuring port s1-eth3 as a trunk port.

Consider the figure above. Switch s1 will forward traffic belong to VLAN 10 and VLAN 20
only.

Step 5. Type the following command to assign port s2-eth1 (connected to h3) to VLAN 10.

sudo ovs-vsctl set port s2-eth1 tag=10

Figure 18. Assigning port s2-eth1 to VLAN 10.

Step 6. Type the following command to assign port s2-eth2 (connected to h4) to VLAN 20.

sudo ovs-vsctl set port s2-eth2 tag=20

Lab 13: VLAN Trunking in Open vSwitch

 Page 12

Figure 19. Assigning port s2-eth2 to VLAN 20.

Step 7. Type the following command to configure port s2-eth3 as a trunk port. The
interface is set to trunk mode, where the VLAN traffic can pass through the link. Switch
s2 will forward traffic belong to VLAN 10 and VLAN 20 only.

sudo ovs-vsctl set port s2-eth3 trunk=10,20

Figure 20. Configuring port s2-eth3 as a trunk port.

5 Verifying configuration

In this section, you will verify the VLAN configuration.

Step 1. Type the following command to print a brief overview of the database contents.

sudo ovs-vsctl show

Figure 21. Printing an overview of the database contents.

Lab 13: VLAN Trunking in Open vSwitch

 Page 13

Consider the figure above. Interfaces s2-eth1 and s2-eth2 are acting as access ports
whereas interface s2-eth3 is acting as a trunk port.

Step 2. In the Linux terminal, start the Wireshark packet analyzer by issuing the following
command. A new window will emerge.

sudo wireshark

Figure 22. Starting Wireshark packet analyzer.

Step 3. Click on interface s3-eth2 then, click on the icon located on the upper left-hand
side to start capturing packets on this interface.

Figure 23. Starting packet capture.

Step 4. Test the connectivity between hosts h1 and h3 using the ping command. In host
h1, type the command specified below. Results will show a successful connectivity test.

ping 10.0.0.2

Lab 13: VLAN Trunking in Open vSwitch

 Page 14

Figure 24. Output of the ping command.

Press ctrl+c to stop the test.

Step 5. In Wireshark, the filter box is located on the upper left-hand side, type vlan to
filter packets containing VLAN tags.

Figure 25. Filtering network traffic.

Step 6. Click on the arrow located on the leftmost side of the field called 802.1Q Virtual
LAN. A list will be displayed. Verify that the VLAN ID is 10. Notice that such tag corresponds
to the packets being forwarded from host h1 to host h3 and vice versa.

Lab 13: VLAN Trunking in Open vSwitch

 Page 15

Figure 26. Verifying the VLAN network identifier.

Step 7. To stop packet capturing, click on the red button located on the upper left-hand
side.

Figure 27. Stopping packet capture.

Step 8. In the Wireshark window, start packet capturing by clicking on the button located
on the upper left-hand side.

Lab 13: VLAN Trunking in Open vSwitch

 Page 16

Figure 28. Starting packet capture.

Step 9. A notification window will be prompted. Click on Continue without Saving to
proceed.

Figure 29. Closing without saving previous packet capture.

Step 10. Test the connectivity between hosts h2 and h4 using the ping command. In host
h2, type the command specified below. Results will show a successful connectivity test.

ping 20.0.0.2

Lab 13: VLAN Trunking in Open vSwitch

 Page 17

Figure 30. Output of the ping command.

Press ctrl+c to stop the test.

Step 11. In the Wireshark window, verify that the VLAN ID is 20. Notice that the tag
corresponds to the packets being forwarded from host h2 to h4 and vice versa.

Figure 31. Verifying VLAN network identifier.

Step 12. Click on the red button located on the upper left-hand side to stop packet
capturing and close Wireshark.

Lab 13: VLAN Trunking in Open vSwitch

 Page 18

Figure 32. Stopping packet capture.

This concludes Lab 13. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. IEEE Standard, “IEEE 802.3 working group”, [Online]. Available:
https://www.ieee802.org/3/.

2. IEEE Standard, "IEEE standards for local and metropolitan area networks: virtual
bridged local area networks," in IEEE Std 802.1Q-1998, March 1999.

3. James F. Kurose, Keith W. Ross, “Computer networking a top-down approach”, 6th
Edition, Mar 2017.

4. Dhurgham Abdulridha Jawad AL-Khaffaf, “Improving LAN performance based on
IEEE802.1Q VLAN switching techniques”, Journal of university of babylon,
engineering sciences, Vol. (26), No. (1): 2018.

5. Cisco, “Catalyst 4500 series switch Cisco IOS software configuration guide”, Feb
2018.

6. Juniper Networks, “Layer 2 networking”, Jun 2020.
7. Linux Foundation, “Open vSwitch”, [Online]. Available: http://openvSwitch.org.
8. Juniper networks, “Layer 2 VLANs overview”, Dec 2017.
9. IBM, “Archived | virtual networking in Linux”, [Online]. Available:

https://developer.ibm.com/tutorials/l-virtual-networking/
10. Mininet walkthrough, [Online]. Available: http://mininet.org.
11. Cisco, “Cisco Nexus 5000 series NX-OS configuration guide”, July 2017.

OPEN VIRTUAL SWITCH

Exercise 5: Configuring VLAN

Document Version: 09-19-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Exercise 5: Configuring VLAN

 Page 2

Contents

1 Exercise topology .. 3

1.1 Topology settings ... 3

1.2 Credentials ... 3

2 Deliverables ... 4

Exercise 5: Configuring VLAN

 Page 3

1 Exercise topology

This goal of this exercise is to configure multiple VLANs to isolate network traffic within
an emulated environment.

VLAN 10

10.0.0.1/8

VLAN 20

10.0.0.2/8

VLAN 10

10.0.0.3/8

VLAN 20

10.0.0.4/8

s1 s2

s1-eth1 s1-eth2

s1-eth3

h1-eth0
h2-eth0 h3-eth0 h4-eth0

s2-eth1 s2-eth2

s2-eth3

Figure 1. Exercise topology.

1.1 Topology settings

The devices are already configured according to Table 1.

Table 1. Topology information.

Host Interface IP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

h3 h3-eth0 10.0.0.3 /8

h4 h4-eth0 10.0.0.4 /8

1.2 Credentials

The information in Table 2 provides the credentials to access the Client’s virtual machine.

Table 2. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

Exercise 5: Configuring VLAN

 Page 4

2 Deliverables

Follow the steps below to complete the exercise.

a) Start MiniEdit by clicking on MiniEdit’s shortcut. Load the topology Exercise5.mn
located at ~/OVS_Labs/Exercise5 as shown in the figure below.

