

Principal Investigator: Jorge Crichigno

P4 PROGRAMMABLE DATA PLANES:
APPLICATIONS STATEFUL ELEMENTS AND , ,

CUSTOM PACKET PROCESSING

Book Version: 06-13-2022

Introduction to P4 Programmable Data Planes

Contents

Lab 1: Introduction to Mininet
Lab 2: Introduction to P4 and BMv2
Lab 3: P4 Program Building Blocks
Lab 4: Defining and Processing Custom Header
Lab 5: Monitoring the Switchs's Queue using Standard Metadata
Lab 6: Collecting Queueing Statistics using a Header Stack
Lab 7: Measuring Flow Statistics using Direct and Indirect Counters
Lab 8: Rerouting Traffic using Meters
Lab 9: Storing Arbitrary Data using Registers
Lab 10: Calculating Packets Interarrival Times using Hashes and Registers
Lab 11: Generating Notification Messages using Digests

P4 PROGRAMMABLE DATA PLANES:
APPLICATIONS, STATEFUL ELEMENTS, AND

CUSTOM PACKET PROCESSING

Lab 1: Introduction to Mininet

Document Version: 01-25-2022

Lab 1: Introduction to Mininet

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to Mininet .. 3

2 Invoke Mininet using the CLI .. 5

2.1 Invoke Mininet using the default topology .. 5

2.2 Test connectivity .. 9

3 Build and emulate a network in Mininet using the GUI ... 10

3.1 Build the network topology ... 10

3.2 Test connectivity .. 13

3.3 Automatic assignment of IP addresses .. 16

3.4 Save and load a Mininet topology ... 18

References .. 19

Lab 1: Introduction to Mininet

 Page 3

Overview

This lab provides an introduction to Mininet, a virtual testbed used for testing network
tools and protocols. It demonstrates how to invoke Mininet from the command-line
interface (CLI) utility and how to build and emulate topologies using a graphical user
interface (GUI) application.

Objectives

By the end of this lab, you should be able to:

1. Understand what Mininet is and why it is useful for testing network topologies.
2. Invoke Mininet from the CLI.
3. Construct network topologies using the GUI.
4. Save/load Mininet topologies using the GUI.

Lab settings

The information in Table 1 provides the credentials of the Client machine.

Table 1. Credentials to access the Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Mininet.
2. Section 2: Invoke Mininet using the CLI.
3. Section 3: Build and emulate a network in Mininet using the GUI.

1 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools and
protocols. With a single command, Mininet can create a realistic virtual network on any
type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides
an inexpensive solution and streamlined development running in line with production
networks1. Mininet offers the following features:

• Fast prototyping for new networking protocols.

Lab 1: Introduction to Mininet

 Page 4

• Simplified testing for complex topologies without the need of buying expensive
hardware.

• Realistic execution as it runs real code on the Unix and Linux kernels.

• Open-source environment backed by a large community contributing extensive
documentation.

Figure 1. Hardware network vs. Mininet emulated network.

Mininet is useful for development, teaching, and research as it is easy to customize and
interact with it through the CLI or the GUI. Mininet was originally designed to experiment
with OpenFlow2 and Software-Defined Networking (SDN)3. This lab, however, only focuses
on emulating a simple network environment without SDN-based devices.

Mininet’s logical nodes can be connected into networks. These nodes are sometimes
called containers, or more accurately, network namespaces. Containers consume
sufficiently fewer resources that networks of over a thousand nodes have created,
running on a single laptop. A Mininet container is a process (or group of processes) that
no longer has access to all the host system’s native network interfaces. Containers are
then assigned virtual Ethernet interfaces, which are connected to other containers
through a virtual switch4. Mininet connects a host and a switch using a virtual Ethernet
(veth) link. The veth link is analogous to a wire connecting two virtual interfaces, as
illustrated below.

Figure 2. Network namespaces and virtual Ethernet links.

Each container is an independent network namespace, a lightweight virtualization feature
that provides individual processes with separate network interfaces, routing tables, and
Address Resolution Protocol (ARP) tables.

h1 s1 h2s2

s3

Hardware NetworkMininet Emulated Network

Lab 1: Introduction to Mininet

 Page 5

Mininet provides network emulation opposed to simulation, allowing all network
software at any layer to be simply run as is, i.e., nodes run the native network software
of the physical machine. On the other hand, in a simulated environment applications and
protocol implementations need to be ported to run within the simulator before they can
be used.

2 Invoke Mininet using the CLI

In following subsections, you will start Mininet using the Linux CLI.

2.1 Invoke Mininet using the default topology

Step 1. Launch a Linux terminal by clicking on the Linux terminal icon in the task bar.

Figure 3. Linux terminal icon.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. To start a minimal topology, enter the command shown below. When prompted
for a password, type password and hit enter. Note that the password will not be visible
as you type it.

sudo mn

Lab 1: Introduction to Mininet

 Page 6

Figure 4. Starting Mininet using the CLI.

The above command starts Mininet with a minimal topology, which consists of a switch
connected to two hosts as shown below.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth1 s1-eth2 h2-eth0

s1

10.0.0.0/8

Figure 5. Mininet’s default minimal topology.

When issuing the sudo mn command, Mininet initializes the topology and launches its
command line interface which looks like this:

containernet>

Step 3. To display the list of Mininet CLI commands and examples on their usage, type the
following command:

help

Lab 1: Introduction to Mininet

 Page 7

Figure 6. Mininet’s help command.

Step 4. To display the available nodes, type the following command:

nodes

Figure 7. Mininet’s nodes command.

The output of the nodes command shows that there is a controller (c0), two hosts (host
h1 and host h2), and a switch (s1).

Step 5. It is useful sometimes to display the links between the devices in Mininet to
understand the topology. Issue the command shown below to see the available links.

net

Lab 1: Introduction to Mininet

 Page 8

Figure 8. Mininet’s net command.

The output of the net command shows that:

1. Host h1 is connected using its network interface h1-eth0 to the switch on
interface s1-eth1.

2. Host h2 is connected using its network interface h2-eth0 to the switch on
interface s1-eth2.

3. Switch s1:
a. Has a loopback interface lo.
b. Connects to h1-eth0 through interface s1-eth1.
c. Connects to h2-eth0 through interface s1-eth2.

4. Controller c0 does not have any connection.

Mininet allows you to execute commands on a specific device. To issue a command for a
specific node, you must specify the device first, followed by the command.

Step 6. To proceed, issue the command:

h1 ifconfig

Figure 9. Output of h1 ifconfig command.

Lab 1: Introduction to Mininet

 Page 9

This command h1 ifconfig executes the ifconfig Linux command on host h1. The
command shows host h1’s interfaces. The display indicates that host h1 has an interface
h1-eth0 configured with IP address 10.0.0.1, and another interface lo configured with IP
address 127.0.0.1 (loopback interface).

2.2 Test connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1
and host h2 respectively. To test connectivity between them, you can use the command
ping. The ping command operates by sending Internet Control Message Protocol (ICMP)
Echo Request messages to the remote computer and waiting for a response or reply.
Information available includes how many responses are returned and how long it takes
for them to return.

Step 1. On the CLI, type the command shown below. The command h1 ping 10.0.0.2
tests the connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The
figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets to
host h2 (10.0.0.2) and successfully received the expected responses.

h1 ping 10.0.0.2

Figure 10. Connectivity test between host h1 and host h2.

Step 2. Stop the emulation by typing the following command:

exit

Lab 1: Introduction to Mininet

 Page 10

Figure 11. Stopping the emulation using exit.

If Mininet were to crash for any reason, the sudo mn – c command can be utilized to
clean a previous instance. However, the sudo mn -c command is often used within the
Linux terminal and not the Mininet CLI.

Step 3. After stopping the emulation, close the Linux terminal by clicking the X in the
upper-right corner.

Figure 12. Closing the Linux CLI.

3 Build and emulate a network in Mininet using the GUI

In this section, you will use the application MiniEdit to deploy the topology illustrated
below. MiniEdit is a simple GUI network editor for Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth1 s1-eth2 h2-eth0

s1

10.0.0.0/8

Figure 13. Lab topology.

3.1 Build the network topology

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.
MiniEdit will start, as illustrated below.

Lab 1: Introduction to Mininet

 Page 11

Figure 14. MiniEdit Desktop shortcut.

MiniEdit will start, as illustrated below.

(5) Legacy switch

(3) P4 switch (Docker)

(2) Host

(1) Select

(7) Link

(9) Run

(10) Stop

(4) OpenFlow switch

(8) Controller

(6) Legacy router

Figure 15. MiniEdit Graphical User Interface (GUI).

Lab 1: Introduction to Mininet

 Page 12

The main buttons are:

1. Select: allows selection/movement of the devices. Pressing Delete on the
keyboard
after selecting the device removes it from the topology.

2. Host: allows addition of a new host to the topology. After clicking this button, click
anywhere in the blank canvas to insert a new host.

3. P4 switch (Docker): allows the addition of P4 switch. After clicking this button, click
anywhere in the blank canvas to insert the P4 switch.

4. OpenFlow switch: allows the addition of a new OpenFlow-enabled switch. After
clicking this button, click anywhere in the blank canvas to insert the switch.

5. Legacy switch: allows the addition of a new Ethernet switch to the topology. After
clicking this button, click anywhere in the blank canvas to insert the switch.

6. Legacy router: allows the addition of a new legacy router to the topology. After
clicking this button, click anywhere in the blank canvas to insert the router.

7. Link: connects devices in the topology (mainly switches and hosts). After clicking
this button, click on a device and drag to the second device to which the link is to
be established.

8. Controller: allows the addition of a new OpenFlow controller.
9. Run: starts the emulation. After designing and configuring the topology, click the

run button.
10. Stop: stops the emulation.

Step 2. To build the topology illustrated in Figure 13, two hosts and one switch must be
deployed. Deploy these devices in MiniEdit, as shown below.

Figure 16. MiniEdit’s topology.

Use the buttons described in the previous step to add and connect devices. The
configuration of IP addresses is described in Step 3.

Lab 1: Introduction to Mininet

 Page 13

Step 3. Configure the IP addresses of host h1 and host h2. Host h1’s IP address is
10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the
right click and selecting properties on the device. For example, host h2 is assigned the IP
address 10.0.0.2/8 in the figure below. Click OK for the settings to be applied.

Figure 17. Configuration of a host’s properties.

3.2 Test connectivity

Before testing the connection between host h1 and host h2, the emulation must be
started.

Step 1. Click the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 18. Starting the emulation.

Step 2. Open a terminal by right-clicking on host h1 and select Terminal. This opens a
terminal on host h1 and allows the execution of commands on the host h1. Repeat the
procedure on host h2.

Lab 1: Introduction to Mininet

 Page 14

Figure 19. Opening a terminal on host h1.

The network and terminals at host h1 and host h2 will be available for testing.

Figure 20. Terminals at host h1 and host h2.

Step 3. On host h1’s terminal, type the command shown below to display its assigned IP
addresses. The interface h1-eth0 at host h1 should be configured with the IP address
10.0.0.1 and subnet mask 255.0.0.0.

ifconfig

Lab 1: Introduction to Mininet

 Page 15

Figure 21. Output of ifconfig command on host h1.

Repeat Step 3 on host h2. Its interface h2-eth0 should be configured with IP address
10.0.0.2 and subnet mask 255.0.0.0.

Step 4. On host h1’s terminal, type the command shown below. This command tests the
connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The figure
below shows a successful connectivity test. Host h1 (10.0.0.1) sent six packets to host h2
(10.0.0.2) and successfully received the expected responses.

ping 10.0.0.2

Figure 22. Connectivity test using ping command.

Step 5. Stop the emulation by clicking on the Stop button.

Figure 23. Stopping the emulation.

Lab 1: Introduction to Mininet

 Page 16

3.3 Automatic assignment of IP addresses

In the previous section, you manually assigned IP addresses to host h1 and host h2. An
alternative is to rely on Mininet for an automatic assignment of IP addresses (by default,
Mininet uses automatic assignment), which is described in this section.

Step 1. Remove the manually assigned IP address from host h1. Right-click on host h1 and
select Properties. Delete the IP address, leaving it unassigned, and press the OK button as
shown below. Repeat the procedure on host h2.

Figure 24. Host h1 properties.

Step 2. In the MiniEdit application, navigate to Edit > Preferences. The default IP base is
10.0.0.0/8. Modify this value to 15.0.0.0/8, and then press the OK button.

Figure 25. Modification of the IP Base (network address and prefix length).

Lab 1: Introduction to Mininet

 Page 17

Step 3. Run the emulation again by clicking on the Run button. The emulation will start
and the buttons of the MiniEdit panel will be disabled.

Figure 26. Starting the emulation.

Step 4. Open a terminal by right-clicking on host h1 and select Terminal.

Figure 27. Opening a terminal on host h1.

Step 5. Type the command shown below to display the IP addresses assigned to host h1.
The interface h1-eth0 at host h1 now has the IP address 15.0.0.1 and subnet mask
255.0.0.0.

ifconfig

Lab 1: Introduction to Mininet

 Page 18

Figure 28. Output of ifconfig command on host h1.

You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host
h2’s terminal. The corresponding interface h2-eth0 at host h2 has now the IP address
15.0.0.2 and subnet mask 255.0.0.0.

Step 6. Stop the emulation by clicking on Stop button.

Figure 29. Stopping the emulation.

3.4 Save and load a Mininet topology

In this section you will save and load a Mininet topology. It is often useful to save the
network topology, particularly when its complexity increases. MiniEdit enables you to
save the topology to a file.

Step 1. In the MiniEdit application, save the current topology by clicking File. Provide a
name for the topology and notice myTopology as the topology name. Ensure you are in
the lab1 folder and click Save.

Lab 1: Introduction to Mininet

 Page 19

Figure 30. Saving the topology.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab1 folder and search for the topology file called lab1.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 31. Opening a topology.

This concludes lab 1. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. Mininet walkthrough. [Online]. Available: http://Mininet.org.
2. Mckeown N., Anderson T., Balakrishnan H., Parulkar G., Peterson L., Rexford J.,

Shenker S., Turner J., “OpenFlow,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

Lab 1: Introduction to Mininet

 Page 20

3. Esch J., “Prolog to, software-defined networking: a comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 10–13, 2015.

4. Dordal P., “An Introduction to computer networks,”. [Online]. Available:
https://intronetworks.cs.luc.edu/.

5. Lantz B., Gee G. “MiniEdit: a simple network editor for Mininet.” 2013. [Online].
Available: https://github.com/Mininet/Mininet/blob/master/examples.

P4 PROGRAMMABLE DATA PLANES:
APPLICATIONS, STATEFUL ELEMENTS, AND

CUSTOM PACKET PROCESSING

Lab 2: Introduction to P4 and BMv2

Document Version: 01-25-2022

Lab 2: Introduction to P4 and BMv2

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Workflow of a P4 program ... 4

1.2 Workflow used in this lab series .. 5

2 Lab topology.. 6

2.1 Verifying connectivity between host h1 and host h2 .. 7

3 Loading the P4 program .. 8

3.1 Loading the programming environment .. 9

3.2 Compiling and loading the P4 program to switch s1 ... 11

3.3 Verifying the configuration .. 13

4 Configuring switch s1 .. 14

4.1 Mapping P4 program’s ports.. 14

4.2 Loading the rules to the switch .. 16

References .. 17

Lab 2: Introduction to P4 and BMv2

 Page 3

Overview

This lab introduces programmable data plane switches and their role in the Software-
defined Networking (SDN) paradigm. The lab introduces the Programming Protocol-
independent Packet Processors (P4), the de facto programming language used to describe
the behavior of the data planes of programmable switches. The focus of this lab is to
provide a high-level overview of the general lifecycle of programming, compiling, and
running a P4 program on a software switch.

Objectives

By the end of this lab, students should be able to:

1. Define the need for SDN and data plane programmability.
2. Understand the structure of a P4 program.
3. Compile a simple P4 program and deploy it to a software switch.
4. Start the switch daemon and allocate virtual interfaces to the switch.
5. Perform a connectivity test to verify the correctness of the program.

Lab settings

Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Loading the P4 program.
4. Section 4: Configuring switch s1.

1 Introduction

Since the emergence of the world wide web and the explosive growth of the Internet in
the 1990s, the networking industry has been dominated by closed and proprietary

Lab 2: Introduction to P4 and BMv2

 Page 4

hardware and software. The progressive reduction in the flexibility of protocol design
caused by standardized requirements, which cannot be easily removed to enable protocol
changes, has perpetuated the status quo. This protocol ossification1, 2 has been
characterized by a slow innovation pace at the hand of few network vendors. As an
example, after being initially conceived by Cisco and VMware3, the Application Specific
Integrated Circuit (ASIC) implementation of the Virtual Extensible LAN (VXLAN)4, a simple
frame encapsulation protocol, took several years, a process that could have been reduced
to weeks by software implementations. The design cycle of switch ASICs has been
characterized by a lengthy, closed, and proprietary process that usually takes years. Such
process contrasts with the agility of the software industry.

The programmable forwarding can be viewed as a natural evolution of Software-Defined
Networking (SDN), where the software that describes the behavior of how packets are
processed, can be conceived, tested, and deployed in a much shorter time span by
operators, engineers, researchers, and practitioners in general. The de-facto standard for
defining the forwarding behavior is the P4 language5, which stands for Programming
Protocol-independent Packet Processors. Essentially, P4 programmable switches have
removed the entry barrier to network design, previously reserved to network vendors.

1.1 Workflow of a P4 program

Programming a P4 switch, whether a hardware or a software target, requires a software
development environment that includes a compiler. Consider Figure 1. The compiler
maps the target-independent P4 source code (P4 program) to the specific platform. The
compiler, the architecture model, and the target device are vendor specific and are
provided by the vendor. The P4 source code on the other hand is supplied by the user.

The compiler generates two artifacts after compiling the P4 program. First, it generates a
data plane configuration (Data plane runtime) that implements the forwarding logic
specified in the P4 input program. This configuration includes the instructions and
resource mappings for the target. Second, it generates runtime APIs that are used by the
control plane/user to interact with the data plane. Examples include adding/removing
entries from match-action tables and reading/writing the state of extern objects (e.g.,
counters, meters, registers). The APIs contain the information needed by the control
plane to manipulate tables and objects in the data plane, such as the identifiers of the
tables, fields used for matches, keys, action parameters, and others.

Lab 2: Introduction to P4 and BMv2

 Page 5

P4 program

Architecture

Data plane
runtime

Tables
Extern
objects

User supplied

Vendor supplied

Target switch
Compiler

Load

Data plane

Control plane

API

Control signalsAPI

Load

Figure 1. Generic workflow design. The compiler, the architecture model, and the target switch
are provided by the vendor of the device. The P4 source code is customized by the user. The
compiler generates a data plane runtime to be loaded into the target, and the APIs used by the
control plane to communicate with the data plane at runtime.

1.2 Workflow used in this lab series

This section demonstrates the P4 workflow that will be used in this lab series. Consider
Figure 2. We will use the Visual Studio Code (VS Code) as the editor to modify the basic.p4
program. Then, we will use the p4c compiler with the V1Model architecture to compile
the user supplied P4 program (basic.p4). The compiler will generate a JSON output (i.e.,
basic.json) which will be used as the data plane program by the switch daemon (i.e.,
simple_switch). Finally, we will use the simple_switch_CLI at runtime to populate and
manipulate table entries in our P4 program. The target switch (vendor supplied) used in
this lab series for testing and debugging P4 programs is the behavioral model version 2
(BMv2)6.

Lab 2: Introduction to P4 and BMv2

 Page 6

basic.p4

Architecture
(V1Model)

Runtime CLI
(simple_switch_CLI)

basic.json

Software switch
(BMv2)

Compiler
(p4c)

Load

Data Plane

Control Plane

Table
manipulation

User supplied

Vendor supplied

Controller

Figure 2. Workflow used in this lab series.

2 Lab topology

Let us get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Lab 2: Introduction to P4 and BMv2

 Page 7

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab2, select the file lab2.mn, and click on
Open.

Figure 5. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 6. Running the emulation.

2.1 Verifying connectivity between host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Lab 2: Introduction to P4 and BMv2

 Page 8

Figure 7. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 8. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded into the switch.

3 Loading the P4 program

This section shows the steps required to implement a P4 program. It describes the editor
that will be used to modify the P4 program and the P4 compiler that will produce a data
plane program for the software switch.

VS Code will be used as the editor to modify P4 programs. It highlights the syntax of P4
and provides an integrated terminal where the P4 compiler will be invoked. The P4
compiler that will be used is p4c, the reference compiler for the P4 programming language.

Lab 2: Introduction to P4 and BMv2

 Page 9

p4c supports both P414 and P416, but in this lab series we will only focus on P416 since it is
the newer version and is currently being supported by major programming ASIC
manufacturers7.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on
the desktop.

Figure 9. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4_Labs/lab2

Figure 10. Launching the editor and opening the lab2 directory.

Step 3. Once the previous command is executed, VS Code will start. Click on basic.p4 in
the file explorer panel on the left hand side to open the P4 program in the editor.

Lab 2: Introduction to P4 and BMv2

 Page 10

Figure 11. Opening the programming environment in VS Code.

Step 4. Identify the components of VS Code highlighted in the grey boxes.

Lab 2: Introduction to P4 and BMv2

 Page 11

Figure 12. VS Code graphical interface components.

