A

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Book Version: 06-25-2022

Principal Investigator: Jorge Crichigno

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Introduction to P4 Programmable Data Planes

Contents

Lab 1: Introduction to Mininet

Exercise 1: Building a Basic Topology

Lab 2: Introduction to P4 and BMv2

Exercise 2: Compiling and Running a P4 Program

Lab 3: P4 Program Building Blocks

Lab 4: Parser Implementation

Exercise 3: Parsing UDP and RTP

Lab 5: Introduction to Match-action Tables (Part 1)

Lab 6: Introduction to Match-action Tables (Part 2)
Exercise 4: Implementing NAT using Match-action Tables
Lab 7: Populating and Managing Match-action Tables at Runtime
Exercise 5: Configuring Match-action Tables at Runtime
Lab 8: Checksum Recalculation and Packet Deparsing
Exercise 6: Building a Packet Reflector



A

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 1: Introduction to Mininet

Document Version: 01-25-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Lab 1: Introduction to Mininet

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [ o= o T PP UPPPRUPPPPR 3
1 INtroduction tO MININET .....eeiiiiiiiee e s e e s s eaea e e e 3
2 Invoke Mininet USING the CLI ..ccoueiiiiiiiiiee e e e 5
2.1  Invoke Mininet using the default topology.......ccccvveviviiiiiiiiiiiee e 5
2.2 TeSt CONNECEIVITY oo 9
3 Build and emulate a network in Mininet using the GUI .........ccccceviiieiiiiiieee s, 10
3.1  Build the Nnetwork tOPOIOZY ......eveviiiiiiiiieiiee e 10
3.2 TeSt CONNECEIVITY oo 13
3.3 Automatic assignment Of IP addresses ......ccveeevivereeriiiee e 16
3.4 Save and load a Mininet tOPOIOZY ......eeveveiiieeiiiiiiee e 18
20 =T =Y g Tl PRSP 19

Page 2



Lab 1: Introduction to Mininet

Overview

This lab provides an introduction to Mininet, a virtual testbed used for testing network
tools and protocols. It demonstrates how to invoke Mininet from the command-line
interface (CLI) utility and how to build and emulate topologies using a graphical user
interface (GUI) application.

Objectives

By the end of this lab, you should be able to:

Understand what Mininet is and why it is useful for testing network topologies.
Invoke Mininet from the CLI.

Construct network topologies using the GUI.
Save/load Mininet topologies using the GUI.

PwnNPE

Lab settings
The information in Table 1 provides the credentials of the Client machine.

Table 1. Credentials to access the Client machine.

Device Account Password

Client admin password

Lab roadmap
This lab is organized as follows:

1. Section 1: Introduction to Mininet.
2. Section 2: Invoke Mininet using the CLI.
3. Section 3: Build and emulate a network in Mininet using the GUI.

1 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools and
protocols. With a single command, Mininet can create a realistic virtual network on any
type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides
an inexpensive solution and streamlined development running in line with production
networks®. Mininet offers the following features:

e Fast prototyping for new networking protocols.
Page 3



Lab 1: Introduction to Mininet

e Simplified testing for complex topologies without the need of buying expensive
hardware.

e Realistic execution as it runs real code on the Unix and Linux kernels.

e Open-source environment backed by a large community contributing extensive
documentation.

Mininet Emulated Network Hardware Network
Figure 1. Hardware network vs. Mininet emulated network.

Mininet is useful for development, teaching, and research as it is easy to customize and
interact with it through the CLI or the GUI. Mininet was originally designed to experiment
with OpenFlow? and Software-Defined Networking (SDN)3. This lab, however, only focuses
on emulating a simple network environment without SDN-based devices.

Mininet’s logical nodes can be connected into networks. These nodes are sometimes
called containers, or more accurately, network namespaces. Containers consume
sufficiently fewer resources that networks of over a thousand nodes have created,
running on a single laptop. A Mininet container is a process (or group of processes) that
no longer has access to all the host system’s native network interfaces. Containers are
then assigned virtual Ethernet interfaces, which are connected to other containers
through a virtual switch®. Mininet connects a host and a switch using a virtual Ethernet
(veth) link. The veth link is analogous to a wire connecting two virtual interfaces, as
illustrated below.

Network namespace 1 Network namespace 2
Host 1 Host 2
| eth0 I | ethO I
| vethl | | veth2 |
Software switch

Root namespace

Figure 2. Network namespaces and virtual Ethernet links.
Each containeris an independent network namespace, a lightweight virtualization feature
that provides individual processes with separate network interfaces, routing tables, and

Address Resolution Protocol (ARP) tables.

Page 4



Lab 1: Introduction to Mininet

Mininet provides network emulation opposed to simulation, allowing all network
software at any layer to be simply run as is; i.e. nodes run the native network software of
the physical machine. On the other hand, in a simulated environment applications and
protocol implementations need to be ported to run within the simulator before they can
be used.

2 Invoke Mininet using the CLI

In following subsections, you will start Mininet using the Linux CLI.

2.1 Invoke Mininet using the default topology

Step 1. Launch a Linux terminal by clicking on the Linux terminal icon in the task bar.

Figure 3. Linux terminal icon.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. To start a minimal topology, enter the command shown below. When prompted
for a password, type and hit enter. Note that the password will not be visible
as you type it.

sudo mn

Page 5



Lab 1: Introduction to Mininet

admin@lubuntu-vm: ~

File Actions Edit View Help
admin@lubuntu-vm: ~

admin@lubuntu-vm:~$ |sudo mn

[sudo] password for admin:

Jusr/local/lib/python3.8/dist-packages/mininet-3.0-py3.8.egg/mininet/cli.py:15

Jusr/local/lib/python3.8/dist-packages/mininet-3.0-py3.8.egg/mininet/cli.py:45
ny o,

fusr/local/lib/python3.8/dist-packages/mininet-3.0-py3.8.egg/mininet/cli.py:15

fusr/local/lib/python3.8/dist-packages/mininet-3.0-py3.8.egg/mininet/cli.py:45

*** Creating network

***% Adding controller
***% Adding hosts:

hi h2

***% Adding switches:

**% Confiqur

hl h2

**% Starting controller
cO

**%* Starting 1 switches
= .

**% Starting CLI:
containernet> [J

Figure 4. Starting Mininet using the CLI.

The above command starts Mininet with a minimal topology, which consists of a switch
connected to two hosts as shown below.

hl sl h2
N R& .
NS N2 NS
o h1-eth0 sl-ethl sl-eth2 h2-eth0]| o
S N
10.0.0.1 10.0.0.0/8 10.0.0.2

Figure 5. Mininet’s default minimal topology.

When issuing the command, Mininet initializes the topology and launches its
command line interface which looks like this:

containernet>

Step 3. To display the list of Mininet CLI commands and examples on their usage, type the
following command:

help

Page 6



Lab 1: Introduction to Mininet

admin@lubuntu-vm: ~
File Actions Edit View Help

admin@lubuntu-vm: ~

gterm 1ipe 10d pingpair py

help i noecho pingpairfull quit
dump  1intfs Tlinks pingall ports sh
exit iperf net pingallfull px source

You may also send a mand to a node using:
<node> command {arg
ple:

mininet> h1 ifconfig

The interpreter automatically substitutes IP addr
for node names when a node is the first arg, so commands
like
mininet> h2 ping h3
should work.

Some character-oriented interactive commands require
noecho:
mininet> noecho h2 vi foo.py
However, starting up an xterm/gterm is generally better:
mininet> xterm h2

containernet> JJ

Figure 6. Mininet’s command.

Step 4. To display the available nodes, type the following command:

nodes

admin@lubuntu-vm: ~
File Actions Edit View Help
admin@lubuntu-vm: ~
containernet=|nodes
available nodes are:

c® hi sl
containernets |

Figure 7. Mininet’s command.

The output of the command shows that there is a controller (c0), two hosts (host
h1 and host h2), and a switch (s1).

Step 5. It is useful sometimes to display the links between the devices in Mininet to
understand the topology. Issue the command shown below to see the available links.

net

Page 7



Lab 1: Introduction to Mininet

$_ admin@lubuntu-vm: ~

File Actions Edit View Help

admin@lubuntu-vm: ~

1-eth® sil-eth2:h2-eth®

Lo

containernet> i

Figure 8. Mininet’s command.
The output of the command shows that:

1. Host hlis connected using its network interface h1-eth0O to the switch on
interface s1-ethl.
2. Host h2 is connected using its network interface h2-eth0 to the switch on
interface s1-eth2.
3. Switch sl:
a. Has aloopback interface lo.
b. Connects to hl-eth0O through interface s1-ethl.
c. Connects to h2-eth0 through interface s1-eth2.
4. Controller c0 does not have any connection.

Mininet allows you to execute commands on a specific device. To issue a command for a
specific node, you must specify the device first, followed by the command.

Step 6. To proceed, issue the command:

hl ifconfig

admin@lubuntu-vm: ~

File Actions Edit View Help
admin@lubuntu-vm: ~

containernet>|h1 ifconfig
hi-eth®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 0.0.0.0
ether 3a:63:b8:06:23:9c txqueuelen 1000 (Ethernet)
RX packets 30 bytes 3449 (3.4 KB)
RX errors © dropped O overruns 0 frame 0
TX packets 3 bytes 270 (270.0 B)
TX errors © dropped 0 overruns ® carrier ® collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns @ frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors O dropped 0 overruns 0 carrier @ collisions ©

containernet> [

Figure 9. Output of h1 ifconfig]command.

Page 8



Lab 1: Introduction to Mininet

This command 1 ifconfigl executes the Linux command on host hl. The

command shows host h1’s interfaces. The display indicates that host h1 has an interface
h1-ethO configured with IP address 10.0.0.1, and another interface lo configured with IP
address 127.0.0.1 (loopback interface).

2.2 Test connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1
and host h2 respectively. To test connectivity between them, you can use the command
ping. The ping command operates by sending Internet Control Message Protocol (ICMP)
Echo Request messages to the remote computer and waiting for a response or reply.
Information available includes how many responses are returned and how long it takes
for them to return.

Step 1. On the CLI, type the command shown below. The command h1 ping 10.0.0.2|
tests the connectivity between host h1 and host h2. To stop the test, press [ctrl+d. The
figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets to
host h2 (10.0.0.2) and successfully received the expected responses.

hl ping 10.0.0.2

-] admin@lubuntu-vm: ~
File Actions Edit View Help
admin@lubuntu-vm: ~ [

containernet>/hl ping 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from .0.0.2: icmp_seq=1 ttl=64 time=29.4 ms

bytes from .0.0.2: icmp_seq=2 ttl=64 time=0.463 ms
64 bytes from .0.0.2: icmp_seq=3 ttl=64 time=0.080 ms

bytes from .0.0.2: icmp_seq=4 ttl=64 time=0.076 ms

- 10.0.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3049ms
rtt min/avg/max/mdev = 0.076/7.514/29.439/12.659 ms
containernet>

Figure 10. Connectivity test between host h1l and host h2.

Step 2. Stop the emulation by typing the following command:

exit

Page 9



Lab 1: Introduction to Mininet

$_ admin@lubuntu-vm: ~

File Actions Edit View Help
admin@lubuntu-vm: ~
ntainernet> |exit
Stopping controllers
cO
**% Stopping 2 links

**% Stopping 1 switches
sl

**%* Stopping 2 hosts

hli h2

**%* Done

completed in 619
admin@lubuntu-vm:

Figure 11. Stopping the emulation using [exit]

If Mininet were to crash for any reason, the command can be utilized to
clean a previous instance. However, the command is often used within the
Linux terminal and not the Mininet CLI.

Step 3. After stopping the emulation, close the Linux terminal by clicking the [x] in the
upper-right corner.

admin@lubuntu-vm: ~

Help

@lubuntu-vm: ~

Figure 12. Closing the Linux CLI.

3 Build and emulate a network in Mininet using the GUI

In this section, you will use the application MinikEdit to deploy the topology illustrated
below. MiniEdit is a simple GUI network editor for Mininet.

hi sl h2
N K N
N = s
° h1-ethO sl-ethl sl-eth2 h2-eth0| o
N N
10.0.0.1 10.0.0.0/8 10.0.0.2

Figure 13. Lab topology.

3.1 Build the network topology

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|.
MiniEdit will start, as illustrated below.

Page 10



Lab 1: Introduction to Mininet

Computer

MiniEdit

Terminal

Figure 14. MiniEdit Desktop shortcut.

MiniEdit will start, as illustrated below.

File Edit Run Help

(1) Select

A

(2) Host

im

(3) P4 switch (Docker)

4
A

J

(4) OpenFlow switch

(5) Legacy switch

(6) Legacy router

(7) Link

(8) Controller

(9) Run

(10) Stop

Figure 15. MiniEdit Graphical User Interface (GUI).

Page 11



Lab 1: Introduction to Mininet

The main buttons are:

1. Select: allows selection/movement of the devices. Pressing Del on the keyboard
after selecting the device removes it from the topology.

2. Host: allows addition of a new host to the topology. After clicking this button, click
anywhere in the blank canvas to insert a new host.

3. P4 switch (Docker): allows the addition of P4 switch. After clicking this button, click
anywhere in the blank canvas to insert the P4 switch.

4. OpenFlow switch: allows the addition of a new OpenFlow-enabled switch. After
clicking this button, click anywhere in the blank canvas to insert the switch.

5. Legacy switch: allows the addition of a new Ethernet switch to the topology. After
clicking this button, click anywhere in the blank canvas to insert the switch.

6. Legacy router: allows the addition of a new legacy router to the topology. After
clicking this button, click anywhere in the blank canvas to insert the router.

7. Link: connects devices in the topology (mainly switches and hosts). After clicking
this button, click on a device and drag to the second device to which the link is to
be established.

8. Controller: allows the addition of a new OpenFlow controller.

9. Run: starts the emulation. After designing and configuring the topology, click the
run button.

10. Stop: stops the emulation.

Step 2. To build the topology illustrated in Figure 13, two hosts and one switch must be
deployed. Deploy these devices in MiniEdit, as shown below.

- MiniEdit

File Edit Run Help

h2

=r
=

#F?E'i“:‘ / f: m‘() E‘ N -

Figure 16. MiniEdit’s topology.

Use the buttons described in the previous step to add and connect devices. The
configuration of IP addresses is described in Step 3.

Page 12



Lab 1: Introduction to Mininet

Step 3. Configure the IP addresses of host hl and host h2. Host h1l’s IP address is
10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the
right click and selecting properties on the device. For example, host h2 is assigned the IP
address 10.0.0.2/8 in the figure below. Click OK for the settings to be applied.

? Properties | VLAN Interfaces] External Interfaces[ Private Directories |
Hostname: h2

IP Address:[10.0.0.2/¢] | |
Default Route:

_ Host Options Amount CPU: host —
h1 o

Start Command:
Stop Command:

“ OK ] I Cancel

Figure 17. Configuration of a host’s properties.

3.2 Test connectivity

Before testing the connection between host hl and host h2, the emulation must be
started.

Step 1. Click the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Stop |’*~.17
Figure 18. Starting the emulation.

Step 2. Open a terminal by right-clicking on host hl and select Terminal. This opens a
terminal on host hl and allows the execution of commands on the host hl. Repeat the
procedure on host h2.

Page 13



Lab 1: Introduction to Mininet

- .

Host Options h2

Terminal

Figure 19. Opening a terminal on host h1.

The network and terminals at host h1l and host h2 will be available for testing.

File Edit Run Help

"Host: h2"

root@lubuntu-vm: /home/admin# D root@lubuntu-vm:/home/admin# I

Figure 20. Terminals at host h1 and host h2.
Step 3. On host hl’s terminal, type the command shown below to display its assigned IP

addresses. The interface h1-ethO at host hl should be configured with the IP address
10.0.0.1 and subnet mask 255.0.0.0.

ifconfig

Page 14



Lab 1: Introduction to Mininet

"Host: h1"

root@lubuntu-vm: /home/admin#|ifconfig

hl-etho: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 0.0.0.0
ether 22:6b:8e:fc:b9:0c txqueuelen 1000 (Ethernet)
RX packets 28 bytes 3272 (3.2 KB)
RX errors © dropped © overruns © frame ©
TX packets 3 bytes 270 (270.0 B)

TX errors @ dropped © overruns © carrier © collisions

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6é ::1 prefixlen 128 scopeid 0x1lO<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns @ frame ©
TX packets © bytes 0 (0.0 B)

TX errors @ dropped © overruns © carrier © collisions 0

root@lubuntu-vm: /home/admin# I

Figure 21. Output of [i fEconfig] command on host h1.

Repeat Step 3 on host h2. Its interface h2-ethO should be configured with IP address

10.0.0.2 and subnet mask 255.0.0.0.

Step 4. On host hl’s terminal, type the command shown below. This command tests the
connectivity between host hl and host h2. To stop the test, press [Ctrl+d. The figure
below shows a successful connectivity test. Host h1 (10.0.0.1) sent six packets to host h2

(10.0.0.2) and successfully received the expected responses.
ping 10.0.0.2

"Host: h1l"

from
from
from

s from

time 3049ms

Figure 22. Connectivity test using command.

Step 5. Stop the emulation by clicking on the Stop button.

Run

Figure 23. Stopping the emulation.

Page 15



Lab 1: Introduction to Mininet

3.3

Automatic assignment of IP addresses

In the previous section, you manually assigned IP addresses to host h1l and host h2. An
alternative is to rely on Mininet for an automatic assignment of IP addresses (by default,
Mininet uses automatic assignment), which is described in this section.

Step 1. Remove the manually assigned IP address from host h1. Right-click on host h1 and
select Properties. Delete the IP address, leaving it unassigned, and press the OK button as
shown below. Repeat the procedure on host h2.

Run Help
- MiniEdit - 0 X
Properties VLAN Interfaces External Interfaces\ Private Directories|
== Hostname: |h1
s1 IP Address: | |
< Default Route:
\ Amount CPU: host —
‘ Cores:
- ‘ ‘i Start Command:
Host Options h2 Stop Command:
|Propemes

I OK

” Cancel

Figure 24. Host h1 properties.

Step 2. In the MiniEdit application, navigate to Edit > Preferences. The default IP base is
10.0.0.0/8. Modify this value to 15.0.0.0/8, and then press the OK button.

File Run Help

Cut

=

S uowE;

iPBase:  [15.0.0.0/g] |

Default Terminal: xterm —

Start CLI:

Default Switch: Open vSwitch Kernel Mode — |

Open vSwitch

Preferences

=N

-sFlow Profile for Open vSwitch—————————
Target:

Sampling: 400
Header: 128
Polling: 30

OpenFlow 1.0: ¥
OpenFlow 1.1:
OpenFlow 1.2:
OpenFlow 1.3: I

OpenFlow 1.4: [

dpctl port:

-NetFlow Profile for Open vSwitch——————

Target:)

Active Timeout: 166()
Add ID to Interface: I~

Cancel ‘

Figure 25. Modification of the IP Base (network address and prefix length).