Figure 2. Loading the topology file in Mininet.

b) Run the emulation in Mininet.

c) In the Mininet terminal, launch the command that displays the interface names and
connections of the current topology. Verify that links conform to the topology in Figure 1.

d) ~/OVS_Labs/Exercise5 folder contains a script config_switches.sh responsible for
loading the configuration needed for the exercise. Execute the script using the following
commands:

cd OVS_Labs/Exercise5

./config_switches.sh

e) Assign switch ports attached to hosts h1 and h3 to VLAN 10 and switch ports attached
to hosts h2 and h4 to VLAN 20.

f) Configure switch ports s1-eth3 and s2-eth3 so that traffic for VLAN 10 is allowed (no
trunk).

g) Verify the connectivity using the ping command. Explain the result. Why there is no
connectivity between hosts h2 and h4?

Exercise 5: Configuring VLAN

 Page 5

h) Configure switch ports s1-eth3 and s2-eth3 so that traffic for VLAN 20 is allowed (no
trunk) and repeat g).

i) Configure switch ports s1-eth3 and s2-eth3 so that traffic for both VLANs 10 and 20 are
allowed. Verify the connectivity between the hosts.

Configuration for switch ports s1-eth3 and s2-eth3 need to be removed before you start
i).

OPEN VIRTUAL SWITCH

Lab 14: Configuring GRE Tunnel

Document Version: 09-16-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 14: Configuring GRE Tunnel

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 GRE tunnel .. 4

1.2 GRE packet header ... 5

2 Lab topology.. 5

2.1 Lab settings... 6

2.2 Loading a topology ... 7

2.3 Load the configuration file ... 8

2.4 Run the emulation .. 9

2.5 Verify the configuration ... 10

3 Configuring OSPF on routers ... 13

4 Run Mininet instances within the containers ... 16

5 Configuring GRE tunnel ... 18

6 Verifying GRE configuration .. 21

References .. 24

Lab 14: Configuring GRE Tunnel

 Page 3

Overview

This lab presents Generic Route Encapsulation (GRE), a tunneling protocol that
encapsulates a wide variety of network layer protocols inside virtual point-to-point links
or point-to-multipoint links over an IP network. This lab aims to configure a GRE tunnel
across a Wide Area Network (WAN).

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of GRE tunnel.
2. Emulate servers by using docker containers.
3. Configure and verify GRE tunnel between two servers.
4. Use Wireshark network analyzer to inspect GRE traffic.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Configuring OSPF on routers.
4. Section 4: Run Mininet instances within the containers.
5. Section 5: Configuring GRE Tunnel.
6. Section 6: Verifying GRE configuration.

1 Introduction

Most organizations want to use secure and cost-effective ways to interconnect multiple
networks, such as allowing branch offices to connect to the headquarters’ network. They
use Virtual Private Networks (VPNs) to create an end-to-end private network connection
over third-party networks, such as the Internet.

Lab 14: Configuring GRE Tunnel

 Page 4

Tunneling is a protocol that allows for the secure movement of data from one network to
another. It will enable private network communications to be sent across a public network,
such as the Internet, through encapsulation. Encapsulation is the process of enclosing one
type of packet using another type of packet2.

1.1 GRE tunnel

GRE is a protocol used for the encapsulation of a network layer protocol within another
network layer protocol. Encapsulation is often referred to as tunneling, which means
wrapping one data packet within another data packet. GRE encapsulates data packets and
redirects them to a device that de-encapsulates them and routes them to their final
destination. This allows the source and destination hosts to operate as if they are
connected via a virtual point-to-point connection (i.e., a tunnel)4. GRE aims to simplify
connections between separate networks. GRE tunnels are usually configured between
two routers. Each router acts like one end of the tunnel. The routers are set up to send
and receive GRE packets directly to each other. Any routers in between those two routers
will not open the encapsulated packets; they only reference the headers surrounding the
encapsulated packets to forward them5.

When a router receives a data packet to be tunneled, the data packet is sent to the tunnel
interface. The tunnel interface encapsulates the data in a GRE packet and adds an
additional header (outer IP header). The IP packet is forwarded based on the outer IP
header. Intermediate routers only forward the encapsulated packet to the destination
router. When the destination router receives the IP packet from the tunnel interface, the
outer IP header and GRE header are removed3. GRE is considered a VPN (Virtual Private
Network) since a private network is created by tunneling over a public network.

s2

h1 .10

s1 s2

.10 h2

s2

r2r1

.1

.1

r3

.2 .2

.1

192.168.12.0/30

.1 .2

192.168.1.0/24 192.168.2.0/24

GRE Tunnel

.1

Figure 1. GRE tunnel.

Lab 14: Configuring GRE Tunnel

 Page 5

Consider Figure 1. Three routers can communicate with each other. Router r3 does not
contain any route to the networks 192.168.1.0/24 and 192.168.2.0/24. GRE tunnel is
configured between routers r1 and r2 (network 192.168.12.0/30). Whenever host h1
(192.168.1.10) wants to communicate with host h2 (192.168.2.10), router r1 will change
the IP header according to GRE tunnel configuration. Router r1 will change the source IP
to 192.168.12.1, and the destination IP will be 192.168.12.2. Router r3 will pass the traffic
to the destination router r2. Router r2 will decapsulate the packet, discovers the actual
destination IP (192.168.2.10), and delivers the packet to host, h2.

1.2 GRE packet header

All data is broken up into smaller pieces called packets while sent over a network, and all
packets consist of two parts: the payload and the header. The payload is the actual data,
and the header includes the information about where the packet comes from and what
group of packets it belongs to. Each network protocol attaches a header to every packet.

GRE adds two headers to each packet: the GRE header (4-bytes long) and outer IP header
(20-bytes long). The GRE header indicates the protocol type used by the encapsulated
packet. The outer IP header encapsulates the original packet's header and payload. That
means a GRE packet uses two IP headers: one for the original packet and one added by
the GRE protocol. Only the routers at each end of the GRE tunnel will reference the
original IP header5.

Ethernet
header

Ethernet
header

Original
IP header

TCP/
UDP

header

Application
data layer

Outer IP
header

GRE
header

Original
IP header

TCP/
UDP

header

Application
data layer

Figure 2. GRE packet header.

2 Lab topology

Consider Figure 3. The topology consists of four hosts, two switches, and three routers.
The end hosts and switches are running inside Server 1 and Server 2. Those servers are
implemented by Docker6 containers which run Mininet instances. Docker is a platform
that uses OS-level virtualization to deliver software packages called container. Routers
are supported by the Free-range Routing (FRR) engine. Servers are connected to ISP
routers. GRE tunnel is configured between servers (s1 and s2) so that the hosts within the
servers assume they are directly connected through the GRE tunnel.