The VS Code interface consists of three main panels:

1. Editor: the editor panel displays the content of the file selected in the file explorer.
In the figure above, the basic.p4 program is shown in the Editor.

2. File explorer: this panel contains all the files in the current directory. You will see
the basic.p4 file which contains the P4 program that will be used in this lab, and
the topology file for the current lab (i.e., basic.p4 and lab2.mn).

3. Terminal: this is a regular Linux terminal integrated in the VS Code. This is where
the compiler (p4c) is invoked to compile the P4 program and generate the output
for the switch.

3.2 Compiling and loading the P4 program to switch s1

Step 1. In this lab, we will not modify the P4 code. Instead, we will just compile it and
download it to the switch s1. To compile the P4 program, issue the following command
in the terminal panel inside the VS Code.

p4c basic.p4

Lab 2: Introduction to P4 and BMv2

 Page 12

Figure 13. Compiling the P4 program using the VS Code terminal.

The command above invokes the p4c compiler to compile the basic.p4 program. After
executing the command, if there are no messages displayed in the terminal, then the P4
program was compiled successfully. You will see in the file explorer that two files were
generated in the current directory:

• basic.json: this file is generated by the p4c compiler if the compilation is successful.
This file will be used by the software switch to describe the behavior of the data
plane. You can think of this file as the binary or the executable to run on the switch
data plane. The file type here is JSON because we are using the software switch.
However, in hardware targets, most probably this file will be a binary file.

• basic.p4i: the output from running the preprocessor of the compiler on your P4
program.

At this point, we will only be focusing on the basic.json file.

Now that we have compiled our P4 program and generated the JSON file, we can
download the program to the switch and start the switch daemon.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1. The script accepts as input the JSON output of the p4c compiler, and the
target switch name (e.g., s1). If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 2: Introduction to P4 and BMv2

 Page 13

Figure 14. Downloading the compiled program to switch s1.

3.3 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 15. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Lab 2: Introduction to P4 and BMv2

 Page 14

Figure 16. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 3. Issue the following command to list the files in the current directory.

ls

Figure 17. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

4 Configuring switch s1

4.1 Mapping P4 program’s ports

Step 1. Issue the following command to display the interfaces in switch s1.

ifconfig

Lab 2: Introduction to P4 and BMv2

 Page 15

Figure 18. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-eth0 and s1-eth1. The interface s1-eth0
on the switch s1 connects to the host h1. The interface s1-eth1 on the switch s1 connects
to the host h2.

Step 2. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 basic.json &

Figure 19. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Lab 2: Introduction to P4 and BMv2

 Page 16

s1-eth0 0 s1-eth11

Figure 20. Ports 0 and 1 are mapped to the interfaces s1-eth0 and s1-eth1 of switch s1.

4.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 21. Returning to switch s1 CLI.

Step 2. Populate the table with forwarding rules by typing the following command.

simple_switch_CLI < ~/lab2/rules.cmd

Figure 22. Loading table entries to switch s1.

The figure above shows the table entries described in the file rules.cmd.

Step 3. Go back to host h1 terminal to test the connectivity between host h1 and host h2
by issuing the following command.

Lab 2: Introduction to P4 and BMv2

 Page 17

ping 10.0.0.2 -c 4

Figure 23. Performing a connectivity test between host h1 and host h2.

Now that the switch has a program with tables properly populated, the hosts can ping
each other.

This concludes lab 2. Stop the emulation and then exit out of MiniEdit.

References

1. B. Trammell, M. Kuehlewind. “RFC 7663: Report from the IAB workshop on stack
evolution in a middlebox internet (SEMI).” 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7663.

2. G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom, K.-J. Grinnemo,
P. Hurtig, N. Khademi, M. Tüxen, M. Welzl, D. Damjanovic,
S. Mangiante. ‘‘De-ossifying the internet transport layer: A survey and
future perspectives,’’ IEEE Communications. Surveys and Tutorials., 2017.

3. The Register. “VMware, Cisco stretch virtual LANs across
the heavens.” 2011. [Online]. Available: https://tinyurl.com/y6mxhqzn.

4. M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright, “Virtual eXtensible Local Area Network (VXLAN): a framework for
overlaying virtualized layer 2 networks over layer 3 networks,” RFC7348.
[Online]. Available: http://www. rfc-editor.org/rfc/rfc7348.txt

5. P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, ‘‘P4: Programming protocol-independent
packet processors,’’ ACM SIGCOMM Computer Communications. 2014.

6. P4lang. “Behavioral model”. [Online]. Available:
https://github.com/p4lang/behavioral-model.

7. V. Gurevich, A. Fingerhut, “P416 for Intel TofinoTM using Intel P4 StudioTM”. 2021
P4 Workshop, ONF. [Online]. Available: https://tinyurl.com/yckzkybf.

P4 PROGRAMMABLE DATA PLANES:
APPLICATIONS, STATEFUL ELEMENTS, AND

CUSTOM PACKET PROCESSING

Lab 3: P4 Program Building Blocks

Document Version: 01-25-2022

Lab 3: P4 Program Building Blocks

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 The PISA architecture .. 3

1.1 The PISA architecture ... 4

1.2 Programmable parser .. 4

1.3 Programmable match-action pipeline ... 5

1.4 Programmable deparser .. 5

1.5 The V1Model .. 5

1.6 P4 program mapping to the V1Model ... 6

2 Lab topology.. 6

2.1 Starting host h1 and host h2 .. 8

3 Navigating through the components of a basic P4 program 8

3.1 Loading the programming environment .. 9

3.2 Describing the components of the P4 program ... 9

3.3 Programming the pipeline sequence ... 14

4 Loading the P4 program .. 15

4.1 Compiling and loading the P4 program to switch s1 ... 15

4.2 Verifying the configuration .. 17

5 Configuring switch s1 .. 18

5.1 Mapping the P4 program’s ports ... 18

5.2 Loading the rules to the switch .. 20

6 Testing and verifying the P4 program ... 21

References .. 23

Lab 3: P4 Program Building Blocks

 Page 3

Overview

This lab describes the building blocks and the general structure of a P4 program. It maps
the program’s components to the Protocol-Independent Switching Architecture (PISA), a
programmable pipeline used by modern whitebox switching hardware. The lab also
demonstrates how to track an incoming packet as it traverses the pipeline of the switch.
Such capability is very useful to debug and troubleshoot a P4 program.

Objectives

By the end of this lab, students should be able to:

1. Understand the PISA architecture.
2. Understand on high-level the main building blocks of a P4 program.
3. Map the P4 program components to the components of the programmable

pipeline.
4. Trace the lifecycle of a packet as it traverses the pipeline.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: The PISA architecture.
2. Section 2: Lab topology.
3. Section 3: Navigating through the components of a basic P4 program.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Testing and verifying the P4 program.

1 The PISA architecture

Lab 3: P4 Program Building Blocks

 Page 4

1.1 The PISA architecture

The Protocol Independent Switch Architecture (PISA)1 is a packet processing model that
includes the following elements: programmable parser, programmable match-action
pipeline, and programmable deparser, see Figure 1. The programmable parser permits
the programmer to define the headers (according to custom or standard protocols) and
to parse them. The parser can be represented as a state machine. The programmable
match-action pipeline executes the operations over the packet headers and intermediate
results. A single match-action stage has multiple memory blocks (e.g., tables, registers)
and Arithmetic Logic Units (ALUs), which allow for simultaneous lookups and actions.
Since some action results may be needed for further processing (e.g., data dependencies),
stages are arranged sequentially. The programmable deparser assembles the packet
headers back and serializes them for transmission. A PISA device is protocol independent.
The P4 program defines the format of the keys used for lookup operations. Keys can be
formed using packet header’s information. The control plane populates table entries with
keys and action data. Keys are used for matching packet information (e.g., destination IP
address) and action data is used for operations (e.g., output port).

Programmable match-
action pipeline

...

Programmable
parser

ALU

Packets

Memory (e.g., table)

Programmable
deparser

Stage 1 Stage N

State

Packets

Switch
ASIC

Figure 1. A PISA-based data plane.

Programmable switches do not introduce performance penalty. On the contrary, they
may produce better performance than fixed-function switches. When compared with
general purpose CPUs, ASICs remain faster at switching, and the gap is only increasing.

1.2 Programmable parser

The programmable parser permits the programmer to define the headers (according to
custom or standard protocols) and to describe how the switch should process those
headers. The parser de-encapsulates the headers, converting the original packet into a
parsed representation of the packet. The programmer declares the headers that must be
recognized and their order in the packet. The parser can be represented as a state
machine without cycles (direct acyclic graph), with one initial state (start) and two final
states (accept or reject).

Lab 3: P4 Program Building Blocks

 Page 5

1.3 Programmable match-action pipeline

The match-action pipeline implements the processing occurring at a switch. The pipeline

consists of multiple identical stages (N stages are shown in Figure 1). Practical

implementations may have 10/15 stages on the ingress and egress pipelines. Each stage

contains multiple match-action units (4 units per stage in Figure 1). A match-action unit

has a match phase and an action phase. During the match phase, a table is used to match

a header field of the incoming packet against entries in the table (e.g., destination IP

address). Note that there are multiple tables in a stage (4 tables per stage in Figure 1),

which permit the switch to perform multiple matches in parallel over different header

fields. Once a match occurs, a corresponding action is performed by the ALU. Examples

of actions include: modify a header field, forward the packet to an egress port, drop the

packet, and others. The sequential arrangement of stages allows for the implementation

of serial dependencies. For example, if the result of an operation is needed prior to

perform a second operation, then the compiler would place the first operation at an

earlier stage than the second operation.

1.4 Programmable deparser

The deparser assembles back the packet and serializes it for transmission. The
programmer specifies the headers to be emitted by the deparser. When assembling the
packet, the deparser emits the specified headers followed by the original payload of the
packet.

1.5 The V1Model

Figure 2 depicts the V1Model2 architecture components. The V1Model architecture
consists of a programmable parser, an ingress match-action pipeline, a traffic manager,
an egress match-action pipeline, and a programmable deparser. The traffic manager
schedules packets between input ports and output ports and performs packet replication
(e.g., replication of a packet for multicasting). The V1Model architecture is implemented
on top of BMv2’s simple_switch target3.

Programmable match-
action pipeline

...

Programmable
parser

ALU

Packets

Traffic
Manager

Memory (e.g., table)

Programmable match-
action pipeline

...

Programmable
deparser

Ingress match-action and checksum verification Egress match-action and checksum verification

Stage 1 Stage N Stage 1 Stage N

Configurable
component

State

Figure 2. The V1Model architecture.

Lab 3: P4 Program Building Blocks

 Page 6

1.6 P4 program mapping to the V1Model

The P4 program used in this lab is separated into different files. Figure 3 shows the
V1Model and its associated P4 files. These files are as follows:

• headers.p4: this file contains the packet headers’ and the metadata’s definitions.

• parser.p4: this file contains the implementation of the programmable parser.

• ingress.p4: this file contains the ingress control block that includes match-action
tables.

• egress.p4: this file contains the egress control block.

• deparser.p4: this file contains the deparser logic that describes how headers are
emitted from the switch.

• checksum.p4: this file contains the code that verifies and computes checksums.

• basic.p4: this file contains the starting point of the program (main) and invokes
the other files. This file must be compiled.

Programmable match-
action pipeline

...

Programmable
parser

Packets

Traffic
Manager

Programmable match-
action pipeline

...

Programmable
deparser

Ingress match-action and checksum verification Egress match-action and checksum verification

Stage 1 Stage N Stage 1 Stage N

Configurable
component

headers.p4 parser.p4 ingress.p4 egress.p4 deparser.p4

checksum.p4 checksum.p4Non-programmable

ALUMemory (e.g., table)State

Figure 3. Mapping of P4 files to the V1Model’s components.

2 Lab topology

Let us get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 3: P4 Program Building Blocks

 Page 7

Figure 5. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab3 folder and search for the topology file called lab3.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 6. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 7. Running the emulation.

Lab 3: P4 Program Building Blocks

 Page 8

2.1 Starting host h1 and host h2

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Figure 8. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 9. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded on the switch.

3 Navigating through the components of a basic P4 program

Lab 3: P4 Program Building Blocks

 Page 9

This section shows the steps required to compile the P4 program. It illustrates the editor
that will be used to modify the P4 program, and the P4 compiler that will produce a data
plane program for the software switch.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 10. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code P4_Labs/lab3/

Figure 11. Launching the editor and opening the lab3 directory.

3.2 Describing the components of the P4 program

Step 1. Once the previous command is executed, VS Code will start. Click on basic.p4 in
the file explorer panel on the left hand side to open the P4 program in the editor.

Lab 3: P4 Program Building Blocks

 Page 10

Figure 12. The main P4 file and how it includes other user-defined files.

The basic.p4 file includes the starting point of the P4 program and other files that are
specific to the language (core.p4) and to the architecture (v1model.p4). To make the P4
program easier to read and understand, we separated the whole program into different
files. Note how the files in the explorer panel correspond to the components of the
V1Model. To use those files, the main file (basic.p4) must include them first. For example,
to use the parser, we need to include the parser.p4 file (#include “parser.p4”).

We will navigate through the files in sequence as they appear in the architecture.

Step 2. Click on the headers.p4 file to display the content of the file.

Lab 3: P4 Program Building Blocks

 Page 11

Figure 13. The defined headers.

The headers.p4 above shows the headers that will be used in our pipeline. We can see
that the ethernet and the IPv4 headers are defined. We can also see how they are
grouped into a structure (struct headers). The headers name will be used throughout

the program when referring to the headers. Furthermore, the file shows how we can use
typedef to provide an alternative name to a type.

Step 3. Click on the parser.p4 file to display the content of the parser.

Lab 3: P4 Program Building Blocks

 Page 12

Figure 14. The parser implementation.

The figure above shows the content of the parser.p4 file. We can see that the parser is
already written with the name MyParser. This name will be used when defining the
pipeline sequence.

Step 4. Click on the ingress.p4 file to display the content of the file.

Figure 15. The ingress component.

Lab 3: P4 Program Building Blocks

 Page 13

The figure above shows the content of the ingress.p4 file. We can see that the ingress is
already written with the name MyIngress. This name will be used when defining the
pipeline sequence.

Step 5. Click on the egress.p4 file to display the content of the file.

Figure 16. The egress component.

The figure above shows the content of the egress.p4 file. We can see that the egress is
already written with the name MyEgress. This name will be used when defining the
pipeline sequence.

Step 6. Click on the checksum.p4 file to display the content of the file.

Figure 17. The checksum component.

Lab 3: P4 Program Building Blocks

 Page 14

The figure above shows the content of the checksum.p4 file. We can see that the
checksum is already written with two control blocks: MyVerifyChecksum and
MyComputeChecksum. These names will be used when defining the pipeline sequence.
Note that MyVerifyChecksum is empty since no checksum verification is performed in
this lab.

Step 7. Click on the deparser.p4 file to display the content of the file.

Figure 18. The deparser component.

The figure above shows the content of the deparser.p4 file. We can see that the deparser
is already written with two instructions that reassemble the packet.

3.3 Programming the pipeline sequence

Now it is time to write the pipeline sequence in the basic.p4 program.

Step 1. Click on the basic.p4 file to display the content of the file.

Figure 19. Selecting the basic.p4 file.

Step 2. Write the following block of code at the end of the file

Lab 3: P4 Program Building Blocks

 Page 15

V1Switch (

MyParser(),

MyVerifyChecksum(),

MyIngress(),

MyEgress(),

MyComputeChecksum(),

MyDeparser()

) main;

Figure 20. Writing the pipeline sequence in the basic.p4 program

We can see here that we are defining the pipeline sequence according to the V1Model
architecture. First, we start by the parser, then we verify the checksum. Afterwards, we
specify the ingress block and the egress block, and we recompute the checksum. Finally,
we specify the deparser.

Step 3. Save the changes by pressing Ctrl+s.

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

Lab 3: P4 Program Building Blocks

 Page 16

Figure 21. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 3: P4 Program Building Blocks

 Page 17

Figure 22. Downloading the P4 program to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 23. Maximizing the MiniEdit window.

Step 2. In MiniEdit, right-click on the P4 switch icon and start the Terminal.

Figure 24. Starting the terminal on the switch.

Lab 3: P4 Program Building Blocks

 Page 18

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 25. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded to switch s1
after compiling the P4 program.

5 Configuring switch s1

5.1 Mapping the P4 program’s ports

Step 1. Issue the following command to display the interfaces on the switch s1.

ifconfig

Lab 3: P4 Program Building Blocks

 Page 19

Figure 26. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-eth0 and s1-eth1. The interface s1-eth0
on the switch s1 connects host h1. The interface s1-eth1 on the switch s1 connects host
h2.

Step 2. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 --nanolog ipc:///tmp/bm-log.ipc

basic.json &

Figure 27. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The --nanolog option is used to instruct the switch daemon that we want to see the
logs of the switch.

Lab 3: P4 Program Building Blocks

 Page 20

s1-eth0 0 s1-eth11

Figure 28. Mapping of the logical interface numbers (0, 1) to the Linux interfaces (s1-eth0, s1-
eth1).

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 29. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab3/rules.cmd

Figure 30. Loading the forwarding table entries into switch s1.

Now the forwarding table in the switch is populated.

Lab 3: P4 Program Building Blocks

 Page 21

6 Testing and verifying the P4 program

Step 1. Type the following command to initiate the nanolog client that will display the
switch logs.

nanomsg_client.py

Figure 31. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command below so that the host starts listening
for incoming packets.

recv.py

Figure 32. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command to send a packet to host h2.

send.py 10.0.0.2 HelloWorld

Lab 3: P4 Program Building Blocks

 Page 22

Figure 33. Sending a test packet from host h1 to host h2.

Now that the switch has a program with tables properly populated, the hosts are able to
reach each other.

Step 4. Go back to switch s1 terminal and inspect the logs.

Figure 34. Inspecting the logs in switch s1.

The figure above shows the processing logic as the packet enters switch s1. The packet
arrives on port 0 (port_in: 0), then the parser starts extracting the headers. After the

Lab 3: P4 Program Building Blocks

 Page 23

parsing is done, the packet is processed in the ingress and in the egress pipelines. Then,
the checksum update is executed and the deparser reassembles and emits the packet
using port 1 (port_out: 1).

Step 5. Verify that the packet was received on host h2.

This concludes lab 3. Stop the emulation and then exit out of MiniEdit.

References

1. C. Cascaval, D. Daly. "P4 Architectures." [Online]. Available:
https://tinyurl.com/3zk8vs6a.

2. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.
3. P4lang/behavioral-model github repository. “The BMv2 Simple Switch target.”

[Online]. Available: https://tinyurl.com/vrasamm.

P4 PROGRAMMABLE DATA PLANES:
APPLICATIONS, STATEFUL ELEMENTS, AND

CUSTOM PACKET PROCESSING

Lab 4: Defining and Processing Custom Headers

Document Version: 03-01-2022

Lab 4: Defining and Processing Custom Headers

 Page 2

Contents

Overview ... 3
Objectives.. 3
Lab settings ... 3
Lab roadmap ... 3
1 Introduction to intrinsic metadata ... 3
2 Lab topology.. 5

2.1 Starting the end hosts ... 6
3 Defining and parsing a custom header ... 7

3.1 Loading the programming environment... 7
3.2 Defining a custom header ... 8
3.3 Parsing a custom header ... 10

4 Processing a custom header ... 12
4.1 Programming the ingress pipeline to forward a packet 12
4.2 Programming the egress pipeline to modify a custom header 16
4.3 Programing the deparser to emit a custom header ... 19

5 Loading the P4 program .. 19
5.1 Compiling and loading the P4 program to switch s1 .. 20
5.2 Verifying the configuration ... 21

6 Configuring switch s1 .. 22
6.1 Mapping P4 program’s ports .. 22
6.2 Loading the rules to the switch... 24

7 Testing and verifying the P4 program ... 24
References .. 28

Lab 4: Defining and Processing Custom Headers

 Page 3

Overview

This lab shows the steps to define, parse, and process a packet that contains a custom
header. This custom header includes the ingress port, the egress port, and the packet
length. Such information is available in the V1Model standard metadata, which is used to
interface the fixed-function components of the target switch (BMv2) with the P4 code. At
the end of this lab, the user will learn to insert the switch’s metadata into a custom header
and read that information from an end host.

Objectives

By the end of this lab, students should be able to:

1. Define a custom header.
2. Parse a custom header.
3. Include metadata into a custom header.
4. Program the egress pipeline.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to the V1Model standard metadata.
2. Section 2: Lab topology.
3. Section 3: Defining and parsing a custom header.
4. Section 4: Processing a custom header.
5. Section 5: Loading the P4 program.
6. Section 6: Configuring switch s1.
7. Section 7: Testing and verifying the P4 program.

1 Introduction to the V1Model standard metadata

Lab 4: Defining and Processing Custom Headers

 Page 4

When a packet arrives at a switch’s ingress port, the information contained in the headers’
field is available for processing. With this information, the switch can determine how to
forward a packet. For example, a switch can use the destination MAC address to
determine which port a packet will take to reach another host. Note that the MAC
addresses are part of the Ethernet frame. On the other hand, information such as the
ingress port and the packet length are not available in the packet headers. They are part
of the switch’s metadata.