Page 16



Lab 1: Introduction to Mininet

Step 3. Run the emulation again by clicking on the Run button. The emulation will start
and the buttons of the MiniEdit panel will be disabled.

Stop |’.q7
Figure 26. Starting the emulation.

Step 4. Open a terminal by right-clicking on host h1 and select Terminal.

- MiniEdit
File Edit Run Help

&

Host Options h2

Figure 27. Opening a terminal on host h1.
Step 5. Type the command shown below to display the IP addresses assigned to host h1l.

The interface hl-ethO at host hl now has the IP address 15.0.0.1 and subnet mask
255.0.0.0.

ifconfig

Page 17



Lab 1: Introduction to Mininet

"Host: h1"

root@lubuntu-vm: /home/admin#|ifconfig
hl-eth®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 15.0.0.1 netmask 255.0.0.0 broadcast 0.0.0.0
ether e6:3a:02:05:ba:05 txqueuelen 1000 (Ethernet)
RX packets 16 bytes 2076 (2.0 KB)
RX errors © dropped © overruns @ frame ©
TX packets 4 bytes 360 (360.0 B)
TX errors © dropped © overruns @ carrier @ collisions ©

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid O0x1lO<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns @ frame ©
TX packets 0 bytes 0 (0.0 B)
TX errors © dropped © overruns @ carrier © collisions ©

root@lubuntu-vm: /home/admin# I

Figure 28. Output of [i fconfig] command on host h1.

You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host
h2’s terminal. The corresponding interface h2-ethO at host h2 has now the IP address
15.0.0.2 and subnet mask 255.0.0.0.

Step 6. Stop the emulation by clicking on Stop button.

Run |

I Stop I ik"“

Figure 29. Stopping the emulation.

3.4 Save and load a Mininet topology

In this section you will save and load a Mininet topology. It is often useful to save the
network topology, particularly when its complexity increases. MiniEdit enables you to
save the topology to a file.

Step 1. In the MiniEdit application, save the current topology by clicking File. Provide a

name for the topology and notice myTopology as the topology name. Ensure you are in
the lab1 folder and click Save.

Page 18



Lab 1: Introduction to Mininet

- MiniEdit
Edit Run Help
New
Open E
- x
- Save the topology as N
Export Level 2 Script El Directory: I!home!admin,fP4_Lab5!Iabl| — ‘ EB
s
\ [l labl.mn
h2
i [ I
File name: ImyTopoIogyI I
Files of type: Mininet Topology (*.mn) — | Cancel |

Figure 30. Saving the topology.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the /ab1 folder and search for the topology file called /labl.mn and click on
Open. A new topology will be loaded to MiniEdit.

- MiniEdit

Edit Rum Help

o o == =5

Save == Directory: I Ihome!admin!Pil_Labs,‘lablI = ‘ [
Export Level 2 Script —
sl El

Qui ] myTopology.mn

L] L £l I

e

6
A

— hl h2
File name: |labl.mn |gpen|

Files of type: Mininet Topology (*.mn) 4| Cancel ‘

/

Figure 31. Opening a topology.

This concludes lab 1. Stop the emulation and then exit out of MinikEdit and the Linux
terminal.

References

1. Mininet walkthrough. [Online]. Available: http://Mininet.org.
2. Mckeown N., Anderson T., Balakrishnan H., Parulkar G., Peterson L., Rexford J.,
Shenker S., Turner J.,, “OpenFlow,” ACM SIGCOMM Computer Communication

Review, vol. 38, no. 2, p. 69, 2008.

Page 19



Lab 1: Introduction to Mininet

3. Esch J., “Prolog to, software-defined networking: a comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 10-13, 2015.

4. Dordal P., “An Introduction to computer networks,”. [Online]. Available:
https://intronetworks.cs.luc.edu/.

5. Llantz B., Gee G. “MiniEdit: a simple network editor for Mininet.” 2013. [Online].
Available: https://github.com/Mininet/Mininet/blob/master/examples.

Page 20



A

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Exercise 1: Building a Basic Topology

Document Version: 01-14-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Exercise 1: Building a Basic Topology

Contents

R o Y ol Y= o [T T ] A o [ PURR
1.1 Credentials o e e e aaaee s
2 == F ol T I o] o o] (o} =AY A USSP

2 DElIVEIADIES. ..t e e s ae e e e e araeeeea



Exercise 1: Building a Basic Topology

1 Exercise description

In this exercise, you will build a topology and run Mininet commands to verify the
configuration. Additionally, you will perform a connectivity test.

1.1 Credentials
The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password

Client admin password

1.2 Exercise topology

The topology comprises two legacy switches and two end hosts.

hl sl s2 h2
> > = 3
N &

Figure 1. Exercise topology.

2 Deliverables
Follow the steps below to complete the exercise.

a) Open MiniEdit by double-clicking the shortcut on the desktop. If a password is required

type password,




Exercise 1: Building a Basic Topology

Computer,

MiniEdit

Terminal

Figure 2. MiniEdit shortcut.

b) Using end hosts and legacy switches, build the topology presented in Figure 1. Those
devices are highlighted in the figure below.

] MiniEdit

File Edit Run Help

m__ = __ =
h2

hl sl 52

Figure 3. Building a topology using end hosts and legacy switches available in MiniEdit.

c) Enable Mininet’s CLI navigating into Edit->Preferences and set the Start CLI box.



Exercise 1: Building a Basic Topology

d) In the Mininet CLI, run the corresponding commands to verify the name of the
interfaces, links, and nodes in the topology. Which interface in switch s1 connects to
switch s27?

e) In the hosts’ CLI, verify the IP and MAC addresses. Report the MAC address of host

h2.

f) In a host’s terminal, perform a connectivity test between host h1 and host h2. Is the

(o]
c
-

File Run Help

MFreferences |

Iﬁ()»i

a1l

I

- Preferences
IPBase: [10.0.0.0/8] | sFlow Profile for Open vSwitch
Default Terminal: xterm — Target:
StartCL: v Sampling: 400
Header: 128

Default Switch: Open vSwitch Kernel Mode — I Polling: 30

~Open vSwitch
P NetFlow Profile for Open vSwitch

OpenFlow 1.0: v

OpenFlow 1.1: | Target:
openHow 1.2: = Active Timeout: (600
il = Add ID to Interface: |
OpenFlow 1.3:

dpctl port:

OK Cancel

Figure 4. Enabling Mininet’s CLI.

test successful?




A

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 2: Introduction to P4 and BMv?2

Document Version: 01-25-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Lab 2: Introduction to P4 and BMv2

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [ o= o T PP UPPPRUPPPPR 3
R 101 1 o Yo U Tt d o T o IO PP PUPPPUPTPPR 3
1.1 WOorkflow Of @ P4 Program .....c.c..eeeieciieeiiiiiieeesciiee e ssieee e sivee e svee e s s e e s svaae s 4
1.2 Workflow used in this 1ab SEries .....cc.uiiiviiiiieiiiiie e 5
P IF- | o I o] o Yo Lo} -1V 20U PP PUPPPRTPPR 6
2.1  Verifying connectivity between host hl and host h2 .........ccccceeiiiiiiiiiiiiencee, 7
3 Loading the P4 Program.....c..cciiiicuiieeieiiieeeceiiee st e e siee e e s sae e e s s ssae e e s sabaeessssnaeesenns 8
3.1 Loading the programming enviroNmMeNt........cccoecvieeiiiiieee e 9
3.2  Compiling and loading the P4 program to switch sl .......ccccoccvviviiiieiiniieeeeeee, 11
3.3 Verifying the configuration .........ccooooiiiiiieiee e 13
4 ConfigUring SWILCN SL.....uviiiiiiiiiee e e e s e e e e e eaeees 14
4.1  Mapping P4 Program’s POItS.....ccucuueeeiiiiieeeeriiieeeeriieeeessireeeessreeeessssseeeesssaeeeas 14
4.2 Loading the rules to the SWIitCh.......cooviiiiiii e, 16
REFEIENCES ...ttt e e sttt e e s st e e s s abt e e e e saraeeesenreeesanns 17

Page 2



Lab 2: Introduction to P4 and BMv2

Overview

This lab introduces programmable data plane switches and their role in the Software-
defined Networking (SDN) paradigm. The lab introduces the Programming Protocol-
independent Packet Processors (P4), the de facto programming language used to describe
the behavior of the data planes of programmable switches. The focus of this lab is to
provide a high-level overview of the general lifecycle of programming, compiling, and
running a P4 program on a software switch.

Objectives
By the end of this lab, students should be able to:

Define the need for SDN and data plane programmability.
Understand the structure of a P4 program.

Compile a simple P4 program and deploy it to a software switch.
Start the switch daemon and allocate virtual interfaces to the switch.
Perform a connectivity test to verify the correctness of the program.

uhwWwN e

Lab settings
Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Loading the P4 program.
4. Section 4: Configuring switch s1.
1 Introduction

Since the emergence of the world wide web and the explosive growth of the Internet in
the 1990s, the networking industry has been dominated by closed and proprietary

Page 3



Lab 2: Introduction to P4 and BMv2

hardware and software. The progressive reduction in the flexibility of protocol design
caused by standardized requirements, which cannot be easily removed to enable protocol
changes, has perpetuated the status quo. This protocol ossification® 2 has been
characterized by a slow innovation pace at the hand of few network vendors. As an
example, after being initially conceived by Cisco and VMware3, the Application Specific
Integrated Circuit (ASIC) implementation of the Virtual Extensible LAN (VXLAN)?, a simple
frame encapsulation protocol, took several years, a process that could have been reduced
to weeks by software implementations. The design cycle of switch ASICs has been
characterized by a lengthy, closed, and proprietary process that usually takes years. Such
process contrasts with the agility of the software industry.

The programmable forwarding can be viewed as a natural evolution of Software-Defined
Networking (SDN), where the software that describes the behavior of how packets are
processed, can be conceived, tested, and deployed in a much shorter time span by
operators, engineers, researchers, and practitioners in general. The de-facto standard for
defining the forwarding behavior is the P4 language®, which stands for Programming
Protocol-independent Packet Processors. Essentially, P4 programmable switches have
removed the entry barrier to network design, previously reserved to network vendors.

1.1 Workflow of a P4 program

Programming a P4 switch, whether a hardware or a software target, requires a software
development environment that includes a compiler. Consider Figure 1. The compiler
maps the target-independent P4 source code (P4 program) to the specific platform. The
compiler, the architecture model, and the target device are vendor specific and are
provided by the vendor. The P4 source code on the other hand is supplied by the user.

The compiler generates two artifacts after compiling the P4 program. First, it generates a
data plane configuration (Data plane runtime) that implements the forwarding logic
specified in the P4 input program. This configuration includes the instructions and
resource mappings for the target. Second, it generates runtime APIs that are used by the
control plane / user to interact with the data plane. Examples include adding/removing
entries from match-action tables and reading/writing the state of extern objects (e.g.,
counters, meters, registers). The APIs contain the information needed by the control
plane to manipulate tables and objects in the data plane, such as the identifiers of the
tables, fields used for matches, keys, action parameters, and others.

Page 4



Lab 2: Introduction to P4 and BMv2

P4 program

Architecture

Compiler *QH API Load
e

Target switch

Control plane

A
B API Control signals
Data plane Load | i ¢ Y
runtime Extern | Datapl
. X ata plane
Tabl .
|:| User supplied ables objects

E Vendor supplied

Figure 1. Generic workflow design. The compiler, the architecture model, and the target switch
are provided by the vendor of the device. The P4 source code is customized by the user. The
compiler generates a data plane runtime to be loaded into the target, and the APIs used by the
control plane to communicate with the data plane at runtime.

1.2 Workflow used in this lab series

This section demonstrates the P4 workflow that will be used in this lab series. Consider
Figure 2. We will use the Visual Studio Code (VS Code) as the editor to modify the basic.p4
program. Then, we will use the p4c compiler with the V1Model architecture to compile
the user supplied P4 program (basic.p4). The compiler will generate a JSON output (i.e.,
basic.json) which will be used as the data plane program by the switch daemon (i.e.,
simple_switch). Finally, we will use the [simple switch CLI|at runtime to populate and
manipulate table entries in our P4 program. The target switch (vendor supplied) used in
this lab series for testing and debugging P4 programs is the behavioral model version 2
(BMv2)8.

Page 5



Lab 2: Introduction to P4 and BMv2

basic.p4

Controller

Architecture
(ViModel)

(simple_switch_CLI)

Runtime CLI

Compiler ] '0 Table
(p4c) %A et
p » manipulation

Control Plane

Load

»  basic.json

E| User supplied
|| Vendor supplied

»

Data Plane

;lﬂy

Software switch

(BMv2)

Figure 2. Workflow used in this lab series.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

hl sl

h2

h1-eth0 sl-etho \EI sl-ethl

10.0.0.1

Figure 3. Lab topology.

\

NS
h2-eth0 | °
X

10.0.0.2

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|.

Computer

MiniEdit

Terminal

Figure 4. MiniEdit shortcut.

Page 6



Lab 2: Introduction to P4 and BMv2

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab2, select the file lab2.mn, and click on
Open.

MiniEdit

Edit Run Help

New

Save m

ST Tl S s Directory: /homejadmin/P4_Labs/lab2 — | @|

& 2]

File name: (lab2.mn |gpen|

Files of type: Mininet Topology (*.mn) 4| Cancel |

Figure 5. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Stop I‘“*-J—

Figure 6. Running the emulation.

2.1 Verifying connectivity between host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Page 7



Lab 2: Introduction to P4 and BMv2

File Edit Rum Help

R

"

__ Host Options sl i

Terminal

Figure 7. Opening a terminal on host h1l.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

"Host: h1"

root@lubuntu-vm: /home/admin# |ping 10.0.0.2 -c 4

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

From 10.0.0.1 icmp seq=1 Destination Host Unreachable
From 10.0.0.1 icmp seq=2 Destination Host Unreachable

From 10.0.0.1 icmp seq=3 Destination Host Unreachable

10.0.0.2 ping statistics
4 packets transmitted, 0 received, +3 errors, 100% packet loss, time 3067ms
pipe 4
root@lubuntu-vm: /home/admin# I

Figure 8. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host h1l and host h2 because there is
no program loaded into the switch.

3 Loading the P4 program

This section shows the steps required to implement a P4 program. It describes the editor
that will be used to modify the P4 program and the P4 compiler that will produce a data
plane program for the software switch.

VS Code will be used as the editor to modify P4 programs. It highlights the syntax of P4

and provides an integrated terminal where the P4 compiler will be invoked. The P4
compiler that will be used is p4c, the reference compiler for the P4 programming language.

Page 8



Lab 2: Introduction to P4 and BMv2

p4c supports both P414 and P446, but in this lab series we will only focus on P44¢ since it is
the newer version and is currently being supported by major programming ASIC
manufacturers’.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on
the desktop.

Computer

MiniEdt

Terminal

Figure 9. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4 Labs/lab2

admin@lubuntu-vm: ~

File Actions Edit View Help
admin@lubuntu-vm: ~ (%]

Figure 10. Launching the editor and opening the lab2 directory.

Step 3. Once the previous command is executed, VS Code will start. Click on basic.p4 in
the file explorer panel on the left hand side to open the P4 program in the editor.

Page 9



Lab 2: Introduction to P4 and BMv2

basic.p4 - lab2 - Visual Studio Code

File Edit Selection View Go Run Terminal

= basic.p4

lab2.mn

> OUTLINE

Help

basic.p4 X

bas pa

1 /% -*- P4 .16 -*- */

2 #include <core.p4>

3 #include <vlmodel.p4>

4

5 const bit<16> TYPE_IPV4 = 0x800;

6

TR R AR R R R R
8 kR KR kearik HEAD E R §  #hkkksssihhsinss k8
9 * FEEEE R * * ok * % * LA R RS R R R R R R R R R R R R R R R + .
10

11 typedef bit<9> egressSpec t;

12 typedef bit<48> macAddr_t;

13 typedef bit<32> ip4Addr t;

14

15 header ethernet t {

16 macAddr t dstAddr;

17 macAddr t srcAddr;

18 bit<16> etherType;

19 1}
20

N

)
)

header ipv4 t {

hla .a. i il

OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab2$ []

Figure 11. Opening the programming environment in VS Code.

Step 4. Identify the components of VS Code highlighted in the grey boxes.

Page 10



Lab 2: Introduction to P4 and BMv2

basic.p4 - lab2 - Visual Studio Code

File Edit Selection View Go

Run Terminal Help

= basic.p4

lab2.mn

(2) File explorer

> OUTLINE

hasic.p4 (1) Editor
1 /¥ -%- P4 16 -*- */
2 #include <core.p4>
3 #include <vlmodel.p4>
4
5 const bit<16> TYPE_IPV4 = 0x800;
6
7 Eees k% e o R KSR K o KR o R R K -
8 KO kKRR kxaskk HEA D E R S #hkkkxssdhsssts ok otk ok ok AR K -
9 - ¥ ok K ok R KRR KKK R Y
10
11 typedef bit<9> egressSpec t;
12 typedef bit<48> macAddr t;
13 typedef bit<32> ip4Addr t;
14
15 header ethernet t {
16 macAddr t dstAddr;
17 macAddr t srcAddr;
18 bit<16> etherType;
19 1}
20
21 header ipv4 t {
PROBLEMS OUTPUT  TERMINAL  DEBUG CONSOLE .
(3) Terminal
admin@lubuntu-vm:~/P4_Labs/lab2$ []

Figure 12. VS Code graphical interface components.

The VS Code interface consists of three main panels:

1. Editor: the editor panel will display the content of the file selected in the file

explorer. In the figure above, the basic.p4 program is shown in the Editor.

2. File explorer: this panel contains all the files in the current directory. You will see
the basic.p4 file which contains the P4 program that will be used in this lab, and
the topology file for the current lab (i.e., lab2.mn).

3. Terminal: this is a regular Linux terminal integrated in the VS Code. This is where
the compiler (p4c) is invoked to compile the P4 program and generate the output
for the switch.

3.2

Compiling and loading the P4 program to switch s1

Step 1. In this lab, we will not modify the P4 code. Instead, we will just compile it and
download it to the switch s1. To compile the P4 program, issue the following command
in the terminal panel inside the VS Code.

pdc basic.p4

Page 11



Lab 2: Introduction to P4 and BMv2

basic.p4 - lab2 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

RER basic.p4 X

v LAB2 m E; ISRE=] 4
1 /* -*- P4 16 -*- */
basic.p4 2 #include <core.p4>
#include <vlmodel.p4>

basic.p4i

lab2.mn

5 const bit<16> TYPE IPV4 = 0x800;

11 typedef bit<9> egressSpec t;
12  typedef bit<48> macAddr t;
13 typedef bit<32> ip4Addr t;

15 header ethernet t {

16 macAddr t dstAddr;
17 macAddr t srcAddr;
18 bit<16> etherType;
19 }
TERMINAL  DEB NSOLE

admin@lubuntu-vm:~/P4_Labs/lab2$

admin@lubuntu-vm:~/P4_Labs/lab2$

Figure 13. Compiling the P4 program using the VS Code terminal.