Lab 14: Configuring GRE Tunnel

 Page 6

s2

h3 h4

10.0.0.0/
8

.3 .4

Server 2

192.168.2.0/24

.10

.1 .1

Container d2

r2-eth0

d2-eth0

s2-eth0

s2-eth1 s2-eth2

h4-eth0h3-eth0

r3

r1 r2

.2 .2

.1

s1

h1 h2

10.0.0.0/8

.1 .2

192.168.1.0/24

.10

Container d1

r1-eth0

d1-eth0

s1-eth0

s1-eth1 s1-eth2

h2-eth0h1-eth0

Server 1

.10 .10

s1-tun s2-tun

OSPF Area 0

ISP

.1

GRE Tunnel

Figure 3. Lab topology.

2.1 Lab settings

The devices are configured according to Table 2.

Table 2. Topology information.

Device Interface IIP Address Subnet

r1

r1-eth0 192.168.1.1 /24

r1-eth1 203.0.13.1 /30

r2

r2-eth0 192.168.2.1 /24

r2-eth1 203.0.23.1 /30

r3

r3-eth0 203.0.13.2 /30

r3-eth1 203.0.23.2 /30

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

Lab 14: Configuring GRE Tunnel

 Page 7

h3 h3-eth0 10.0.0.3 /8

h4 h4-eth0 10.0.0.4 /8

2.2 Loading a topology

In this section, you will open MiniEdit and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet. This tool has additional capabilities: configuring network elements
(i.e., IP addresses, default gateway), saving topologies, and exporting layer 2 models.

Step 1. A shortcut to MiniEdit is located on the desktop. Start MiniEdit by clicking on
MiniEdit shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File, then open to load the lab’s topology. Locate
the lab14.mn topology file in the default directory, /home/ovs/OVS_Labs/lab14 and click
on Open.

Lab 14: Configuring GRE Tunnel

 Page 8

Figure 5. MiniEdit’s Open dialog.

Figure 6. MiniEdit’s topology.

2.3 Load the configuration file

Step 1. Open the Linux terminal.

Figure 7. Opening Linux terminal.

Step 2. Click on the Linux terminal and navigate into OVS_Labs/lab14 directory by issuing
the following command. This folder contains a configuration file, and the script is
responsible for loading the configuration. The configuration file will assign the IP
addresses to the routers’ interfaces. The cd command is short for change directory,
followed by an argument that specifies the destination directory.

Lab 14: Configuring GRE Tunnel

 Page 9

cd OVS_Labs/lab14

Figure 8. Entering to the OVS_Labs/lab14 directory.

Step 3. To execute the shell script, type the following command. The program's argument
corresponds to the configuration zip file that will be loaded in all the routers in the
topology.

./config_loader.sh lab14_conf.zip

Figure 9. Executing the shell script to load the configuration.

Step 4. Type the following command to exit the Linux terminal.

exit

Figure 10. Exiting from the terminal.

2.4 Run the emulation

Step 1. Click on the Run button to start the emulation. The emulation will start, and the
MiniEdit panel buttons will gray out, indicating that they are currently disabled.

Lab 14: Configuring GRE Tunnel

 Page 10

Figure 11. Starting the emulation.

Step 2. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 12. Opening Mininet’s terminal.

Step 3. Issue the following command to display the interface names and connections.

links

Figure 13. Displaying network interfaces.

In Figure 13, the link displayed within the gray box indicates that interface eth0 of router
r1 is connected to interface eth0 of docker container d1 (i.e., r1-eth0<->d1-eth0).

2.5 Verify the configuration

Step 1. To open router r1 terminal, hold right-click on router r1 and select Terminal.

Lab 14: Configuring GRE Tunnel

 Page 11

Figure 14. Opening a terminal on router r1.

Step 2. In router r1’s terminal, you will start zebra daemon, which is a multi-server routing
software that provides TCP/IP-based routing protocols. The configuration will not be
working if you do not enable zebra daemon initially. To start the zebra, type the following
command:

zebra

Figure 15. Starting zebra daemon.

Step 3. After initializing zebra, vtysh should be started to provide all the command-line
interface (CLI) commands defined by the daemons. To proceed, issue the following
command:

vtysh

Figure 16. Starting vtysh on router r1.

Step 4. Type the following command in router r1’s terminal to verify the routing table of
router r1. It will list all the directly connected networks. The routing table of router r1
does not contain any route to the network attached to router r2 (203.0.23.0/30,
192.168.2.0/24). There is no routing protocol configured yet.

show ip route

Lab 14: Configuring GRE Tunnel

 Page 12

Figure 17. Displaying routing table of router r1.

Step 5. Router r2 is configured similarly to router r1 but with different IP addresses (see
Table 2). Those steps are summarized in the following figure. To proceed, in router r2’s
terminal, issue the commands depicted below. At the end, you will verify all the directly
connected networks of router r2.

Figure 18. Displaying routing table of router r2.

Step 6. Router r3 is configured similarly to router r1 but, with different IP addresses (see
Table 2). Those steps are summarized in the following figure. To proceed, in router r3’s
terminal, issue the commands depicted below. At the end, you will verify all the directly
connected networks of router r3.

Lab 14: Configuring GRE Tunnel

 Page 13

Figure 19. Displaying routing table of router r3.

3 Configuring OSPF on routers

At this point, routers are configured with their corresponding IP addresses (see Table 2).
However, to provide end-to-end connectivity, it is necessary to enable and configure a
routing protocol. In this section, you will configure OSPF as the routing protocol in routers
r1, r2, and r3.

Step 1. Type the command shown below to close vtysh.

exit

Figure 20. Exiting vtysh.

Step 2. To enable the OSPF daemon, issue the following command:

ospfd

Figure 21. Starting the OSPF daemon.

Step 3. To enable vtysh again, issue the following command:

vtysh

Figure 22. Starting vtysh.

Step 4. To enable configuration mode in router r1, type the following command:

configure terminal

Lab 14: Configuring GRE Tunnel

 Page 14

Figure 23. Starting router r1 in configuration mode.

Step 5. Issue the following command to configure OSPF in router r1.

router ospf

Figure 24. Configuring OSPF in router r1.

Step 6. Type the following command to assign a network and an area to router r1.

network 0.0.0.0/0 area 0

Figure 25. Configuring OSPF network and area settings.

Consider the command above. OSPF will advertise all the networks connected to router
r1.

Step 7. Issue the following command to end the configuration in router r1.

end

Lab 14: Configuring GRE Tunnel

 Page 15

Figure 26. Finishing router r1 configuration.

Step 8. At this point, router r1 has configured OSPF. Proceed similarly in router r2 by
following from step 1 to step 7. All those steps are summarized in the figure below.