The P4 language provides a data structure that contains the packet metadata. Figure 1
shows the metadata available in the V1Model, known as standard metadata. The
metadata includes the ingress port (see line 3), egress port (see line 5), packet length (see
line 10), and others. A programmer can use the switch's metadata to build custom
programs. Note that the metadata available in a P4 target is vendor-specific.

 1: /*************************STANDARD METADATA*************************/
 2: standard_metadata_t {
 3: bit<9> ingress_port;
 4: bit<9> egress_spec;
 5: bit<9> egress_port;
 6: bit<32> clone_spec;
 7: bit<32> instance_type;
 8: bit<1> drop;
 9: bit<16> recirculate_port;
 10: bit<32> packet_length;
 11: bit<32> enq_timestamp;
 12: bit<19> enq_qdepth;
 13: bit<32> deq_timedelta;
 14: bit<19> deq_qdepth;
 15: bit<48> ingress_global_timestamp;
 16: bit<48> egress_global_timestamp;
 17: bit<32> lf_field_list;
 18: bit<16> mcast_grp;
 19: bit<32> resubmit_flag;
 20: bit<16> egress_rid;
 21: bit<1> checksum_error;
 22: bit<32> recirculate_flag;
 23: }

Figure 1. The V1Model standard metadata.

Figure 2 represents the V1Model pipeline components. This figure shows that the packet
and its metadata traverse the pipeline through the data bus and the metadata bus,
respectively. Note that depending on the metadata that the P4 program is using, there
are values such as the egress timestamp (see line 16 in Figure 1) or the queue depth (see
line 12 in Figure 1) that are only available at the egress block after the packet passed
through the traffic manager. This characteristic implies that the programmer must
process the egress timestamp and queue depth at the egress pipeline.

Lab 4: Defining and Processing Custom Headers

 Page 5

Traffic
ManagerIn

g
re

s

E
gr

e
ss

Parser Deparser

Fixed-function components

... ...

Ingress pipeline Egress pipeline

State Memory (e.g., table) Metadata busData busALU

Figure 2. The V1Model architecture.

2 Lab topology

Let us get started by loading a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch.

10.0.0.1

h1

h1-eth0 s1-eth0 s1-eth2

s1

10.0.0.2

h2

h2-eth0

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab4 folder and search for the topology file called lab4.mn and click on
Open. A new topology will be loaded to MiniEdit.

Lab 4: Defining and Processing Custom Headers

 Page 6

Figure 5. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 6. Running the emulation.

2.1 Starting the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Lab 4: Defining and Processing Custom Headers

 Page 7

Figure 7. Opening a terminal on host h1.

Step 2. Test connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 8. Connectivity test using ping command.

The figure above shows unsuccessful connectivity between host h1 and host h2. This
result happens because there is no P4 program loaded on the switch.

3 Defining and parsing a custom header

In this section, you will learn how to create a custom header, which will contain the
ingress port, egress port, and packet length values. Then, you will specify the parser’s
behavior to extract the fields from the Ethernet, the IPv4, and the custom headers.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Lab 4: Defining and Processing Custom Headers

 Page 8

Figure 9. Shortcut to open a Linux terminal.

Step 2. Type the command below to open the working directory with Visual Studio Code
(VS Code). With VS Code you will edit the .p4 files, compile the source code, and load the
binary to the switch.

code P4_Labs/lab4/

Figure 10. Loading the development environment.

3.2 Defining a custom header

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 4: Defining and Processing Custom Headers

 Page 9

Figure 11. Inspecting the headers.p4 file.

Step 2. Define a custom header type by adding the code shown below. Note the fields
specified in the custom header will contain the ingress port, the egress port, and the
packet length.

header my_custom_header_t {

 bit<16> ingress_port;

bit<16> egress_port;

bit<32> packet_length;

}

Figure 12. Defining a custom header type.

Lab 4: Defining and Processing Custom Headers

 Page 10

Step 3. Append the custom header to current packet headers consisting of the Ethernet
and the IPv4 headers by adding the following line of code.

my_custom_header_t my_custom_header;

Figure 13. Defining a custom header.

Step 4. Save the changes to the file by pressing Ctrl + s.

3.3 Parsing a custom header

Step 1. Click on the parser.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 4: Defining and Processing Custom Headers

 Page 11

Figure 14. Inspecting the parser.p4 file.

Step 2. Define a state to parse the custom header my_custom_header by adding the
following piece of code.

state parse_my_custom_header{

 packet.extract(hdr.my_custom_header);

 transition accept;

}

Figure 15. Defining the state parse_my_custom_header.

Step 3. Modify the transition statement in the parse_ipv4 state by adding the following
line of code. Instead of transitioning to the accept state after parsing the IP header, the
parser will parse the custom header.

transition parse_my_custom_header;

Lab 4: Defining and Processing Custom Headers

 Page 12

Figure 16. Modifying the transition statement in the parse_ipv4 state.

Step 4. Save the changes to the file by pressing Ctrl + s.

4 Processing a custom header

In this section, you will define the ingress pipeline’s behavior with a match-action table.
This match-action table has the ingress port as the key and the actions to forward, drop
and ignore packets. Then, you will process the custom header in the egress pipeline. The
custom header will contain metadata such as the ingress port, the egress port, and the
packet length. Finally, you will resemble and emit the Ethernet, the IPv4, and the custom
header by programming the deparser.

4.1 Programming the ingress pipeline to forward a packet

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 4: Defining and Processing Custom Headers

 Page 13

Figure 17. Opening the ingress processing block.

The ingress.p4 file declares a control block named MyIngress. The MyIngress control block
processes the headers (i.e., Ethernet, IPv4, and custom), the custom metadata (not used
in this lab), and the standard metadata. The body of the control block is empty. You will
define the actions that the match-action table will call as follows:

• forward: this action will be used to forward a packet out of a switch port.

• drop: this action will be used to discard a packet.

Step 2. Define the behavior of the forward action by inserting the code below inside the
MyIngress control block.

action forward (egressSpec_t port) {

 standard_metadata.egress_spec = port;

}

Figure 18. Defining the forward action.

The action forward takes as parameters the port number of data type egressSpec_t
port. The switch uses the value of port to determine the egress port of a packet. The

Lab 4: Defining and Processing Custom Headers

 Page 14

egressSpec_t is a user-define data type that corresponds to bit<9> specified in the
headers.p4 file.

The standard_metadata is an instance of the standard_metadata_t struct provided by
the V1Model. Consider the figure below. In line 10, the
standard_metadata.egress_spec determines the egress port. The value of port is
populated from the control plane as action data.

Step 3. Now you will define the drop action by inserting the following code.

action drop() {

 mark_to_drop(standard_metadata);

}

Figure 19. Defining the drop action.

The drop() action invokes a primitive action mark_to_drop() that modifies the
standard_metadata.egress_spec to an implementation-specific special value that

causes the packet to be dropped.

Step 4. Now you will define a table named forwarding by adding the following piece of
code inside the control block MyIngress.

table forwarding {

 key = {

 standard_metadata.ingress_port: exact;

}

actions = {

 forward;

 drop;

 NoAction;

}

size = 1024;

default_action = drop();

}

Lab 4: Defining and Processing Custom Headers

 Page 15

Figure 20. Declaring the forwarding table.

The forwarding table matches at the ingress port using an exact match. The actions
include forward, drop, and NoAction. The table can contain up to 1024 entries, and the
default action invokes the drop action.

Step 5. Add the following code inside the MyIngress block. The code below describes the
ingress pipeline logic by sequentially invoking the tables, applying conditional statements
(e.g., if-else statements), among other packet processing instructions.

apply {

 if(hdr.ipv4.isValid()) {

 forwarding.apply();

 }

}

Lab 4: Defining and Processing Custom Headers

 Page 16

Figure 21. Defining the apply block.

The apply statement defines the sequential flow of packet processing. It is required in
every control block, otherwise the program will not compile. The code above applies the
table forwarding if the IPv4 header is valid (see line 31). Note that if the switch receives
an IPv6 packet, the if-statement that checks for the validity of the IPv4 header will
evaluate to false, and the forwarding table won’t be applied.

Step 6. Save the changes to the file by pressing Ctrl + s.

4.2 Programming the egress pipeline to modify a custom header

Step 1. Click on the egress.p4 file to display its content. Use the file explorer on the left-
hand side of the screen to locate the file.

Figure 22. Opening the egress processing block.

Step 2. Define the modify action by adding the following piece of code.

Lab 4: Defining and Processing Custom Headers

 Page 17

action modify(){

 hdr.my_custom_header.ingress_port = (bit<16>)standard_meatadata.ingress_port;

 hdr.my_custom_header.egress_port = (bit<16>)standard_meatadata.egress_port;

 hdr.my_custom_header.packet_length = standard_metadata.packet_length;

}

Figure 23. Defining the action modify.

The action defined above stores information from the standard metadata. Note that the
length of standard_metadata.ingress_port and standard_metadata.egress_port
is 9 bits. However, in P416 the header fields must be byte aligned. Thus, in lines 10 and 11,
you cast the values to 16-bits numbers.

Step 3. Define the table modify_custom_header by adding the following piece of code.

table modify_custom_header {

 actions = {

 modify;

 NoAction;

}

size = 1;

default_action = modify();

}

Lab 4: Defining and Processing Custom Headers

 Page 18

Figure 24. Defining the table modify_custom_header.

Note that the table modify_custom_header does not contain any key, which means it
will not include any entries. Although the table has two actions, they are never invoked.
Instead, it always executes the default action (i.e., modify()).

Step 4. Apply the egress logic by adding the following piece of code. Note that the table
modify_custom_header is applied only if the custom header is valid.

apply {

 modify_custom_header.apply();

}

Figure 25. Defining the apply logic.

Lab 4: Defining and Processing Custom Headers

 Page 19

Step 5. Save the changes to the file by pressing Ctrl + s.

4.3 Programing the deparser

Step 1. Click on the deparser.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file. You will observe that the Ethernet
and the IPv4 headers are already deparsed.

Figure 26. Opening the deparser processing block.

Step 2. Add the following line of code to emit the custom header.

packet.emit(hdr.my_custom_header);

Figure 27. Emitting a custom header.

Step 3. Save the changes to the file by pressing Ctrl + s.

At this point, you created a P4 program that parses and processes a custom header.

5 Loading the P4 program

In this section, you will compile and load the P4 binary into switch s1. You will also verify
that the binary resides in switch s1 filesystem.

Lab 4: Defining and Processing Custom Headers

 Page 20

5.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

Figure 28. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 4: Defining and Processing Custom Headers

 Page 21

Figure 29. Pushing the basic.json file to switch s1.

5.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the task bar to maximize the window.

Figure 30. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Lab 4: Defining and Processing Custom Headers

 Page 22

Figure 31. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image hosted in a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on switch s1 terminal to verify that the filesystem contains
the P4 program binary (i.e., basic.json)

ls

Figure 32. Displaying the contents of the current directory in the switch s1.

6 Configuring switch s1

In this section, you will observe and understand the purpose of the interfaces available in
switch s1. You will map those interfaces to the ports in the P4 program and start the
switch’s daemon. Note that the switch’s logs are enabled to see the tables and actions
that packets hit across the pipeline. Finally, you will load the rules to populate the match
action tables.

6.1 Mapping P4 program’s ports

Step 1. Issue the command below on the terminal of the switch s1 to see the available
interfaces in switch s1.

ifconfig

Lab 4: Defining and Processing Custom Headers

 Page 23

Figure 33. Displaying switch s1 interfaces.

You can observe that the switch has four interfaces: eth0, lo, s1-eth0, and s1-eth1. The
interface eth0 is used to communicate with the container, and lo is the loopback interface.
None of these interfaces are used by the P4 program. On the other hand, interfaces s1-
eth0 and s1-eth1 are used by the P4 program because they connect to hosts h1 and h2.
Interface s1-eth0 connects host h1, and interface s1-eth1 connects to host h2.

Step 2. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 --nanolog ipc:///tmp/bm-log.ipc

basic.json &

Figure 34. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Lab 4: Defining and Processing Custom Headers

 Page 24

The --nanolog option is used to instruct the switch daemon to display the switch’s logs.

6.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 35. Returning to switch s1 CLI.

Step 2. Populate the table entries by typing the following command.

simple_switch_CLI < ~/lab4/rules.cmd

Figure 36. Populating the forwarding table into switch s1.

The script above populates the entries in the forwarding table defined in the P4 program.

The first entry matches the key value of 00:00, executes the action forward, and loads
the action data with 00:01. The handle of this entry is 0. Similarly, the second entry
matches the key value of 00:01, executes the action forward, and loads the action data
with 00:00. The handle of this entry is 1.

7 Testing and verifying the P4 program

Lab 4: Defining and Processing Custom Headers

 Page 25

In this section, you will test the P4 program by sending custom packets from host h1 to
host h2. You will run the nanomsg client application to log the pipeline stages and observe
how the packet looks like when it reaches its destination (i.e., host h2).

Step 1. Type the following command to display the switch logs.

nanomsg_client.py

Figure 37. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command below so that, the host starts listening
for packets.

recv.py -p custom

Figure 38. Listening for incoming packets in host h2.

The script above receives the following parameters:

• -p: enables listening to a specific protocol.

• custom: the type of protocol.

Step 3. On host h1’s terminal, type the following command.

send.py 10.0.0.2 HelloWorld -p custom

Lab 4: Defining and Processing Custom Headers

 Page 26

Figure 39. Sending a test packet from host h1 to host h2.

Similarly, the script above receives the following parameters:

• 10.0.0.2: the destination IPv4 address.

• HelloWorld: the packet payload.

• -p: enables listening to a specific protocol.

• custom: the type of protocol.

Step 4. Inspect the logs on switch s1 terminal.

Lab 4: Defining and Processing Custom Headers

 Page 27

Figure 40. Inspecting the logs in switch s1.

The switch’s log shows that a packet is received in port 0. Then, the parser extracts the
Ethernet, the IPv4, and the custom header defined as my_custom_header. In the egress

pipeline, note that a hit in the forwarding table which invokes the action forward.

Then, there is a miss in the table modify_custom_header in the egress pipeline, which
invokes the default action modify. Finally, the packet is deparsed and emitted through
port 1.

Step 5. Verify that the packet was received on host h2.

Lab 4: Defining and Processing Custom Headers

 Page 28

Figure 41. Packet received on host h2.

The figure above shows that the custom packet was received on host h2. The custom
packet comprises the Ethernet, the IPv4, and the custom headers. The custom header
contains the ingress port, which value is 0, the egress port, which value is 1, and the

packet length, which is 52 bytes. The length of each header is summarized in the following
table.

Table 2. Header lengths.

Header/Payload Length (bytes)

Ethernet 14

IPv4 20

my_custom_header 8

Payload (HelloWorld) 10

Total 52

This concludes lab 4. Stop the emulation and then exit out of MiniEdit.

References

1. RFC 791. “Internet Protocol.” 1981.
2. Mininet walkthrough. [Online]. Available: http://Mininet.org.
3. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

4. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

Lab 4: Defining and Processing Custom Headers

 Page 29

5. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

P4 PROGRAMMABLE DATA PLANES:
APPLICATIONS, STATEFUL ELEMENTS, AND

CUSTOM PACKET PROCESSING

Lab 5: Monitoring the Switch’s Queue using
Standard Metadata

Document Version: 08-08-2022

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to queueing delay .. 3

1.1 Computing the queueing delay using standard metadata 4

2 Lab topology.. 5

3 Defining and parsing a custom header ... 7

3.1 Loading the programming environment .. 7

3.2 Defining a custom header .. 7

3.3 Parsing a custom header .. 9

4 Processing a custom header ... 11

4.1 Programming the egress pipeline .. 11

4.3 Programing the deparser ... 13

5 Loading the P4 program .. 14

5.1 Compiling and loading the P4 program to switch s1 ... 14

5.2 Verifying the configuration .. 15

6 Configuring switch s1 .. 16

6.1 Mapping P4 program’s ports.. 16

6.2 Loading the rules to the switch .. 17

7 Testing and verifying the P4 program ... 18

7.1 Setting the queue length .. 18

7.2 Testing the configuration ... 19

7.3 Starting the probing scripts .. 20

7.5 Measuring the queue length with background traffic 22

References .. 23

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 3

Overview

This lab is an introduction to queue monitoring using P4 standard metadata. The user will
create a P4 program to obtain the queue length, the enqueueing timestamp, and the
dequeuing timestamp. Then, the user will insert these values into a custom header to
observe the evolution of the queueing delay and queue length from an end host.

Objectives

By the end of this lab, students should be able to:

1. Understand how to obtain queueing delay from the switch’s metadata.
2. Insert queueing metadata into a custom header.
3. Visualize the values of the queue length and queueing delay.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Defining and parsing a custom header.
4. Section 4: Processing a custom header.
5. Section 5: Loading the P4 program.
6. Section 6: Configuring switch s1.
7. Section 7: Testing and verifying the P4 program.

1 Introduction to queueing delay

As a packet travels from the sender to the receiver, it experiences several types of delays
at each node (router/switch) along the path. The most significant delays are processing,
queuing, transmission, and propagation delay (see Figure 1).

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 4

Sender ReceiverSwitch

Processing Queueing

PropagationTransmission

ASIC

Figure 1. Delay components: processing, queueing, transmission, and propagation delays.

• Processing delay: The time required to examine the packet’s header and
determine where to direct the packet. For high-speed switches, this delay is on
the order of microseconds or less.

• Transmission delay: The time required to put the bits on the wire. It is given by the
packet size (in bits) divided by the bandwidth of the link (in bps). For example, for
a 10 Gbps and 1,500-byte packet (12,000 bits), the transmission time is T = 12,000
/ 10x109 = 0.0012 milliseconds or 1.2 microseconds.

• Queueing delay: The time a packet waits for transmission onto the link. The length
of the queuing delay of a packet depends on the number of earlier-arriving packets
that are queued and waiting for transmission onto the link. Queuing delays can be
on the order of microseconds to milliseconds.

• Propagation delay: Once a bit is placed into the link, it needs to propagate to the
other end of the link. The time required to propagate across the link is the
propagation delay. In local area networks (LANs) and datacenter environments,
this delay is small (microseconds to few milliseconds); however, in Wide Area
Networks (WANs) / long-distance connections, the propagation delay can be on
the order of hundreds of milliseconds.

1.1 Computing the queueing delay using standard metadata

Consider Figure 2. Switch s1 is a P4 programmable device with a bottleneck link
bandwidth of 100 Mbps. Suppose a scenario where host h3 starts a data transfer to host
h4. If the link between host h3 and switch s1 operates at a higher rate than the bottleneck
link, a queue is formed at the egress interface of switch s1. Therefore, host h1 will
experience an increased delay when communicating with host h2.

 Switch s1’s standard metadata contains the enqueueing and dequeuing timestamps. The
enqueueing timestamp (standard_metadata.enq_timestamp) indicates when a packet
enters the traffic manager (TM), and the dequeing timestamp
(standard_metadata.egress_global_timestamp) denotes the time when the packet
enters the egress pipeline. Note that these values are given with respect to the global

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 5

switch’s timer. With this information, the programmer can calculate the difference
between the timestamps and obtain the queueing delay. Additionally, the programmer
can obtain the queue length (standard_metadata.enq_qdepth) that indicates how
many packets are occupying the switch’s queue.

h1

s1

h2

h3 h4

s2

TM

Parser Deparser

Ingress
Timestamp

..
.

..
.

Ingress pipeline Egress pipeline

Egress Timestamp
+ Queue Length

Bottleneck link
100Mbps

Figure 2. Measuring the queueing delay with switch s1.

2 Lab topology

Let us get started by loading a simple Mininet topology using MiniEdit. The topology
comprises four end hosts, one P4 programmable switch, and one legacy switch.

10.0.0.1

h1

s1-eth0

s1
10.0.0.2

h2

10.0.0.3

h3

10.0.0.4

h4

s2

s2-eth1

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 6

Figure 4. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab5 folder and search for the topology file called lab5.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 5. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 6. Running the emulation.

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 7

3 Defining and parsing a custom header

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 7. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to execute.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code P4_Labs/lab5

Figure 8. Loading the development environment.

3.2 Defining a custom header

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 8

Figure 9. Inspecting the headers.p4 file.

Step 2. Define the custom header identifier by issuing the following command. This
constant valued indicates that the next header over IPv4 will be the one we defined.

const bit<8> TYPE_CUSTOM = 0xFD;

Figure 10. Defining the custom header identifier.

Step 3. Define the following custom header by adding code shown below.

header switch_stats_t {

 bit<8> switch_ID;

 bit<32> enq_timestamp;

bit<48> deq_timestamp;

bit<48> q_delay;

bit<24> q_depth;

}

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 9

Figure 11. Defining a custom header type.

Step 4. Append the custom header to current Ethernet and IPv4 headers by inserting the
following line of code.

switch_stats_t switch_stats;

Figure 12. Defining a custom header.

Step 5. Save the changes to the file by pressing Ctrl + s.

3.3 Parsing a custom header

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 10

Step 1. Click on the parser.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Figure 13. Inspecting the parser.p4 file.

Step 2. Define a state to parse the custom header switch_stats by adding the following
piece of code.

state parse_switch_stats{

 packet.extract(hdr.switch_stats);

 transition accept;

}

Figure 14. Defining the state parse_switch_stats.