The command above invokes the p4c compiler to compile the basic.p4 program. After
executing the command, if there are no messages displayed in the terminal, then the P4
program was compiled successfully. You will see in the file explorer that two files were
generated in the current directory:

e basic.json: this file is generated by the p4c compiler if the compilation is successful.
This file will be used by the software switch to describe the behavior of the data
plane. You can think of this file as the binary or the executable to run on the switch
data plane. The file type here is JSON because we are using the software switch.
However, in hardware targets, most probably this file will be a binary file.

e basic.p4i: the output from running the preprocessor of the compiler on your P4
program.

At this point, we will only be focusing on the basic.json file.

Now that we have compiled our P4 program and generated the JSON file, we can
download the program to the switch and start the switch daemon.

Step 2. Type the command below in the terminal panel to download the basic.json file to

the switch s1. The script accepts as input the JSON output of the p4c compiler, and the
target switch name (e.g., s1). If asked for a password, type the password password|.

push to switch basic.json sl

Page 12



Lab 2: Introduction to P4 and BMv2

basic.p4 - lab2 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER
v LAB2
basic.json
basic.p4
basic.p4i
lab2.mn

> OUTLINE

basic.p4 X

basic.p4

1 /¥ -%- P4_16 -*- ¥/

2 #include <core.p4>

3 #include <vlmodel.p4>

4

5 const bit<16> TYPE IPV4 = 0x800;

6

7 /.6\-0!-0.#«0.'v..&-..'t.vvt.-ﬁ'ﬁ*ﬁ«xﬁ«xib.#0..-.1.."-»*.V»x.'ﬂ'.#ﬁ..&x&v..&.ﬁ?v.'.f:-.tiu‘t.xt-k..tﬁb.mt.-v..tv.t.x.'.
8 o e o o ok o e o R ko o R R R ke H E A D E R S Rk kR Rk kR kR kR kR kR kR ke k kR ko kR kX
9 ﬂ.#ltx.’-ﬂt4.,&-1&.@,&.',1,.-,‘-vo,tntx&..v,iv.,v.b,-..q..:*.'.0..0)..0&0.*’.#&0!0*t*lixtt.’,&xtx*mi0.-.0..-.4.&*..1.,‘/
10

11  typedef bit<9> egressSpec t;
12 typedef bit<48> macAddr_t;
13 typedef bit<32> ip4Addr_t;

14

15 header ethernet t {

16 | macAddr t dstAddr;
17 macAddr_t srcAddr;
18 | bit<16> etherType;
19 §

20

21 header ipv4 t {

SOLE

PROBLEMS OUTPUT TERMINAL DEBUG CO

admin@lubuntu-vm:~/P4_Labs/lab2$ p4c basic.p4

admin@lubuntu-vm:~/P4_Labs/lab2$ [push to switch basic.json slj
[sudo] password for admin:
admin@lubuntu-vm:~/P4_Labs/lab2$ [

Figure 14. Downloading the compiled program to switch s1.

3.3 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

> OUTLINE
®0A0

g 8 -

PROBLEMS OUTPUT TERMINAL DEBUG

admin@lubuntu-vm:~/P4_Labs/1lab2$ p4c basic.p4
admin@lubuntu-vim:~/P4_Labs/lab2$ push_to switch basic.json sl
[sudo] password for admin:

admin@Lubuntu-vm:~/P4_Labs/lab2$ I

= gterminal - 2 windows M MiniEdit "Host: h1" basic.p4 -

...Studio Code

Figure 15. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Page 13



Lab 2: Introduction to P4 and BMv2

- MiniEdit

File Edit Run Help

\%

=

hl | .
Docker Options ‘

ITerminaI | ‘

R
@—E’—E}

Figure 16. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 3. Issue the following command to list the files in the current directory.

1s

root@sl: /behavioral-model

Figure 17. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

4 Configuring switch s1

4.1 Mapping P4 program’s ports

Step 1. Issue the following command to display the interfaces in switch s1.

ifconfig

Page 14



Lab 2: Introduction to P4 and BMv2

root@sl: /behavioral-model

1: /behavioral-model#|ifconfig
Link encap:Ethernet HWaddr 02:42:ac:11:00:02
inet addr:172.17.0.2 Bcast:172.17.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:31 errors:0 dropped:0® overruns:0 frame:0
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen:o
RX bytes:3619 (3.6 KB) TX bytes:0 (0.6 B)

Link encap:Local Loopback
inet addr:127.0.0.1 Mask:

UP LOOPBACK RUNNING MTU 536

RX packets:22 errors:0 dropped:© overruns:0 frame:0
TX packets:22 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen:1000

RX bytes:12136 (12.1 KB) TX bytes:12136 (12.1 KB)

Link encap:Ethernet HWwaddr 62:33:6a:a4:6f:fb

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:8 errors:0 dropped:® overruns:0 frame:0
ets:4 errors:0 dropped:® overruns:0 carrier:0

collisions:0© queuelen: 16000

RX bytes:636 (636.0 B) TX bytes:280 (280.0 B)

Link encap:Ethernet HWaddr fe:4d:6e:ba:d8:c7

UP BROADCAST RUNNING MULTICAS MTU:1500 Metric:1
RX packets:7 errors:0 dropped:® overruns:© frame:©
TX packets:4 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen: 0

RX bytes:550 (550.0 B) TX bytes:280 (280.06 B)

root@sl:/behavioral-model# |j

Figure 18. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-ethO and s1-ethl. The interface s1-ethO
on the switch s1 connects to the host h1l. The interface s1-ethl on the switch s1 connects
to the host h2.

Step 2. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple switch -i 0@sl-eth0 -i 1@sl-ethl basic.json &

root@s1l: /behavioral-model - 0 X

root@sl:/behavioral-model#|simple switch -i 0@sl-eth® -i 1@sl-ethl basic.json &
[1] 34
root@sl:/behavioral-model# Calling target program-options parser

éAddlng interface sl-eth® as port
JAdding interface sl-ethl as port 1

Figure 19. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Page 15



Lab 2: Introduction to P4 and BMv2

| sl-etho | 0 X 1| sl-ethl |

Figure 20. Ports 0 and 1 are mapped to the interfaces s1-ethO and s1-eth1 of switch s1.

4.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

root@s1l: /behavioral-model - 2 X

root@sl:/behavioral-model# simple switch -1 0@sl-eth® -i 1@sl-ethl basic.json

@sl:/behavioral-model# Calling
interface sl-ethe as port ©
Adding interface sl-ethl as port 1

target program-options parser

root@s1:/behavioral-model# [}

Figure 21. Returning to switch s1 CLI.

Step 2. Populate the table with forwarding rules by typing the following command.

simple switch CLI < ~/lab2/rules.cmd

root@s1l: /behavioral-model

root@sl:/behavioral-model#|simple switch CLI < ~/1lab2/rules.cmd
Obtaining JSON from switch.”..
Done
Control utility for runtime P4 table manipulation
RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
EXACT-00:00
MyIngress.forward
a: 00:01
: n added with handle ©
RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:01

action: MyIngress.forward
runtime data: 00:00

Entry has been added with handle 1
RuntimeCmd:

root@sl:/behavioral-model# l

Figure 22. Loading table entries to switch s1.
The figure above shows the table entries described in the file rules.cmd.

Step 3. Go back to host h1 terminal to test the connectivity between host h1 and host h2
by issuing the following command.

Page 16



Lab 2: Introduction to P4 and BMv2

ping 10.0.0.2 -c 4

“"Host: h1"

root@lubuntu-vm: /home/admin# ping 10.0.0.2 -c 4

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from .0.0.2: icmp seq=1 ttl=64 time=0.851
64 bytes from .0.0.2: icmp seq=2 ttl=64 time=0.062
64 bytes from .0.0.2: icmp seq=3 ttl=64 time=0.078

64 bytes from .0.0.2: icmp seq=4 ttl=64 time=0.085

- 10.0.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3055ms
rtt min/avg/max/mdev = 0.062/0.269/0.851/0.336 ms
root@lubuntu-vm: /home/admin# [}

Figure 23. Performing a connectivity test between host h1 and host h2.

Now that the switch has a program with tables properly populated, the hosts can ping
each other.

This concludes lab 2. Stop the emulation and then exit out of MiniEdit.

References

1. B. Trammell, M. Kuehlewind. “RFC 7663: Report from the IAB workshop on stack
evolution in a middlebox internet (SEMI).” 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7663.

2. G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom, K.-J. Grinnemo,

P. Hurtig, N. Khademi, M. Tiixen, M. Welzl, D. Damjanovic,
S. Mangiante. ““De-ossifying the internet transport layer: A survey and
future perspectives,” IEEE Communications. Surveys and Tutorials., 2017.

3. The Register. “VMware, Cisco stretch virtual LANs across
the heavens.” 2011. [Online]. Available: https://tinyurl.com/y6mxhqgzn.

4. M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright, “Virtual eXtensible Local Area Network (VXLAN): a framework for
overlaying virtualized layer 2 networks over layer 3 networks,” RFC7348.
[Online]. Available: http://www. rfc-editor.org/rfc/rfc7348.txt

5. P.Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, ““P4: Programming protocol-independent
packet processors,” ACM SIGCOMM Computer Communications. 2014.

6. Pdlang. “Behavioral model”. [Online]. Available:
https://github.com/p4lang/behavioral-model.

7. V. Gurevich, A. Fingerhut, “P46 for Intel Tofino™ using Intel P4 Studio™”. 2021
P4 Workshop, ONF. [Online]. Available: https://tinyurl.com/yckzkybf.

Page 17



A

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Exercise 2: Compiling and Running a P4 Program

Document Version: 01-14-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Exercise 2: Compiling and Running a P4 Program

Contents

R o Y ol Y= o [T T ] A o [ PURR
1.1 Credentials o e e e aaaee s
2 == F ol T I o] o o] (o} =AY A USSP

2 Setting the eNVIFONMENT.......iiii et e e e s rae e s s earaeeeeaes

3 DlIVEIADIES. .ot ae e e s e aaaeeeea



Exercise 2: Compiling and Running a P4 Program

1 Exercise description

In this exercise, you will compile and run a P4 program on two P4 switches in the same
topology. Then, you will push the table entries to the switches at runtime.

1.1 Credentials

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password

Client admin password

1.2 Exercise topology

The topology comprises two P4 switches and two end hosts.

hl sl s2 h2
RS hl-eth0 sl-eth0 €S S ) sl-ethl s2-eth0 €S ~g ) s2-ethl  h2-ethO RS
S < < S
10.0.0.1 10.0.0.2
Figure 1. Exercise topology.
2 Setting the environment

Follow the steps below to set the exercise’s environment.

Step 1. Open MiniEdit by double-clicking the shortcut on the desktop. If a password is
required type jpassword|.



Exercise 2: Compiling and Running a P4 Program

Computer;

MiniEdit

Terminal

Figure 2. MiniEdit shortcut.

Step 2. Load the topology located at /home/admin/P4_Exercises/Exercise2/.

MiniEdit
Edit Run Help

New

- Open - O X
Save

Export Level 2 Script

Directory: |fhomefadmin,fP4_Exercises,-‘Exercise2| _:‘ m‘
050109y o
(&

U
Iy

/

£l ]
S File name: ‘topology.mn [Open|

Files of type: Mininet Topology (*.mn) 4‘ Cancel ‘

Figure 3. Opening the exercise topology.

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

Run

Stop FT

Figure 4. Running the emulation.




Exercise 2: Compiling and Running a P4 Program

Step 4. In the Linux terminal, type the command below. This command launches the
Visual Studio Code (VS Code) and opens the directory where the P4 program for this
exercise is located.

code P4 Exercises/Exercise2/

s admin@lubuntu-vm: ~
File Actions Edit View Help
Shell No. 1 S admin@lubuntu-vn

admin@lubuntu-vm:~S$ |code P4

admin@lubuntu-vm:~S |}

Figure 5. Opening the working directory.

3 Deliverables

Follow the steps below to complete the exercise.

a) Compile the basic.p4 in the VS Code. Which files were generated?
b) Push the output file of the compiler to both switches s1 and s2.

c) Startthe daemon on both switches and map the ports to the corresponding interfaces
(see Figure 6). Will there be connectivity between the hosts at this point?

sl s2
=, =
N S S

| sl-eth0 |0 I Y | 1] si-ethl i s2-etho

Figure 6. Port mapping.

d) Push the table entries to the switches. The files rules_si1.cmd and rules _s2.cmd for
switches s1 and s2, respectively, are located in ~/exercise2/.

e) Run a connectivity test between the hosts using ping. Is there connectivity?



A

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 3: P4 Program Building Blocks

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Lab 3: P4 Program Building Blocks

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [ o= o T PP UPPPRUPPPPR 3
1 The PISA arChit@CtUIE...cci et e s e e s s saaaeeeeaes 3
1.1 The PISA arChit@CIUIE ..ocueeeiee et saaee s 4
1.2 Programmable ParSer .....ueei ittt aaae s 4
1.3 Programmable match-action pipeling ........cceviiiiiiniiiii e 5
1.4 Programmable deParser ...ttt 5
1.5 ThE VIMOUEN ..uiiiiiiiiiiieieiee ettt e s s ree e s st e e e s anaee s 5
1.6 P4 program mapping to the VIMOodel ........ccooviiiiiiniiiiiieiiee e 6
P IF- | o I o] o Yo Lo -1V 2SR PSPRRRPR 6
2.1  Starting host h1 and hoSt h2 ........oooiiiiiiii e 8
3 Navigating through the components of a basic P4 program.......ccccccceeeeccvveveeeeeeeennnn, 8
3.1 Loading the programming environNmMeNt........ccccecvieeiiiiieee e 9
3.2  Describing the components of the P4 program.......cccccceevvecciiiieeeeee e, 9
3.3 Programming the pipeling SEQUENCE ......eviveiieicceeee e 14
4 Loading the P4 Program........cccocccciiiiieeee ettt e e e e e e e e e e et ree e e e e e e e e s nnaeeees 15
4.1 Compiling and loading the P4 program to switch sl .......cccccceiiiiiiiiiiiiieneeeiees 15
4.2  Verifying the configuration ..........c..oeeieii i 17
5 Configuring SWItCh SL....ooiiiiiiiee et e e e enree s 18
5.1 Mapping the P4 program’s POItS ......cceeeeeiiieeeeiiieeeeeciiee e eetee e e e e e e e e e 18
5.2 Loading the rulesto the switCh.......ccccmiiiiei i, 20
6  Testing and verifying the P4 programi........cccccceeeeieciiiiiieee e eecireree e e ee e 21
REFEIENCES ...ttt e e st e e s st e e e s bt ee e e sabaeeesenraeeeenns 23

Page 2



Lab 3: P4 Program Building Blocks

Overview

This lab describes the building blocks and the general structure of a P4 program. It maps
the program’s components to the Protocol-Independent Switching Architecture (PISA), a
programmable pipeline used by modern whitebox switching hardware. The lab also
demonstrates how to track an incoming packet as it traverses the pipeline of the switch.
Such capability is very useful to debug and troubleshoot a P4 program.

Objectives
By the end of this lab, students should be able to:

1. Understand the PISA architecture.

Understand on high-level the main building blocks of a P4 program.

3. Map the P4 program components to the components of the programmable
pipeline.

4. Trace the lifecycle of a packet as it traverses the pipeline.

N

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap
This lab is organized as follows:

Section 1: The PISA architecture.

Section 2: Lab topology.

Section 3: Navigating through the components of a basic P4 program.
Section 4: Loading the P4 program.

Section 5: Configuring switch s1.

Section 6: Testing and verifying the P4 program.

ok wWwNE

1 The PISA architecture

Page 3



Lab 3: P4 Program Building Blocks

1.1 The PISA architecture

The Protocol Independent Switch Architecture (PISA)! is a packet processing model that
includes the following elements: programmable parser, programmable match-action
pipeline, and programmable deparser, see Figure 1. The programmable parser permits
the programmer to define the headers (according to custom or standard protocols) and
to parse them. The parser can be represented as a state machine. The programmable
match-action pipeline executes the operations over the packet headers and intermediate
results. A single match-action stage has multiple memory blocks (e.g., tables, registers)
and Arithmetic Logic Units (ALUs), which allow for simultaneous lookups and actions.
Since some action results may be needed for further processing (e.g., data dependencies),
stages are arranged sequentially. The programmable deparser assembles the packet
headers back and serializes them for transmission. A PISA device is protocol independent.
The P4 program defines the format of the keys used for lookup operations. Keys can be
formed using packet header’s information. The control plane populates table entries with
keys and action data. Keys are used for matching packet information (e.g., destination IP
address) and action data is used for operations (e.g., output port).

Stage 1 Stage N
1D LD 110
[ | I = R | I o A e I o [ [
Packets \—‘ D \—‘ D :D]] Packets
1D LD 110
Programmable Programmable match- Programmable
parser action pipeline deparser
O State [__] Memory (e.g., table) D ALU

AEREREER
Switch
ASIC

Figure 1. A PISA-based data plane.

Programmable switches do not introduce performance penalty. On the contrary, they
may produce better performance than fixed-function switches. When compared with
general purpose CPUs, ASICs remain faster at switching, and the gap is only increasing.

1.2 Programmable parser

The programmable parser permits the programmer to define the headers (according to
custom or standard protocols) and to describe how the switch should process those
headers. The parser de-encapsulates the headers, converting the original packet into a
parsed representation of the packet. The programmer declares the headers that must be
recognized and their order in the packet. The parser can be represented as a state
machine without cycles (direct acyclic graph), with one initial state (start) and two final
states (accept or reject).

Page 4



Lab 3: P4 Program Building Blocks

1.3 Programmable match-action pipeline

The match-action pipeline implements the processing occurring at a switch. The pipeline
consists of multiple identical stages (N stages are shown in Figure 1). Practical
implementations may have 10/15 stages on the ingress and egress pipelines. Each stage
contains multiple match-action units (4 units per stage in Figure 1). A match-action unit
has a match phase and an action phase. During the match phase, a table is used to match
a header field of the incoming packet against entries in the table (e.g., destination IP
address). Note that there are multiple tables in a stage (4 tables per stage in Figure 1),
which permit the switch to perform multiple matches in parallel over different header
fields. Once a match occurs, a corresponding action is performed by the ALU. Examples
of actions include: modify a header field, forward the packet to an egress port, drop the
packet, and others. The sequential arrangement of stages allows for the implementation
of serial dependencies. For example, if the result of an operation is needed prior to
perform a second operation, then the compiler would place the first operation at an
earlier stage than the second operation.