Figure 27. Summary of OSPF configuration in router r2.

Step 9. Proceed similarly in router r3 by following from step 1 to step 7. All those steps
are summarized in the figure below.

Figure 28. Summary of OSPF configuration in router r3.

Step 10. Type the following command in router the r3 terminal to verify the routing table
of the router r3. You will notice that the routing table of router r3 is not aware of the
network 10.0.0.0/8.

show ip route

Lab 14: Configuring GRE Tunnel

 Page 16

Figure 29. Displaying routing table of router r3.

4 Run Mininet instances within the containers

The following section shows the steps to start Mininet in the containers and display the
configuration files on the CLI.

Step 1. To open d1 container terminal, hold right-click on d1 and select Terminal. Type
the following command to start Mininet. A topology that consists of two hosts connected
to a switch is started.

python start_server1.py

Figure 30. Starting a Mininet instance within container d1.

The figure shows a Mininet topology running within container d1. The information about
the hosts is summarized after starting the switch s1.

Lab 14: Configuring GRE Tunnel

 Page 17

Step 2. Run the following command to display the devices contained in the topology:

links

Figure 31. Displaying the links between the devices in container d1.

The figure above shows that host h1 and switch s1 are connected via the interface pair
h1-eth0<->s1-eth1. Similarly, host h2 is connected to switch s1 (h2-eth0<->s1-eth2).

Step 3. In container d2, type the following command to start a Mininet topology within
the container. A topology that consists of two hosts connected to a switch is started.

python start_server2.py

Figure 32. Starting a Mininet instance within container d2.

The figure above starts a Mininet instance in container d2. Also, the information about
the hosts is summarized after starting the switch s2.

Step 4. Run the following command to display the devices contained in the topology:

links

Lab 14: Configuring GRE Tunnel

 Page 18

Figure 33. Displaying the links between the devices in container d2.

The figure shows that host h3 and switch s2 are connected via the interface pair h3-eth0<-
>s2-eth1. Similarly, host h4 is connected to switch s2 (h4-eth0<->s2-eth2).

Step 5. In container d2’s terminal, issue the following command to verify the connectivity
between host h3 and host h4.

h3 ping 10.0.0.4

Figure 34. Performing a connectivity test between host h3 and host h4.

The results will show a successful connectivity test since they belong to the same server.
To stop the test, press ctrl+c.

Step 6. In container d1’s terminal, issue the following command to verify the connectivity
between host h3 and host h1.

h3 ping 10.0.0.1

Figure 35. Performing a connectivity test between host h3 and host h1.

There is no connectivity between hosts h3 and h1 since they are hosted on different
servers. To stop the test, press ctrl+c.

5 Configuring GRE tunnel

In this section, you will configure GRE tunnel so that hosts from the different servers can
communicate via a virtual tunnel (GRE tunnel).

Lab 14: Configuring GRE Tunnel

 Page 19

Step 1. Type the following command to display all the interfaces within the docker
container.

sh ifconfig

Figure 36. Displaying interfaces within container d1.

The figure above shows that the interface d1-eth0 has the IP address 192.168.1.10.

Step 2. Type the following command to display all the interfaces within the docker
container.

sh ifconfig

Figure 37. Displaying interfaces within container d2.

Lab 14: Configuring GRE Tunnel

 Page 20

The figure above shows that the interface d2-eth0 has the IP address 192.168.2.10.

Step 3. In this step, you will configure a GRE tunnel endpoint that will enable outgoing
traffic from switch s1 to the external network. A script is written to facilitate this process.
To execute the script, type the following command.

sh ./gre_tunnel_cmd1.cmd

Figure 38. Configuring GRE tunnel in switch s1.

Consider the figure above. The figure shows the command executed for creating the
tunnel. Switch s1 will create a virtual port s1-tun. The interface is set to GRE type so that
the port s1-tun will perform as an end of the GRE tunnel. The remote IP for s1 is
192.168.2.10, which is the IP address of container d2.

Step 4. Type the following command in docker d1 to verify the GRE configuration in switch
s1.

sh ovs-vsctl show

Figure 39. Verifying s1-tun port in switch s1.

The figure shows the port s1-tun, including the remote_ip=192.168.2.10.

Step 5. In this step, you will configure a GRE tunnel endpoint that will enable outgoing
traffic from switch s2 to the outer network. A script is written to facilitate this process. To
execute the script, type the following command.

sh ./gre_tunnel_cmd2.cmd

Lab 14: Configuring GRE Tunnel

 Page 21

Figure 40. Configuring GRE tunnel in switch s2.

Consider the figure above. The figure shows the command executed for creating the
tunnel. Switch s2 will create a virtual port s2-tun. The interface is set to GRE type so that
the port s2-tun will perform as an end of the GRE tunnel. The remote IP for s2 is
192.168.1.10, which is the IP address of container d1.

6 Verifying GRE configuration

In this section, you will verify the GRE tunnel configuration.

Step 1. In container d2’s terminal, issue the following command to verify the connectivity
between host h1 and host h3.

h3 ping 10.0.0.1

Figure 41. Performing a connectivity test between host h1 and host h3.

The result shows a successful connectivity test. Do not stop the test.

You will notice there is no physical connectivity between two servers, but they can
communicate via GRE tunnel. Physically the traffic has been passed through the ISP
network, but logically the servers are connected directly and maintain a secure tunneling
process.

Step 2. In router r3’s terminal, issue the following command.

exit

Figure 42. Exiting vtysh.

Lab 14: Configuring GRE Tunnel

 Page 22

Step 3. Start Wireshark dissector by issuing the following command in router r3. A new
window will emerge.

wireshark

Figure 43. Starting Wireshark dissector.

Step 4. Click on the icon located on the upper left-hand side to start capturing packets on
the interface r3-eth0.

Figure 44. Starting packet capture.

Step 5. Click on the arrow located on the leftmost of the field called Generic Routing
Encapsulation.

Lab 14: Configuring GRE Tunnel

 Page 23

Figure 45. Filtering network traffic.

Consider the figure above. The source IP (10.0.0.3) and destination IP (10.0.0.1) belong to
the network 10.0.0.0/8, which is unknown to router r3. GRE includes an outer IP header
where it encapsulates the actual source and destination IPs. The outer IP header contains
the new source IP (192.168.2.10) and destination IP (192.168.1.10) known by router r3.
Router r3 will pass the traffic to router r2. Router r2 will decapsulate the packet, and the
traffic will be forwarded to the actual destination (10.0.0.1).

Step 6. Click on the red button located on the upper left-hand side to stop packet
capturing and close Wireshark.

Figure 46. Stopping packet capture.