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 11

Step 3. Modify the transition statement in the parse_ipv4 state by adding the following
line of code.

transition select(hdr.ipv4.protocol){

 TYPE_CUSTOM: parse_switch_stats;

 default accept;

}

Figure 15. Modifying the transition statement in the parse_ipv4 state.

Step 4. Save the changes to the file by pressing Ctrl + s.

4 Processing a custom header

In this section, the user will program the egress pipeline to collect statistics such as the
ingress timestamp, egress timestamp, the difference between the ingress and egress
timestamps, and the queue length. All these values are obtained from the switch’s
metadata and computed using a match-action table. Finally, the user will emit the custom
header by programming the deparser.

4.1 Programming the egress pipeline

Step 1. Click on the egress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 12

Figure 16. Inspecting the egress processing block.

Step 2. Define the modify action by adding the following piece of code.

action modify(){

 hdr.switch_stats.switch_ID = 1;

 hdr.switch_stats.enq_timestamp = standard_metadata.enq_timestamp;

 hdr.switch_stats.deq_timestamp = standard_metadata.egress_global_timestamp;

 hdr.switch_stats.q_delay = standard_metadata.egress_global_timestamp

 - (bit<48>)standard_metadata.enq_timestamp;

 hdr.switch_stats.q_depth = (bit<24>)standard_metadata.enq_qdepth;

}

Figure 17. Defining the action modify.

Step 3. Apply the egress logic by adding the following piece of code.

apply {

modify();

}

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 13

Figure 18. Defining the apply logic.

Step 4. Save the changes to the file by pressing Ctrl + s.

4.3 Programing the deparser

Step 1. Click on the deparser.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Figure 19. Opening the deparser processing block.

You will observe that the Ethernet and IPv4 header are already deparsed.

Step 2. Add the following line of code to emit the custom header.

packet.emit(hdr.switch_stats);

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 14

Figure 20. Emitting a custom header.

Step 3. Save the changes to the file by pressing Ctrl + s.

5 Loading the P4 program

5.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

Figure 21. Compiling a P4 program.

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 15

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Figure 22. Pushing the basic.json file to switch s1.

5.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 23. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 16

Figure 24. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 25. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

6 Configuring switch s1

6.1 Mapping P4 program’s ports

Step 1. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 basic.json &

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 17

Figure 26. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

6.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 27. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab5/rules.cmd

Figure 28. Populating the forwarding table into switch s1.

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 18

The script above pushes the rules into the match-action table forwarding.

7 Testing and verifying the P4 program

In this section, the user will test the P4 program by generating background traffic and
sending a packet with the custom header switch_stats. The purpose of the background
traffic is to fill the switch’s queue. Then, the P4 program will insert queueing information
into the custom header. The values in the custom headers are observed from a receiver.

7.1 Setting the queue length

Step 1. Type the following command to start switch s1’s CLI.

simple_switch_CLI

Figure 29. Starting switch s1’s CLI.

Step 2. Set the queue rate by issuing the following command.

set_queue_rate 8333

Figure 30. Setting the queue rate in switch s1.

Note that the queue rate value 8333 packets per second. This value is calculated as
follows: Consider the the maximum rate is 100 Mbps and the Maximum Transmission Unit
(MTU) is 1500 bytes/packet (i.e., 12,000 bits/packet). Thus, the number of packet that the
queue must serve per second corresponds to the following value.

𝑞𝑟𝑎𝑡𝑒 =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑎𝑡𝑒 [𝑏𝑖𝑡𝑠/𝑠]

𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 [𝑏𝑖𝑡𝑠/𝑝𝑎𝑐𝑘𝑒𝑡]
=

100,000,000 [𝑏𝑖𝑡𝑠/𝑠]

12,000[𝑏𝑖𝑡𝑠/𝑝𝑎𝑐𝑘𝑒𝑡]
≈ 8333 𝑝𝑎𝑐𝑘𝑒𝑡𝑠/𝑠

With this value, the sending rate is 100Mbps.

Step 3. Set switch s1’s buffer size (queue depth) by issuing the following command.

set_queue_depth 1666

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 19

Figure 31. Setting the queue rate in switch s1.

In the figure above, the buffer size is set to 1666 packets (i.e., ~2.5Mbytes), which
correspond to ten Bandwidth-Delay Product (BDP)2. The BDP value was calculated
considering a bandwidth of 100Mbps and a maximum delay of 20ms.

𝐵𝐷𝑃 = 𝐵𝑊 ∗ 𝑑𝑒𝑙𝑎𝑦 = 100,000,000[𝑏𝑖𝑡𝑠/𝑠] ∗ 0.02[𝑠] = 2,000,000 [𝑏𝑖𝑡𝑠]
= 250,000 [𝑏𝑦𝑡𝑒𝑠] ≈ 166 [𝑝𝑎𝑐𝑘𝑒𝑡𝑠]

 10 ∗ 𝐵𝐷𝑃 = 1666 [𝑝𝑎𝑐𝑘𝑒𝑡𝑠]

7.2 Testing the configuration

Step 1. Go back to MiniEdit and open a terminal in host h4 and start an iperf3 server by
issuing the following command.

iperf3 -s

Figure 32. Starting an iperf3 server in host h4.

Step 2. Open a terminal in host h3 and run the following command to start an iperf3 client
that will send data to the iperf3 server in host h4.

iperf3 -c 10.0.0.4

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 20

Figure 33. Starting an iperf3 client in host h3.

Note in the figure above that the bitrate of the data transfer is approximately 96.3Mbps
which is close to the link bandwidth 100Mbps.

7.3 Starting the probing scripts

Step 1. Go back to MiniEdit and open a terminal on host h2. Issue the following command
so that, host h2 starts listening for packets.

recv.py -p probe

Figure 34. Listening for incoming packets in host h2.

The script above receives the following parameters:

• -p: enables listening to a specific protocol.

• probe: the protocol type.

Step 2. Open a terminal in host h1’s terminal, type the following command.

send.py 10.0.0.2 HelloWorld -p probe

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 21

Figure 35. Sending a test packet from host h1 to host h2.

Similarly, the script above receives the following parameters:

• 10.0.0.2: the destination IPv4 address.

• HelloWorld: the packet payload.

• -p: enables listening to a specific protocol.

• probe: the protocol type. Note that this protocol sends a custom packet every 10
milliseconds.

Step 3. Verify that the packet was received on host h2.

Figure 36. Packet received on host h2.

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 22

Note that the value of the enqueueing timestamp (enq_timestamp) is 1,157,080,600
microseconds and the dequeuing timestamp (deq_timestamp) is 1,157,080,645
microseconds. The time difference (45 microseconds) indicates the processing time of the
pipeline, and the queue length is zero.

7.5 Measuring the queue length with background traffic

Step 1. In host h3 and run the following command.

iperf3 -c 10.0.0.4 -t 120 -P 30

Figure 37. Starting an iperf3 client in host h3.

Step 2. Go back to host h2 and observe the evolution of the time_diff and q_length

fields.

Figure 38. Visualizing the evolution of the processing time and queue length.

The figure above shows that the queuing delay (q_delay) is 162,941 microseconds (~162
milliseconds). Note that queue length is greater than zero while the iperf3 test is running.

Step 3. Go back to MiniEdit and open another terminal in host h1 and run a ping test.

ping 10.0.0.4

Lab 5: Monitoring the Switch’s Queue using Standard Metadata

 Page 23

Figure 39. Measuring the round-trip time (RTT) between host h1 and host h4.

Note that RTT between host h1 and host h4 is up to 200 milliseconds due to bufferbloat2.

This concludes lab 5. Stop the emulation and then exit out of MiniEdit.

References

1. RFC 791. “Internet Protocol.” 1981.
2. J. Crichigno, E. Kfoury, E. Bou-Harb, N. Ghani. “High-Speed Networks: A Tutorial.”

[Online]. Available: https://tinyurl.com/3dkbf7d7
3. Mininet walkthrough. [Online]. Available: http://Mininet.org.
4. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

5. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

6. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

P4 PROGRAMMABLE DATA PLANES:
APPLICATIONS, STATEFUL ELEMENTS, AND

CUSTOM PACKET PROCESSING

Lab 6: Collecting Queueing Statistics using a
Header Stack

Document Version: 04-06-2022

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 2

Contents

Overview ... 3
Objectives.. 3
Lab settings ... 3
Lab roadmap ... 3
1 Introduction to header stacks in P4 .. 3

1.1 Lab scenario .. 4
1.2 Defining a header stack .. 4
1.3 Parsing a header stack .. 5

2 Lab topology.. 7
2.1 Starting the end hosts ... 9

3 Defining and parsing a header stack ... 9
3.1 Loading the programming environment... 10
3.2 Defining a header stack .. 11
3.3 Parsing a custom header ... 15

4 Processing a header stack ... 18
4.1 Programming the egress pipeline ... 18
4.2 Programing the deparser to emit a custom header ... 21

5 Loading the P4 program .. 22
5.1 Compiling and loading the P4 program to switch s1 .. 22
5.2 Verifying the configuration ... 25

6 Configuring the switches .. 26
6.1 Running the switch’s daemon and mapping the ports 26
6.2 Loading the rules to the switch... 27

7 Testing and verifying the P4 program ... 29
7.1 Setting the queue length .. 30
7.2 Testing the configuration .. 31
7.3 Starting the probing protocol ... 32
7.4 Measuring the queue length with background traffic 33
7.5 Steering the traffic towards switch s3 .. 34

References .. 36

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 3

Overview

This lab introduces P4 header stacks for collecting queue statistics. A header stack
represents an array of headers that can be described in P4. This lab shows how to define,
parse, and compute header stacks.

Objectives

By the end of this lab, students should be able to:

1. Define header stacks in P4.
2. Parse headers with different lengths.
3. Append queue statistics into a custom header.
4. Visualize the evolution of the queue metrics in various switches.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Defining and parsing a header stack.
4. Section 4: Processing a header stack.
5. Section 5: Loading the P4 program.
6. Section 6: Configuring the switches.
7. Section 7: Testing and verifying the P4 program.

1 Introduction to header stacks in P4

P4 provides the constructs to define, parse, and process header stacks. A header stack is
an array of headers that a P4 programmable switch can parse. This capability enables
applications to collect information from the switches that a packet transits.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 4

1.1 Lab scenario

Figure 1 shows a topology with two end hosts and three P4 programmable switches.
Consider a scenario where a packet departing from host h1 (sender) can reach host h2
(receiver) taking two paths: 1) h1-s1-s2-h2 and, 2) h1-s1-s3-s2-h2. Along the way, the
packet collects information from the switches. This information includes:

• Switch ID.

• Ingress timestamp.

• Egress timestamp.

• Time difference between egress and ingress timestamps.

• Queue length.

The receiver host h2 can observe two or three headers in the stack depending on the path
taken by the packet. In this lab, the user will create a P4 program that uses header stacks
to insert the information listed above in a packet.

s1 h2h1 s2

s3

Figure 1. Collecting queue statistics with P4 switches.

1.2 Defining a header stack

Figure 2 shows the definition of a header stack. Assume that the Ethernet and IPv4
headers are already defined, and the header stack will be over the UDP header (see lines
3-8). The definitions in the P4 code are explained as follows:

• Line 10-12: defines the custom header type layer_t. This header will be used to
store the number of headers in the stack.

• Line 14-20: defines a custom header that will collect information from each switch.

• Line 22-24: defines the parser metadata header type.

• Line 26-28: declares the metadata header used to store the parser’s metadata.

• Line 30-34: declares the header used by the P4 program. Note that the header
stack sw_stats is declared as an array of MAX_HOPS elements.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 5

 1: #define MAX_HOPS 8
 2:
 3: header udp_t {
 4: port_t srcPort;
 5: port_t dstPort;
 6: bit<16> len;
 7: bit<16> checksum;
 8: }
 9:
10: header layer_t {
11: bit<16> count;
12: }
13:
14: header sw_stats_t {
15: switch_ID_t switch_ID;
16: bit<48> ingress_timestamp;
17: bit<48> egress_timestamp;
18: bit<48> time_diff;
19: bit<24> q_depth;
20: }
21:
22: struct parser_metadata_t {
23: bit<16> remaining;
24: }
25:
26: struct metadata {
27: parser_metadata_t parser_metadata;
28: }
29:
30: struct headers {
31: ethernet_t ethernet;
32: ipv4_t ipv4;
33: udp_t udp;
34: layer_t layers;
35: sw_stats_t[MAX_HOPS] sw_stats;
36: }

Figure 2. Defining a header stack.

1.3 Parsing a header stack

Figure 3a shows a P4 code fragment that parses a header stack. Consider that the
Ethernet and IPv4 headers are already parsed, thus the following code starts with UDP.

• Line 1: defines the state parse_udp.

• Line 2: extracts the values in the UDP header.

• Line 3: selects the next state based on the destination UDP port.

• Line 4: transitions to the state parse_layer_count when the destination port
value is TYPE_CUSTOM.

• Line 5: specifies the default transition.

• Line 9: defines the state parse_layer_count.

• Line 10: extracts the values in the header layers.

• Line 11: stores the current layer count in the parser metadata.

• Line 12: selects the transition based on the layer count.

• Line 13: accepts the packet if the layer count is zero.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 6

• Line 14: transitions to the state parse_layer_count when the destination port
value is TYPE_CUSTOM.

• Line 18: defines the state parse_layer_count.

• Line 19: extracts the top header in the stack.

• Line 20-21: decrements the number of headers in the stack.

• Line 22: selects the transition based in the number of the remaining headers in
the stack.

• Line 23: accepts the packet if the remaining headers in the stack are zero.

• Line 24: invokes the state parse_sw_stats. Note that this statement is reclusively
called until all the headers in the stack is parsed.

Figure 3b summarizes the states and transitions described in the P4 code fragment.

 1: state parse_udp {
 2: packet.extract(hdr.udp);
 3: transition select(hdr.udp.dstPort) {
 4: TYPE_CUSTOM: parse_layer_count;
 5: default: accept;
 6: }
 7: }
 8:
 9: state parse_layer_count {
10: packet.extract(hdr.layers);
11: meta.parser_metadata.remaining = hdr.layers.count;
12: transition select(hdr.layers.count){
13: 0: accept;
14: default: parse_sw_stats;
15: }
16: }
17:
18: state parse_sw_stats {
19: packet.extract(hdr.sw_stats.next);
20: meta.parser_metadata.remaining =
21: meta.parser_metadata.remaining - 1;
22: transition select(meta.parser_metadata.remaining){
23: 0 : accept;
24: default: parse_sw_stats;
25: }
26: }

(a)

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 7

parse_layer_count

udp.dstPort == TYPE_CUSTOM udp.dstPort TYPE_CUSTOM

Accept

parse_udp

parse_sw_stats Accept

Accept

layers.count layers.count = 0

parser_metadata.remaining = 0

parser_metadata.remaining

(b)

Figure 3. Parsing a header stack. (a) Fragment of a P4 code that parses a header stack. (b)
Graphical representation of the states, transitions, and conditions in the parser.

2 Lab topology

Let us get started by loading a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch.

s1 h2h1 s2

s3

h1-eth0 s1-eth0s1-eth1 s2-eth0 s2-eth2 h2-eth0

s2-eth1s1-eth2

s3-eth0 s3-eth1

Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 8

Figure 5. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab6 folder and search for the topology file called lab6.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 6. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 7. Running the emulation.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 9

2.1 Starting the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Figure 8. Opening a terminal on host h1.

Step 2. Run the following command to display the information of the interfaces on host
h1.

ifconfig

Figure 9. Displaying interfaces’ information on host h1.

3 Defining and parsing a header stack

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 10

In this section, you will define and parse a header stack. The header stack stores queue
statistics consisting of the switch ID, the ingress timestamp, the egress timestamp, the
time difference between the previous timestamps, and the queue length. These values
are part of the standard metadata collected from each switch. Then, you will define the
parsing logic, which follows the graph described in Figure 3b. Note that a new header is
appended every time a packet traverses a switch.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to execute.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4_Labs/lab6

Figure 11. Loading the development environment.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 11

3.2 Defining a header stack

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Figure 12. Inspecting the headers.p4 file.

Step 2. Define the following header by inserting the next code into the headers.p4. file.
The field will specify the number of custom headers added to the packet.

header layer_t {

 bit<16> count;

}

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 12

Figure 13. Defining a custom header.

Step 3. Define a custom header type by inserting the code shown below. This header
consists of the switch ID, the ingress timestamp, the difference between the egress and
the egress timestamps, and the queue length.

header sw_stats_t {

 bit<8> switch_ID;

 bit<48> ingress_timestamp;

bit<48> egress_timestamp;

bit<48> time_diff;

bit<24> q_depth;

}

Figure 14. Defining a custom header data structure.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 13

Step 4. Define a custom metadata type by adding the following code. This metadata
stores the number of remaining headers to be parsed.

struct parser_metadata_t {

 bit<16> remaining;

}

Figure 15. Defining a custom metadata type.

Step 5. Include the custom metadata parser_metadata_t into the metadata data
structure by adding the following line.

parser_metadata_t parser_metadata;

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 14

Figure 16. Including the custom metadata parser_metadata_t into the metadata struct.

Step 6. Add the custom headers to the packet header definition by including the following
lines. Note that the header sw_stats_t has MAX_HOPS elements.

layer_t layers;

sw_stats_t[MAX_HOPS] sw_stats;

Figure 17. Adding the custom headers to the header’s definition.

Step 7. Save the changes to the file by pressing Ctrl + s.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 15

3.3 Parsing a custom header

Step 1. Click on the parser.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Figure 18. Inspecting the parser.p4 file.

Step 2. Define the state parser_layer_count to parse the custom header by adding the
following piece of code.

state parse_layer_count {

 packet.extract(hdr.layers);

 meta.parser_metadata.remaining = hdr.layers.count;

 transition select(hdr.layers.count){

 0: accept;

 default: parse_sw_stats;

}

}

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 16

Figure 19. Defining the state parse_layer_count.

The code in the figure above extracts the value of hdr.layers which contains the number
of custom headers in the packet. Such value is stored in the parser metadata
meta.parser_metadata.remaining. The packet is accepted if the number is zero;
otherwise, the parser transitions to the parse_sw_stats state.

Step 3. Define another state to parse the header stack parser_sw_stats by adding the
following piece of code.

state parse_sw_stats {

 packet.extract(hdr.sw_stats.next);

 meta.parser_metadata.remaining =

 meta.parser_metadata.remaining – 1;

 transition select(meta.parser_metadata.remaining){

 0: accept;

 default: parser_sw_stats;

}

}

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 17

Figure 20. Defining the state parse_sw_stats.

The code in the figure above extracts the information from the header stack
hdr.sw_stats by using the .next statement. After extracting the header, the state
decrements the remaining field. The transition depends on the remaining value. If zero,
the packet is accepted, meaning that there are no more layers to extract; otherwise, the
process is repeated recursively.

Step 4. Now that the parsing states for the header stack are defined, you will modify the
UDP parser to transition to parse_layer_count and parse_sw_stats. Scroll up and
change the transition statement in the parse_udp state by adding the following
statements.

transition select(hdr.udp.dstPort){

 TYPE_CUSTOM: parse_layer_count;

 default accept;

}

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 18

Figure 21. Modifying the transition statement in the parse_udp state.

Note that the transition from parse_udp to parse_layer_count is defined by the UDP
destination port (i.e., hdr.udp.dstPort).

Step 5. Save the changes to the file by pressing Ctrl + s.

4 Processing a header stack

In this section, you will program the egress pipeline to assign the values of the switch ID,
the egress timestamp, the ingress timestamp, the time difference, and the queue length
to the fields in the header stack. These values are available in the switch’s standard
metadata. You will also perform an arithmetic operation between the egress and ingress
timestamp to obtain the time difference when a packet finished the ingress block and
started the egress block.

4.1 Programming the egress pipeline

Step 1. Click on the egress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 19

Figure 22. Inspecting the egress processing block.

Step 2. Define the add_sw_stats action by adding the following piece of code. Note that
the action parameter is the switch ID.

action add_sw_stats(switch_ID_t ID){

 hdr.layers.count = hdr.layers.count + 1;

 hdr.sw_stats.push_front(1);

 hdr.sw_stats[0].setValid();

 hdr.sw_stats[0].ingress_timestamp = standard_metadata.ingress_global_timestamp;

 hdr.sw_stats[0].egress_timestamp = standard_metadata.egress_global_timestamp;

 hdr.sw_stats[0].time_diff = standard_metadata.egress_global_timestamp

 - standard_metadata.ingress_global_timestamp;

 hdr.sw_stats[0].q_depth = (bit<24>)standard_metadata.enq_qdepth;

 hdr.sw_stats[0].switch_ID = ID;

 hdr.ipv4.totalLen = hdr.ipv4.totalLen + 22;

 hdr.udp.len = hdr.udp.len + 32;

}

Figure 23. Defining the action add_sw_stats.

The code in the figure inserts metadata information into the header stack. It starts by
increasing the layer count (see line 10) and adding it to the header stack (see line 11).
After validating the new header (hdr.sw_stats[0].setValid()), the metadata
information is added to the header stack (see lines 13-18). Finally, the IPv4 and UDP
header lengths are updated to consider the new header.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 20

Step 3. Define the table add_queue_statistics by adding the following piece of code.

table add_queue_statistics {

 key = {

 hdr.udp.dstPort: exact;

}

 actions = {

 add_sw_stats;

 NoAction;

}

size = 32;

default_action = NoAction;

}

Figure 24. Defining the table add_queue_statistics.