1.4 Programmable deparser

The deparser assembles back the packet and serializes it for transmission. The
programmer specifies the headers to be emitted by the deparser. When assembling the
packet, the deparser emits the specified headers followed by the original payload of the
packet.

1.5 The V1Model

Figure 2 depicts the V1Model? architecture components. The V1Model architecture
consists of a programmable parser, an ingress match-action pipeline, a traffic manager,
an egress match-action pipeline, and a programmable deparser. The traffic manager
schedules packets between input ports and output ports and performs packet replication
(e.g., replication of a packet for multicasting). The V1Model architecture is implemented
on top BMv2’s simple_switch target?.

Ingress match-action and checksum verification Egress match-action and checksum verification
L | L |
| Stage 1 Stage N ‘ ‘ Stage 1 Stage N ‘
C b (LD [ ] I v g AR
00 $|:|D* |:|D4> Traffic |:|D* ED*EH
Packets |:| D |:| D Manager |:| D |:| D _ 11T
I LD 2 I | | [ e n
Programmable Programmable match- Configurable Programmable match- Programmable
parser action pipeline component action pipeline deparser

O State [ | Memory (e.g., table) [J ALU

Figure 2. The V1Model architecture.

Page 5



Lab 3: P4 Program Building Blocks

1.6 P4 program mapping to the V1Model

The P4 program used in this lab is separated into different files. Figure 3 shows the
V1Model and its associated P4 files. These files are as follows:

e headers.p4: this file contains the packet headers’ and the metadata’s definitions.

e parser.p4: this file contains the implementation of the programmable parser.

e ingress.p4: this file contains the ingress control block that includes match-action
tables.

e egress.p4: this file contains the egress control block.

e deparser.p4: this file contains the deparser logic that describes how headers are
emitted from the switch.

e checksum.p4: this file contains the code that verifies and computes checksums.

e basic.p4: this file contains the starting point of the program (main) and invokes
the other files. This file must be compiled.

Ingress match-action and checksum verification Egress match-action and checksum verification
L | L |
I 1 I 1
headers.p4 parser.p4 ingress.p4 egress.p4 deparser.p4
— —
Stage 1 Stage N Stage 1 Stage N
CIp) |[ED Cp  ([COp| [o
0O, IR ] " O R s e e
Packets [ 1D [ 1D Manager [ 1D [ 1D | D
I D LD | o
Programmable Programmable match- Configurable Programmable match- Programmable
parser action pipeline component action pipeline deparser

checksum.p4 Non-programmable checksum.p4

O State [ | Memory (e.g., table) [J ALU
Figure 3. Mapping of P4 files to the V1Model’s components.
2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

hl sl h2
% 3> S
) h1-eth0 sl-etho \F sl-ethl h2-eth0| o
X X
10.0.0.1 10.0.0.2

Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Page 6



Lab 3: P4 Program Building Blocks

Computer,

MiniEdit

Termimal
Figure 5. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab3 folder and search for the topology file called lab3.mn and click on
Open. A new topology will be loaded to MiniEdit.

MiniEdit

Edit Run Help

New

Save

Export Level 2 Script
Directory: /homejadmin/P4_Labs/lab3 _.‘ 4}

Quit
EE:m

IET ¥

File name: |lab3.mn {Qpen|

Files of type: Mininet Topology (*.mn) — ‘ Cancel ‘

Figure 6. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Stop W

Figure 7. Running the emulation.

Page 7



Lab 3: P4 Program Building Blocks

2.1 Starting host h1l and host h2

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host hl and
allows the execution of commands on that host.

- MiniEdit

File Edit Run Help

%

R
- =

1 Host Options sl h2

Terminal

Figure 8. Opening a terminal on host h1l.

Step 2. Test the connectivity between host hl and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

"Host: h1"

root@lubuntu-vm: /home/admin#|ping 10.0.0.2 -c 4

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

From 10.0.0.1 icmp seq=1 Destination Host Unreachable
From 10.0.0.1 icmp seq=2 Destination Host Unreachable

From 10.0.0.1 icmp seq=3 Destination Host Unreachable

--- 10.0.0.2 ping statistics ---

4 packets transmitted, 0 received, +3 errors, 100% packet loss, time 3067ms
pipe 4

root@lubuntu-vm: /home/admin# l

Figure 9. Performing a connectivity test between host hl and host h2.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded on the switch.

3 Navigating through the components of a basic P4 program

Page 8



Lab 3: P4 Program Building Blocks

This section shows the steps required to compile the P4 program. It illustrates the editor
that will be used to modify the P4 program, and the P4 compiler that will produce a data
plane program for the software switch.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Computer

MiniEdit

Terminal

Figure 10. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4 Labs/lab3/

admin@lubuntu-vm: ~

File Actions Edit View Help
admin@lubuntu-vm: ~ [x]

admin@lubuntu-vm:~$ |code

Figure 11. Launching the editor and opening the lab3 directory.

3.2 Describing the components of the P4 program

Step 1. Once the previous command is executed, VS Code will start. Click on basic.p4 in
the file explorer panel on the left hand side to open the P4 program in the editor.

Page 9



Lab 3: P4 Program Building Blocks

basic.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

basic.p4 X
LAB3 basic.p4
basic.p4 1 /¥ -%*- P4 16 -*- */
s ; R y Sihclide <core: pe> } Language and architecture
de P 3  #include <vlmodel.p4>
4 #include "parser.p4”
¥ = 5 #include "checksum.p4"
o .p4 6 #include "ingress.p4’ User-defined
r pa (== 7 #include "egress.p4d
lab3.mn 8 #include “"deparser.p4"
pa f [==] 9
10
1 | /*Insert the blocks below this comment*/
12
13
14
15
16
17
8
19

Figure 12. The main P4 file and how it includes other user-defined files.

The basic.p4 file includes the starting point of the P4 program and other files that are
specific to the language (core.p4) and to the architecture (vimodel.p4). To make the P4
program easier to read and understand, we separated the whole program into different
files. Note how the files in the explorer panel correspond to the components of the
V1Model. To use those files, the main file (basic.p4) must include them first. For example,
to use the parser, we need to include the parser.p4 file (#include “parser.p4”).

We will navigate through the files in sequence as they appear in the architecture.

Step 2. Click on the headers.p4 file to display the content of the file.

Page 10



Lab 3: P4 Program Building Blocks

headers.p4 - lab3 - Visual Studio Code

File | Edit Selection View Go Run Terminal Help

@ X basic.p4 headers.p4 X

basic.pd 1 const bit<l6> TYPE_IPV4 = 0x800;

R 3 /RN A AR R AR AR AR e Ksessssnes $esssesEIIENEOOIEEES seses
" - e R e HEADERS #*tsssnsntbnnnin T
G  essssssesEssANeREeRsRRtANRIRIRRRRRR RS NS00S0 0000000NT0E00000800080000 )
6
7 typedef bit<9> egressSpec t;
lab3.mn 8 | typedef bit<48> macAddr t;
parser.p4 9 typedef bit<32> ip4Addr t;
10
11 header ethernet t {
12 macAddr t dstAddr;
13 macAddr t srcAddr;
14 bit<16> etherType;
15 |}
16
17 header ipv4 t {
18 bit<d> version;
19 bit<4> ihl;
20 bit<8> diffserv;
21 bit<16> totallLen;
22 bit<16> identification;
23 bit<3> flags;
24 bit<13> fragoffset;
25 bit<8> ttl;
26 bit<g> protocol;
27 bit<16> hdrChecksum;
3 ipd4Addr t srcAddr;
29 ipdAddr t dstAddr;
30 }
31
2 struct metadata {
33 /* empty *
34 }
35
36 ¥ struct headers {
37 ethernet t ethernet;
38 ipv4 t ipv4;
}

Figure 13. The defined headers.

The headers.p4 above shows the headers that will be used in our pipeline. We can see
that the ethernet and the IPv4 headers are defined. We can also see how they are
grouped into a structure (struct headers|). The headers|name will be used throughout
the program when referring to the headers. Furthermore, the file shows how we can use

typedef] to provide an alternative name to a type.

Step 3. Click on the parser.p4 file to display the content of the parser.

Page 11



Lab 3: P4 Program Building Blocks

parser.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

pa parserpd X

#include “headers.p4”

parser [MyParserj(packet_in packet,

out headers hdr,
inout metadata meta,
inout standard metadata t standard metadata) {

state start {
transition parse ethernet;
}

state parse ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4;
default: accept;

}

Figure 14. The parser implementation.

The figure above shows the content of the parser.p4 file. We can see that the parser is
already written with the name MyParser. This name will be used when defining the

pipeline sequence.

Step 4. Click on the ingress.p4 file to display the content of the file.

ingress.p4 - lab3 - Visual Studio Code

File Edit Selection

LAB3 f‘; L
basic.p4
basic.p4di
hecksum.pd
deparser.pd
egress.pd

headers.pd

View Go Run Terminal

Help

pa ingress.p4 X

JEAARAEAR R R AR FERR A AR AR AR AR R RN T T T T AR REA AR AR FEEE

CERARERAR R, INGRESS PROCESSING FraREanane S TTTILLL

control inout headers hdr,

inout metadata meta,
inout standard metadata t standard metadata) {
action drop() {
mark to drop(standard metadata);

}

action forward(egressSpec t port) {
standard metadata.egress spec = port;

}

table forwarding {
key = {
standard metadata.ingress port:exact;

}

actions = {
forward;
drop;
NoAction;

}

size = 1024;
default action = drop();

}

apply {
forwarding.apply();

}

}
Figure 15. The ingress component.

Page 12



Lab 3: P4 Program Building Blocks

The figure above shows the content of the ingress.p4 file. We can see that the ingress is
already written with the name Myingress. This name will be used when defining the

pipeline sequence.

Step 5. Click on the egress.p4 file to display the content of the file.

egress.pd - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

egress.p4

X

...........................................................................

control|MyEgress|inout headers hdr,

inout metadata meta,
inout standard metadata t standard metadata) {

apply { }

Figure 16. The egress component.

...................

The figure above shows the content of the egress.p4 file. We can see that the egress is
already written with the name MyEgress. This name will be used when defining the

pipeline sequence.

Step 6. Click on the checksum.p4 file to display the content of the file.

checksum.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

28
29
30
31

32

> OUTLINE

c.pd checksum.p4 X

KESRARREEES CHECKSUM VERIFICATION *tstneess RPN
KBS RRAEES K KEBEEARREEREEEAAAREES EERRERREERATES FEER SRR AR R AR RS AR AR AR/
control|MyverifyChecksum|inout headers hdr, inout metadata meta) {
apply { }
/ ----- KX e rx R O e EXEEEAEEE R 2R FEEEX R EEESE =%
digisotioid, * CHECKSUM COMPUTATION *essanssss
...... L T T L L T Ty

control|MyComputeChecksum|inout headers hdr, inout metadata meta) {

apply

update checksum(
hdr.ipv4.isvalid(),

{ hdr.ipv4.
hdr.ipv4.ihl,
ipv4.
.totallLen,
ipv4.
ipv4.
ipv4.
.ipv4
hdr.
hdr.
hdr.

hdr.
hdr.
hdr.
hdr.
hdr.

hdr

ipva

ipv4

ipv4

version,
diffserv,
identification,

flags,
fragoffset,

Lt

.protocol,
ipv4.
.dstAddr },

srcAddr,

hdr.ipv4.hdrChecksum,
HashAlgorithm.csuml6) ;

}

1

Figure 17. The checksum component.

Page 13



Lab 3: P4 Program Building Blocks

The figure above shows the content of the checksum.p4 file. We can see that the
checksum is already written with two control blocks: MyvVerifyChecksum and
MyComputeChecksum. These names will be used when defining the pipeline sequence.
Note that MyverifyChecksun] is empty since no checksum verification is performed in
this lab.

Step 7. Click on the deparser.p4 file to display the content of the file.

deparser.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

deparser.p4 X

sy [ B} =)

basic.p4 1

b ot 2 JEEeEessEsessEeEsEEeEEEAE seseenee KEEEREEIEE RS AR S ALY KRNI LRSS
3 EEeEeAEREREARSERAEIEY DEPARSER #*tstaseasnssssnss KEEELESEEERES

L5 ksurmn |
4 AEEEEEENEEEEEEIESEELES CrESSEEERES KESEEREEIEEESS EER SRR ES KRR SRS AEEES /

deparser.pd ;

egress.pd 6 control[MyDeparserfpacket out packet, in headers hdr) {

headers.p4 7 apply {

55, pd 3 packet.emit(hdr.ethernet);

9 packet.emit(hdr.ipv4);

11}

Figure 18. The deparser component.
The figure above shows the content of the deparser.p4 file. We can see that the deparser
is already written with two instructions that reassemble the packet.
3.3 Programming the pipeline sequence
Now it is time to write the pipeline sequence in the basic.p4 program.

Step 1. Click on the basic.p4 file to display the content of the file.

basic.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

LORER basic.p4 X ingress.p4
v LAB3 p4

/¥ -%- P4 16 -*- */

basic.p4i #include <core.p4>

checksum.p4 2
#include "parser.p4"

#include “checksum.p4"

de

arser.p4

1
2
3 #include <vlmodel.p4>
i
5

e 6 #include "ingress.p4"

headers.p4 7 #include "egress.p4"

ingress.p4 8  #include "deparser.p4"

lab3.mn 9

parser.p4 10
11 /*Insert the blocks below this comment*/
12

Figure 19. Selecting the basic.p4 file.

Step 2. Write the following block of code at the end of the file

Page 14



Lab 3: P4 Program Building Blocks

V1Switch (
MyParser (),
MyVerifyChecksum(),
MyIngress (),
MyEgress (),
MyComputeChecksum() ,
MyDeparser ()

) main;

) basic.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

JRER basic.p4 X ingress.p4
v LAB3 basic.p4
basic.p4 1 froag= PR A0 =N
bacicpdi 2  #include <core.p4>
3 #include <vlmodel.p4>
checksum.p4 N . VoS "
4  #include "parser.p4
5 #include "checksum.p4"
egress.p4 6 #include "ingress.p4"
headers.p4 7  #include "egress.p4"”
ingress.pd 8 #include "deparser.p4”

(o]

10

11 /*Insert the blocks below this comment*/
12 V1Switch(

13 | MyParser(),

14 | MyverifyChecksum(),
15 | MyIngress(),

16 | MyEgress(),

17 | MyComputeChecksum(),
18 | MyDeparser()

19 | ) main;]

20

Figure 20. Writing the pipeline sequence in the basic.p4 program

We can see here that we are defining the pipeline sequence according to the V1Model
architecture. First, we start by the parser, then we verify the checksum. Afterwards, we
specify the ingress block and the egress block, and we recompute the checksum. Finally,
we specify the deparser.

Step 3. Save the changes by pressing [Ctr1+s|

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

Page 15



Lab 3: P4 Program Building Blocks

basic.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER basic.p4 X ingress.p4
v LAB3 basic.p4
basic.json I =P8 %= Wy
basic.pa 2 #include <core.p4>
basic.p4i 3 #}nclude <vlmodel.p4>
checksum.pd 4 #}nclude "parser.p4"

5 #include "checksum.p4"
deparser.p4 6 #include "ingress.p4"
egress.p4 7  #include "egress.p4"
headers.p4 8  #include "deparser.p4"
ingress.p4 9
lab3.mn 10 :
Berser A 11 /*Insert the blocks below this comment*/

12 V1Switch(

13 MyParser(),

14  MyVerifyChecksum(),
15  MyIngress(),

16  MyEgress(),

17 MyComputeChecksum(),
18  MyDeparser()

19 ) main;

20

PROBLEMS OuUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab3$
admin@lubuntu-vm:~/P4_Labs/lab3$

Figure 21. Compiling a P4 program.
Step 2. Type the command below in the terminal panel to download the basic.json file to

the switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password passwozrd].

push to switch basic.json sl

Page 16



Lab 3: P4 Program Building Blocks

basic.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER basic.p4 X ingress.p4
~ LAB3 basic.p4

basic.json 1 f¥ =%¥= P4 16 =% ¥/
basic.p4 2 #include <core.p4=
basic.p4i 3 #?nclude <v1lmodel.pd=

4 #include "parser.p4"
checksum.pa 5  #include "checksum.p4"
CEpSISErEl 6 #include "ingress.p4"
egress.p4 7  #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 9
lab3.mn 1o )
] 11 /*Insert the blocks below this comment#*/

' 12 V1Switch(

13 MyParser(),

14 MyVerifyChecksum(),

15  MyIngress(),

16  MyEgress(),

17 MyComputeChecksum(),

18  MyDeparser()

19 ) main;

20

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab3% p4c basic.p4
admin@lubuntu-vm:~/P4_Labs/lab3$[push to switch basic.json sl

[sudo] password for admin:

admin@lubuntu-vm:~/P4_Labs/lab3$ ]
Figure 22. Downloading the P4 program to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

B MiniEdit

Figure 23. Maximizing the MiniEdit window.

Step 2. In MiniEdit, right-click on the P4 switch icon and start the Terminal.

File Edit Run Help

v
= (-
Docker Options

Terminal

Figure 24. Starting the terminal on the switch.

Page 17



Lab 3: P4 Program Building Blocks
Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command [1s] on the terminal of the switch s1 that was opened in the
previous step.

1s

root@sl: /behavioral-model

‘behavioral-model#|1ls

Figure 25. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded to switch s1
after compiling the P4 program.

5 Configuring switch s1

5.1 Mapping the P4 program’s ports
Step 1. Issue the following command to display the interfaces on the switch s1.

ifconfig

Page 18



Lab 3: P4 Program Building Blocks

root@sl: /behavioral-model

root@sl:/behavioral-model#|ifconfig
Link encap:Ethernet HWaddr 02:42:ac:11:00:02
inet addr:172.17.0.2 Bcast:172.17.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:31 errors:0 dropped:® overruns:0 frame:0
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen:©
RX bytes:3619 (3.6 KB) TX bytes:0 (0.0 B)

Link encap:Local Loopback
inet addr:127.0.0.1 :
UP LOOPBACK RUNNING MTU: 36 Metric:1

RX packets:22 errors:0 dropped:© overruns:0 frame:0
TX packets:22 errors:0 dropped:® overruns:0 carrier:0
collisions:0® txqueuelen:1000

RX bytes:12136 (12.1 KB) TX bytes:12136 (12.1 KB)

Link encap:Ethernet HWaddr 62:33:6a:a4:6f:fb
UP BROADCAST RUNNING MULTICAST MTU:1500
RX packets:8

collisions:® txqueuelen:1000
RX bytes: 6 (636 TX bytes:280 (280.0 B)

Link encap:Ethernet Nad fe:4d:6e:ba:d8:c

UP BROADCAST RUNNING MULTICAST MTU:1500

RX packets:7 errors:0 dropped:0 o

TX packets:4 errors:0 dropped:® overruns:® carrier:
collisions:® txqueuelen:16000

RX bytes:550 (550.0 B) TX bytes:280 (280.0 B)

root@sl:/behavioral-model# l

Figure 26. Displaying switch s1 interfaces.
We can see that the switch has the interfaces s1-ethO and s1-ethl. The interface s1-ethO

on the switch s1 connects host hl. The interface s1-ethl on the switch s1 connects host
h2.