Lab 14: Configuring GRE Tunnel

 Page 24

Step 7. In container d2, press ctrl+c to stop the test.

This concludes Lab 14. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. Mininet walkthrough, [Online]. Available: http://mininet.org.
2. Cisco, “Tunneling”, [Online]. Available:

https://www.cisco.com/c/en/us/products/ios-nx-os-
software/tunneling/index.html#:~:text=Tunneling%20is%20a%20technique%20tha
t,through%20a%20public%20data%20network.

3. Cisco, “How to configure a GRE tunnel”, Mar 2019.
4. SearchNetworking, “Generic Routing Encapsulation (GRE)”, Dec 2011.
5. Cloudflare, “What is GRE tunneling? | How GRE protocol works”, 2020.
6. D. Merkel, "Docker: lightweight Linux containers for consistent development and

deployment." Linux journal 2014.239 (2014): 2.
7. Linux foundation, “Open vSwitch”, [Online]. Available: http://openvSwitch.org.
8. Juniper Networks, “Generic Routing Encapsulation”, [Online]. Available:

https://www.juniper.net/documentation/us/en/software/junos/interfaces-
ethernet-switches/topics/topic-map/switches-interface-gre.html

OPEN VIRTUAL SWITCH

Lab 15: Configuring IPsec Tunnel

Document Version: 09-16-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 15: Configuring IPsec Tunnel

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to IPsec .. 4

1.2 IPsec in Open vSwitch .. 7

1.3 IPsec header ... 8

2 Lab topology.. 8

2.1 Lab settings... 9

2.2 Loading a topology ... 10

2.3 Load the configuration file ... 11

2.4 Run the emulation .. 12

2.5 Verifying router configuration ... 13

3 Configuring OSPF in routers .. 16

4 Run Mininet instances within the containers ... 19

5 Configuring IPsec tunnel ... 21

5.1 Starting IPsec daemon in the containers ... 21

5.2 Configuring IPsec tunnel .. 22

6 Verifying tunnel configuration .. 23

References .. 28

Lab 15: Configuring IPsec Tunnel

 Page 3

Overview

This lab presents Internet Protocol security (IPsec), a secure network protocol suite that
ensures integrity, confidentiality, and authentication of data communication. It encrypts
the data so that no one except the sender and the receiver can read the information.
Authentication is needed to ensure that the receiver is connected to the actual sender.
IPsec also provides integrity to make sure that no one changes the data in the packet. This
lab aims to configure an IPsec tunnel to ensure security between two hosts.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of IPsec.
2. Understand how IPsec works over GRE.
3. Emulate servers by using docker containers.
4. Configure IPsec tunnel between two servers.
5. Inspect data packets using Wireshark.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Configuring OSPF in routers.
4. Section 4: Run Mininet instances within the containers.
5. Section 5: Configuring IPsec tunnel.
6. Section 6: Verifying tunnel configuration.

1 Introduction

Lab 15: Configuring IPsec Tunnel

 Page 4

A network security system helps to provide protection against crimes such as theft, fraud,
and sabotage. Encryption is a method that is used regularly to protect and securely pass
information online. This method relies on secret keys to encrypt and decrypt information
as it passes between two parties1. A key is just a series of numbers shared between the
sender and the receiver.

1.1 Introduction to IPsec

IPsec is a network protocol suite that authenticates and encrypts data to provide
secure communication between networks. There are two principal protocols in IPsec:
Authentication Header (AH) and Encapsulating Security Payload (ESP). AH provides source
authentication and data integrity. ESP is much more widely used since it provides
confidentiality in addition to authentication and data integrity2. The sender and receiver
can verify if any changes have been made to the packet using a hash algorithm such as
Message-digest v5 (MD5) and Secure Hash Algorithm (SHA).

Before sending data to the destination, the source and destination create a logical
connection called Security Association (SA). They determine the IPsec protocols used for
securing the packets and the keys3. The management of SA can be manual or through a
key management protocol called Internet Key Exchange (IKE). IKE offers different types of
authentications, such as the Pre-Shared-Key (PSK) and Rivest–Shamir–Adleman (RSA)
algorithm. The PSK is a secret key value used in both hosts, which is combined with other
information to create the authentication key. In RSA, the authentication key and identity
information are used to create a hash that is encrypted with a private key. The encrypted
hash is attached to the message and forwarded to the destination host. The encrypted
hash can be decrypted using the public key of the sender. Diffie-Hellman (DH) is a public
encryption method that establishes a shared secret key between two IPsec peers.

Consider Figure 1. The figure shows the IPsec framework. Rectangles highlighted in light
blue are the protocols supported by Open vSwitch.

Lab 15: Configuring IPsec Tunnel

 Page 5

IPsec Protocol

Confidentiality

Integrity

Authentication

Diffie-Hellman

AH ESP
ESP

+
AH

DES 3DES AES SEAL

MD5 SHA

PSK RSA

DH1 DH2 ... DH14 ...

ProtocolsVPN features

Figure 1. Suite of protocols used by Open vSwitch (light blue rectangles).

The connection between two peers is created in two phases. IKE phase 1 is used to create
a secure tunnel that can be used in IKE phase 2. Two peers will negotiate about the
encryption, authentication, hashing, and other protocols that they want to use. The
Internet Security Association and Key Management Protocol (ISAKMP) is the negotiation
protocol that let two hosts agree on building an IPsec SA4. In Phase 2, the participants
negotiate the IPsec SAs for encrypting and authenticating the ensuing exchanges of user
data.

Lab 15: Configuring IPsec Tunnel

 Page 6

Sender Receiver

Tim
e

Tim
e

Figure 2. IKE phase 1.

Consider Figure 2. IKE phase 1 negotiates SA between two peers. Initially, the sender and
the receiver negotiate parameters for setting up IKE SA. Then, they establish a secret key
using DH key exchange. Finally, they exchange identity information and authenticate
peer’s identities. In this phase, both IKE peers ensure to use the same encryption
algorithm, authentication algorithm, identity authentication method, and DH group ID.
The key negotiated in phase 1 allows IKE peers to communicate securely in phase 2.

Sender Receiver

Tim
e

Tim
e

Figure 3. IKE phase 2.

Lab 15: Configuring IPsec Tunnel

 Page 7

Consider Figure 3. In IKE phase 2, the two IKE peers will continue to exchange key
materials. Each peer will perform key computing and generate keys for IPsec SA
encryption and authentication. In this way, each IPsec SA is guaranteed to use an
absolutely unique key for the subsequent encryption and authentication of data transfers.
In this phase, the message is encrypted by an encryption algorithm negotiated in IKE
phase 1.