The table in the figure above matches the UDP destination port. It can execute two actions
add_sw_stats and NoAction. The table allocates 32 entries and the default action, which
occurs when the key value is not present in the table, is NoAction.

Step 4. Apply the egress logic by adding the following piece of code. This code applies the
add_queue_statistics table when the layers header is valid.

apply {

 if(hdr.layers.isValid()) {

 add_queue_statistics.apply();

 }

}

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 21

Figure 25. Defining the apply logic.

Step 5. Save the changes to the file by pressing Ctrl + s.

4.2 Programing the deparser to emit a custom header

Step 1. Click on the deparser.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Figure 26. Opening the deparser processing block.

You will observe that the Ethernet and IPv4 header are already deparsed.

Step 2. Add the following lines of code to emit the custom headers.

packet.emit(hdr.layers);

packet.emit(hdr.sw_stats);

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 22

Figure 27. Emitting a custom header.

Note that the custom headers layers and sw_stats will only be emitted if they are valid.

Step 3. Save the changes to the file by pressing Ctrl + s.

5 Loading the P4 program

In this section, you will compile and load the P4 binary into the switches. You will also
verify that the binaries reside in switches’ filesystem.

5.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside VS Code to compile the
program.

p4c basic.p4

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 23

Figure 28. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 24

Figure 29. Pushing the basic.json file to switch s1.

Step 3. Similarly, type the command below in the terminal panel to push the basic.json
file into switches s2 and s3 filesystems. Note that the same P4 program is used by the
three switches.

push_to_switch basic.json s2

push_to_switch basic.json s3

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 25

Figure 30. Pushing the basic.json file to switches s2 and s3.

5.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 31. Maximizing the MiniEdit window.

Step 2. Right-click on the switch s1 icon and select Terminal.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 26

Figure 32. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 33. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

Step 4. Similarly, repeat steps 2 and 3 in switches s2 and s3, and verify that the basic.json
file is present.

6 Configuring the switches

In this section, you will observe and understand the purpose of the interfaces available in
the switches. You will map those interfaces to the ports in the P4 program and start the
switch daemon. Then, you will load the rules to populate the match action tables.

6.1 Running the switch’s daemon and mapping the ports

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 27

Step 1. In switch s1 terminal, start the switch daemon and map the logical interfaces to
Linux interfaces by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 basic.json &

Figure 34. Starting switch s1 daemon and mapping the logical interfaces to Linux interfaces.

Step 2. In switch s2 terminal, start the switch daemon and map the logical interfaces to
Linux interfaces by typing the following command.

simple_switch -i 0@s2-eth0 -i 1@s2-eth1 -i 2@s2-eth2 basic.json &

Figure 35. Starting switch s2 daemon and mapping the logical interfaces to Linux interfaces.

Step 3. In switch s3 terminal, start the switch daemon and map the logical interfaces to
Linux interfaces by typing the following command.

simple_switch -i 0@s3-eth0 -i 1@s3-eth1 basic.json &

Figure 36. Starting switch s3 daemon and mapping the logical interfaces to Linux interfaces.

6.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 28

Figure 37. Returning to switch s1 CLI.

Step 2. Push the table entries to switch s1 by typing the following command.

simple_switch_CLI < ~/lab6/rules_s1.cmd

Figure 38. Populating the forwarding table into switch s1.

Step 3. Press Enter, then push the table entries to switch s2 by typing the following
command.

simple_switch_CLI < ~/lab6/rules_s2.cmd

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 29

Figure 39. Populating the forwarding table into switch s2.

Step 4. Similarly, press Enter, then push the table entries to switch s3 by typing the
following command.

simple_switch_CLI < ~/lab6/rules_s3.cmd

Figure 40. Populating the forwarding table into switch s3.

7 Testing and verifying the P4 program

In this section, you will set the queue rate and queue length of the three switches to
send packets at 100 Mbps. Then, you will start sending probing packets to collect the

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 30

queue statistics from the switches the packet traverses. Then, you will add background
traffic by running an iperf3 test between host h1 and host h2 to observe the evolution
of the queue length. Finally, you will change the forwarding rules in switch s1 to have
the packet traversing three switches.

7.1 Setting the queue length

Step 1. Type the following command to start switch s1’s CLI.

simple_switch_CLI

Figure 41. Starting switch s1’s CLI.

Step 2. Set the queue rate by issuing the following command.

set_queue_rate 8333

Figure 42. Setting the queue rate in switch s1.

Note that the queue rate value 8333 packets per second. This value is calculated as
follows: Consider that we want to set the maximum rate to 100 Mbps and the Maximum
Transmission Unit (MTU) is 1500 bytes/packet (i.e., 12,000 bits/packet). Thus, the number
of packet that the queue must serve per second corresponds to the following value.

𝑞𝑟𝑎𝑡𝑒 =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑎𝑡𝑒 [𝑏𝑖𝑡𝑠/𝑠]

𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 [𝑏𝑖𝑡𝑠/𝑝𝑎𝑐𝑘𝑒𝑡]
=

100,000,000 [𝑏𝑖𝑡𝑠/𝑠]

12,000[𝑏𝑖𝑡𝑠/𝑝𝑎𝑐𝑘𝑒𝑡]
≈ 8333 𝑝𝑎𝑐𝑘𝑒𝑡𝑠/𝑠

Step 3. Set switch s1’s buffer size (queue depth) by issuing the following command.

set_queue_depth 16666

Figure 43. Setting the queue rate in switch s1.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 31

In the figure above, the buffer size is set to 16666 packets (i.e., ~25Mbytes), which
correspond to ten Bandwidth-Delay Product (BDP). The BDP value was calculated
considering a bandwidth of 100Mbps and a maximum delay of 200ms.

𝐵𝐷𝑃 = 𝐵𝑊 ∗ 𝑑𝑒𝑙𝑎𝑦 = 100,000,000 ∗ 0.2 = 20,000,000 [𝑏𝑖𝑡𝑠] = 2,500,000 [𝑏𝑦𝑡𝑒𝑠]
≈ 1666 [𝑝𝑎𝑐𝑘𝑒𝑡𝑠]

 10 ∗ 𝐵𝐷𝑃 = 16,666 [𝑝𝑎𝑐𝑘𝑒𝑡𝑠]

Step 4. Repeat from step 1 to step 3 in switches s2 and s3.

7.2 Testing the configuration

Step 1. Open a terminal in host h2 and start an iperf3 server by issuing the following
command.

iperf3 -s

Figure 44. Starting an iperf3 server in host h2.

Step 2. In host h1, run the following command to start an iperf3 client that will send data
to the iperf3 server in host h4.

iperf3 -c 10.0.0.2

Figure 45. Starting an iperf3 client in host h1.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 32

Note in the figure above that the bitrate of the data transfer is approximately 92.4Mbps
which is close to the link bandwidth 100Mbps.

7.3 Starting the probing protocol

Step 1. Open another terminal in host h2 and type the command, so that, the host starts
listening for the custom packets.

recv.py -p stack

Figure 46. Listening for incoming packets in host h2.

The script above receives the following parameters:

• -p: enables listening to a specific protocol.

• stack: the protocol type.

Step 2. On host h1’s terminal, type the following command.

send.py 10.0.0.2 HelloWorld -p stack

Figure 47. Sending a test packet from host h1 to host h2.

Similarly, the script above receives the following parameters:

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 33

• 10.0.0.2: the destination IPv4 address.

• HelloWorld: the packet payload.

• -p: enables listening to a specific protocol.

• stack: the protocol type. Note that this protocol sends a custom packet every 10
milliseconds.

Step 3. Verify that the custom packet is being received on host h2.

Figure 48. Packet received on host h2.

The figure above shows that the layer count and two headers with the queue statistics
have been added over the UDP header. In this test, the layer count is 2, and the traces
contain the queue statistics corresponding to switches 2 and 1, respectively. Note that
the queue length is zero.

7.4 Measuring the queue length with background traffic

Step 1. Open another terminal in host h1 and run the following command.

iperf3 -c 10.0.0.2 -t 120

Figure 49. Starting an iperf3 client in host h1.

Step 2. Go back to host h2 and observe that two traces have been added. The first trace
corresponds to the queue statistics of switch s2 and switch s1 respectively.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 34

Figure 50. Visualizing the evolution of the processing time and queue length.

After adding background traffic by running an iperf3 test, you can observe that queues
are formed in both switches.

7.5 Steering the traffic towards switch s3

Step 1. In switch s1 terminal, issue the following command to show the table entries. Note
that the second entry (0x1) specifies that traffic going to host h2 (with MAC address
00:00:00:00:00:02) uses the egress port 0.

table_dump MyIngress.forwarding

Figure 51. Displaying the entries of table forwarding located in the ingress block.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 35

Step 2. Delete the second entry by issuing the following command.

table_delete MyIngress.forwarding 1

Figure 52. Deleting entry 1 from the table forwarding.

Step 3. Insert a new entry by issuing the command below. This entry will specify that
egress port will be port 2, the one facing switch s3.

table_add MyIngress.forwarding MyIngress.forward 00:00:00:00:00:02 => 2

Figure 53. Adding a new entry to table forwarding.

Step 4. Go back to host h1 and stop the iperf3 test, if this is still running, by pressing
Ctrl+c.

Step 5. Go back to host h1 and run another iperf3 test by issuing following command.

iperf3 -c 10.0.0.2 -t 120

Figure 54. Starting an iperf3 client in host h1.

Step 6. In host h2 verify that three switch traces are being received.

Lab 6: Collecting Queueing Statistics using a Header Stack

 Page 36

Figure 55. Starting an iperf3 client in host h2.

The figure above shows that the layer count and three headers with the queue statistics
have been added over the UDP header. In this case, the layer count is 3, and the traces
contain the queue statistics corresponding to switches 3, 2 and 1, respectively.

This concludes lab 6. Stop the emulation and then exit out of MiniEdit.

References

1. RFC 791. “Internet Protocol.” 1981.
2. Mininet walkthrough. [Online]. Available: http://Mininet.org.
3. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

4. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

5. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

P4 PROGRAMMABLE DATA PLANES:
APPLICATIONS, STATEFUL ELEMENTS, AND

CUSTOM PACKET PROCESSING

Lab 7: Measuring Flow Statistics using Direct and
Indirect Counters

Document Version: 04-24-2022

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to counters in P4 .. 3

1.1 Lab scenario .. 4

1.2 Defining a direct counter in P4... 4

1.3 Defining an indirect counter in P4 ... 6

2 Lab topology.. 8

2.1 Starting the end hosts .. 10

3 Implementing counters at the ingress pipeline .. 11

3.1 Loading the programming environment .. 11

3.2 Defining the forwarding behavior .. 12

3.3 Defining a direct counter ... 15

3.4 Defining an indirect counter .. 16

4 Loading the P4 program .. 18

4.1 Compiling and loading the P4 program to switch s1 ... 18

4.2 Verifying the configuration .. 20

5 Configuring switch s1 .. 21

5.1 Running the switch’s daemon and mapping the ports 21

5.2 Loading the rules to the switch .. 22

6 Testing and verifying the P4 program ... 23

6.1 Running iperf3 tests between end hosts ... 23

6.2 Verifying the counters’ values .. 24

6.3 Referring indirect counter indexes .. 26

References .. 29

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 3

Overview

Counters are stateful elements to collect statistics in the data plane. This lab introduces
the user to counters in P4 by showing how to create a monitoring application that counts
the bytes per flow. Moreover, this lab demonstrates how to read the counter value from
the control plane. Finally, the user will generate traffic to test the P4 program.

Objectives

By the end of this lab, students should be able to:

1. Define direct and indirect counters.
2. Refer indirect counters to match-action table entries.
3. Read counter values from the control plane.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Implementing counters at the ingress pipeline.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Testing and verifying the P4 program.

1 Introduction to counters in P4

Counters are stateful elements used for monitoring tasks, such as collecting statistics from
flows, enforcing Quality of Service (QoS) policies, and implementing security features (e.g.,
detecting and blocking Denial of Service (DoS) attacks). The V1Model1 provides counters
as extern objects that can be invoked using the P4 language. A P4 program can update

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 4

counters but cannot read them. The control plane can read counter values and use them
to implement applications. Counters in P4 support packet counters, byte counters, and
the combination of both. In P4, there are two types of counters2:

• Direct counters: which are directly associated to a match-action table.

• Indirect counter: independent counters that can be referred to specific entries or
group of entries in a match-action table.

1.1 Lab scenario

Consider the topology in Figure 2. This topology comprises 8 hosts and two switches, a P4
switch (i.e., s1) and a legacy switch (i.e., s2). Switch s1 connects to host h1 via port 1, host
h2 via port 2, etc. Note that switch s1 is linked to switch s2 via port 0. The lab scenario
consists of creating a P4 program to monitor the flows traversing switch s1. The P4
program counts the number of bytes per flow going to a destination host using direct and
indirect counters. Then, the user will load and test the P4 program by initiating data
transfers from any pair of hosts. Finally, the user will verify the count values from the
control plane.

s1

h2

h1

s2

h2

h3

h4

h5

h6

h7

h8

10.0.0.1 10.0.0.5

10.0.0.3

10.0.0.4

10.0.0.2 10.0.0.6

10.0.0.7

10.0.0.8
Figure 1. Example topology. This topology comprises 8 hosts, a P4 switch, and a legacy switch.

1.2 Defining a direct counter in P4

Figure 2 show an example P4 code that uses a direct counter to count how many times a
rule in a match-action table was hit. The code describes the behavior of the ingress
pipeline, which has implemented the table forwarding (see line 14). This table matches
on the destination IPv4 address (see line 15-17), and has the following actions: forward,
drop, and NoAction (see lines 18-22). The size of the table is 32 entries (see line 23), and
the default action is drop (see line 24). Note that the direct counter my_direct_counter
defined in line 4, is invoked in the table forwarding (see line 25). The forwarding logic is

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 5

specified in the apply block, which invokes the table forwarding when the switch
receives a valid IPv4 packet.

 1: control MyIngress(inout header hdr,
 2: inout metadata meta,
 3: inout standard_metadata_t standard_metadata){
 3:
 4: direct_counter(counterType.packets) my_direct_counter;
 5:
 6: action forward(egressSpect_t port){
 7: standard_meadata.egress_spec = port;
 8: }
 9:
10: action drop(){
11: mark_to_drop(standard_metadata);
12: }
13:
14: table forwarding {
15: key = {
16: hdr.ipv4.dstAddr : exact;
17: }
18: actions = {
19: forward;
20: drop;
21: NoAction;
22: }
23: size = 32;
24: default_action = drop();
25: counters = my_direct_counter;
26: }
27: apply {
28: if(hdr.ipv4.isValid()){
29: forwarding.apply();
30: }
31: }

Figure 2. Defining a direct counter in the ingress block.

Figure 3 shows the table forwarding described in the P4 program in Figure 2. Notice that
each entry in the table refers to an index in the counter my_direct_counter. The number
of indexes in the counter my_direct_counter is defined by the size of the table, which
in this case is 32 entries. Each count value in the counter my_direct_counter is accessed
with an index. In this P4 program, the value of each count indicates how many packets
matched on an entry independently of the executed action. The count values are in
packets and bytes. For example, notice that the last entry in the table forwarding (i.e.,
key = 10.0.0.32) counted 49 packets or 73,500 bytes assuming that each packet has 1500
bytes.

Note that the direct counter my_direct_counter assigns an index Idx to each entry in
the table forwarding, meaning that the table can have up to 32 independent counters.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 6

Key Action Action Data

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.8

10.0.0.7
10.0.0.6

...

10.0.0.32

......

forward

forward

forward

forward

forward

forward

forward

forward

egress port = 1

egress port = 2

egress port = 3

egress port = 4

egress port = 0

egress port = 0

egress port = 0

egress port = 0

drop

Idx.
Count

0

1

2

3

4

5

6

7

31

... ...

0

71

23

52

84

11

0

37

49

forwarding my_direct_counter

egress port = 0

Packets
0

Bytes

...

106,500

34,500

78,000

126,000

16,500

0

55,500

73,500
Figure 3. Representation of a match-action table referred to a direct counter. The counter
my_direct_counter has an index associated with each entry in the table forwarding.

1.3 Defining an indirect counter in P4

Indirect counters in P4 are invoked by the extern counter. An example of an indirect
counter is presented in Figure 4. The indirect counter my_indirect_counter defined in
line 4 is a packet counter with three indexes. This counter increases the count value at
index index when the forward action is invoked (see line 8). Note that the control plane
provides the index value to the action forward as part of the action data (see line 6).

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 7

 1: control MyIngress(inout header hdr,
 2: inout metadata meta,
 3: inout standard_metadata_t standard_metadata){
 3:
 4: counter(3,counterType.packets) my_indirect_counter;
 5:
 6: action forward(egressSpect_t port, bit<32> index){
 7: standard_meadata.egress_spec = port;
 8: my_indirect_counter.count(index);
 9: }
10: action drop(){
11: mark_to_drop(standard_metadata);
12: }
13:
14: table forwarding {
15: key = {
16: hdr.ipv4.dstAddr : exact;
17: }
18: actions = {
19: forward;
20: drop;
21: NoAction;
22: }
23: size = 32;
24: default_action = drop();
25: }
26:
27: apply {
28: if(hdr.ipv4.isValid()){
29: forwarding.apply();
30: }
31: }

Figure 4. Defining an indirect counter in the ingress block.

In contrast to the direct counter, the indirect counter my_indirect_counter is invoked
inside the action forward. Note that the indirect counter can be invoked also in other
actions such as drop and in the apply block. Another difference is that the programmer
specifies the number of indexes of an indirect counter.

Figure 5 shows that the first three entries in the table forwarding are associated with
index 0 in the counter my_indirect_counter. Index 1 is associated to the 4th, 5th, and 7th
entries. Similarly, index 2 is associated with the 6th, 8th, and 32nd entries.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 8

Key Action Action Data

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.8

10.0.0.7
10.0.0.6

...

10.0.0.32

......

forward

forward

forward

forward

forward

forward

forward

forward

egress port = 1, Idx = 0

egress port = 2, Idx = 0

egress port = 3, Idx = 0

egress port = 4, Idx = 1

egress port = 0, Idx = 1

egress port = 0, Idx = 2

drop

0

1

2

23

17

42

forwarding my_indirect_counter

Idx.
Count

Packets Bytes
34,500

25,500

63,000

egress port = 0, Idx = 1

egress port = 0, Idx = 2

egress port = 0, Idx = 2
Figure 5. Representation of a match-action table referred to a direct counter. The counter
my_indirect_counter has indexes associated with some entries in the table forwarding.

Note that a counter can have associated multiple entries.

2 Lab topology

Let us get started by loading a simple Mininet topology using MiniEdit. The topology
comprises 8 end hosts, a P4 programmable switch (i.e., s1), and a legacy switch (i.e., s2).

s1

h2

h1

s2

s1-eth0 s2-eth1

h2

h3

h4

h5

h6

h7

h8

10.0.0.1 10.0.0.5

10.0.0.3

10.0.0.4

10.0.0.2 10.0.0.6

10.0.0.7

10.0.0.8
Figure 6. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 9

Figure 7. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab7 folder and search for the topology file called lab7.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 8. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 10

Figure 9. Running the emulation.

2.1 Starting the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Figure 10. Opening a terminal on host h1.

Step 2. Run the following command to display interfaces’ information on host h1.

ifconfig

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 11

Figure 11. Displaying interfaces’ information on host h1.

3 Implementing counters at the ingress pipeline

In this section, you will load the programming environment and define a match-action
table that matches the destination IPv4 address to forwarding packets. This table will have
a direct counter that will increase its count every time a packet matches a rule. Then you
will define indirect counters. These counters will only count when a packet hits a specific
entry in the match-action table.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 12. Shortcut to open a Linux terminal.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 12

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to execute.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code P4_Labs/lab7

Figure 13. Loading the development environment.

3.2 Defining the forwarding behavior

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file. You will observe that the block has
no match-action table implemented.

Figure 14. Inspecting the egress processing block.

Step 2. Define the drop action by adding the following code. This action is invoked to

drop packets.

action drop (){

 mark_to_drop(standard_metadata);

}

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 13

Figure 15. Defining the drop action.

Step 3. Define the forward action by adding the code shown below. This action forwards
packets through an egress port specified by the control plane.

action forward (egressSpec_t port){

 standard_metadata.egress_spec = port;

}

Figure 16. Defining the forward action.

Step 4. Define the table forwarding by adding the following piece of code.

table forwarding {

 key = {

 hdr.ipv4.dstAddr : exact;

}

 actions = {

 forward;

 drop;

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 14

 NoAction;

 }

 size = 32;

 default_action = drop();

}

Figure 17. Declaring the forwarding table.

The table defined in the figure above matches the destination IPv4 address. The actions
in this table can be forward, drop, or NoAction. Note that the table allows up to 32
entries (size = 32), and the default action is drop.

 Step 5. Define the packet processing sequence by adding the following code inside the
apply block.

apply {

 if(hdr.ipv4.isValid()){

 forwarding.apply();

}

}

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 15

Figure 18. Defining the apply block.

Note that the block defined in the figure above applies the forwarding table every time
there is a packet with a valid IPv4 header.