Step 2. Start the switch daemon by typing the following command.

simple switch -i 0@sl-ethO -i 1@sl-ethl --nanolog ipc:///tmp/bm-log.ipc
basic.json &

root@sl: /behavioral-model

L E' =
ing interface sl-ethl as

Figure 27. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The option is used to instruct the switch daemon that we want to see the
logs of the switch.

Page 19



Lab 3: P4 Program Building Blocks

sl-eth0 | O X 1 sl-ethl

Figure 28. Mapping of the logical interface numbers (0, 1) to the Linux interfaces (s1-eth0, s1-
ethl).

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

root@s1: /behavioral-model - 2 X

root@sl:/behavioral-model# simple switch -i 0@sl-ethe -i 1@sl-et basic.json

:/behavioral-model# Calling target program-options parser
g interface sl-ethe as port ©
Adding interface sl-ethl as port 1

:/behavioral-model# I

Figure 29. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab3/rules.cmd

root@sl: /behavioral-model

root@sl:/behavioral-model#|simple switch CLI < ~/lab3/rules.cmd
Obtaining JSON from switch...

Done

Control utility for runtime P4 table manipulation

RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:00

action: MyIngress.forward

runtime data: 00:01

Entry has been added with handle ©

RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:01

action: MyIngress.forward

runtime data: 00:00

Entry has been added with handle 1

RuntimeCmd:

root@sl:/behavioral-model# [

Figure 30. Loading the forwarding table entries into switch s1.

Now the forwarding table in the switch is populated.

Page 20



Lab 3: P4 Program Building Blocks

6 Testing and verifying the P4 program

Step 1. Type the following command to initiate the client that will display the
switch logs.

nanomsg client.py

root@sl: /behavioral-model

‘behavioral-mode
not provi using ipc:///tmp/bm-log.ipc (obtained from switch)

LECh:.ss

Figure 31. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command below so that the host starts listening
for incoming packets.

./recv.py

"Host: h2"

root@Lubuntu-vm: /home/admin# |./recv.py

sniffing on h2-ethe

Figure 32. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command to send a packet to host h2.

./send.py 10.0.0.2 HelloWorld

Page 21



Lab 3: P4 Program Building Blocks

"Host: h1"

root@Llubuntu-vm: /home/admin# |. /send.py 10.0.0.2 Helloworld
sending on interface hl-etho to 10.0.0.2
###[ Ethernet ###
dst = ff:ff:ff:ff:ff:ff
Src 00:00:00:00:00:01
type = IPv4
### IP ###
version =4
ihl )

tos
len 50

id 1
flags
frag 0
e & o2 ¢ 64
proto tcp
chksum Ox66C3
sSrc 10.0.0.1
dst 10.0.0.2
\options
###] TCP 1###
sport
dport

Figure 33. Sending a test packet from host h1 to host h2.

Now that the switch has a program with tables properly populated, the hosts are able to

reach each other.
Step 4. Go back to switch s1 terminal and inspect the logs.

root@s1l: /behavioral-model

root@sl:/behavioral-model# nanomsg client.py

'--socket' not provided, using 1ipc:///tmp/bm-log.ipc (obtained from switch)

Obtaining JSON from switch...

Done
PACKET IN, port in: ©
PARSER START, parser id: 0 (parser)
PARSER EXTRACT, header id: 2 (ethernet)
PARSER EXTRACT, header id: 3 (ipv4)
PARSER DONE, parser id: © (parser)
PIPELINE START, pipeline id: © (ingress)

TABLE HIT, table id: © (MyIngress.forwarding), entry hdl:
ACTION EXECUTE, action id: 2 (MyIngress.forward)
PIPELINE DONE, pipeline id: © (ingress)

PIPELINE START, pipeline id: 1 (egress)

PIPELINE DONE, pipeline id: 1 (egress)

DEPARSER START, deparser id: 0 (deparser)
CHECKSUM UPDATE, cksum id: © (cksum)

DEPARSER EMIT, header id: 2 (ethernet)
DEPARSER EMIT, header id: 3 (ipv4)
DEPARSER DONE, deparser id: 0 (deparser)
PACKET OUT, port out: 1

Figure 34. Inspecting the logs in switch s1.

The figure above shows the processing logic as the packet enters switch s1. The packet
arrives on port O (port_in: 0]), then the parser starts extracting the headers. After the

Page 22



Lab 3: P4 Program Building Blocks

parsing is done, the packet is processed in the ingress and in the egress pipelines. Then,
the checksum update is executed and the deparser reassembles and emits the packet

using port 1 (Fart_out: 1).

Step 5. Verify that the packet was received on host h2.

This concludes lab 3. Stop the emulation and then exit out of MiniEdit.

References

1. C. Cascaval, D. Daly. "P4 Architectures." [Online]. Available:
https://tinyurl.com/3zk8vs6a.

2. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.

3. P4lang/behavioral-model github repository. “The BMv2 Simple Switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

Page 23



A

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 4: Parser Implementation

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Lab 4: Parser Implementation

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [ o= o T PP UPPPRUPPPPR 3
R 101 1 o Yo U Tt d o T o IO PP PUPPPUPTPPR 3
1.1 Program headers and definitions........cccoccveiiiiiiiiiiiniiiie e 4
1.2 Programmable ParSer .....ueei ittt aaae s 6
P IF- | o I o] o Yo Lo} -1V 20U PP PUPPPRTPPR 7
2.1  Starting host h1 and hoSt h2........ooiiiiiiiii e 9
3 Defining the program’s hEAdErS .......covuviiiiiiiiiie e 10
3.1 Loading the programming environment.......cccoccueeeiriiiee e 10
3.2  Coding header’s definitions into the headers.p4 file........cccovvevviieeeincivenennne. 11
4 Parser IMplementation ... e e 14
5  Loading the P4 Programi.....cc..cecccciieeeceiieeeesieee e st e et e e s s s e e e snae e e s e staeeessnnaeeeas 17
5.1 Compiling and loading the P4 program to switch sl .......ccccocveiviiieeiiniieenecnee, 17
5.2 Verifying the configuration ........cccoocmiiiiie e 19
6 Configuring SWItCh SL....coiiiiiieee e et e s aaee s 20
6.1  Mapping P4 Program’s POItS........ccccciieeeieiieeeeeiiieeeeeiiteeeeeeereeeessaeeesesssaeeeeennens 20
6.2 Loading the rulesto the switCh.......cccomiiiiei i, 22
7  Testing and verifying the P4 programi........cccccceeieiecciiiieeeeee e eecirereee e e cvenneeee e 22
8  Augmenting the P4 program to parse IPV6 ........coooccviiiiieeiii e, 24
9 Testing and verifying the augmented P4 program ........ccccceeeveccciviieeeeeececccrveeeeenn, 28
REFEIENCES ...ttt e e sttt e e s st e e e s abt e e e e sareeeeseneeeesanns 31

Page 2



Lab 4: Parser Implementation

Overview

This lab starts by describing how to define custom headers in a P4 program. It then
explains how to implement a simple parser that parses the defined headers. The lab
further shows how to track the parsing states of a packet inside the software switch.

Objectives
By the end of this lab, students should be able to:

1. Define custom headers in a P4 program.

2. Understand how the parser transitions between states and how it extracts the
headers from the packets.

Implement a simple parser in P4.

4. Trace the parsed states when a packet enters to the switch.

w

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap
This lab is organized as follows:

Section 1: Introduction.

Section 2: Lab topology.

Section 3: Defining the headers.

Section 4: Parser implementation.

Section 5: Loading the P4 program.

Section 6: Configuring switch s1.

Section 7: Testing and verifying the P4 program.

Section 8: Augmenting the P4 program to parse IPv6.
Section 9: Testing and verifying the augmented P4 program.

LN A WNR

1 Introduction

Page 3



Lab 4: Parser Implementation

1.1 Program headers and definitions

For several decades, the networking industry operated in a bottom-up approach. At the
bottom of the system are the fixed-function Application Specific Integrated Circuits
(ASICs), which enforce protocols, features, and processes available in the switch.
Programmers and operators are limited to these capabilities when building their systems.
Consequently, systems have features defined by ASIC vendors that are rigid and may not
fit the network operators’ needs. Programmable switches and P4 represent a disruption
of the networking industry by enabling a top-down approach for the design of network
applications. With this approach, the programmer or network operator can precisely
describe features and how packets are processed in the ASIC, using a high-level language,
P4.

With the Protocol Independent Switch Architecture (PISA)?, the programmer defines the
headers and corresponding parser as well as actions executed in the match-action
pipeline and the deparser. The programmer has the flexibility of defining custom headers
(i.e., a header not standardized). Such capability is not available in non-programmable
devices.

‘ 48 bits 48 bits . 16 bits
i T

Destination Address Source Address Ether Type

Figure 1. Ethernet header.

Bit 0] 1[2[3]4[5[6[7[8[9]10]11]12[13]14]15[16[17]18]19]20[21[22]23]24[25]26]27/28]29[30[31
0 Version IHL DSCP ECN Total Length

32 Identifier Flags Fragment Offset

64 Time To Live Protocol Header Checksum

96 Source IP Address

128 Destination IP Address

160 Options (if IHL > 5)

Figure 2. IPv4 header.

Bit 0] 1] 23] 4]5]6]7]8]9]10[11]12[13]14]15]16]17]18[19]20]21]22]23]24]25]26]27][28]29]30[31

0 Version Traffic Class Flow Label
32 Payload Length Next Header Hop Limit
64

Source IP Address

192

Destination IP Address

Figure 3. IPv6 header.

Page 4



Lab 4: Parser Implementation

Figure 4 shows an excerpt of a P4 program where the headers are defined. This is typically
written at the top of the program before the parsing starts. We can see that the
programmer defined a header corresponding to Ethernet (lines 11-15). The Ethernet
header fields are shown in Figure 1.

The programmer also defined an IPv4 header (lines 26-40). The IPv4 header format is
shown in Figure 2 and the IPv6 header is shown in Figure 3.

#include <core.p4d>
#include <vlmodel.p4>
const bit<16> TYPE_IPV4 = 0x800;

[/ FF sk ko sk skok sk skok sk ok ko ko oR ok E AD RS S sk sk skt sk skskok sk stk sk kol sk skskok sk ok ok ok /
typedef bit<9> egressSpec_t;

typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;

W oONOUVTDE WNPR

o
[ Y]

header ethernet_t{
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;

}

R R R R R R
NoubhwN

struct metadata {
/* empty */
}

NN BFP P
= ® O 0

struct headers{
ethernet_t ethernet;
ipvd_t ipv4;

}

NN DNDNDN
AUV hs wWwN

header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<6> DSCP;
bit<2> ECN;
bit<16> totallLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr_t dstAddr;

P W wWwwwwwwwwwiNnNN~N
® VO NAU D WNRO® OO

Figure 4. Program headers and definitions.

The code starts by including the core.p4 file (line 1) which defines some common types

and variables used in all P4 programs. For instance, the and [packet out

extern types which represent incoming and outgoing packets, respectively, are declared
in core.p4?. Next, the vimodel.p4® file is included (line 2) to define the ViModel
architecture* and all its externs used when writing P4 programs. Line 3 creates a 16-bit

Page 5



Lab 4: Parser Implementation

constant with the value 0x800. This means that can be used later

in the P4 program to reference the value 0x800. The typedef declarations (lines 7 - 9) are
used to assign alternative names to types. Subsequently, the headers and the metadata
structs that will be used in the program are defined. These headers are customized
depending on how the programmer wants the packets to be parsed. The program in
Figure 1 defines the Ethernet header (lines 11-15) and the IPv4 header (lines 26-40). The
declarations inside each header are usually written after referring to the standard
specifications of the protocol. Note in the header the is used
rather than using a 48-bit field. Lines 17 - 19 show how to declare user-defined metadata,
which are passed from one block to another as the packet propagates through the
architecture. For simplicity, this program does not require any user metadata.

1.2 Programmable parser

The programmable parser permits the programmer to describe how the switch will
process the packet. The parser de-encapsulates the headers, converting the original
packet into a parsed representation of the packet. The parser can be represented as a
state machine without cycles (direct acyclic graph), with one initial state (start) and two
final states (accept or reject).

parse_ethernet

etherType == TYPE_IPv4

etherType # TYPE_IPv4

(a)

Page 6



Lab 4: Parser Implementation

/E‘b:i k 3k >k 3k sk sk sk skosk sk skosk sk sk skosk E‘#i#%‘b:HEADERS#:Ei‘:O k >k >k >k sk >k >k sko>k sk skosk sk sk skosk sk kok Q:E/
parser MyParser( packet_in packet, out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata ){
state start {
transition parse_ethernet;
¥
state parse_ethernet {
packet.extract(hdr.ethernet);

coNOUVT A WNBR

transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4;
default: reject;

}

}

state parse_ipv4d {
packet.extract(hdr.ipvd);
transition accept;

(b)

Figure 5. Example of a parser. (a) Graphical representation of the parser. (b) In P4, the parser
always starts with the initial state called [start] First, we transition unconditionally to
parse ethernet| Then, we can create some conditions to direct the parser. Finally, when we
transition to the state, the packet is moved to the ingress block of the pipeline. A packet

that reaches the state will be dropped.

Figure 5a shows the graphical representation of the parser and Figure 5b its
corresponding P4 code. Note that packet is an instance of the extern (specific
to V1Model) and is passed as a parameter to the parser. The method associated
with the packet extracts N bits, where N is the total number of bits defined in the
corresponding header (for example, 112 bits for Ethernet). Afterwards, the
field of the Ethernet header is examined using the select statement, and the program
branches to the state if the field corresponds to IPv4. The state
transitions to the if it is not an IPv4 header, as shown in the figure above (Line

12). In the state, the IPv4 header is extracted, and the program
unconditionally transitions to the state.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit.

h1 sl h2
=

R S R

S NS S

) h1-ethO sl-etho \F sl-ethl h2-eth0| o

X X
10.0.0.1 10.0.0.2
aaaa:l bbbb::1

Figure 6. Lab topology.

Page 7



Lab 4: Parser Implementation

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Computen

MiniEdit

Terminal
Figure 7. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab4 folder and search for the topology file called lab4.mn and click on
Open. A new topology will be loaded to MiniEdit.

MiniEdit

File|] Edit Run Help

Export Level 2 Script
Directory: /home/admin/P4_Labs/lab4 —:l %’

- 8 0.0
(&5

N

KT} 2]

File name: lab4.mn

Files of type: Mininet Topology (*.mn) -:l Cancel |

18R

Figure 8. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Page 8



Lab 4: Parser Implementation

Stop }ﬂi

Figure 9. Running the emulation.

2.1 Starting host h1 and host h2

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1l and
allows the execution of commands on that host.

File Edit Run Help

h1

| P
EI‘-h:lstOpT_ions - 5 e — ,:|
sl
|

Figure 10. Opening a terminal on host h1.

Step 2. Test connectivity between host hl and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

"Host: h1"

root@Llubuntu-vm: /home/admin#|ping 10.0.0.2 -c 4

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

From 10.0.0.1 icmp seq=1 Destination Host Unreachable
From 10.0.0.1 icmp seq=2 Destination Host Unreachable

From 10.0.0.1 icmp seq=3 Destination Host Unreachable

--- 10.0.0.2 ping statistics ---

4 packets transmitted, 0 received, +3 errors, 100% packet loss, time 3067ms
pipe 4

root@lubuntu-vm: /home/admin# [

Figure 11. Connectivity test using command.

Page 9



Lab 4: Parser Implementation

The figure above indicates no connectivity between host h1l and host h2 because there is
no program loaded on the switch.

3 Defining the program’s headers
This section demonstrates how to define custom headers in a P4 program. It also shows

how to use constants and typedefs to make the program more readable.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

GEompuker

MiniEdt

Terminal

Figure 12. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4 Labs/lab4

admin@lubuntu-vm: ~
File Actions Edit View Help
admin@lubuntu-vm: ~ (<]
admin@lubuntu-vm:~$ |code ~/P4 Labs/lab4f

Figure 13. Launching the editor and opening the lab4 directory.

Page 10



Lab 4: Parser Implementation

3.2 Coding header’s definitions into the headers.p4 file

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help
XPLORER headers.p4 X

v LAB4 DERLS headers.p4

basic.json 1 /*Define the data type and constant definitions below*/
bas 2
basic.pai 3 /*Define the Ethernet header below*/
4
checksur 4
ey 5 /*Define the IPv4 header below*/
deparser.p4 6
‘]
2g 5.p4 7 /*Define the IPv6 header below*/
= headers.p4 8
ingress.p4 9 /*Define the metadata struct below*/
lab4.mn 10
parserpa 11 /*Define the headers struct below*/
parser.p4
12

Figure 14. Inspecting the headers.p4 file.
We can see that the headers.p4 is empty and we have to fill it.

Step 2. We will start by defining some typedefs and constants. Write the following in the
headers.p4 file.

typedef bit<48> macAddr t;
typedef bit<32> ip4Addr t;
const bit<l6> TYPE IPV4 = 0x800;

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 X parser.p4
+ LAB4 headers.p4
basic.json 1 /*Define the data type and constant definitions below*/
basic.p4 2 | typedef bit<48> macAddr_t;
hasic oAl 3 | typedef bit<32> ip4Addr t;
' 4 | const bit<16> TYPE IPV4 = 0x800;
checksum.p4 . =
deparser.p4 6 /*Define the Ethernet header below*/
egress.pd 7
headers.p4 8 /*Define the IPv4 header below*/
ingress.p4 9
lab4d.mn 10 /*Define the IPv6 header below*/
11
parser.p4
12 /*Define the metadata struct below*/
13
14 /*Define the headers struct below*/
15

Figure 15. Data types and constant definitions.

In the figure above the typedef declarations used (lines 2 - 3) are used to assign alternative

names to types. Here we are saying that can be used instead of pit<48>], and
instead of pit<32> We will use those typedefs when defining the headers.

Page 11



Lab 4: Parser Implementation

Line 4 shows how to define a constant with the name and a value of [0x800].

We will use this value in the parser implementation.