1.2 IPsec in Open vSwitch

In Open vSwitch, IPsec aims to provide encryption to Open vSwitch tunnels such as GRE.
GRE is a protocol used for the encapsulation of a network layer protocol within another
network layer protocol. It encapsulates data packets and redirects them to a device that
de-encapsulates them and routes them to their final destination. This allows the source
and destination hosts to operate as if they are connected via a virtual point-to-point
connection (tunnel)7. By using IPsec, the entire GRE encapsulated packet is encrypted
with an IPsec header. IPsec daemon and IKE daemon are responsible for creating the IPsec
tunnel. IKE daemon uses the SHA algorithm and ESP protocol to provide authentication
and encryption.

s2

h1 .10

s1 s2

.10 h2

s2

r2r1

.1
.
1

r3

.2 .2

.
1

192.168.12.0/30

.1 .2

192.168.1.0/24 192.168.2.0/24

IPsec Tunnel

Figure 4. IPsec tunnel.

Consider Figure 4. Three routers can communicate with each other. Router r3 does not
contain any route to the networks 192.168.1.0/24 and 192.168.2.0/24. GRE tunnel is
configured between routers r1 and r2 (network 192.168.12.0/30). Whenever host h1
(192.168.1.10) wants to communicate with host h2 (192.168.2.10), router r1 will
encapsulate the actual source and destination IP address and a GRE header will be added.
The IPsec header will be placed on top of the GRE header to encrypt all the GRE
information to secure the tunnel.

Lab 15: Configuring IPsec Tunnel

 Page 8

1.3 IPsec header

ESP header is placed over the GRE header to conceal all the information regarding GRE.
ESP header includes Security Parameter Index (SPI), an identification tag to establish IPsec
Security Association2. It allows the destination to identify which SA to use to check the
security of the received packets. An attacker could try to capture packets even if the
packets are encrypted. The ESP header uses a sequence number that is an increasing
integer used to match up requests and responses and identify retransmissions of
messages to mitigate the issue.

Ethernet
header

Original
IP

header

TCP/ UDP
header

Application
data layer

Outer IP
header

GRE
header

Ethernet
header

Original IP
header

TCP/ UDP
header

Application
data layer

Outer IP
header

GRE
header

ESP header

Figure 5. IPsec header.

2 Lab topology

Consider Figure 6. The topology consists of four hosts, two switches, and three routers.
The end hosts and switches are running inside Server 1 and Server 2. Those servers are
implemented by Docker6 containers, which run Mininet instances. Docker is a platform
that uses OS-level virtualization to deliver software packages called container. Routers
are supported by the Free-range Routing (FRR) engine. Servers are connected to ISP
routers. GRE tunnel is configured between servers so that the hosts within the servers
assume they are directly connected through the GRE tunnel. Additionally, IPsec is running
to ensure the security of the tunnel traffic.

Lab 15: Configuring IPsec Tunnel

 Page 9

s2

h3 h4

10.0.0.0/
8

.3 .4

Server 2

192.168.2.0/24

.10

.1 .1

Container d2

r2-eth0

d2-eth0

s2-eth0

s2-eth1 s2-eth2

h4-eth0h3-eth0

r3

r1 r2

.2 .2

.1

s1

h1 h2

10.0.0.0/8

.1 .2

192.168.1.0/24

.10

Container d1

r1-eth0

d1-eth0

s1-eth0

s1-eth1 s1-eth2

h2-eth0h1-eth0

Server 1

.10 .10

s1-tun s2-tun

OSPF Area 0

ISP

.1

IPsec Tunnel

Figure 6. Lab topology.

2.1 Lab settings

The devices are configured according to Table 2.

Table 2. Topology information.

Device Interface IIP Address Subnet

r1

r1-eth0 192.168.1.1 /24

r1-eth1 203.0.13.1 /30

r2

r2-eth0 192.168.2.1 /24

r2-eth1 203.0.23.1 /30

r3

r3-eth0 203.0.13.2 /30

r3-eth1 203.0.23.2 /30

h1 h1-eth0 10.0.0.1 /8

Lab 15: Configuring IPsec Tunnel

 Page 10

h2 h2-eth0 10.0.0.2 /8

h3 h3-eth0 10.0.0.3 /8

h4 h4-eth0 10.0.0.4 /8

2.2 Loading a topology

In this section, the user will open MiniEdit and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet. This tool has additional capabilities such as configuring network
elements (i.e., IP addresses, default gateway), saving topologies and exporting layer 2
models.

Step 1. A shortcut to MiniEdit is located on the desktop. Start MiniEdit by clicking on the
MiniEdit shortcut. When prompted for a password, type password.

Figure 7. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File, then open to load the lab’s topology. Locate
the lab15.mn topology file in the default directory, /home/ovs/OVS_Labs/lab15 and click
on Open.

Lab 15: Configuring IPsec Tunnel

 Page 11

Figure 8. MiniEdit’s Open dialog.

Figure 9. MiniEdit’s topology.

2.3 Load the configuration file

Step 1. Open the Linux terminal.

Figure 10. Opening Linux terminal.

Step 2. Navigate into OVS_Labs/lab15 directory by issuing the following command. This
folder contains a configuration file, and the script is responsible for loading the
configuration. The configuration file will assign the IP addresses to the routers’ interfaces.
The cd command is short for change directory, followed by an argument that specifies
the destination directory.

Lab 15: Configuring IPsec Tunnel

 Page 12

cd OVS_Labs/lab15

Figure 11. Entering to the OVS_Labs/lab15 directory.

Step 3. To execute the shell script, type the following command. The argument of the
program corresponds to the configuration zip file that will be loaded in all the routers in
the topology.

./config_loader.sh lab15_conf.zip

Figure 12. Executing the shell script to load the configuration.

Step 4. Type the following command to exit the Linux terminal.

exit

Figure 13. Exiting from the terminal.

2.4 Run the emulation

Step 1. Click on the Run button to start the emulation. The emulation will start, and the
MiniEdit panel buttons will gray out, indicating that they are currently disabled.

Lab 15: Configuring IPsec Tunnel

 Page 13

Figure 14. Starting the emulation.

Step 2. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 15. Opening Mininet’s terminal.

Step 3. Issue the following command to display the interface names and connections.

links

Figure 16. Displaying network interfaces.

In Figure 16, the link displayed within the gray box indicates that interface eth0 of router
r1 connects to interface eth0 of docker container d1 (i.e., r1-eth0<->d1-eth0).

2.5 Verifying router configuration

Step 1. In order to open router r1 terminal, hold right-click on router r1 and select
Terminal.

Lab 15: Configuring IPsec Tunnel

 Page 14

Figure 17. Opening a terminal on router r1.

