

Offloading Media Traffic to P4 Programmable Data Plane Switches

Elie Kfoury¹, Jorge Crichigno¹, Elias Bou-Harb², Vladimir Gurevich³

¹University of South Carolina, Columbia, SC ²University of Texas, San Antonio, TX ³Barefoot Networks, an Intel Company

CI Lab @ UofSC: http://ce.sc.edu/cyberinfra

CI Engineering Brown Bag Friday, February 28, 2020

AGENDA

- Introduction
- Background Information
 - Session Initiation Protocol (SIP) and Real Time Protocol (RTP)
 - Network Address Translation (NAT) traversal problem
 - > P4 switches
- Proposed solution
- Evaluation
- Lessons learned

INTRODUCTION

- According to estimations, media traffic represents approximately 80% of the total traffic over the Internet¹
- Much media traffic is generated by end users communicating with each other
- Media services (voice, video) running alongside the data network in campuses are becoming standard

^{1.} H. W. Barz and G. A. Bassett, Multimedia networks: protocols, design and applications, John Wiley and Sons, 2016.

VOICE AND VIDEO

- Conversational Voice- and Video-over-IP are widely used today
 - Open and proprietary (Skype, WhatsApp) solutions
- Supporting protocols are divided into two main categories
 - Session control protocols (signaling)
 - √ Session Initiation Protocol (SIP)
 - Establish and manage the session
 - Media protocols (media)
 - ✓ Real Time Protocol (RTP)
 - √ Transfer audio and video streams between the end-users
- Desirable Quality-of-Service (QoS) characteristics
 - Delay- and jitter-sensitive, low values
 - Occasional losses are tolerated

SIGNALING AND MEDIA PROTOCOLS

- SIP initiates, maintains, and terminates multimedia sessions between endpoints
 - User agent client (UAC)
 - User agent server (UAC)
- RTP transports real-time data, such as audio and video

NETWORK ADDRESS TRANSLATION

- Network Address Translation (NAT)
 - Maps ports, private IP addresses to public IP addresses
- Used in campus / enterprise networks, operators¹
- NAT introduces various issues
 - Violation of the end-to-end principle
 - Traversal of end-to-end sessions

¹I. Livadariu et al., "Inferring carrier-grade NAT deployment in the wild," in IEEE 2018 INFOCOM, 2018.

NETWORK ADDRESS TRANSLATION

- NAT prevents a user from outside from initiating a session
- If both users have NATs, then neither can accept a call
 - > IP translation is recorded by a SIP registrar server
- SIP carries the IP addresses and ports to be used by RTP to send/receive media
 - NAT-translated IP, ports are unknown until RTP traffic starts
- Several solutions proposed for NAT traversal
 - > STUN RFC 5389¹, TURN RFC 7566², ICE RFC 8445³

^{1.} D. Wing, P. Matthews, R. Mahy, and J. Rosenberg, "RFC 5389 - STUN: Session traversal utilities for NAT," 2008.

^{2.} M. Petit-Huguenin, S. Nandakumar, G. Salgueiro, and P. Jones, "RFC 7566 - TURN: Traversal using relays around NAT (TURN) uniform resource identifiers," 2013.

^{3.} J. Rosenberg and C. Holmberg, "RFC 8445 - ICE: Interactive connectivity establishment: a protocol for Network Address Translator (NAT) traversal," 2018.

Intermediary device

SIP server

Relay server

RTP Information at relay server

	Device IP - port	Allocated IP - port
Α		
В		

В

- Intermediary device
- SIP establishes the session
 - > RTP ports are unknown
 - > The relay server allocates one port for each device

- Intermediary device
- SIP establishes the session
 - > RTP ports are unknown
 - > The relay server allocates one port for each device
- The relay server receives and relays the RTP traffic

- Intermediary device
- SIP establishes the session
 - > RTP ports are unknown
 - > The relay server allocates one port for each device
- The relay server receives and relays the RTP traffic

OVERVIEW P4 SWITCHES

- P4 switches permit programmer to program the data plane
- Add proprietary features
 - Parse packet headers, including UDP
 - Header inspection; identify media session using the 5-tuple
 - Modify fields; IP addresses and ports

```
****************** PARSER ***********************
139
140 ⊟
       state parse_ethernet {
141
           packet.extract(hdr.ethernet);
           transition select(hdr.ethernet.etherType) {
              TYPE IPV4: parse ipv4;
144
              default: accept;
145
146
147
       state parse ipv4 {
149
           packet.extract(hdr.ipv4);
150
           verify(hdr.ipv4.ihl >= 5, error.IPHeaderTooShort);
151 ⊟
           transition select(hdr.ipv4.ihl) {
                         : accept;
              default
                         : parse_ipv4_option;
154
```

P4 code

Programmable chip

PISA ARCHITECTURE

- Several programmable switches implement the Protocol Independent Switch Architecture (PISA)
 - Abstract processing model
 - Programmers specify how a packet should be parsed and processed through match-action tables
- If the P4 program compiles, it runs on the chip at line rate