3.3 Defining a direct counter

Step 1. Declare the direct counter my_direct_counter by adding the following line of
code. Note that this is a packet counter specified by the argument CounterType.packets.

direct_counter(CounterType.packets) my_direct_counter;

Figure 19. Defining a direct counter.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 16

Step 2. Refer the direct counter in the forwarding table by adding the following line.

counters = my_direct_counter;

Figure 20. Referring the direct counter to the forwarding table.

The statement above will increase the count of my_direct_counter by one every time
there is a match in the forwarding table.

3.4 Defining an indirect counter

Step 1. Declare the indirect counter my_indirect_counter by adding the following line
of code.

counter(3, CounterType.packets) my_indirect_counter;

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 17

Figure 21. Defining an indirect counter.

The first argument in counter specifies the number of independent values of the counter,
which in this case is 3. Note also that this is a packet counter specified by the argument
CounterType.packets.

Step 2. Refer the indirect counter in the forward action by adding the following line of
code.

my_indirect_counter.count(index);

Figure 22. Referring the indirect counter to the forwarding table.

Step 3. Include the counter index in the forward action’s parameter by adding the
following statement.

bit<32> index

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 18

Figure 23. Including the index parameter to the forward action.

The value of index specifies a counter which can be associated with multiple entries in the
forwarding table.

Step 4. Save the changes to the file by pressing Ctrl + s.

4 Loading the P4 program

In this section, you will compile and load the P4 binary into switch s1. You will also verify
that the binary resides in switch s1 filesystem.

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside VS Code to compile the
program.

p4c basic.p4

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 19

Figure 24. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 20

Figure 25. Pushing the basic.json file to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 26. Maximizing the MiniEdit window.

Step 2. Right-click on the switch s1 icon and select Terminal.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 21

Figure 27. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 28. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

5 Configuring switch s1

In this section, you will map switch s1 interfaces to the ports in the P4 program and start
the switch daemon. Then, you will inspect the switch’s logs to see the tables and actions
that packets hit and miss. Finally, you will load the rules to populate the match action
tables.

5.1 Running the switch’s daemon and mapping the ports

Step 1. In switch s1 terminal, start the switch daemon and map the logical interfaces to
Linux interfaces by typing the following command.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 22

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 -i 3@s1-eth3 -i 4@s1-eth4

–-nanolog ipc:///tmp/bm-log.ipc basic.json &

Figure 29. Starting switch s1 daemon and mapping the logical interfaces to Linux interfaces.

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 30. Returning to switch s1 CLI.

Step 2. Inspect the rules’ file by issuing the following command.

cat ~/lab7/rules.cmd | nl

Figure 31. Inspecting the entries of the forwarding table.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 23

The output of the figure above shows the rules to be populated in the table forwarding.
Notice that each key has two action data: the egress port and the index of the indirect
counter. For example, entry 3 has 10.0.0.3 as the key, 3 as the egress port, and 0 as the
index of the indirect counter.

Step 3. Push the table entries to switch s1 by typing the following command.

simple_switch_CLI < ~/lab7/rules.cmd

Figure 32. Populating the forwarding table into switch s1.

6 Testing and verifying the P4 program

In this section, you will run iperf3 tests between hosts to test the P4 program loaded to
switch s1. You will verify the count of the direct counter from the control plane. Then, you
will refer the indexes of the indirect counters to specific entries of the forwarding table.
Finally, you will verify the count values of the indirect counters.

6.1 Running iperf3 tests between end hosts

Step 1. Open a terminal in host h5 and start the iperf3 server by issuing the following
command.

iperf3 -s

Figure 33. Starting an iperf3 server in host h5.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 24

Step 2. Repeat the previous step in hosts h6, h7, and h8.

Step 3. Go back to host h1 terminal and start the iperf3 client by issuing the following
command.

iperf3 -c 10.0.0.5

Figure 34. Running an iperf3 test between host h1 and host h5.

6.2 Verifying the counters’ values

Step 1. In switch’s s1 terminal, start the switch’s CLI by issuing the following command.

simple_switch_CLI

Figure 35. Starting the switch’s CLI.

Step 2. Issue the following command to read the value of the direct counter associated
to the destination IP address 10.0.0.5.

counter_read MyIngress.my_direct_counter 4

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 25

Figure 36. Reading the direct counter at index 4.

The figure above shows that the direct counter at index zero counted 174974860 bytes
or 115591 packets.

Step 3. Issue the following command to read the value of the direct counter associated
to the destination IP address 10.0.0.6.

counter_read MyIngress.my_direct_counter 5

Figure 37. Reading the direct counter at index 5.

Note that the counter at index 5 in the figure above is zero because there are no packets
sent to the destination IP 10.0.0.6 yet.

Step 4. Open a terminal in host h2 and start the iperf3 client by issuing the following
command.

iperf3 -c 10.0.0.6

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 26

Figure 38. Running an iperf3 test between host h2 and host h6.

Step 5. Issue the following command to read the value of the direct counter associated
to the destination IP address 10.0.0.6.

counter_read MyIngress.my_direct_counter 5

Figure 39. Reading the direct counter with index 5.

After finishing the iperf3 test between host h2 and host h6, the counter at index 5
increased.

6.3 Referring indirect counter indexes

Step 1. In the switch’s CLI, issue the following command to refer index 1 of the indirect
counter to the flow with destination IP address 10.0.0.7.

table_modify MyIngress.forwarding MyIngress.forward 6 0 1

Figure 40. Modifying the entry with handle 6 in the forwarding table.

The command and its parameters in the figure above are explained as follows:

• table_modify: enables modifying a table entry.

• MyIngress.forwarding: the name of the table.
• MyIngress.forward: the action.
• 6: the handle of the entry.
• 0: the egress port.
• 1: the counter’s index.

Step 2. Similarly, issue the following command to refer the index 2 of the indirect counter
to the flow with destination IP address 10.0.0.8.

table_modify MyIngress.forwarding MyIngress.forward 7 0 2

Figure 41. Modifying the entry with handle 7 in the forwarding table.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 27

The command and its parameters in the figure above are explained as follows:

• table_modify: enables modifying a table entry.

• MyIngress.forwarding: the name of the table.
• MyIngress.forward: the action.
• 7: the handle of the entry.
• 0: the egress port.
• 2: the counter’s index.

Step 3. Open a terminal in host h3 and start the iperf3 client by issuing the following
command.

iperf3 -c 10.0.0.7

Figure 42. Running an iperf3 test between host h3 and host h7.

Step 4. Issue the following command to read the value of the indirect counter associated
to the destination IP address 10.0.0.7.

counter_read MyIngress.my_indirect_counter 1

Figure 43. Reading the indirect counter with index 1.

The figure above shows that the indirect counter at index one counted 172,983,947 bytes
or 114,276 packets.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 28

Step 5. Similarly, open a terminal in host h4 and start the iperf3 client by issuing the
following command.

iperf3 -c 10.0.0.8

Figure 44. Running an iperf3 test between host h4 and host h8.

Step 6. Issue the following command to read the value of the indirect counter associated
to the destination IP address 10.0.0.8.

counter_read MyIngress.my_indirect_counter 2

Figure 45. Reading the indirect counter with index 2.

Step 7. Finally, issue the following command to read the value of the indirect counter at
index 0. Note that this value aggregates the packet count of all the flows with IP
destination addresses 10.0.0.1, 10.0.0.2, 10.0.0.3, 10.0.0.4, 10.0.0.5, and 10.0.0.6 that
passed through switch s1. Similarly, the indirect counters at indices 1 and 2 aggregate the
packet count of all the flows with IP destination addresses 10.0.0.7 and 10.0.0.8,
respectively.

Figure 46. Reading the indirect counter with index 0.

This concludes lab 7. Stop the emulation and then exit out of MiniEdit.

Lab 7: Measuring Flow Statistics using Direct and Indirect Counters

 Page 29

References

1. The P4 Language Consortium. “The BMv2 Simple Switch target.” [Online].
Available: https://tinyurl.com/mr3m59ph

2. The P4 Architecture Working Group. “P416 Portable Switch Architecture (PSA).”
[Online]. Available: https://tinyurl.com/2wnkc6d2

3. Mininet walkthrough. [Online]. Available: http://Mininet.org.
4. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

5. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

6. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

P4 PROGRAMMABLE DATA PLANES:
APPLICATIONS, STATEFUL ELEMENTS, AND

CUSTOM PACKET PROCESSING

Lab 8: Rerouting Traffic using Meters

Document Version: 04-25-2022

Lab 8: Rerouting Traffic using Meters

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to meters ... 3

1.1 Declaring and invoking meters in P4 .. 4

1.2 Lab scenario .. 5

2 Lab topology.. 6

2.1 Starting the end hosts .. 8

3 Implementing a meter at the ingress pipeline ... 9

3.1 Loading the programming environment .. 9

3.2 Defining a custom metadata .. 9

3.3 Defining the forwarding behavior .. 11

3.4 Defining a direct meter .. 14

3.5 Defining the rerouting table ... 16

4 Loading the P4 program .. 18

4.1 Compiling and loading the P4 program to switch s1 ... 18

4.2 Verifying the configuration .. 19

5 Configuring switch s1 .. 20

5.1 Running the switch’s daemon and mapping the ports 20

5.2 Loading the rules to the switch .. 21

6 Testing and verifying the P4 program ... 22

6.1 Running iperf3 tests between end hosts ... 22

6.2 Setting the meter’s rate ... 23

6.3 Populating the rerouting table ... 24

6.4 Verifying the meter rate ... 25

References .. 28

Lab 8: Rerouting Traffic using Meters

 Page 3

Overview

This lab introduces the reader to meters which are stateful elements used in P4 to
measure and mark the rate of incoming traffic. In this lab, the user will create a P4
program to reroute traffic based on the measurement provided by the meter using a
match-action table. Finally, the user will verify the P4 program by conducting throughput
tests at different rates.

Objectives

By the end of this lab, students should be able to:

1. Declare a custom metadata to store the meter’s color.
2. Define a direct meter.
3. Refer a meter in a match-action table.
4. Reroute traffic based on the meter’s color.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to meters.
2. Section 2: Lab topology.
3. Section 3: Implementing a meter at the ingress pipeline.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Testing and verifying the P4 program.

1 Introduction to meters

Meters1 are provided as stateful objects by a P4 switch. Consider Figure 1 which shows
the architecture of a meter. There are two token buckets p and c, with sizes peak burst

Lab 8: Rerouting Traffic using Meters

 Page 4

size (PBS) and committed burst size (CBS), respectively. The buckets p and c are filled with
tokens at rates peak information rate (PIR) and committed information rate (CIR),
respectively. Upon receiving a packet of size b bytes at time t, the meter checks if Tp(t) -
b < 0, where Tp(t) is the token count of bucket p at time t. In other words, the meter is
checking if the packet rate is exceeding PIR, causing the bucket p to become empty. If the
condition is met, the meter outputs the color red'. Otherwise, the meter checks if Tc(t) -
b < 0, where Tc(t) is the token count of bucket c at time t. If the condition is met, the
meter outputs the color yellow; otherwise, the meter outputs the color green.

Figure 1. Scheme of the two-rate three-color marker (trTCM) meter1.

1.1 Declaring and invoking meters in P4

Figure 2 shows a P4 code that describes how to declare and invoke a direct meter in P4.
The code describes the ingress pipeline which has a forwarding table and two actions (i.e.,
forward and drop). The direct meter my_direct_meter is declared in line 5. Note that
the width of the meter is 32 bits, and the output gives the byte rate in bytes/microsecond3.
Then, the direct meter is invoked in the forwarding table (see line 26).

Lab 8: Rerouting Traffic using Meters

 Page 5

 1: control MyIngress(inout header hdr,
 2: inout metadata meta,
 3: inout standard_metadata_t standard_metadata){
 4:
 5: direct_meter<bit<32>>(MeterType.bytes) my_direct_meter;
 6:
 7: action forward(egressSpect_t port){
 8: standard_meadata.egress_spec = port;
 9: }
10:
11: action drop(){
12: mark_to_drop(standard_metadata);
13: }
14:
15: table forwarding {
16: key = {
17: hdr.ethernet.dstAddr : exact;
18: }
19: actions = {
20: forward;
21: drop;
22: NoAction;
23: }
24: size = 32;
25: default_action = drop();
26: meters = my_direct_meter;
27: }
28: apply {
29: if(hdr.ipv4.isValid()){
30: forwarding.apply();
31: }
32: }
Figure 2. Declaring and invoking a direct meter in the ingress pipeline.

The programmer can invoke the following function to read the color of the meter
my_direct_meter, where result will store the value of the color.

my_direct_meter.read(result);

The meter colors are encoded as follows:

• 0: Green

• 1: Yellow

• 2: Red

1.2 Lab scenario

The topology in Figure 3 describes the lab scenario where the P4 switch (i.e., switch s1)
uses meters to determine the sending rate of host h1 and reroute the traffic according
to the following rules.

• Route 1: if the sending rate is less than 100Mbps.

• Route 2: if the sending rate is between 100Mbps and 500Mbps.

• Route 3: if the sending rate is greater than 500Mbps.

Lab 8: Rerouting Traffic using Meters

 Page 6

s1h1 h2

s2

s3

s4

s5

Figure 3. Lab scenario.

2 Lab topology

Let us get started by loading a simple Mininet topology using MiniEdit. The topology
comprises two end hosts, one P4 switch, and four legacy switches.

s1h1

h1-eth0

h2

10.0.0.1 10.0.0.2

s2

s3

s4

s5

s1-eth0 s1-eth2

s3-eth1 s3-eth2
s5-eth3

h2-eth0
s5-eth1

Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 8: Rerouting Traffic using Meters

 Page 7

Figure 5. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab8 folder and search for the topology file called lab8.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 6. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 7. Running the emulation.

Lab 8: Rerouting Traffic using Meters

 Page 8

2.1 Starting the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Figure 8. Opening a terminal on host h1.

Step 2. Run the following command to display interfaces’ information on host h1.

ifconfig

Figure 9. Displaying interfaces’ information on host h1.

Lab 8: Rerouting Traffic using Meters

 Page 9

3 Implementing a meter at the ingress pipeline

In this section, you will load the programming environment, declare custom metadata to
store the meter’s color, and define a match-action table that matches the destination IPv4
address to forwarding packets. This table will have a direct meter associated with an entry.
Then, you will define a table that will reroute traffic based on the meter’s color.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to execute.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code P4_Labs/lab8

Figure 11. Loading the development environment.

3.2 Defining a custom metadata

Lab 8: Rerouting Traffic using Meters

 Page 10

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Figure 12. Inspecting the headers.p4 file.

Step 2. Define the following custom metadata by adding the following line of code.

bit<32> meter_color;

Figure 13. Defining a custom metadata.

Lab 8: Rerouting Traffic using Meters

 Page 11

The custom metadata in the figure above will store the value of the meter’s color: 0 for
green, 1 for yellow, and 2 for red.

Step 3. Save the changes to the file by pressing Ctrl + s.

3.3 Defining the forwarding behavior

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file. You will observe that the block has
no match-action table implemented.

Figure 14. Inspecting the ingress processing block.

Step 2. Define the drop action by adding the following code. This action is invoked to

drop packets.

action drop (){

 mark_to_drop(standard_metadata);

}

Figure 15. Defining the drop action.

Lab 8: Rerouting Traffic using Meters

 Page 12

Step 3. Define the forward action by adding the code shown below. This action forwards
packets through an egress port specified by the control plane.

action forward (egressSpec_t port){

 standard_metadata.egress_spec = port;

}

Figure 16. Defining the forward action.

Step 4. Define the table forwarding by adding the following piece of code.

table forwarding {

 key = {

 hdr.ipv4.dstAddr : exact;

}

 actions = {

 forward;

 drop;

 NoAction;

 }

 size = 32;

 default_action = drop();

}

Lab 8: Rerouting Traffic using Meters

 Page 13

Figure 17. Declaring the forwarding table.

The table defined in the figure above matches the destination IPv4 address. The actions
in this table can be forward, drop, or NoAction. Note that the table allows up to 32
entries (size = 32), and the default action is drop.

 Step 5. Define the packet processing sequence by adding the following code inside the
apply block.

apply {

 if(hdr.ipv4.isValid()){

 forwarding.apply();

}

}

Lab 8: Rerouting Traffic using Meters

 Page 14

Figure 18. Defining the apply block.

Note that the block defined in the figure above applies the forwarding table every time
there is a packet with a valid IPv4 header.

Step 6. Save the changes to the file by pressing Ctrl + s.

3.4 Defining a direct meter

Step 1. Declare the direct meter my_direct_meter by adding the following line of code.

direct_meter<bit<32>>(MeterType.bytes) my_direct_meter;

Lab 8: Rerouting Traffic using Meters

 Page 15

Figure 19. Declaring a direct meter.

Step 2. Refer my_direct_meter to the forwarding table by adding the following line of
code.

meter = my_direct_meter;

Figure 20. Referring a direct meter in the forwarding table.

Step 3. Add the following line of code to the forward action to read the color of the meter.

my_direct_meter.read(meta.meter_color);

Figure 21. Reading the meter color in the forward action.

Step 4. Save the changes to the file by pressing Ctrl + s.

Lab 8: Rerouting Traffic using Meters

 Page 16

3.5 Defining the rerouting table

Step 1. Define the table rerouting by adding the following piece of code.

table rerouting {

 key = {

 meta.meter_color : exact;

}

actions = {

 reroute;

 NoAction;

}

 size = 32;

 default_action = NoAction;

}

Figure 22. Defining the table rerouting.

The table defined in the figure above matches the destination meter’s color. The actions
in this table can be reroute or NoAction. Note that the table allows up to 32 entries
(size = 32), and the default action is NoAction.

Step 2. Define the action reroute by adding the following piece of code. This action
receives as a parameter a new destination port from the control plane.

Lab 8: Rerouting Traffic using Meters

 Page 17

Figure 23. Defining the action reroute.

Step 3. Invoke the table rerouting in the apply block by adding the following line of code.

rerouting.apply();

Figure 24. Invoking the table rerouting in the apply block.

Step 4. Save the changes to the file by pressing Ctrl + s.

Lab 8: Rerouting Traffic using Meters

 Page 18

4 Loading the P4 program

In this section, you will compile and load the P4 binary into switch s1. You will also verify
that the binary resides in switch s1 filesystem.

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside VS Code to compile the
program.

p4c basic.p4

Figure 25. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 8: Rerouting Traffic using Meters

 Page 19

Figure 26. Pushing the basic.json file to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 27. Maximizing the MiniEdit window.

Step 2. Right-click on the switch s1 icon and select Terminal.

Lab 8: Rerouting Traffic using Meters

 Page 20

Figure 28. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 29. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

5 Configuring switch s1

In this section, you will map switch s1 interfaces to the ports in the P4 program and start
the switch daemon. Note that the switch’s logs are enabled to see the tables and actions
that packets hit across the pipeline. Finally, you will load the rules to populate the table
forwarding.

5.1 Running the switch’s daemon and mapping the ports

Step 1. In switch s1 terminal, start the switch daemon and map the logical interfaces to
Linux interfaces by typing the following command.

Lab 8: Rerouting Traffic using Meters

 Page 21

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 -i 3@s1-eth3 basic.json &

Figure 30. Starting switch s1 daemon and mapping the logical interfaces to Linux interfaces.

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 31. Returning to switch s1 CLI.

Step 2. Inspect the rules’ file by issuing the following command.

cat ~/lab8/rules.cmd

Figure 32. Inspecting the entries of the forwarding table.

Consider the first output in the figure above:

• table_add: adds an entry to a match-action table.

• MyIngress.forwarding: the name of the table.
• MyIngress.forward: the action.
• 10.0.0.1: the key to the table.

• 0: the egress port.

Lab 8: Rerouting Traffic using Meters

 Page 22

Step 3. Push the table entries to switch s1 by typing the following command.

simple_switch_CLI < ~/lab8/rules.cmd

Figure 33. Populating the forwarding table into switch s1.

6 Testing and verifying the P4 program

In this section, you will run iperf3 tests between hosts to test the P4 program loaded to
switch s1. You will set two rates of the meter to 100Mbps and 500Mbps. Then, you will
populate the entries in the table rerouting, by matching the color of the meter. If the
rate is below 100Mbps, the color is green (with value 0). If the color is between 100Mbps
and 500Mbps, the color of the meter is yellow (with value 1). Finally, if the rate is over
500Mbps, the color of the meter is red (with value 2).

6.1 Running iperf3 tests between end hosts

Step 1. Open a terminal in host h2 and start an iperf3 server by issuing the following
command.

iperf3 -s

Figure 34. Starting an iperf3 server in host h2.

Step 2. Go back to host h1 terminal and start an iperf3 client by issuing the following
command.

Lab 8: Rerouting Traffic using Meters

 Page 23

iperf3 -c 10.0.0.2

Figure 35. Running an iperf3 test between host h1 and host h2.

The figure above shows that the maximum throughput is around 1.11 Gbps.

6.2 Setting the meter’s rate

Step 1. Go back to the switch’s terminal and start the CLI by issuing the following
command.

simple_switch_CLI

Figure 36. Starting the switch’s CLI.

Step 2. Set the meter’s rate by issuing the following command.

meter_set_rates MyIngress.mydirect_meter 1 12:400000 63:2000000

Figure 37. Setting the meter’s rate.

The command and its parameters in the figure above are explained as follows:

Lab 8: Rerouting Traffic using Meters

 Page 24

• meter_set_rates: command to set the meter’s rate.