Step 2. In router r1’s terminal, you will start zebra daemon, which is a multi-server routing
software that provides TCP/IP-based routing protocols. The configuration will not be
working if you do not enable the zebra daemon initially. In order to start the zebra, type
the following command.

zebra

Figure 18. Starting zebra daemon.

Step 3. After initializing zebra, vtysh should be started to provide all the CLI commands
defined by the daemons. To proceed, issue the following command.

vtysh

Figure 19. Starting vtysh in router r1.

Step 4. Type the following command in router r1’s terminal to verify the routing table of
router r1. It will list all the directly connected networks. The routing table of router r1
does not contain any route to the network attached to router r2 (203.0.23.0/30,
192.168.2.0/24). There is no routing protocol configured yet.

show ip route

Lab 15: Configuring IPsec Tunnel

 Page 15

Figure 20. Displaying routing table of router r1.

Step 5. Router r2 is configured similarly to router r1 but with different IP addresses (see
Table 2). Those steps are summarized in the following figure. To proceed, in router r2’s
terminal, issue the commands depicted below. At the end, you will verify all the directly
connected networks of router r2.

Figure 21. Displaying routing table of router r2.

Step 6. Router r3 is configured similarly to router r1 but, with different IP addresses (see
Table 2). Those steps are summarized in the following figure. To proceed, in router r3’s
terminal, issue the commands depicted below. At the end, you will verify all the directly
connected networks of router r3.

Figure 22. Displaying routing table of router r3.

Lab 15: Configuring IPsec Tunnel

 Page 16

3 Configuring OSPF in routers

At this point, routers are configured with their corresponding IP addresses (see Table 2).
However, to provide end-to-end connectivity, it is necessary to enable and configure a
routing protocol. In this section, you will configure OSPF as the routing protocol in routers
r1, r2, and r3.

Step 1. Type the command shown below to close vtysh.

exit

Figure 23. Exiting vtysh.

Step 2. To enable the OSPF daemon, issue the following command:

ospfd

Figure 24. Starting the OSPF daemon.

Step 3. To enable vtysh again, issue the following command:

vtysh

Figure 25. Starting vtysh.

Step 4. To enable the configuration mode in router r1, type the following command:

configure terminal

Lab 15: Configuring IPsec Tunnel

 Page 17

Figure 26. Starting router r1 in configuration mode.

Step 5. Issue the following command to configure OSPF in router r1.

router ospf

Figure 27. Configuring OSPF in router r1.

Step 6. Type the following command to assign a network and an area to router r1.

network 0.0.0.0/0 area 0

Figure 28. Configuring OSPF network and area settings.

Consider the command above. OSPF will advertise all the networks connected to router
r1.

Step 7. Issue the following command to end the configuration in router r1.

end

Lab 15: Configuring IPsec Tunnel

 Page 18

Figure 29. Finishing router r1 configuration.

Step 8. At this point, router r1 has configured OSPF. Proceed similarly on router r2 by
following from step 1 to step 7. All those steps are summarized in the figure below.

Figure 30. Summary of OSPF configuration in router r2.

Step 9. Proceed similarly on router r3 by following from step 1 to step 7. All those steps
are summarized in the figure below.

Figure 31. Summary of OSPF configuration in router r3.

Step 10. Type the following command on router r3 terminal to verify the routing table of
router r3. You will notice that the routing table of router r3 is not aware of the network
10.0.0.0/8.

show ip route

Lab 15: Configuring IPsec Tunnel

 Page 19

Figure 32. Displaying routing table of router r3.

4 Run Mininet instances within the containers

The section shows the steps to start Mininet in the containers and display on the CLI
prompt the configuration files.

Step 1. In container d1, type the following command to start Mininet. A topology that
consists of two hosts connected to a switch is started.

python3 start_server1.py

Figure 33. Starting a Mininet instance within container d1.

The figure above shows a Mininet topology running within container d1. The information
about the hosts is summarized after starting switch s1.

Step 2. Run the following command to display the devices contained in the topology:

Lab 15: Configuring IPsec Tunnel

 Page 20

links

Figure 34. Displaying the links between the devices in container d1.

The figure above shows that host h1 and switch s1 are connected via the interface pair
h1-eth0<->s1-eth1. Similarly, host h2 is connected to the switch s1 (h2-eth0<->s1-eth2).

Step 3. In container d2, type the following command to start a Mininet topology within
the container. A topology that consists of two hosts connected to a switch is started.

python3 start_server2.py

Figure 35. Starting a Mininet instance within container d2.

The figure above shows a Mininet topology running within container d2. The information
about the hosts is summarized after starting switch s2.

Step 4. Run the following command to display the devices contained in the topology:

links

Figure 36. Displaying the links between the devices in container d2.

Lab 15: Configuring IPsec Tunnel

 Page 21

The figure shows that the host h3 and switch s2 are connected via the interface pair h3-
eth0<->s2-eth1. Similarly, host h4 is connected to the switch s2 (h4-eth0<->s2-eth2).

Step 5. In container d2’s terminal, issue the following command to verify the connectivity
between hosts h3 and h4.

h3 ping 10.0.0.4

Figure 37. Performing a connectivity test between host h3 and host h4.

The result shows a successful connectivity test since they belong to the same server. To
stop the test, press ctrl+c.

At this point, there is no connectivity between hosts h1 and h3 since they belong to
different servers.

5 Configuring IPsec tunnel

In this section, you will configure a GRE tunnel so that hosts from different servers can
communicate via a virtual tunnel. Additionally, you will configure IPsec in order to encrypt
the data.

5.1 Starting IPsec daemon in the containers

Step 1. Type the following command to start Open vSwitch in container d1.

sh service openvswitch-switch start

Figure 38. Starting Open vSwitch within the container d1.

Step 2. Type the following command to start the IPsec daemon in container d1. It will
execute a shell script to start the daemon.

sh ./start_ipsec_daemon.cmd

Lab 15: Configuring IPsec Tunnel

 Page 22

Figure 39. Starting IPsec daemon within the container d1.

The following command is required to start the IPsec daemon, which is running in the
script.

python3 test-monitor.py --pidfile=/var/run/openvswitch/ovs-monitor-ipsec.pid --ike-
daemon=strongswan --log-file --detach --monitor unix:/var/run/openvswitch/db.sock

Step 3. Starting the Open vSwitch and IPsec daemon in container d2 following the same
steps as container d1. All the steps are summarized in the following figure.

Figure 40. Starting the switch and the daemon within the container d2.

5.2 Configuring IPsec tunnel

Step 1. This step will configure a tunnel endpoint that will enable outgoing traffic from
switch s2 to the external network. A script is written to facilitate this process. To execute
the script, type the following command in docker d1.

sh ./ipsec_tunnel_cmd1.cmd

Figure 41. Configuring IPsec tunnel in switch s1.