PROPOSED SYSTEM

- The proposed architecture uses programmable switches to emulate the behavior of the relay server:
 - 1. Parse the incoming packet carrying media traffic from the first party, say user A
 - 2. Identify the session this packet belongs to by using the 5-tuple
 - 3. Replace the source IP with that of the relay server, and the source port with that used by the relay server to receive traffic from user A
 - 4. Replace the destination IP and the destination port with those of user B
 - 5. Recalculate both IPv4 and UDP checksums
 - 6. Forward the packet to user B

PROPOSED SYSTEM (CONT'D)

- A custom software (agent) learns the ports allocated to a media session by the relay server
- The Rule Generator uses the 5-tuple allocated to the media session to construct a unique session identifier
- It stores identifiers of the media sessions and the new headers' values in the switch
- It also clears media sessions allocated in the switch when a call is teared down

IMPLEMENTATION AND EVALUATION

- System components
 - OpenSIPS, an open source implementation of a SIP server
 - > RTPProxy, a high-performance relay server for RTP streams
 - SIPp: an open source SIP traffic generator that can establish multiple concurrent sessions and generate media (RTP) traffic
 - > Iperf3: traffic generator used to generate background UDP traffic
 - Edgecore Wedge100BF-32X: programmable switch

IMPLEMENTATION AND EVALUATION

- Two scenarios are considered:
 - 1. "Server-based relay": relay server is used to relay media between end devices, without the intervention of the switch
 - 2. "Switch-based relay": the switch is used to relay media
- UAC (SIPp) generates 900 media sessions
- The rate at which sessions arrive is 30 per second
- The test lasts for 300 seconds
- G.711 media encoding codec (160 bytes every 20ms)

- Delay: the time interval starting when a packet is received from the UAC by the switch's ingress port and ending when the packet is forwarded by the switch's egress port to the UAS
 - Delay contributions of the switch and the relay server

- Delay variation: the absolute value of the difference between the delay of two consecutive packets
 - > Analogous to jitter, as defined by RFC 4689

- Loss rate: number of packets that fail to reach the destination
 - Calculation is based on the sequence number of the RTP header

 CPU usage: the percentage of the CPU's capacity used by the relay server

- Mean Opinion Score (MOS): estimation of the quality of the media session
 - A reference quality indicator standardized by ITU-T
 - Maximum for G.711 is ~4.4

RESOURCE CONSUMPTION

- The prototype is implemented in two different scenarios:
 - On top of the baseline switch program (switch.p4)
 - ✓ Implements various features including Layer 2/3 functionalities, ACL, QoS, etc.
 - Standalone implementation

On top of switch.p4							
Table size	SRAM	Hash Bits	TCAM				
32,000 64,000	+8.45% +16.2%	+2.7% +4.6%	+0% +0%				
Standalone program							
Table size	SRAM	Hash Bits	TCAM				
500,000 1,000,000 1,050,000	+97.84% +107.5%	+86.4% +89.8%	+0%				

Additional hardware resources used when the solution is deployed on top of switch.p4 and as a standalone program

Uof SC.

LESSONS LEARNED

- Advantages of using a switch-based relay:
 - Performance
 - ~1,000,000 sessions vs ~1,000 sessions per core
 - > QoS
 - Optimal QoS parameters: delay, delay variation, packet loss rate
 - Flexibility
 - The switch permits to modify / forward packets using non-standard fields
 - Timing information
 - Measuring delay and its variation on the P4 switch results in precise high-resolution timing information
 - Programmer can free unused resources and customize program Accommodate additional sessions
- Limited resources
- Avoid complex application logic

Uof SC.

ACKNOWLEDGEMENT

- Thanks to the National Science Foundation (NSF)!
- Activities in the CI Lab at the University of South Carolina are supported by NSF, Office of Advanced Cyberinfrastructure (OAC)

ADDITIONAL SLIDES

DESIGN REQUIREMENTS

- Quality of Service (QoS) parameters
 - Bandwidth
 - Delay
 - Jitter
 - > Loss

QoS requirements; stringency of applications¹

Application	Bandwidth	Delay	Jitter	Packet Loss
VoIP	Low	High	High	Low
Video conference	High	High	High	Low
Data (e.g., file transfer)	High	Low	Low	Medium

MOTIVATION

- According to estimations, media traffic represents approximately 80% of the total traffic over the Internet
 - Much of it is generated by end users communicating with each other
- Media services (voice, video) running alongside the data network in campuses are becoming standard
- Wide Area Networks (WANs) connect centers, campuses
 - ➤ E.g., SIP Trunk Network CenturyLink; 10,000 centers, 10,000 centers, 3 billion minutes of voice over IP (VoIP) conversations per month

SIP Trunk Network, CenturyLink

https://tinyurl.com/som38qv