Step 3. Now we will define the Ethernet header. Add the following code to the headers.p4

file.

header ethernet t ({
macAddr t dstAddr;
macAddr t srcAddr;
bit<1l6> etherType;

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORE headers.p4 X parser.p4
v LAB4 ] P4
basic.json 1 /*Define the data type and constant definitions below*/
basic.p4 2  typedef bit<48> macAddr t;
BasiEnal 3 typedef bit<32> ip4Addr t;
ey . 4 const bit<l6> TYPE IPV4 = 0x800;
checksum.p - =x
o}
rser.p4 6 _/*Define the Ethernet header below*/
7 header ethernet t {
ers.p4 8 macAddr t dstAddr;
ingress.p4 9 macAddr t srcAddr;
lab4.mn 10 bit<16> etherType;
parser.p4 l}l )
13 /*Define the IPv4 header below*/
14
15 /*Define the IPv6 header below*/
16
1 /*Define the metadata struct below*/
18
19 /*Define the headers struct below*/
20

Figure 16. Adding the Ethernet header definition.

Note how we used the typedef macaddr t]which corresponds to when defining
the destination MAC address field (dstaddr]) and the source MAC address field ([srcaddr]).

Step 4. Now we will define the IPv4 header. Add the following to the headers.p4 file.

header ipv4 t {

bit<4> version;
bit<4> ihl;
bit<8> diffserv;

bit<l6> totallen;

bit<l6> identification;

bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;

bit<8> protocol;

bit<l6> hdrChecksum;
ip4Addr t srcAddr;
ip4Addr t dstAddr;

Page 12



Lab 4: Parser Implementation

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

deparser.p4
eg nd
headers.p4

ngress.p4
lab4.mn

parser.pd4

headers.p4 X parser.p4 basic.p

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

}

rs.pé

macAddr t srcAddr;
bit<16> etherType;

/*Define the IPv4 header below*/

header ipv4 t {

}

bit<4> version;
bit<4> ihl;

bit<8> diffserv;
bit<16> totallLen;
bit<16> identification;
bit<3> flags;
bit<13> fragoOffset;
bit<8> ttl;

bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr t dstAddr;

/*Define the IPv6 header below*/

Figure 17. Adding the IPv4 header definition.

Consider the figure above. Note how we used the typedef which corresponds

to when defining the source IP address field (srcaddr]) and the destination IP
address field ([dstAddr]). Also, note how we are mapping the fields to those defined in the

standard IPv4 header (see Figure 3).

Step 5. Now we will create a struct to represent our metadata. Metadata are passed from
one block to another as the packet propagates through the architecture. For simplicity,
this program does not require any user metadata, and hence we will define it as empty
with no fields. Add the following to the headers.p4 file.

struct metadata {
/* empty */
}

headers.p4
ngress.p4
lab4.mn

parser.p4

File Edit Selection View Go Run Terminal Help

headers.p4 X

} y

25
26
27
28
29
30
31
32
33
34
35
36
37

pa

ip4Addr t srcAddr;
ip4Addr t dstAddr;
}

headers.p4 - lab4 - Visual Studio Code

/*Define the IPv6 header below*/

/*Define the metadata struct below*/

struct metadata{
/*empty*/

}

/*Define the headers struct below*/

Figure 18. Adding the metadata structures.

Step 6. Now we will create a struct to contain our headers (Ethernet and IPv4). Append
the following code to the headers.p4 file.

Page 13



Lab 4: Parser Implementation

struct headers {
ethernet t
ipvd t

ethernet;

ipvé4;

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER

~ LAB4
basic.json
basic.p4
basic.p4i
checksum.p4
deparser.p4
egress.p4
headers.p4
ingress.pd4
lab4.mn

parser.p4

headers.p4 x

ip4Addr t srcAddr;
ip4Addr t dstAddr;

}

/*Define the IPv6 header below*®/

/*Define the metadata struct below*/

struct metadata{
/*empty*/

/*Define the headers struct below*/

struct headers{

ipva t ipv4;

ethernet t ethernet;

Figure 19. Appending the headers’ data structure to the headers.p4 file.

Step 7. Save the changes by pressing [ctr1+s|

4 Parser Implementation

Now it is time to define how the parser works.

Step 1. Click on the parser.p4 file to display the content of the file.

EXPLORER

v LAB4
basic.json
basic.p4
basic.p4i
checksum.p4
deparser.p4
egress.p4
headers.p4
ingress.p4

lab4.mn

arser.p4
P p

headers.p4 parser.pd X

parser.p4

1 |#include "headers.p4"|

2

3  parser MyParser(packet in packet,

4 out headers hdr,

5 inout metadata meta,

6 inout standard metadata t standard metadata) {
'/

8 /*Add the start state below*/

9
10 /*Add the parse ethernet state below*/
11
12 /*Add the parse ipv4 state below*/
13
14 /*Add the parse ipv6 state below*/
15
16
17

Figure 20. Inspecting the parse.p4 file.

parser.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Page 14



Lab 4: Parser Implementation

We can see that the headers.p4 file that we just filled is included here in the parser. The
file also includes a starter code which declares a parser named MyParser. Note how the
headers and the metadata structs that we defined previously are passed as parameters

to the parser.

Step 2. Add the state inside the parser by inserting the following code.

state start {

transition parse ethernet;

}

parser.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 X
v LAB4 parser.p4
basic.json 1  #include "headers.p4"
basic.p4 2
basic.pai 3 parser MyParser(packet in packet,
5 4 out headers hdr,
EDeERRL 5 inout metadata meta,
CEparEEnpa 6 inout standard metadata t standard metadata) {
egress.p4 7
headers.p4 8 /*Add the start state below*/
ingress.p4 9 state start {
jabamn 10 transition parse_ethernet;
: 11 }
parser.p4 12
13 /*Add the parse ethernet state below*/
14
15 /*Add the parse ipv4 state below*/
16
17 /*Add the parse ipv6 state below*/
18
19 }
20

Figure 21. Adding state to the parser.p4 file.

The state is the state where the parser begins parsing the packet. Here we are
transitioning unconditionally to the parse ethernet]|state.

Step 3. Add the parse ethernet]state inside the parser by inserting the following code.

state parse ethernet {

packet.extract (hdr.ethernet) ;
transition select (hdr.ethernet.etherType) {
TYPE IPV4: parse ipvé4;

default: accept;

Page 15



Lab 4: Parser Implementation

parser.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 X
v LAB4 parser.p4
basic.json 3 parser MyParser(packet in packet,
basic.p4 4 | out headers hdr,
basic.p4i 5 inout metadata meta,
checksum.p4 6 inout standard metadata t standard metadata) {
deparser.p4 7
AGreeap 8 /*Add the start state below*/
9 state start {
headers:p4 10 transition parse ethernet;
ingress.p4 11 }
lab4.mn 12
parser.p4 13 /*Add the parse ethernet state below*/
14 state parse ethernet {
15 packet.extract(hdr.ethernet);
16 transition select(hdr.ethernet.etherType) {
17 TYPE IPV4: parse ipvé4;
18 default: accept;
19 }
20 }
21
22 /*Add the parse ipv4 state below*/

Figure 22. Adding [parse ethernet]|state to the parser.p4 file.

The parse ethernet]state extracts the Ethernet header and checks for the value of the
header field etherType]. Note how we reference a header field by specifying the header
to which that field belongs (i.e., hdr . ethernet.etherType). If the value of is
(which corresponds to 0x800 as defined previously), the parser transitions to
the state. Otherwise, the execution of the parser terminates.

Step 4. Add the state inside the parser by inserting the following code.

state parse ipv4d {
packet.extract (hdr.ipv4) ;
transition accept;

Page 16



Lab 4: Parser Implementation

parser.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER

v LAB4
basic.json
basic.p4
basic.p4i
checksum.p4
deparser.p4
egress.p4
headers.p4
ingress.p4
lab4.mn

parser.p4

headers.p4

parser

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

X

p4

parser.p4 X

LIUIOL LAVl PUl DL LuIIL v L,

}

/*Add the parse_ethernet state below*/
state parse ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse ipvé4;
default: accept;

}

/*Add the parse ipv4 state below*/

state parse ipv4 {
packet.extract(hdr.ipv4);
transition accept;

}

/*Add the parse ipv6 state below*/

Figure 23. Adding state to the parser.p4 file.

The state extracts the IPv4 header and terminates the execution of the

parser.

Step 5. Save the changes to the file by pressing[ctrl + s

5 Loading the P4 program

5.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the Visual Studio Code

to compile the program.

p4c basic.p4

Page 17



Lab 4: Parser Implementation

basic.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 basic.p4 X
v LAB4 basic.p4

basic.json ;| ¥ =¥z P16 - X
2 #include <core.p4>
basic.pai 3 #}nclude <vlimodel.p4>
; 4  #include "parser.p4"
cherksmEpa 5 #include "checksum.p4"
depatser.p4 6 #include "ingress.p4"
egress.p4 7  #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 9
lab4.mn 10 .
Pt 11  V1Switch(

12 MyParser(),

13  MyVerifyChecksum(),

14  MyIngress(),

15  MyEgress(),

16  MyComputeChecksum(),

17  MyDeparser()

18 ) main;

19

PROBLEMS  OUTPUT  TERMINAL  DEBUG C

admin@lubuntu-vm:~/P4_Labs/lab4$|p4c basic.p4

admin@lubuntu-vm:~/P4_Labs/lab4$

Figure 24. Compiling the code.
Step 2. Type the command below in the terminal panel to download the basic.json file to

the switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password [password].

push to switch basic.json sl

Page 18



Lab 4: Parser Implementation

basic.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 basic.p4 X
~ LAB4 basic.p4
basic.json 1 /* %= P4 16 =% ¥/
basic.p4 2 #include <core.p4>
basic.p4i 3 #?nclude <vlmodel.p4=
. 4  #include "parser.p4"
CIERkUT 5  #include "checksum.p4"
Heparsernd 6 #include "ingress.p4"
egress.pd 7  #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 9
lab4.mn 1o i
et 11 Viswitch(
' 12 MyParser(),

13  MyVerifyChecksum(),

14  MyIngress(},

15  MyEgress(),

16  MyComputeChecksum(),

17  MyDeparser()

18 ) main;

19

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab4% p4c basic.p4

admin@lubuntu-vm:~/P4_Labs/lab4$|push to switch basic.json sl
[sudo] password for admin:
admin@lubuntu-vm:~/P4 Labs/lab4s |

Figure 25. Pushing the P4 program to switch s1.

5.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

*= gterminal - 2 windows B MiniEdit .p4 - ...Studio Code

Figure 26. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Page 19



Lab 4: Parser Implementation

File Edit Run Help

h2

= | R |
&
Docker Options ‘

Terminal

Figure 27. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command on the terminal of the switch s1 that was opened in the
previous step.

1s

root@sl: /behavioral-model

Figure 28. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

6 Configuring switch s1

6.1 Mapping P4 program’s ports
Step 1. Issue the following command on switch s1 terminal to display the interfaces.

ifconfig

Page 20



Lab 4: Parser Implementation

root@sl: /behavioral-model

root@sl:/behavioral-model#|ifconfig
Link encap:Ethernet HWaddr 02:42:ac:11:00:02
inet addr:172.17.0.2 Bcast:172.17.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:31 errors:0 dropped:® overruns:0 frame:0
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen:©
RX bytes:3619 (3.6 KB) TX bytes:0 (0.0 B)

Link encap:Local Loopback
inet addr:127.0.0.1 :
UP LOOPBACK RUNNING MTU: 36 Metric:1

RX packets:22 errors:0 dropped:© overruns:0 frame:0
TX packets:22 errors:0 dropped:® overruns:0 carrier:0
collisions:0® txqueuelen:1000

RX bytes:12136 (12.1 KB) TX bytes:12136 (12.1 KB)

Link encap:Ethernet HWaddr 62:33:6a:a4:6f:fb
UP BROADCAST RUNNING MULTICAST MTU:1500
RX packets:8

collisions:® txqueuelen:1000
RX bytes: 6 (636 TX bytes:280 (280.0 B)

Link encap:Ethernet Nad fe:4d:6e:ba:d8:c

UP BROADCAST RUNNING MULTICAST MTU:1500

RX packets:7 errors:0 dropped:0 o

TX packets:4 errors:0 dropped:® overruns:® carrier:
collisions:® txqueuelen:16000

RX bytes:550 (550.0 B) TX bytes:280 (280.0 B)

root@sl:/behavioral-model# l

Figure 29. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-ethO and s1-ethl. The interface s1-ethO
on the switch s1 connects host hl. The interface s1-ethl on the switch s1 connects host
h2.

Step 2. Start the switch daemon by typing the following command.

simple switch -i 0@sl-ethO -i 1@sl-ethl --nanolog ipc:///tmp/bm-log.ipc
basic.json &

root@sl: /behavioral-model

havioral-mode
n-log.ipc b

: havioral-mo + Calling target program-options parser
ding interface sl-eth® as rt @
ing interface sl-ethl as port 1

Figure 30. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The parameter is used to instruct the switch daemon that we want to see
the logs of the switch.

Page 21



Lab 4: Parser Implementation

6.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

root@s1l: /behavioral-model - O X

root@sl:/behavioral-model# simple switch -i 0@sl-eth® -i 1@sl-ethl basic.json

:/behavioral-model# Calling target program-options parser
ing face sl-ethe as port ©
Adding interface sl-ethl as port 1

1:/behavioral-model# [

Figure 31. Returning to switch s1 CLI.
Step 2. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab4/rules.cmd

root@sl: /behavioral-model

root@sl havioral-model#|simple switch CLI < ~/lab4/rules.cmd
Obtaining JSON from switch...
Done
Control utility for runtime P4 table manipulation
RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:00

MyIngress.forward

runtime data: 00:01

Entry has been added with handle ©

RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:01

Clas I F MyIngress.forward

runtime data: 00:00

Entry has been added with handle 1

RuntimeCmd:

root@sl:/behavioral-model# [j

Figure 32. Populating the forwarding table into switch s1.

7 Testing and verifying the P4 program

Step 1. Type the following command to initiate the client that will display the
switch logs.

nanomsg client.py

Page 22



Lab 4: Parser Implementation

root@sl: /behavioral-model

‘behavioral-model# |nanomsg client.py
not provi , using 1p //tm -log.ipc (obtained from switch)

g JSON from switch..

Figure 33. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command below so that the host starts listening
for packets.

./recv.py

"Host: h2"

buntu-vm: /home/admin# |./recv.
sniffing on h2-ethe

Figure 34. Listening for incoming packets in host h2.

Step 3. On host hl’s terminal, type the following command to send a packet to host h2.

./send.py 10.0.0.2 HelloWorld

"Host: h1"

root@Llubuntu-vm: /home/admin# |. /send.py 10.0.0.2 Helloworld
sending on interface hl-eth® to 10.0.0.2
###[ Ethernet |###
dst A S B i o e
Src = 00:00:00:00:00:01
type IPv4
###[ IP ###
version
ihl
tos
len
id
flags
frag =0
ttl 64
proto tcp
chksum 0x66¢C3
src = 10.0.0.1
dst = 10.0.0.2
\options \

Figure 35. Sending a test packet from host h1 to host h2.

Step 4. Inspect the logs on switch s1 terminal.

Page 23



Lab 4: Parser Implementation

root@s1: /behavioral-model

0g.ipc (obtained from switch)

PIPELINE

TABLE HIT,
ACTION EXECUTE
PIPELINE
PIPELINE €
PIPELINE

DEPA

Figure 36. Inspecting the logs in switch s1.

The figure above shows that the Ethernet and IPv4 header are extracted.

8 Augmenting the P4 program to parse IPv6

Now we will augment the program to parse IPv6 packets. Figure 4 shows the IPv6 header
fields.

Step 1. Go back to the headers.p4 file and add the following constant definition.

const bit<l6> TYPE IPV6 = 0x86dd;

) headers.p4 - lab4 - Visual Studio Code

‘File Edit Selection View Go Run Terminal Help

‘ EXPLORER headers.p4 X parser.p4 basic.p4
p4

1 /*Define the data type and constant definitions below*/
2 typedef bit<48> macAddr t;
3 typedef bit<32> ip4Addr t;
4 const bit<l6> TYPE IPV4 = 0x800;
5 86dd;|

|const bit<16> TYPE IPV6 = Ox

Figure 37. Adding the IPv6 type definition.

Step 2. Add the IPv6 header definition as shown below.

header ipv6 t{
bit<4> version;
bit<8> trafficClass;
bit<20> flowLabel;
bit<16> payloadLen;
bit<8> nextHdr;
bit<8> hopLimit;

Page 24



Lab 4: Parser Implementation

bit<128> srcAddr;
bit<128> dstAddr;

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.pd4 X parser.p4 basic.p4
~ LAB4 headers.p4
basic.json 22 bit<13> fragOffset;
basic.p4 23 Eit<8> ttl; .
: : 24 it=8> protocol;
basic.pai 25 bit<16>phdrchecksum;
checksum.p4 26 ipaAddr t srcaddr;
deparser.pd 27 ip4Addr_t dstAddr;
egress.pd 28 }
headers.p4 29
ingress.p4 30 /*Define the IPv6 header below*/
labd.mn 31 |header ipv6_t {
32 bit<4= version;
PRI 33 bit<8= trafficClass;
34 bit<28> flowLabel;
35 bit<16> payloadlLen;
36 bit<8> nextHdr;
37 bit<8> hopLimit; [
38 bit<128> srcAddr;
39 bit<128> dstAddr;
40 |}
41

Figure 38. Adding the IPv6 header definition.

Step 3. Append the IPv6 header to the header’s data structure.

ipvé6 t ipvé6;

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 X parser.p4 basic.p4
v LAB4 headers.p4
basic.json 33 bit<8> trafficClass;
basic.p4 34 bit<20> flowLabel;
basic.p4i 35 bit<16> payloadLen;
checksum.p4 36 b?‘t<8> neXtHdr;
denarser e 37 bit<8> hopLimit;
) 38 bit<128> srcAddr;
egresspd 39 bit<128> dstAddr;
headers.p4 40 }
ingress.p4 41
lab4.mn 42 /*Define the metadata struct below*/
parser.p4 43 struct metadata{
44 | /*empty*/
45
46

47 /*Define the headers struct below*/
48 struct headers{

49 ethernet t ethernet;
50 ipv4 t ipv4;

5
52}

53

Figure 39. Adding IPv6 type to the header data structure.

Step 4. Go to the parser.p4 file and add the following line to the parse ethernet]state.

Page 25



Lab 4: Parser Implementation

TYPE IPV6: parse ipv6;

parser.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal
EXPLORER headers.p4
v LAB4 REULS parser.p4
basic.json 13
basic.p4 14
basic.p4i 15
checksum.p4 16
deparser.p4 w
: 18
egress.p4 19
headers.p4 20
ingress.p4 21
lab4.mn 22
parser.p4 23
24
25
26
27
28

Figure 40. Including the IPv6 state transition into the parse ethernet]state.