Consider the figure above. The figure shows the command executed for creating the
tunnel. Switch s1 will create a virtual port, s1-tun. The interface is set to GRE type so that
the port s1-tun will perform as an end of the GRE tunnel. The remote IP for switch s1 is
192.168.2.10, which is the IP address of container d2. The tunnel includes PSK to ensure
authentication between two peers.

Step 2. This step will configure a tunnel endpoint that will enable outgoing traffic from
switch s2 to the external network. A script is written to facilitate this process. To execute
the script, type the following command in docker d2.

Lab 15: Configuring IPsec Tunnel

 Page 23

sh ./ipsec_tunnel_cmd2.cmd

Figure 42. Configuring IPsec tunnel in switch s2.

Consider the figure above. The figure shows the command executed for creating the
tunnel. Switch s2 will create a virtual port, s2-tun. The interface is set to GRE type so that
the port s2-tun will perform as an end of the GRE tunnel. The remote IP for switch s2 is
192.168.1.10, which is the IP address of container d1. The tunnel includes a PSK to ensure
authentication between two peers.

6 Verifying tunnel configuration

In this section, you will verify the tunnel configuration.

Step 1. Type the following command in container d1 to verify the tunnel configuration in
switch s1.

sh ovs-vsctl show

Figure 43. Verifying s1-tun port in switch s1.

The figure shows the port s1-tun, including the remote_ip=192.168.2.10 and PSK is
password.

Step 2. In the router r3’s terminal, issue the following command.

exit

Lab 15: Configuring IPsec Tunnel

 Page 24

Figure 44. Exiting vtysh.

Step 3. Start Wireshark by issuing the following command in router r3. A new window will
emerge.

wireshark

Figure 45. Starting Wireshark dissector.

Step 4. Click on the icon located on the upper left-hand side to start capturing packets on
the interface r3-eth1.

Figure 46. Starting packet capture.

Step 5. In container d1’s terminal, issue the following command to verify the connectivity
between hosts h1 and h4.

h1 ping 10.0.0.4

Figure 47. Performing a connectivity test between hosts h1 and h4.

Lab 15: Configuring IPsec Tunnel

 Page 25

The result shows a successful connectivity test. Do not stop the connectivity test.

It may take few seconds to receive a reply from host h4. Meanwhile, do not stop the
connectivity test.

Step 6. In the filter box located on the upper left-hand side, type isakmp to filter Internet
Security Association and Key Management Protocol (ISAKMP) packets.

Figure 48. Filtering network traffic.

Consider the figure above. This is the first phase of IKE, where the key is being exchanged
between the peers to ensure authentication. The hashing algorithm will be processed to
make sure the peers are communicating in a secured manner.

You will see the ISAKMP packets only when the peers are generating a new connection. If
you capture packets for the second time, you will only see the ESP packets.

Step 7. Click on any of the packets. A new window will be prompted, which includes all
the information regarding the ISAKMP protocol.

Lab 15: Configuring IPsec Tunnel

 Page 26

Figure 49. Displaying ISAKMP information.

The figure shows the ISAKMP key exchange information.

Step 8. Close the new window.

Figure 50. Closing the new window.

Step 9. In the filter box located on the upper left-hand side, type esp to filter ESP packets.

Lab 15: Configuring IPsec Tunnel

 Page 27

Figure 51. Filtering network traffic.

Step 10. Click on the arrow located on the left most of the field called Encapsulating
Security Payload.

Figure 52. Verifying data encryption.

Consider the figure above. This is the second phase of the IKE protocol. In the figure, you
can only see the ESP SPI and the ESP sequence number. You will not see the actual source
(10.0.0.1) and destination IP address (10.0.0.4) since all the data are encrypted.

Step 11. Click on the red button located on the upper left-hand side to stop packet
capturing and close Wireshark.

Lab 15: Configuring IPsec Tunnel

 Page 28

Figure 53. Stopping packet capture.

Step 12. In container d1, press ctrl+c to stop the test.

This concludes Lab 15. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. L. Shinder, M.Cross, “Scene of cybercrime”, 2nd edition, 2008.
2. J. Kurose, K. Ross, “Computer Networking A top-down-approach”, 6th Edition, 2017.
3. N. Doraswamy, D. Harkins, “IPsec the new security standard for the Internet,

Intranets, and Virtual Private Networks”, 2nd Edition, 2003.
4. Cisco, “IPsec and ISAKMP” [Online]. Available:

https://www.cisco.com/c/en/us/td/docs/security/asa/asa94/config-
guides/cli/vpn/asa-94-vpn-config/vpn-ike.pdf

5. NetworkLessons.com, “IPsec (Internet Protocol Security)”, [Online], Available: IPsec
https://networklessons.com/cisco/ccie- routing-switching/ipsec-internet-protocol-
security

6. Cisco, “How to configure a GRE tunnel”, Mar 2019.
7. SearchNetworking, “Generic Routing Encapsulation (GRE)”, Dec 2011.
8. D. Merkel, "Docker: lightweight Linux containers for consistent development and

deployment" Linux journal 2014.239 (2014): 2.
9. Linux Foundation, “Encrypt Open vSwitch tunnels with IPsec”, [Online]. Available:

https://docs.openvswitch.org/en/latest/howto/ipsec/
10. Linux Foundation, “OVS IPsec tutorial”, [Online], Available:

https://docs.openvswitch.org/en/latest/tutorials/ipsec/
11. Mininet walkthrough, [Online]. Available: http://mininet.org.

	Cover
	Contents
	Lab 1 - Introduction to Linux namespaces and Open vSwitch
	Lab 2 - Introduction to Mininet
	Lab 3 - Introduction to Open vSwitch
	Lab 4 - Open vSwitch Flow table
	Exercise 1 - OpenFlow Basic Operations
	Lab 5 - Implementing Routing in Open vSwitch
	Lab 6 - Implementing Routing using multiple Flow Tables
	Exercise 2 - Implementing Routing using Multiple Flow Tables
	Lab 7 - Configuring Stateless Firewall using ACLs
	Lab 8 - Configuring Stateful Firewall using Connection Tracking
	Exercise 3 - Configuring Stateless and Stateful Firewalls in Open vSwitch
	Lab 9 - Quality of Service (QoS)
	Exercise 4 - Configuring Quality of Service (QoS)
	Lab 10 - Open Vswitch Database Management Protocol (OVSDB)
	Lab 11 - Open Vswitch Kernel Datapath
	Lab 12 - Implementing VLANs in Open vSwitch
	Lab 13 - VLAN trunking in Open vSwitch
	Exercise 5 - Configuring VLAN
	Lab 14 - Configuring GRE Tunnel
	Lab 15 - Configuring IPsec Tunnel