• MyIngress.my_direct_meter: the name of the meter.
• 1: the index of the meter. Note that this index is associated with the second entry

in the forwarding table.
• 12:400000: the rate (in packets/microseconds) and the burst values in

bytes/second.
• 63:2000000: the rate (in packets/microseconds) and the burst values in

bytes/second.

Note that 12 packets per microsecond correspond to ~100Mbps and 63 packets per
microsecond correspond to ~500Mbps. The burst values result from dividing the by 250
the rate in bytes. For example, 100Mbytes/second divided by 250 is 400,000, establishing
the maximum burst size. Note that 250 specifies the bytes/Hz, where Hz is the system’s
clock rate.

6.3 Populating the rerouting table

Step 1. Add the following entry to the table rerouting by issuing the following command.

table_add MyIngress.rerouting MyIngress.reroute 1 => 2

Figure 38. Populating the table rerouting with the value of the yellow color (i.e., 1).

Note the entry in the figure above will match the yellow color (with value 1) to reroute
traffic through port 2.

Step 2. Similarly, add the second entry to the table rerouting by issuing the following
command.

table_add MyIngress.rerouting MyIngress.reroute 2 => 3

Figure 39. Populating the table rerouting with the value of the red color (i.e., 2).

Lab 8: Rerouting Traffic using Meters

 Page 25

Note the entry in the figure above will match the red color (with value 2) to reroute traffic
through port 3.

6.4 Verifying the meter rate

Step 1. Go back to the Linux terminal by clicking the icon in the taskbar.

Figure 40. Opening the Linux terminal.

Step 2. Start the nload monitoring tool by issuing the command below. Note that the
-m parameter specifies multiple interfaces. In this case, the tool is monitoring the rate of
the egress ports of switches s2, s3, and s4.

nload -m s2-eth2 s3-eth2 s4-eth2

Figure 41. Running the nload monitoring tool.

Step 3. Go back to host h1 terminal and issue the following command.

iperf3 -c 10.0.0.2 -u -b 50mbit -t 300

Figure 42. Running an iperf3 test between h1 and h2 at 50Mbps.

Step 4. Go back to the Linux terminal and observe the rate at interface s2-eth2.

Lab 8: Rerouting Traffic using Meters

 Page 26

Figure 43. Inspecting the sending rate on the interface s2-eth2.

Step 5. Go back to host h1 terminal and stop the iperf3 test by pressing Ctrl+c.

Step 6. Start another iperf3 test by issuing the command below. Note that this time the
rate is set to 300Mbps.

iperf3 -c 10.0.0.2 -u -b 300mbit -t 300

Figure 44. Running an iperf3 test between h1 and h2 at 300Mbps.

Step 7. Go back to the Linux terminal and observe the rate at interface s3-eth2.

Lab 8: Rerouting Traffic using Meters

 Page 27

Figure 45. Inspecting the sending rate on the interface s3-eth2.

Note that part of throughput is shared with the interface s2-eth2.

Step 8. Go back to host h1 terminal and stop the iperf3 test by pressing Ctrl+c.

Step 9. Start another iperf3 test by issuing the command below. Note that this time the
rate is set to 800Mbps.

iperf3 -c 10.0.0.2 -u -b 800mbit -t 300

Running an iperf3 test between h1 and h2 at 800Mbps.

Step 10. Go back to the Linux terminal and observe the rate at interface s4-eth2.

Lab 8: Rerouting Traffic using Meters

 Page 28

Figure 46. Inspecting the sending rate on the interface s4-eth2.

Note that part of throughput is shared with the interfaces s2-eth2 and s3-eth2.

This concludes lab 8. Stop the emulation and then exit out of MiniEdit.

References

1. H. Juha, R. Guerin. "RFC2698: A two rate three color marker." 1999.
2. The P4 language Consortium. “The V1Model.” [Online]. Available:

https://tinyurl.com/bdzfarvy
3. The P4 language Consortium. “Runtime CLI specification.”[Online]. Available:

https://tinyurl.com/49n4wyrt
4. Mininet walkthrough. [Online]. Available: http://Mininet.org.
5. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

6. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

7. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

P4 PROGRAMMABLE DATA PLANES:
APPLICATIONS, STATEFUL ELEMENTS, AND

CUSTOM PACKET PROCESSING

Lab 9: Storing Arbitrary Data using Registers

Document Version: 05-12-2022

Lab 9: Storing Arbitrary Data using Registers

 Page 2

Contents

Overview ... 3
Objectives.. 3
Lab settings ... 3
Lab roadmap ... 3
1 Introduction to P4 registers .. 3

1.1 Declaring and using a single cell register .. 4
1.2 Lab scenario .. 4

2 Lab topology.. 4
2.1 Starting the end hosts ... 6

3 Defining a single cell register .. 7
3.1 Loading the programming environment... 7
3.2 Defining a register in the ingress pipeline .. 8

4 Loading the P4 program .. 11
4.1 Compiling and loading the P4 program to switch s1 .. 11
4.2 Verifying the configuration ... 12

5 Configuring switch s1 .. 13
5.1 Mapping P4 program’s ports .. 13
5.2 Loading the rules to the switch... 14

6 Testing and verifying the P4 program ... 14
6.1 Sending a custom packet from host h1 to host h2 ... 15
6.2 Reading the register’s value.. 16
6.3 Sending a custom packet from host h3 to host h4 ... 17
6.4 Manipulating registers from the control plane .. 17

References .. 18

Lab 9: Storing Arbitrary Data using Registers

 Page 3

Overview

Programmable data planes use registers to store arbitrary information that can be
accessed by multiple packets traversing the switch. This lab describes how to use registers
by showing the user the steps to create a P4 program that stores the IP address of the last
flow. Moreover, it presents the control plane commands to read, write, and clear values
of a register. Registers can be read and written from both the control and the data planes.

Objectives

By the end of this lab, students should be able to:

1. Declare a single cell register in a P4 program.
2. Store an arbitrary value into a register.
3. Interact with registers from the control plane and the data plane.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Defining a single cell register.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Testing and verifying the P4 program.

1 Introduction to P4 registers

The P4 language provides registers to save arbitrary data. Registers are stateful elements
used to store values longer than the time it takes to process a packet. This feature allows
the creation of P4 programs where multiple packets can access registers. Registers in P4

Lab 9: Storing Arbitrary Data using Registers

 Page 4

are organized into named arrays of cells. These cells are referred to by an index that
defines a value's location. Registers can be read and written by both the control and the
data plane. In P4, registers are global memory resources meaning that any match-action
tables can reference them.

1.1 Declaring and using a single cell register

The syntax below shows how to declare a single cell register in P4. Register R1 contains a
single cell that stores a value of N bits.

register<bit<N>>(1) R1;

The functions write and read are used to store and retrieve values from a register. For
example, the programmer invokes the following function to store the value val in register
R1.

R1.write(0,val)

Similarly, the user invokes the function below to read a value stored in R1. Note that the
retrieved value is stored in the variable res.

R1.read(res,0)

1.2 Lab scenario

This lab shows the steps to create a P4 program that stores the IP address of the last
flow. The user will access the register’s values from the control plane. Moreover, the
user will read, write, and reset a register from the control plane.

2 Lab topology

Let us get started by loading a simple Mininet topology using MiniEdit. The topology
comprises four end hosts, a P4 programmable switch, and a legacy switch.

Lab 9: Storing Arbitrary Data using Registers

 Page 5

10.0.0.1

h1

s1-eth0

s1
10.0.0.2

h2

10.0.0.3

h3

10.0.0.4

h4

s2

s2-eth1

Figure 1. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 2. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab9 folder and search for the topology file called lab9.mn and click on
Open. A new topology will be loaded to MiniEdit.

Lab 9: Storing Arbitrary Data using Registers

 Page 6

Figure 3. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 4. Running the emulation.

2.1 Starting the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Lab 9: Storing Arbitrary Data using Registers

 Page 7

Figure 5. Opening a terminal on host h1.

Step 2. Test connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 6. Connectivity test using ping command.

The figure above shows unsuccessful connectivity between host h1 and host h2. This
result happens because there is no P4 program loaded on the switch.

3 Defining a single cell register

In this section, you will load the programming environment and define a single cell
register in the ingress pipeline. This register will store the last destination IP address of
any flow. Then, you will define an action that performs the storing operation. This action
is invoked in the apply block.

3.1 Loading the programming environment

Lab 9: Storing Arbitrary Data using Registers

 Page 8

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 7. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code P4_Labs/lab9

Figure 8. Loading the development environment.

3.2 Defining a register in the ingress pipeline

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 9: Storing Arbitrary Data using Registers

 Page 9

Figure 9. Inspecting the ingress processing block.

Step 2. Add the following line of code in the ingress.p4 file to declare a local variable that
we will use to store the flow identifier.

register<bit<32>>(1) last_src_IP;

Figure 10. Declaring the last_src_IP register.

The statement above creates a 32-bit register with a single cell to store an IP address. The
register name is last_src_IP. This register will be used to record the source IP of the
last packet that traversed the switch.

Step 3. Define the following action by adding the piece of code shown below.

action update_last_src_IP() {

 last_src_IP.write(0, hdr.ipv4.srcAddr);

Lab 9: Storing Arbitrary Data using Registers

 Page 10

}

Figure 11. Defining the action update_last_sct_IP.

Since we are using a single cell register, we will write the value of the source IP to the cell
indexed 0.

Step 4. Define the packet processing sequence by adding the following line of code inside
the apply block.

update_last_src_IP();

Figure 12. Defining the apply logic.

Lab 9: Storing Arbitrary Data using Registers

 Page 11

Step 5. Save the changes to the file by pressing Ctrl + s.

4 Loading the P4 program

In this section, you will compile and load the P4 binary into switch s1. You will also verify
that the binary resides in switch s1 filesystem.

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

Figure 13. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 9: Storing Arbitrary Data using Registers

 Page 12

Figure 14. Pushing the basic.json file to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 15. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Lab 9: Storing Arbitrary Data using Registers

 Page 13

Figure 16. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 17. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

5 Configuring switch s1

In this section, you will map switch s1 interfaces to the ports in the P4 program and start
the switch daemon. Then, you will load the rules to populate the match action tables.

5.1 Mapping P4 program’s ports

Step 1. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 basic.json &

Lab 9: Storing Arbitrary Data using Registers

 Page 14

Figure 18. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 19. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab9/rules.cmd

Figure 20. Populating the forwarding table into switch s1.

The script above pushes the rules into the match-action table forwarding.

6 Testing and verifying the P4 program

Lab 9: Storing Arbitrary Data using Registers

 Page 15

6.1 Sending a custom packet from host h1 to host h2

Step 1. Go back to MiniEdit and open a terminal on host h2’s terminal. Issue the following
command so that, host h2 starts listening for packets.

recv.py

Figure 21. Listening for incoming packets in host h2.

Step 2. On host h1’s terminal, type the following command.

send.py 10.0.0.2 HelloWorld

Figure 22. Sending a packet from host h1 to host h2.

Step 3. Verify that the packet was received on host h2.

Lab 9: Storing Arbitrary Data using Registers

 Page 16

Figure 23. Packet received on host h2.

6.2 Reading the register’s value

Step 1. Go back to the switch’s terminal and start the CLI by issuing the following
command.

simple_switch_CLI

Figure 24. Starting the switch’s CLI.

Step 2. Read the value of the last_src_IP register at index 0 by issuing the command
shown below. This register contains the last source IP address.

register_read MyIngress.last_src_IP 0

Figure 25. Reading the value of register last_src_IP at index 0.

Note that the decimal value 167772161 correspond to the IP address 10.0.0.1.

Lab 9: Storing Arbitrary Data using Registers

 Page 17

6.3 Sending a custom packet from host h3 to host h4

Step 1. Open a terminal in host h3 and issue the following command.

send.py 10.0.0.4 HelloWorld

Figure 26. Sending a packet from host h3 to host h4.

Step 2. Similarly, read the value of the last_src_IP register at index 0 by issuing the
command shown below. This register contains the last source IP address.

register_read MyIngress.last_src_IP 0

Figure 27. Reading the register last_src_IP at index 0.

Note that the decimal value 167772163 correspond to the IP address 10.0.0.3.

6.4 Manipulating registers from the control plane

Step 1. Write the following value into the register last_src_IP by issuing the following
command.

register_write MyIngress.last_src_IP 0 321

Lab 9: Storing Arbitrary Data using Registers

 Page 18

Figure 28. Writing a value to register last_scr_IP.

Step 2. Read the value stored in register last_src_IP by issuing the command below.

register_read MyIngress.last_src_IP 0

Figure 29. Reading the register last_src_IP at index 0.

The figure above shows that the value 321 was stored in register last_src_IP.

Step 3. Clear to zero register last_src_IP by issuing the following command.

register_reset MyIngress.last_src_IP

Figure 30. Removing values from register last_scr_IP.

Step 4. Read the value stored in register last_src_IP by issuing the command below.

register_read MyIngress.last_src_IP

Figure 31. Reading the register array.

Note that the value stored in register last_src_IP was cleared to zero.

This concludes lab 9. Stop the emulation and then exit out of MiniEdit.

References

1. RFC 791. “Internet Protocol.” 1981.
2. Mininet walkthrough. [Online]. Available: http://Mininet.org.
3. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

platform for hybrid service function chains.” 4th IEEE Conference on Network

Lab 9: Storing Arbitrary Data using Registers

 Page 19

Softwarization and Workshops (NetSoft). 2018.
4. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:

https://tinyurl.com/rruscv3.
5. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”

[Online]. Available: https://tinyurl.com/vrasamm.

P4 PROGRAMMABLE DATA PLANES:
APPLICATIONS, STATEFUL ELEMENTS, AND

CUSTOM PACKET PROCESSING

Lab 10: Calculating Packets Interarrival Times
using Hashes and Registers

Document Version: 04-28-2022

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to P4 registers .. 3

1.1 Declaring and using a register array... 4

1.2 Hashes in P4 ... 5

1.3 Lab scenario .. 5

2 Lab topology.. 6

2.1 Starting the end hosts .. 7

3 Creating a P4 program to calculate the interarrival time ... 8

3.1 Loading the programming environment .. 9

3.2 Defining a custom header .. 9

3.3 Classifying flows by hashing the source and the destination IPs 11

3.4 Computing the interarrival time .. 13

4 Loading the P4 program .. 16

4.1 Compiling and loading the P4 program to switch s1 ... 16

4.2 Verifying the configuration .. 18

5 Configuring switch s1 .. 19

5.1 Mapping the P4 program’s ports ... 19

5.2 Loading the rules to the switch .. 20

6 Testing and verifying the P4 program ... 21

6.1 Generating traffic at 10 packets per second .. 21

6.2 Generating traffic at 20 packets per second .. 22

References .. 24

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 3

Overview

Programmable data planes are capable of storing arbitrary information that can be
accessed by multiple packets traversing the switch. This lab describes how to read and
write information to the switch using stateful components known as registers. Registers
can be written and read from both the control and the data planes. The use case
demonstrated in this lab describes how to use registers to compute the inter-arrival time
between packets belonging to the same flow.

Objectives

By the end of this lab, students should be able to:

1. Understand how to declare registers in a P4 program.
2. Read and write data to registers using both the control and the data planes.
3. Identify unique flows by leveraging hashing functions.
4. Read the values of the inter-arrival times from the packet headers.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to P4 registers.
2. Section 2: Lab topology.
3. Section 3: Creating a P4 program to calculate the interarrival time.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Testing and verifying the P4 program.

1 Introduction to P4 registers

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 4

P4 targets implementations implement registers to save arbitrary data1. Registers are
stateful elements used to store values longer than the time it takes to process a packet2.
This feature allows the creation of P4 programs where multiple packets can access
registers. Registers in P4 are organized into named arrays of cells. These cells are referred
to by an index that indicates the location of a value. Registers can be read and written by
both the control and the data plane. In P4, registers are global memory resources
meaning that any match-action tables can reference them.

1.1 Declaring and using a register array

The syntax below shows how to declare a register array in P4. The register array R1
contains M values of N bits.

register<bit<N>>(M) R1;

Figure 1 depicts a graphical representation of the register R1. The functions write and
read are used to store and retrieve values from a specific position, where an index
specifies the position. For example, the programmer invokes the following function to
store the value val in position 0 in the register array R1.

R1.write(0,val)

Similarly, the user invokes the function shown below to read a value stored in position 3.
Note that the retrieved value is stored in the variable res.

R1.read(res,3)

Index Value

0

1

2

3

4

5

6

7

N

... ...

Register R1

R1.write(0,val)

R1.read(res,3)

Figure 1. Register array R1. The register array contains N entries of M bits. The index indicates the
position of the value. Using the functions read and write, programmers can retrieve and modify

values in the register array.

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 5

1.2 Hashes in P4

P4 targets implement hash functions to map arbitrary data to a hash value. For example,
the V1Model implements hash functions as externs1. The following code shows how to
call a hash function in P4.

hash(hash_val, algo, min_val, {val_1, val_2, ..., val_N}, (n_bits, max_val))

The parameters of the hash function are as follows:

• hash_val: variable used to store the hash value.

• algo: indicates the hashing algorithm. For example, the V1Model supports
crc16, crc32, universal hashing (i.e., random), xor32, and others.

• min_val: establishes the minimum hash value.

• {val_1,val_2,…,val_N}: values to be hashed.

• n_bit: number of bits of the output (i.e., width).

• max_val: maximum hash value.

1.3 Lab scenario

This lab shows how to compute the interarrival time of packets belonging to the same
flow using registers. The interarrival time is the time difference between two consecutive
packets. In this lab, the user will create a P4 program to store the timestamps of two
consecutive packets and calculate the difference between them, obtaining the value of
the interarrival time. The P4 program will use hashes to identify packets belonging to a
flow.

The P4 program presented in this lab will implement the following steps to calculate the
interarrival time. Figure 2 summarizes these steps.

1- Identify a flow by hashing the source and destination IP addresses. The hash value
will be used as an index for the register array.

2- Extract the previous timestamp from the register array using the index calculated
in step 1.

3- Compute the difference between the current timestamp and the previous
timestamp. The result is the interarrival time.

4- Update the cell referenced in step 2 with the current timestamp.
5- Insert the current interarrival time in a custom header.

Hash source and
destination IPs

Extract previous
interarrival time

Compute time
difference

Update
interarrival time

Insert into a
packet

Figure 2. Interarrival processing block diagram.

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 6

2 Lab topology

Let’s get started by loading a simple Mininet topology using MiniEdit. The topology
comprises four end hosts, one P4 programmable switch, and one legacy switch.

10.0.0.1

h1

s1-eth0

s1
10.0.0.2

h2

10.0.0.3

h3

10.0.0.4

h4

s2

s2-eth1

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab10 folder and search for the topology file called lab10.mn and click on
Open. A new topology will be loaded to MiniEdit.

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 7

Figure 5. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 6. Running the emulation.

2.1 Starting the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 8

Figure 7. Opening a terminal on host h1.

Step 2. Test connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 8. Connectivity test using ping command.

The figure above shows unsuccessful connectivity between host h1 and host h2. This
result happens because there is no P4 program loaded on the switch.

3 Creating a P4 program to calculate the interarrival time

In this section, you will create a P4 program to compute the interarrival time. First, you
will load the programming environment. Then, you will define a custom header to store
the interarrival time. Following, you will create the actions to compute the flow ID and
get the interarrival time. The flow ID is produced by a hashing algorithm that computes
the source and destination IPv4 addresses to produce an index. This index indicates the
position in the last interarrival time in a register array. Finally, you will define the action
to calculate the interarrival time.

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 9

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code P4_Labs/lab10

Figure 10. Loading the development environment.

3.2 Defining a custom header

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 10

Figure 11. Inspecting the headers.p4 file.

Step 2. Define the following custom header by adding code shown below.

header interarrival_t {

 bit<48> interarrival_value;

}

Figure 12. Defining a custom header type.

Step 3. Append the custom header to current Ethernet and IPv4 headers by inserting the
following line of code.

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 11

interarrival_t interarrival;

Figure 13. Defining a custom header.

Step 4. Save the changes to the file by pressing Ctrl + s.

3.3 Classifying flows by hashing the source and the destination IPs

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file. You will observe that the forwarding
table is already defined.

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 12

Figure 14. Inspecting the ingress.p4 file.

Step 2. Add the following code in the ingress.p4 file below the forwarding table. This
creates a local variable that we will use to store the flow identifier.

bit<16> flow_id;

Figure 15. Defining the variable flow_id to store the flow identifier.

Step 3. Define the action compute_flow_id by adding the following piece of code.

action compute_flow_id() {

 hash(

 flow_id,

 HashAlgorithm.crc16,

 (bit<1>)0,

 {

 hdr.ipv4.srcAddr,

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 13

 hdr.ipv4.dstAddr

 },

 (bit<16>)65535);

}

Figure 16. Defining the action compute_flow_id.

The code in the figure above hashes flows based on their source and destination IP
addresses. The hash function hash produces a 16-bits output using the following
parameters:

• flow_id: The variable used to store the output.

• HashAlgorithm.crc16: the hash algorithm.

• bit<1>0: the minimum (or base) value produced by the hash algorithm.

• hdr.ipv4.srcAddr and hdr.ipv4.dstAddr: the data to be hashed.