Step 5. Add the state inside the parser by inserting the following code.

state parse ipvé6 {
packet.extract (hdr.ipv6)
transition accept;

Help

parser.pd X basic.p4

/*Add the parse ethernet state below*/
state parse ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE IPV4: parse ipv4;
|TYPE IPV6: parse ipv6; |
default: accept;

}

/*Add the parse ipv4 state below*/

state parse ipv4 {
packet.extract(hdr.ipv4);
transition accept;

}

’

parser.p4 - lab4 - Visual Studio Code

Help

parser.pd X basic.p4

/*Add the parse ethernet state below+*/
state parse ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE _IPV4: parse ipvé4;
TYPE IPV6: parse ipv6;
default: accept;

}

/*Add the parse ipv4 state below*/

state parse ipvé4 {
packet.extract{hdr.ipv4);
transition accept;

}

/*Add the parse ipvé state below*/

File Edit Selection View Go Run Terminal
EXPLORER e headers.p4
~ LAB4 LELA parser.pd
basic.json 13
basic.pa 14
basic.p4i 15
checksum.p4 16
deparser.p4 i;
egress.p4 19
headers.p4 20
ingress.p4 21
lab4d.mn 22
23
parser.pd 9
25
26
27
28
29
30
31
32
33

state parse ipvée {
packet.extract(hdr.ipv6);
transition accept;

}

Figure 41. Adding

state to the parser.p4 file.

Step 6. Save the changes by pressing[Ctrl+s|.

Page 26



Lab 4: Parser Implementation

Step 7. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

basic.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 basic.p4 X
v LAB4 basic.pa
basic.json | ¥ % P A6 - K
2  #include <core.p4>

basic.pai 3 #}nclude <vlmodel.p4>
; 4  #include "parser.p4"
checksum 5 #include "checksum.p4"
fepatserns 6 #include "ingress.p4"
egress.p4 7  #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 9
lab4.mn 10 .
parserpa 11 V1Switch(

12 MyParser(),

13 MyVerifyChecksum(),

14  MyIngress(),

15  MyEgress(),

16  MyComputeChecksum(),

17 MyDeparser()

18 ) main;

19

PROBLEMS  OUTPUT  TERMINAL  DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab4$|p4c basic.p4

admin@lubuntu-vm:~/P4_Labs/lab4$

Figure 42. Compiling the P4 program.
Step 8. Type the command below in the terminal panel to push the basic.json file to the

switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password [password].

push to switch basic.json sl

Page 27



Lab 4: Parser Implementation

basic.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 basic.p4 X
+ LAB4 basic.p4
basic.json 1 Ptz PE 16 % iKY
basic.p4 2 #include <core.p4=
basic.p4i 3 #include <v1lmodel.pd=
4  #include "parser.p4"
Sl 5  #include "checksum.p4"
U PEEERR 6 #include "ingress.p4"

egress.p4 7  #include "egress.p4"

headers.p4 8  #include "deparser.p4"
ingress.p4 9
lab4.mn 10 .
et 1 V1switch(
1 MyParser(),
13 MyVerifyChecksum(),
14  MyIngress(),
15  MyEgress(),
16  MyComputeChecksum(),
17  MyDeparser()
18 ) main;
PROBLEMS ~ OUTPUT  TERMINAL  DE SOLE
admin@lubuntu-vm:~/P4_Labs/lab4% pdc basic.p4
admin@lubuntu-vm:~/P4_Labs/labd$|push to switch basic.json sl
[sudo] password for admin:
admin@lubuntu-vm:~/P4 Labs/lab4s |
Figure 43. Pushing the P4 program to switch s1.
9 Testing and verifying the augmented P4 program

Step 1. In switch s1 terminal, press to return to the CLI. The figure below shows
the output after executing the command.

root@s1l: /behavioral-model

Obtaining JSON from switch...

e: PACKET IN, port in: ©

type: PARSER START, parser 1id:

type: PARSER EXTRACT, header id: 2 (ethernet)

type: PARSER EXTRACT, header id: 3 (ipv4)

type: PARSER DONE, parser p

type: PIPELINE START, pipeli -

type: TABLE MISS, table id: © (MyIngre

type: ACTION EXECUTE, ion id: 1 ngress.drop)

type: PIPELINE DONE, 1

“CTraceback (most

File "/usr/local/ . , in <module>
malin(

omsg client.py ine 528, 1n main
client)

/nanomsg client.py”, line 468, 1 recv msgs

ite-packages/nnpy/socket.py”, line 60, in r

buf, NN MSG, flags)

Figure 44. Returning to the CLI.

Page 28



Lab 4: Parser Implementation

Step 2. Type the command below in the terminal of switch s1 to stop the running daemon.

pkill simple switch

root@sl: /behavioral-model

Flpkill simple_switch
vioral-mo ]

Figure 45. Ending switch s1 P4 process.

Step 3. Type the command below in the terminal of the switch sl to start the daemon
with the new P4 program.

simple switch -i 0@sl-ethO -i 1@sl-ethl --nanolog ipc:///tmp/bm-log.ipc
basic.json &

root@sl: /behavioral-model
1-ethe -1 1 -ethl --nanolog

Calling target program-options parser

Figure 46. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.
Step 4. In switch s1 terminal, press Enter to return the CLI.

root@s1l: /behavioral-model - O X

dsl:/behavioral-model# simple switch -i 0@sl-eth® -i 1@sl-ethl --nanolog
ipc:///tmp/bm-log.ipc basic.json &

[1] 33

root@sl:/behavioral-model# Calling target program-options parser

Adding interface sl-eth® as port ©

Adding interface sl-ethl as port 1

root@sl:/behavioral-model# I

Figure 47. Returning to switch s1 CLI.

Step 5. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab4/rules.cmd

Page 29



Lab 4: Parser Implementation

root@sl: /behavioral-model

root@sl: havioral-model#|simple switch CLI < ~/lab4/rules.cmd
Obtaining JSON from switch...

Done

Control utility for runtime P4 table manipulation

RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:00

action: MyIngress.forward

runtime data: 00:01

Entry has been added with handle ©

RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:01

action: MyIngress.forward

runtime data: 00:00

Entry has been added with handle 1

RuntimeCmd:

root@sl:/behavioral -model I

Figure 48. Populating the forwarding table into switch s1.

Step 6. Type the following command to display the switch logs.

nanomsg client.py

root@sl: /behavioral-model
havioral-model# |nano
cket' not provid using 1ipc:/; 1 m-log.ipc (obtained from s
aining JSON from switch..
Done

Figure 49. Inspecting the logs in switch s1.

Step 7. On host h1’s terminal, type the following command to send an IPv6 packet to host
h2. Note that is IPv6 address of host h2.

./send ipvé6.py bbbb::1 HelloWorld

"Host: h1"

root@lubuntu-vm:/home/admin# |. /send ipv6.py bbbb::1 HelloWorld
bbbb::1
sending on interface hl-eth® to bbbb::1
###| Ethernet 1##
dst = TRttt et T8 1T
Src = 00:00:00:00:00:01
type = IPv6
###[ IPv6 |###
version = 6
tc ¢}
fl ¢}
plen = 20
nh = TCP
hlim = 64
Src aaaa::1
dst bbbb::1
###[ TCP |###
sport 57137
dport 1234

Figure 50. Sending an IPv6 test packet from host h1 to host h2.

Page 30



Lab 4: Parser Implementation

Step 8. Go back to switch s1 a

Entry has been added with
RuntimeCmd:

root@sl:/behavioral
'--socket’
Obtaining
Done
type:

JSON fron
PACKET

PARSER

PARSER

PARSER EXTRACT,
PARSER DONE, pa
PIPELINE START,
TABLE HIT, table id:
ACTION EXECUTE,
PIPELINE DONE,
PIPELINE START,
PIPELINE DONE,
DEPARSER START,
CHECKSUM UPDATE,
DEPARSER EMIT,
DEPARSER DONE,
PACKET OUT, port

model# nanomsg
not provided, u

pipeline id: ©

action
pipelin
pipeline id: 1
pipeline id: 1
deparsel
cksum id: ©
heade
depar
out: 1

nd inspect the logs.

root@sl: /behavioral-model
handle 1

client.py

sing ipc:///tmp/bm-log.ipc

switch...

(1ngress)
® (MyIngress rding),
1d:

id: ©

(ingress)
(egress)

(egress)
(deparser)
(cksum)

(ethernet)

1d: ©

r-ia: 2

ser id: 0 (deparser)

(obtained from switch)

entry hdl: ©

yrward)

Figure 51. Inspecting the logs in switch s1.

The figure above shows that the Ethernet and IPv6 header are extracted.

This concludes lab 4. Stop the emulation and then exit out of MiniEdit.

References

=

https://tinyurl.com/3z

k8vs6a.

2. “p4c core.pd”. [Online]. Available:
https://github.com/p4lang/p4c/blob/main/p4include/core.p4.
3. “p4cvlimodel.p4”. [Online]. Available:
https://github.com/p4lang/p4c/blob/main/p4include/vimodel.p4.

C. Cascaval, D. Daly. "P4 Architectures." [Online]. Available:

P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.

Page 31



A

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Exercise 3: Parsing UDP and RTP

Document Version: 01-14-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Exercise 3: Parsing UDP and RTP

Contents

R o Y ol Y= o [T T ] A o [ PURR
1.1 EtherN@t REATEN oot e e e e e et rer e e e e e e e enans
10 A 1 Y7 T To =Y R PURPPE
G T U 1B T o V=T Vo [T U PURPRE
O R I o V=Y To =T U PURPRE
1.5  EXErCiSE tOPOIOBY .uvveeeieiiiiii ittt ettt e st e e e s e e s st e e e s nnaaee s
O S 00 Te [T o | =1 U PURPRE

2 Setting the eNVIFONMENT......uiii i e e s s saraeeeenes

3 (DL AV Z=T = o] (=L TP TP TUPRRR



Exercise 3: Parsing UDP and RTP

1 Exercise description

In this exercise, you will implement the parser for the User Datagram Protocol (UDP) and
the Real-time Transport Protocol (RTP). RTP is used to deliver audio and video over IP
networks. The figure below shows the headers of packets arriving to the switch.

RTP

uDP

IPv4

Ethernet

Figure 1. Packet header to be implemented in this exercise.

The header definitions are shown below.

1.1 Ethernet header

Ethernet determines that the next header is IPv4 if the value of EtherType is 0x0800.

48 bits 48 bits ‘ 16 bits 46-1500 bytes
T

Destination Address Source Address Ether Type Payload

Figure 2. Ethernet header.

1.2 IPv4 header

Bit 0[] 172[3[4[5[6[7[8[9[10[11[12[13[14]15[16[17[18[19]20[21]22[23[24[25[26[27/28[29[30[31
0 Version IHL DSCP ECN Total Length

32 Identifier Flags Fragment Offset

64 Time To Live Protocol Header Checksum

96 Source IP Address

128 Destination IP Address

160 Options (if IHL > 5)

Figure 3. IPv4 header.
The switch can determine that the next header after IPv4 is UDP by inspecting the

protocol field of the IPv4 header. The protocol field corresponding to UDP is 17 (i.e., Ox11
in hexadecimal).

1.3 UDP header



Exercise 3: Parsing UDP and RTP

We will assume that after parsing UDP, the switch can determine that the next header is
RTP by inspecting the destination port of UDP. If the value is 5004 (i.e., 0x138C in
hexadecimal), then the next header is RTP.

Bit [0]1]2]3]4]5]6]7][8[9]10[11]12[13]14]15[16[17][18[19]20]21]22]23]24][25[26[27]28[29]30][31
0 Source Port Destination Port

32 Length Checksum

Figure 4. UDP header.

1.4 RTP header

The RTP header format is as follows:

Bit [0] 1[2[3[4[5]6]7[8[9]10[11[12[13]14[15[16[17]18]19]20]21[22]23]24]25]26]27]28]29[30]31
0 |Ver.|P |X| CC |M PT Sequence Number

32 Timestamp

64 SSRC identfier

Figure 5. RTP header.

15 Exercise topology

h1 sl h2
~ ~ Ne ~
S N S
o h1-ethO sl-etho \F sl-ethl h2-etho | o
X >
10.0.0.1 10.0.0.2

Figure 6. Lab topology.

1.6 Credentials
The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password
Client admin password
2 Setting the environment

Follow the steps below to set the exercise’s environment.



Exercise 3: Parsing UDP and RTP

Step 1. Open MiniEdit by double-clicking the shortcut on the desktop. If a password is
required type jpassword|.

Computer,

MiniEdit

Terminal

Figure 7. MiniEdit shortcut.

Step 2. Load the topology located at /home/admin/P4_Exercises/Exercise3/.

MiniEdit

Edit Run Help

New

e Open - O X
Save

Export Level 2 Script Directory: |fhome,!admin{P4_Exercise5{Exercise3| _;| @‘

T
G

J |<] | ¥
N File name: topology.mn |gpen|

Files of type: Mininet Topology (*.mn) 4‘ Cancel ‘

Figure 8. Opening the exercise’s topology.

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.



Exercise 3: Parsing UDP and RTP

Run

Stop |'"J

Figure 9. Running the emulation.

Step 4. In the terminal, type the command below. This command launches the Visual
Studio Code and opens the directory where the P4 program for this exercise is located.

code ~/P4 Exercises/Exercise3/

s admin@lubuntu-vm: ~
File Actions Edit View Help

admin@lubuntu-vm: ~ (X

admin@lubuntu-vm:-~$ |code P4_Exercises/Exercise3/

Figure 10. Opening the working directory.

3 Deliverables

Follow the steps below to complete the exercise.

a) Implement the headers for Ethernet, IPv4, UDP, and RTP in the headers.p4 file.
b) Implement the parser.

c) Compile the basic.p4 in the Visual Studio Code terminal. Push the output file of the
compiler to the switch s1.

d) Start the switch daemon and load the rules located in ~/exercise3/.

e) In switch s1 terminal, run the nanomsg_client.py program to log the events in the
switch.

f) Send a packet using the following command.

./send rtp.py 10.0.0.2 HelloWorld



A

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 5: Introduction to Match-action Tables (Part 1)

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Lab 5: Introduction to Match-action Tables

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [ o= o T PP UPPPRUPPPPR 3
1 Introduction to coONtrol BIOCKS .......ccivvviiiiiiiiiii e 3
00 R I o 1= USRS 4
0 |V -1 ol o I 1Y/ o1 SRR 4
IR T = Tl a4 - o [PPSR 4
P IF- | o I o] o Yo Lo} -1V 20 USRS SUPRPRRUPTPPR 6
2.1  Starting host h1 and hoSt h2........ooiiiiiiiii e 7
3 Defining a table with exact match l0OKUP ......coevvviiiiiiiiiiee e 8
3.1 Loading the programming enviroNmMeNt........cccoecuvieeiiiiieeeeciiee e 8
3.2  Programming the exact table in the ingress blocK...........coocoveviieeeiiiiiiiciiiineeenen. 9
N o= To o T d o ol o A o T o Y= - [ o PSP 15
4.1 Compiling and loading the P4 program to switch S1 .......ccccccevviiieiiviiieeeennnenn. 15
4.2  Verifying the configuration ..........c..eeeieii i 16
5 Configuring SWItCh SL....ociiiiiiee e e e e e e snaee s 17
5.1  Mapping P4 program’s POItS........ccccccieeeieiiieeeeeiiieeeeeiieeeeeeiseeeeessnneeessnssneeseennens 17
5.2  Loading the rulesto the switCh ..o, 19
6  Testing and verifying the P4 programi........cccccceeieiecciiiiieeeee e eecireree e e cveaeneee e 19
REFEIENCES ...ttt e e e sttt e e s st e e e sttt e e e saraeeessnreeesaans 23

Page 2



Lab 5: Introduction to Match-action Tables

Overview

This lab describes match-action tables and how to define them in a P4 program. It then
explains the different types of matching that can be performed on keys. The lab further
shows how to track the misses/hits of a table key while a packet is received on the switch.

Objectives

By the end of this lab, students should be able to:

PwnPE

Lab settings

Understand what match-action tables are used for.
Describe the basic syntax of a match-action table.
Implement a simple table in a P4.

Trace a table’s misses/hits when a packet enters to the switch.

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client

admin

password

Lab roadmap

This lab is organized as follows:

oA wWwNPRE

Section 1: Introduction to control blocks.

Section 2: Lab topology.

Section 3: Defining a table with exact match lookup.
Section 4: Loading the P4 program.

Section 5: Configuring switch s1.

Section 6: Testing and verifying the P4 program.

1 Introduction to control blocks

Control blocks are essential for processing a packet. For example, a control block for layer-
3 forwarding may require a forwarding table that is indexed by the destination IP address.
The control block may include actions to forward a packet when a hit occurs, and to drop

Page 3




Lab 5: Introduction to Match-action Tables

the packet otherwise. To forward a packet, a switch must perform routing lookup on the
destination IP address. Figure 1 shows the basic structure of a control block.

Control Control Control .
block block block
Match Action Match Action

Figure 1. Control blocks.

1.1 Tables

Tables are essential components that define the processing behavior of a packet inside
the switch. A table is specified in the P4 program and has one or more entries (rows)
which are populated by the control plane. An entry contains a key, an action, and action
data.

e Key:itisitis used for lookup operations. The switch builds a key for the incoming
packet using one or more header fields (e.g., destination IP address) and then
lookups for that value in the table.

¢ Action: once a match occurs, the action specified in the entry is performed by the
arithmetic logic unit. Actions are simple operations such as modify a header field,
forward the packet to an egress port, and drop the packet. The P4 program
contains the possible actions.

e Action data: it can be considered as parameter/s used along with the action. For
example, the action data may represent the port number the switch must use to
forward the packet. Action data is populated by the control plane.

1.2 Match types

There are three types of matching: exact match, Longest Prefix match (LPM), and ternary
match. They are defined in the standard library (core.p4'). Note that architectures may
define and implement additional match types. For example, the V1Model? also has
matching based on ranges and selectors. In this lab we will discuss exact match.

1.3 Exact match
Assume that the exact match lookup is used to search for a specific value of an entry in a
table. Assume that Table 2 matches on the destination IP address. If an incoming packet

has 10.0.0.2 as the destination IP address, then it will match against the second entry and
the P4 program will forward the packet using port 2 as the egress port.

Page 4



Lab 5: Introduction to Match-action Tables

Table 2. Exact match table.

Key Action Action data
10.0.0.1 forward port 1
10.0.0.2 forward port 2
default drop

Figure 2 shows the ingress control block portion of a P4 program. Two actions are defined,
[drop| and [forward]. The [drop] action (lines 5 - 7) invokes the mark to drop| primitive,
causing the packet to be dropped at the end of the ingress processing. The action
(lines 8 - 10) accepts as input (i.e., action data) the destination port. This parameter is
inserted by the control plane and updated in the packet during the ingress processing. In
line 9, the P4 program assigns the egress port defined by the control plane to the
[standard metadatal egress specification field (i.e., the field that the traffic manager
looks at to determine which port the packet will be sent to). Lines 11-21 implement a
table named [ipv4 exact]. The match is against the destination IP address using the exact
lookup method. The actions associated with the table are forward and drop. The default
action which is invoked when there is a miss is drop. The maximum number of entries a
table can support is configured manually by the programmer (i.e., 1024 entries, see line
19). Note, however, that the number of entries is limited by the amount of memory in the
switch.