• bit<16>65535: the maximum value produced by the hash algorithm

Step 4. Save the changes to the file by pressing Ctrl + s.

3.4 Computing the interarrival time

Step 1. In the ingress.p4, define the register array by adding the code below.

register<bit<48>>(65535) last_timestamp_reg;

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 14

Figure 17. Defining a register array.

Step 2. Define the local variable to store the interarrival time.

bit<48> interarrival_value;

Figure 18. Defining a local variable.

Step 3. Define the action get_interarrival_time by adding the code below.

action get_interarrival_time (){

 bit<48> last_timestamp;

 bit<48> current_timestamp;

 last_timestamp_reg.read(last_timestamp, (bit<32>)flow_id);

 current_timestamp = standard_metadata.ingress_global_timestamp;

 if(last_timestamp != 0){

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 15

 interarrival_value = current_timestamp – last_timestamp;

} else {

 interarrival_value = 0;

}

 last_timestamp_reg.write((bit<32>)flow_id, current_timestamp);

}

Figure 19. Defining the get_interrival_time action.

The code in the figure above is explained as follows:

• Line 34: declares the local variable last_timestamp, which will store the last
timestamp.

• Line 35: declares the local variable current_timestamp, which will store the
current timestamp.

• Line 37: reads the last timestamp stored in the register at index last_timestamp.
This index was calculated using the action compute_flow_id.

• Line 38 assign to the current_timestamp variable the switch’s global ingress
timestamp from standard_metadata.ingress_global_timestamp.

• Line 40-44: executes the following conditional statement: if the last timestamp
stored in the register was not equal to zero, compute the interarrival time by
subtracting the last timestamp from the current timestamp. Otherwise, the
interarrival value will have the value of 0.

• Line 45: Update the register value at index flow_id with the current timestamp.

Step 4. Apply the ingress logic by adding the following piece of code.

if(hdr.ipv4.isValid()){

 if(hdr.interarrival.isValid()){

 compute_flow_id();

 get_interarrival_time();

 hdr.interarrival.interarrival_value = interarrival_value;

 }

forwarding.apply();

}

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 16

Figure 20. Defining the apply logic.

The code in the figure above applies the ingress pipeline logic if the packet has a valid IPv4
header. Then, if the interarrival header is valid, the actions compute_flow_id and
get_interarrival_time are invoked. Lastly, the previous value in the interarrival
header is updated with interarrival_value.

Step 5. Save the changes to the file by pressing Ctrl + s.

4 Loading the P4 program

In this section, you will compile and load the P4 binary into the switches. You will also
verify that the binaries reside in switches’ filesystem.

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside VS Code to compile the
program.

p4c basic.p4

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 17

Figure 21. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 18

Figure 22. Pushing the basic.json file to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 23. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 19

Figure 24. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 25. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

5 Configuring switch s1

In this section, you will map switch s1 interfaces to the ports in the P4 program and start
the switch daemon. Then, you will load the rules to populate the match action tables.

5.1 Mapping the P4 program’s ports

Step 1. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 basic.json &

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 20

Figure 26. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 27. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab10/rules.cmd

Figure 28. Populating the forwarding table into switch s1.

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 21

The script above pushes the rules into the match-action table forwarding. This table
forwards packets matching the destination IPv4 address.

6 Testing and verifying the P4 program

This section shows the steps to send and receive packets at a specific rate. From host h1,
you will send 10 packets per second, whereas, from host h2, you will send 20 packets per
second. Then, you will observe different interarrival times corresponding to each flow.

6.1 Generating traffic at 10 packets per second

Step 1. Go back to MiniEdit and open a terminal on host h2’s terminal. Issue the following
command so that, host h2 starts listening for packets.

recv.py -p interarrival

Figure 29. Listening for incoming packets in host h2.

The script above receives the following parameters:

• -p: enables listening to a specific protocol.

• interarrival: the protocol type.

Step 2. On host h1’s terminal, type the following command.

send.py 10.0.0.2 10 -p interarrival

Figure 30. Sending 10 packets per second from host h1 to host h2.

The script above receives the following parameters:

• 10.0.0.2: the destination IPv4 address.

• 10: number of packets per second.

• -p: enables listening to a specific protocol.

• interarrival: the protocol type.

Step 3. Go back to host h2 terminal and verify the interarrival time.

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 22

Figure 31. Verifying the interarrival time on host h2.

By sending 10 packets per second, the expected interarrival time is around 100
milliseconds, or 100,000 microseconds as observed in the figure above.

6.2 Generating traffic at 20 packets per second

Step 1. Go back to MiniEdit and open a terminal on host h4. Issue the following command
so that, host h4 starts listening for packets.

recv.py -p interarrival

Figure 32. Listening for incoming packets in host h4.

The script above receives the following parameters:

• -p: enables listening to a specific protocol.

• interarrival: the protocol type.

Step 2. Go back to MiniEdit and open a terminal on host h3. Issue the following command
so that, host h4 starts sending 20 packets per second.

send.py 10.0.0.4 20 -p interarrival

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 23

Figure 33. Sending 20 packets per second from host h3 to host h4.

The script above receives the following parameters:

• 10.0.0.4: the destination IPv4 address.

• 20: number of packets per second.

• -p: enables listening to a specific protocol.

• interarrival: the protocol type.

By sending 20 packets per second, the expected interarrival time should be approximately
50 milliseconds, or 50,000 us.

Step 3. Go back to host h4 terminal and verify the interarrival time.

Figure 34. Verifying the interarrival time on host h4.

By sending 20 packets per second, the expected interarrival time is around 50
milliseconds, or 50,000 microseconds as observed in the figure above.

Step 4. Go back to host h2 and compare the interarrival time with the figure above. You
will observe that the interarrival time is performed in a per flow basis

Lab 10: Calculating Packets Interarrival Times using Hashes and Registers

 Page 24

Figure 35. Verifying the interarrival time on host h2.

This concludes lab 10. Stop the emulation and then exit out of MiniEdit.

References

1. The P4 language Consortium. “The V1Model.” [Online]. Available:
https://tinyurl.com/bdzfarvy

2. The P4 Architecture Working Group. “P416 Portable Switch Architecture (PSA).”
[Online]. Available: https://tinyurl.com/2wnkc6d2

3. Mininet walkthrough. [Online]. Available: http://Mininet.org.
4. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

5. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

6. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

P4 PROGRAMMABLE DATA PLANES:
APPLICATIONS, STATEFUL ELEMENTS, AND

CUSTOM PACKET PROCESSING

Lab 11: Generating Notification Messages from
the Data Plane using Digests

Document Version: 04-28-2022

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to packet digests .. 3

1.1 Lab scenario .. 4

2 Lab topology.. 5

2.1 Starting the end hosts .. 6

3 Creating packet digests in P4 .. 7

3.1 Loading the programming environment .. 7

3.2 Defining a custom header .. 8

3.3 Programming the ingress pipeline ... 10

3.4 Creating the controller application .. 13

4 Loading the P4 program .. 17

4.1 Compiling and loading the P4 program to switch s1 ... 17

4.2 Verifying the configuration .. 20

5 Configuring switch s1 .. 21

5.1 Mapping the P4 program’s ports ... 21

5.2 Loading the rules to the switch .. 22

6 Testing and verifying the P4 program ... 22

6.1 Starting the controller application ... 22

6.2 Sending a packet from host h1 to host h2 ... 22

6.3 Sending a packet from host h2 to host h1 ... 23

6.4 Verifying connectivity between host h1 and host h2 .. 24

6.5 Verifying the rules in the control plane ... 26

References .. 28

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 3

Overview

This lab demonstrates how to use digests in P4. A digest is a communication mechanism
used by the data plane to send values to the control plane. These values are then
processed by the control plane to implement applications. In this lab, the user will create
a P4 program and a controller that uses digests to implement a MAC learning application.
The data plane produces a digest with the source MAC address and the ingress port. This
digest is processed by the control plane to populate the forwarding table and provide
connectivity between end hosts.

Objectives

By the end of this lab, students should be able to:

1. Understand how to create digests in a P4 program.
2. Write a control plane application to receive the digests sent from the data plane.
3. Parse the digest and install forwarding rules in a match-action table.
4. Implement a basic MAC learning application on a P4 switch.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to packet digests.
2. Section 2: Lab topology.
3. Section 3: Creating packet digests in P4.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Testing and verifying the P4 program.

1 Introduction to packet digests

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 4

A digest consists of a mechanism to send a message from the data plane to the control
plane. Digests contain data plane values such as packet headers or metadata to be
processed by a program in the control plane (i.e., a controller). The controller can
implement applications in programming languages such as C/C++, Java, or Python.
Moreover, the controller can process multiple digests and communicate with the data
plane using runtime APIs1. The controller can use these APIs to add, delete, or modify an
entry in a match-action table, read registers, reset counters, change meter rates, etc.

1.1 Lab scenario

Figure 1 depicts an example of a controller application that implements MAC learning.
The topology comprises two end hosts and a P4 switch. In the initial state, switch s1 does
not have the forwarding rules to establish connectivity between host h1 and host h2.
Therefore, a P4 program produces a digest with the source MAC address and ingress port
with the first packet arriving to switch s1 from host h1. This digest is sent to the control
plane, where a controller (i.e., controller.py) uses the source MAC address and ingress
port to create a forwarding rule. Then, the controller populates the forwarding table in
the data plane. Similarly, a new entry in the forwarding table is created when a packet is
received from host h2. Figure 2 shows the resulting forwarding table.

MAC address
00:00:00:00:00:01

h1 h2

port 0 port 1

s1

Data plane

Digest(source MAC
address, ingress port)

Control plane

Add entry to
forwarding table

TM

.

.

.

.

.

.

controller.py (MAC learning)

MAC address
00:00:00:00:00:02

Figure 1. Lab scenario. Initially, switch s1 has an empty forwarding table, so that host h1 and host
h2 cannot communicate. Host h1 sends a packet to switch s1. The data plane creates a digest with
the source MAC address and ingress port and sends it to the control plane. Then the data plane
populates the forwarding table in the data plane.

Once switch s1 learns the MAC addresses of host h1 and host h2, they can establish
connectivity.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 5

Key Action Action Data

00:00:00:00:00:01 forward

forward

egress port = 0

egress port = 1

Forwarding table

00:00:00:00:00:02

Figure 2. Forwarding table. The control plane populates the entries in the forwarding table. Then,
host h1 and host h2 can establish connectivity.

2 Lab topology

Let’s get started by loading a simple Mininet topology using MiniEdit. The topology
comprises two end hosts and a P4 switch.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab11 folder and search for the topology file called lab11.mn and click
on Open. A new topology will be loaded to MiniEdit.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 6

Figure 5. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 6. Running the emulation.

2.1 Starting the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 7

Figure 7. Opening a terminal on host h1.

Step 2. Test connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 8. Connectivity test using ping command.

The figure above shows unsuccessful connectivity between host h1 and host h2. This
result happens because there is no P4 program loaded on the switch.

3 Creating packet digests in P4

This section shows how to create a P4 program to generate a packet digest. A digest is a
mechanism to send a message from the data plane to the control plane. The P4 program
will produce a digest using the MAC address and the ingress port of an incoming packet
and send it to the control plane. Then, a controller application in the control plane will
process incoming digests and create the entries to populate the forwarding table.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 8

Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to execute.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code P4_Labs/lab11

Figure 10. Loading the development environment.

3.2 Defining a custom header

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file. The code in the figure below defines
the Ethernet header.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 9

Figure 11. Inspecting the headers.p4 file.

Step 2. Define the following custom header type by adding the code below.

struct digest_t {

 bit<48> srcAddr;

 bit<9> in_port;

}

Figure 12. Defining the custom header digest_t.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 10

The header type in the figure above contains the source MAC address and the ingress
port.

Step 3. Define the following metadata structure by adding the code shown below.

struct metadata {

 digest_t mac_learn_digest;

}

Figure 13. Defining the custom metadata struct.

The metadata defined in the figure above contains the custom header
mac_learn_digest used to capture the source MAC address and ingress port.

Step 4. Press Ctrl+s to save the changes.

3.3 Programming the ingress pipeline

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file. You will observe that the forwarding
logic (i.e., the forwarding table, the actions, the apply block) is already defined.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 11

Figure 14. Inspecting the ingress.p4 file.

Step 2. Define the action learn_mac by adding the following code.

action learn_mac() {

 meta.mac_learn_digest.srcAddr = hdr.ethernet.srcAddr;

 meta.mac_learn_digest.in_port = standard_metadata.ingress_port;

 digest(1, meta.mac_learn_digest);

}

Figure 15. Defining the action learn_mac.

The code in the figure above is explained as follows:

• Line 17: defines the learn_mac action.

• Line 18: stores the source MAC address from an incoming packet into the custom
header defined in the metadata.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 12

• Line 19: stores the ingress port from an incoming packet into the custom header
defined in the metadata.

• Line 20: sends a digest with content of the header mac_learn_digest to the
control plane.

Step 3. Define the table mac_learn by adding the following code.

table mac_learn {

 key = {

 hdr.ethernet.srcAddr: exact;

 }

 actions = {

 learn_mac;

 NoAction;

 }

 size = 32;

 default_action = learn_mac();

}

Figure 16. Inspecting the ingress.p4 file.

The table in the figure above matches the source mac address and executes the actions
learn_mac and NoAction.

Step 4. Add the following line to apply the table mac_learn.

mac_learn.apply();

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 13

Figure 17. Applying the ingress pipeline logic.

Step 5. Press Ctrl+s to save the changes.

3.4 Creating the controller application

Step 1. Click on the controller.py file to display its content. Use the file explorer on the
left-hand side of the screen to locate the file.

Figure 18. Inspecting the controller.py file.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 14

Step 2. Scroll down to the function listen_for_digests and define the controller logic
by adding the following lines.

while True:

 message = sub.recv()

 on_message_recv(message, controller)

Figure 19. Defining the controller logic in the function listen_for_digests.

The code in the figure above implements a loop that listens for incoming digests (see line
43) and calls the function on_message_recv (see line 44). Note that function sub.recv
will halt the execution until it receives a digest.

Step 3. Scroll down to the function on_msg_recv and define the following variables.

msg = msg[32:]

offset = 8

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 15

Figure 20. Defining variables in the function on_message_recv.

The variables in the figure above correspond to the digest and the offset. Note that the
first 32 bytes are skipped because they store some metadata related to the digest and the
switch. The offset value indicates the number of bytes corresponding to the MAC address
(i.e., 48 bits) and the port number (i.e., 16 bits). Note that the 9-bits metadata
egressPort_t represents the port number. However, this value is cast to a 16-bits
variable.

Step 4. Define the receiving logic by adding the following code.

for m in range(num):

 mac1, mac2, port = struct.unpack(“!LHH”, msg[0:offset])

 mac_address = (mac1 << 16) + mac2

 print(“mac address:”, str(mac_address), ‘port:’, str(port))

 msg = msg[offset:]

 controller.do_table_add(“mac_learn NoAction ”

 + str(mac_address) + “ => ”)

 print(“forwarding forward ” + str(mac_address) +” =>” + str(port))

 controller.do_table_add(“forwarding forward “

 + str(mac_address) +” => ” + str(port) + “ ”)

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 16

Figure 21. Defining receiving logic.

The code in the figure above is explained as follows:

• Line 53: Unpacks from the digest the source MAC address and ingress port. Note
that the MAC address has 48 bits, thus, the value is stored in a 16-bits variable (i.e.,
mac1) and a 32-bits variable (i.e., mac2). Note that these values are contained in
the first 8 bytes of the variable msg.

• Line 54: Shifts to the left 16-bits of mac1 and mac2. The result is stored in
mac_address.

• Line 55: Prints the received MAC address and ingress port.

• Line 56: Points to the next 8 bytes in msg to avoid reading the same digest in case
there are two or more messages sent to the control plane simultaneously (see
Figure 22).

• Line 57-58: Adds an entry to the table mac_learn that matches the MAC address
and executes the action NoAction.

• Line 59: Prints the entry to be added to the table forwarding.

• Line 60-61: Adds an entry to the table forwarding that matches the MAC address
and executes the action forward. The action data is the ingress port port.

...

32 bytes 8 bytes

Switch s metadata
MAC 1,
port 1

MAC 2,
port 2

MAC N,
port N

8 bytes 8 bytes

msg
Figure 22. Defining receiving logic.

The figure above explains the data contained in the variable msg. This variable stores the
digest sent from the data plane. The first 32 bytes contain the switch’s metadata, followed
by 8 bytes chunks that include the new MAC address (i.e., MAC 1, MAC 2, …, MAC N) and
the ingress port numbers (i.e., port 1, port 2, …, port N).

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 17

 Step 5. Scroll up and call the function listen_for_digests from the main function by
adding the line below.

listen_for_digests(runtime_api)

Figure 23. Calling the function listen_for_digests.

Step 6. Press Ctrl+s to save the changes.

4 Loading the P4 program

In this section, you will compile and load the P4 binary and the controller program in
switch s1. You will also verify that the files reside in switch filesystem.

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside VS Code to compile the
program.

p4c basic.p4

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 18

Figure 24. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 19

Figure 25. Pushing the basic.json file to switch s1.

Step 3. Type the command below in the terminal panel to push the controller.py file to
the switch s1’s filesystem.

push_to_switch controller.py s1

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 20

Figure 26. Pushing the controller.py file to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 27. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 21

Figure 28. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 29. Displaying the contents of the current directory in the switch s1.

The figure above shows that the switch contains the basic.json and controller.py files that
were pushed after compiling the P4 program and creating the controller application.

5 Configuring switch s1

In this section, you will map switch s1 interfaces to the ports in the P4 program and start
the switch daemon. Then, you will load the rules to populate the match action tables.

5.1 Mapping the P4 program’s ports

Step 1. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 basic.json &

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 22

Figure 30. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 31. Returning to switch s1 CLI.

6 Testing and verifying the P4 program

This section shows the steps run a controller and observe how the MAC learning
application populates the forwarding table in switch s1.

6.1 Starting the controller application

Step 1. In switch s1 terminal, start the controller by running the following command.

python controller.py

Figure 32. Starting the controller in switch s1.

6.2 Sending a packet from host h1 to host h2

Step 1. On host h1’s terminal, type the following command.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 23

send.py 10.0.0.2 HelloWorld

Figure 33. Sending a packet from host h1 to host h2.

Step 2. Go back to switch s1 terminal and inspect the output.

Figure 34. Inspecting the controller’s log in switch s1.

6.3 Sending a packet from host h2 to host h1

Step 1. On host h2’s terminal, type the following command.

send.py 10.0.0.1 HelloWorld

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 24

Figure 35. Sending a packet from host h2 to host h1.

Step 2. Go back to switch s1 terminal and inspect the output.

Figure 36. Inspecting the controller’s log in switch s1.

6.4 Verifying connectivity between host h1 and host h2

Step 1. Go back to host h2 and start the receiver by issuing the following command.

recv.py

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 25

Figure 37. Starting the receiver in host h2.

Step 2. Go back to host h2 and start the receiver by issuing the following command.

send.py 10.0.0.2 HelloWorld

Figure 38. Sending a packet from host h1 to host h2.

Step 3. Inspect the output on host h2 to verify that the packet was received.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 26

Figure 39. Inspecting the output in host h2.

6.5 Verifying the rules in the control plane

Step 1. Go back to switch s1 terminal and press Ctrl+c to stop the controller.

Step 2. Issue the following command to start the CLI.

simple_switch_CLI

Figure 40. Starting the switch CLI.

Step 3. Issue the following command to see content of the table forwarding.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 27

Figure 41. Showing the content of the table forwarding.

The output in the figure above shows that the table forwarding was populated with
two entries. Entry 1 matches packets with destination MAC address 00:00:00:00:00:01
and forwards them through port 0. Similarly, entry 2 matches packets with destination
MAC address 00:00:00:00:00:02 and forwards them through port 1.

Step 4. Issue the following command to show the content of the table mac_learn.

Figure 42. Showing the content of the table mac_learn.

Note that the table mac_learn matches the destination mac address and executes the
action NoAction. The logic of this table consists of applying the default action learn_mac
when there is a new MAC address to learn.

This concludes lab 11. Stop the emulation and then exit out of MiniEdit.

Lab 11: Generating Notification Messages from the Data Plane using Digests

 Page 28

References

1. The P4 language Consortium. “Behavioral model: The runtime CLI application.”
[Online]. Available: https://tinyurl.com/28fptt6z

2. The P4 Architecture Working Group. “P416 Portable Switch Architecture (PSA).”
[Online]. Available: https://tinyurl.com/2wnkc6d2

3. Mininet walkthrough. [Online]. Available: http://Mininet.org.
4. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

5. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

6. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

	Cover
	Contents
	Lab 1 - Introduction to Mininet
	Lab 2 - Introduction to P4 and BMv2
	Lab 3 - P4 Program Building Blocks
	Lab 4 - Defining and Processing Custom Headers
	Lab 5 - Monitoring the Switch’s Queue using Standard Metadata
	Lab 6 - Collecting Queueing Statistics using a Header Stack
	Lab 7 - Measuring Flow Statistics using Direct and Indirect Counters
	Lab 8 - Rerouting Traffic using Meters
	Lab 9 - Storing Arbitrary Data using Registers
	Lab 10 - Calculating Packets Interarrival Times using Hashes and Registers
	Lab 11 - Generating Notification Messages from the Data Plane using Digests