The control block starts executing from the apply statement (see lines 22-26) which
contains the control logic. In this program, the table is enabled when the
incoming packet has a valid IPv4 header.

/00%00%6%ib%ib%ib'%Jb%i*‘r*INGRESS PROCESSINGO-%%O%y‘b%bbibbibbibiib'%%b/
control MyIngress(inout headers hdr,

inout metadata meta,

inout standard_metadata_t standard_metadata){

action drop(){
mark_to_drop(standard_metadata);

}
action forward(egressSpec_t port) {
standard_metadata.egressSpec = port;

0NV WNRE

¥
table ipv4_exact {
key = {
hdr.ipv4.dstAddr:exact;
¥
actions = {
forward;
drop;
¥
size = 1024;
default_action = drop();
¥
apply {
if (hdr.ipv4.isvalid()){
ipv4_exact.apply();

Figure 2. Ingress control block portion of a P4 program. The code implements a match-action table
with exact match lookup.

Page 5



Lab 5: Introduction to Match-action Tables

2 Lab topology

Let us get started with creating a simple Mininet topology using MiniEdit.

h1i sl h2
N
h1-ethO sl-etho \E7 sl-ethl h2-eth0] ¢
X
10.0.0.1 10.0.0.2
aaaa:l bbbb::1

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|.

Computer

MiniEdit

Terminal

Figure 4. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the /ab5 folder and search for the topology file called lab5.mn and click on

Open. A new topology will be loaded to MiniEdit.

Page 6



Lab 5: Introduction to Match-action Tables

MiniEdit

Edit Run Help

New

Export Level 2 Script
Directory: |/home/admin/P4_Labs/lab5| _.‘ @‘

- ] 05 |
<

!

e
I

\ File name: |lab5.mn [Qpen]

Files of type: Mininet Topology (*.mn) _.‘ Cancel ‘

Figure 5. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Stop I.,__Ji

Figure 6. Running the emulation.

2.1 Starting host h1 and host h2

Step 1. Right-click on host h1l and select Terminal. This opens the terminal of host hl and
allows the execution of commands on that host.

Page 7



Lab 5: Introduction to Match-action Tables

File Edit Run Help

hl

| P
EI‘-h:lstOpT_ions o E ——— ,:|
sl
|

Figure 7. Opening a terminal on host h1l.

Step 2. Test connectivity between host hl and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

"Host: h1"

root@lubuntu-vm: /home/admin#|ping 10.0.0.2 -c 4

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

From 10.0.0.1 icmp seq=1 Destination Host Unreachable
From 10.0.0.1 icmp seq=2 Destination Host Unreachable

From 10.0.0.1 icmp seq=3 Destination Host Unreachable

--- 10.0.0.2 ping statistics ---

4 packets transmitted, 0 received, +3 errors, 100% packet loss, time 3067ms
pipe 4

root@lubuntu-vm: /home/admin# |

Figure 8. Connectivity test using command.

The figure above indicates no connectivity between host hl and host h2 because there is
no program loaded on the switch.

3 Defining a table with exact match lookup

This section demonstrates how to implement a simple table in P4 that uses exact
matching on the destination IP address of the packet. When there is a match, the switch
forwards the packet from a certain port. Otherwise, the switch drops the packet.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Page 8



Lab 5: Introduction to Match-action Tables

Gomputer,

MiniEdit

Terminal

Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI).

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4 Labs/lab5

admin@lubuntu-vm: ~
File Actions Edit View Help

admin@lubuntu-vm: ~ [X]

Figure 10. Launching the editor and opening the lab5 directory.

3.2 Programming the exact table in the ingress block

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X
v LABS ingress.p4
b:‘ISICpA 1 /.QA'AQI/""1\.’*‘QA'kﬂlk‘l“"l"""A'I"'lA‘A’L'IA’A'jlIJ'A'.‘l’A'Al)lD’O
checksumpd 2 O e S INGRESS PRO(ESSING AEA R R R AR LR AR A R
3 -p-Q-0000-0-..00.0-0040-.-to'o-onoo-o.q.00'--00001--0-Qo"-qno"qu"""/
deparser.p4
4
s.p4 ;
it 5 control MyIngress(inout headers hdr,
headers.p4 6 inout metadata meta,
i inout standard metadata t standard metadata) {
lab5.mn 8
parser.p4 9
10
I |

Figure 11. Opening the ingress processing block.

Page 9



Lab 5: Introduction to Match-action Tables

We can see that the ingress.p4 declares a control block named Mylngress. Note that the
body of the control block is empty. Our objective is to define a P4 table, its actions, and
then invoke them inside the block.

Step 2. We will start by defining the possible actions that a table will call. In this simple
forwarding program, we have two actions:

e [forward] this action will be used to forward the packet out of a switch port.
e [drop]: this action will be used to drop the packet.

Step 3. Now we will define the behavior of the action. Insert the code below
inside the Mylngress control block.

action forward (egressSpec t port) {
standard metadata.egress spec = port;

}

! ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLOREF ingress.p4 X

1 JRERRE R e s o oo o o o o sk o ok o T P e
= Eiumnd 2 EEEREARR R AR INGRESS PROCESSING | xxsx P T
‘ ERE e e S P o g /
eparser.p

4
5 control MyIngress(inout headers hdr,
6 inout metadata meta,
7 inout standard metadata t standard metadata) {
-

)

action forward (egressSpec_t port) {
standard metadata.egress spec = port;

11 }

13

Figure 12. Defining the action.

The action accepts as parameters the port number (egressSpec t port]) to be
used by the switch to forward the packet. Note that egressspec t]is just a typedef that
corresponds to pit<9>] It is defined in the headers.p4 file.

The[standard metadatalis an instance of the [standard metadata t]struct provided by
the V1Model. This struct contains intrinsic metadata that are useful in packet processing
and in more advanced features. For example, to determine the port on which a packet
arrives, we can use the [ingress port]field in the [standard metadatal. If we want to

specify the port to which the packet must be sent to, we need to use the
field of the [standard metadatal.

Now that we know what [standard metadatd]is, the egress port (which will be passed

through the control plane) is specified by field (i.e., the port to which the
packet must be sent to) of the [standard metadatal.

Page 10



Lab 5: Introduction to Match-action Tables

In summary, when the forward action is executed, the packet will be sent out of the port
number specified as parameter.

Step 4. Now we will define the drop action. Insert the code below inside the Mylngress
control block.

action drop () {
mark to drop(standard metadata);

}

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X

4
oS 5 control MyIngress(inout headers hdr,
BEREEL 6 inout metadata meta,
ngress.p4 7 inout standard metadata t standard metadata) {
ab5.mn 8
parser.p4 Bl action forward (egressSpec_t port) {

10 standard metadata.egress_spec = port;

11 }

12

13 action drop() {

14 mark to drop(standard metadata);

15 }

16

17

18

Figure 13. Defining the action.

The action invokes a primitive action mark to drop ()] that modifies the
[standard metadata.egress sped to an implementation-specific special value that
causes the packet to be dropped.

Step 5. Now we will define the table named [forwarding]. Write the following piece of
code inside the body of the Mylngress control block.

table forwarding {

}

Page 11



Lab 5: Introduction to Match-action Tables

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X

deparser.p4

egress.p4

ingress.p4

1
2
3
4
5
headers.p4 6
7
ab5.mn 8

9

parser.p4

sxxksannnarsss TNGRESS PROCESSING *rorsssrrxtrrens

o oo o o o o o o ot o o o o o K o o S o o o o R o S R R /

control MyIngress(inout headers hdr,

by

inout metadata meta,
inout standard metadata t standard metadata) {

action forward (egressSpec t port) {
standard metadata.egress spec = port;

}

action drop() {
mark_to drop(standard metadata);

}

table forwarding {

}
I

Figure 14. Declaring the table.

Tables require keys and actions. In the next step we will define a key.

Step 6. Add the following code inside the forwarding table.

key = {

hdr.ipv4.dstAddr:exact;

}

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X
v LABS p4
basic.p4 B
checksum.p4 5 control MyIngress(inout headers hdr,
deparser.pa 6 %nout metadata meta,

7 inout standard metadata t standard metadata) {
egress.p4 8 -
headers.pd 9 action forward (egressSpec t port) {
ingress.p4 10 standard metadata.egress spec = port;
lab5.mn p & }
parser.p4 12

13 action drop() {

14 mark_to drop(standard metadata);
15 }

16

17 table forwarding {

18 key = {

19 hdr.ipv4.dstAddr: exact;
20 }

21 }

22

23 |}

24

Figure 15. Specifying the key and the match type.

The inserted code specifies that the destination IPv4 address of a packet
(hdr.ipv4.dstAddr]) will be used as a key in the table. Also, the match type is

Page 12



Lab 5: Introduction to Match-action Tables

denoting that the value of the destination IP address will be matched as is against a value
specified later in the control plane.

Step 7. Add the following code inside the forwarding table to list the possible actions that
will be used in this table.

actions = {
forward;
drop;

ingress.p4 - lab5s - Visual Studio Code

File Edit Selection View Go Run Terminal Help
EXPLORER ingress.p4 X

9 action forward (egressSpec t port) {
10 standard metadata.egress spec = port;
11 }

12

13 action drop() {

14 mark to drop(standard metadata);
15 }

16

17 table forwarding {

18 key = {

19 hdr.ipv4.dstAddr: exact;

20 }

21 actions = {

22 forward;

23 drop;

24 }

25 }

26

27 }

28

Figure 16. Adding the actions to the table.

The code above defines the possible actions.

Step 8. Add the following code inside the forwarding table. The keyword specifies
the maximum number of entries that can be inserted into this table from the control plane.
The [default action keyword specifies which default action to be invoked whenever
there is a miss.

size = 1024;
default action = drop();

Page 13



Lab 5: Introduction to Match-action Tables

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X
v LABS gress.p4
basic.p4 10 standard metadata.egress Spec = portg;
checksum.pd n )
12
LRI 13 action drop() {
egress.pd4 14 mark to drop(standard metadata);
headers.p4 15 } o -
ingress.p4 16
ab5.mn 17 table forwarding {
parser.p4 18 heyiz:d
19 hdr.ipv4.dstAddr: exact;
20 }
21 actions = {
22 forward;
23 drop;
24 }
25 size = 1024;
26 default_action = drop();
27 }
28
29 }
30

Figure 17. Specifying the size and default action of the [forwarding]table.

The code above denotes that a maximum of 1024 rules can be inserted into the table, and
the default action to take whenever we have a miss is the action.

Step 9. Add the following code inside the Myingress block. The apply block defines the
sequential flow of packet processing. It is required in every control block, otherwise the
program will not compile. It describes in order, the sequence of tables to be invoked,
among other packet processing instructions.

apply {
if (hdr.ipv4.isvValid()) {
forwarding.apply () ;
}else{
drop () ;
}

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X
v LABS ress.pd
A 10
(jfw'rl 17 table forwarding {
checksum.p4d 18 key = {

dep

ser.p4 19 hdr.ipv4.dstAddr: exact;

eqgr 20 }
headers.p4 21 actions = {
ingress.p4 22 forward;
ab5.mn 2‘3‘ ) drOp;
parEeLps 25 size = 1024;
26 default action = drop();
27 }
28 apply {
29 if(hdr.ipv4.isvalid()){
30 forwarding.apply();
31 }else{
32 drop();
33 }
34 }
35 }
36

Figure 18. Defining the block.

Page 14



Lab 5: Introduction to Match-action Tables

In the code above, we are calling the table forwarding (forwarding.apply ()]) only if the
IPv4 header is valid (if (hdr.ipv4.isvalid()]), otherwise the packet is dropped. The
validity of the header is set if the parser successfully parsed said header (see parser.p4 for
a recap on the parser details). Note that if we received an IPv6 packet, the if-statement
that checks for the validity of the IPv4 header will evaluate to false, and the forwarding
table won’t be applied.

Step 10. Save the changes to the file by pressing[ctrl + s

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X
+ LABS gress.pd
DasiC.json o
. 17 table forwarding {
18 key = {
basic.pai 19 hdr.ipv4.dstAddr: exact;
checksum.p4 20 }
deparser.pd Z1 actions = {
22 forward;
23 drop;
24 }
25 size = 1024;
ab5.mn 26 default_action = drop();
parser.p4 27 ¥
28 apply {
29 if(hdr.ipv4.isvalid(}){
30 forwarding.apply();
31 }else{
32 drop();
33 }
34 }
35 }
36
PROBLEMS UTPUT TERMINAL )EBUG CONSOLE
admin@lubuntu-vm:~/P4_Labs/lab5%
admin@Llubuntu-vm:~/P4 Labs/lab5%

Figure 19. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password|.

push to switch basic.json sl

Page 15



Lab 5: Introduction to Match-action Tables

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.pd X
« LABS gress.p4
10
ot 17 table forwarding {
basic.p4 18 key = {
basic.p4di 19 hdr.ipv4.dstAddr: exact;
checksum.p4 20 +
deparser.p4 21 actions = {
egress.pd 22 forward;
headers.p4 23 drop;
h 5 24 }
SR 25 size = 1024;
ab3.mn 26 default action = drop();
parser.p4 27 }
28 apply {
29 if(hdr.ipv4.isvalid()){
30 forwarding.apply();
31 telse{
32 drop();
33 }
34 }
35 )}
36
PROBLEMS  OUTPUT  TERMINAL  DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab5% p4c basic.p4

admin@lubuntu-vm:~/P4_Labs/lab5$] push_to switch basic.json s1f
[sudo] password for admin:
admin@lubuntu-vm:~/P4_Labs/lab5$ []

Figure 20. Pushing the basic.json file to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

gterminal - 2 windows B MiniEdit basic.p4 - ...Studio Code

Figure 21. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

- MiniEdit

File Edit Run Help

R
== |

h1 Docker Options h2

Terminal

Figure 22. Starting the terminal on the switch.

Page 16



Lab 5: Introduction to Match-action Tables
Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command [1s] on the terminal of the switch s1 that was opened in the
previous step.

1s

root@s1l: /behavioral-model

1avioral -model#|1s

1avioral-mod

Figure 23. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

5 Configuring switch s1

5.1 Mapping P4 program’s ports
Step 1. Issue the command on the terminal of the switch s1.

ifconfig

Page 17



Lab 5: Introduction to Match-action Tables

root@sl: /behavioral-model

root@sl:/behavioral-model#|ifconfig
Link encap:Ethernet HWaddr 02:42:ac:11:00:02
inet addr:172.17.0.2 Bcast:172.17.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:31 errors:0 dropped:® overruns:0 frame:0
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen:©
RX bytes:3619 (3.6 KB) TX bytes:0 (0.0 B)

Link encap:Local Loopback
inet addr:127.0.0.1 :
UP LOOPBACK RUNNING MTU: 36 Metric:1

RX packets:22 errors:0 dropped:© overruns:0 frame:0
TX packets:22 errors:0 dropped:® overruns:0 carrier:0
collisions:0® txqueuelen:1000

RX bytes:12136 (12.1 KB) TX bytes:12136 (12.1 KB)

Link encap:Ethernet HWaddr 62:33:6a:a4:6f:fb
UP BROADCAST RUNNING MULTICAST MTU:1500
RX packets:8

collisions:® txqueuelen:1000
RX bytes: 6 (636 TX bytes:280 (280.0 B)

Link encap:Ethernet Nad fe:4d:6e:ba:d8:c

UP BROADCAST RUNNING MULTICAST MTU:1500

RX packets:7 errors:0 dropped:0 o

TX packets:4 errors:0 dropped:® overruns:® carrier:
collisions:® txqueuelen:16000

RX bytes:550 (550.0 B) TX bytes:280 (280.0 B)

root@sl:/behavioral-model# l

Figure 24. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-ethO and s1-ethl. The interface s1-ethO
on the switch s1 connects host hl. The interface s1-ethl on the switch s1 connects host
h2.

Step 2. Start the switch daemon by typing the following command.

simple switch -i 0@sl-ethO -i 1@sl-ethl --nanolog ipc:///tmp/bm-log.ipc
basic.json &

root@sl: /behavioral-model - 00X

--nanolog

port @
port 1

Figure 25. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The option is used to instruct the switch daemon that we want to see the
logs of the switch.

Page 18



Lab 5: Introduction to Match-action Tables

5.2 Loading the rules to the switch

Step 1. In switch sl terminal, press Enter to return the CLI.

root@s1l: /behavioral-model - 2 X

root@sl:/behavioral-model# simple switch -i 0@sl-eth® -i 1@sl-ethl --nanolog
ipc:///tmp/bm-log.ipc basic.]j

[1] 34

root@sl:/behavioral-model# Calling target program-options parser

Adding interface sl-eth® as port ©

Adding interface sl-ethl as port 1

son &

root@sl:/behavioral-model# [}

Figure 26. Returning to switch s1 CLI.
Step 2. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab5/rules.cmd

root@s1l: /behavioral-model

root@sl:/behavioral-model#|simple switch CLI < ~/lab5/rules.cmd
Obtaining JSON from switch...

Done

Control utility for runtime P4 table manipulation _— ___
RuntimeCmd: Adding entry to exact match tableﬁMyIngress.forwardlng
match key: EXACT-0a:00:00:02

laction: MyIngress.forward|

Iruntime data: 00:01

Entry has been added with handle 0 I
RuntimeCmd: Adding entry to exact match table§My1nqress,forward1nq
match key: EXACT-0a:00:00:01 I
jaction: MyIngress.forward

[runtime data: 00:00 |

Entry has been added with handle 1

RuntimeCmd:

root@sl:/behavioral-model# l

Figure 27. Populating the forwarding table into switch s1.

The script above pushes the rules to the switch daemon. We can see that we added two
entries to the table. The key of the first entry is 10.0.0.2 (which translates to
0a:00:00:02 in hexadecimal as shown in the figure above, next to match key), its action is
forward, and its action data is [00:01], which specifies port 1. Similarly, the key of the
second entry is 10.0.0.1 (which translates to 0a:00:00:01 in hexadecimal as shown in the
figure above, next to match key), its action is forward, and its action data is[00: 00, which
specifies port 0.

6 Testing and verifying the P4 program

Step 1. Type the following command to display the switch logs.

nanomsg client.py

Page 19



Lab 5: Introduction to Match-action Tables

root@sl: /behavioral-model

ehavioral-model# |nanomsg client.py
not provi , using 1ipc:///tm m-log.ipc (obtained from switch)

g JSON from switch...

Figure 28. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command the command below so that, the host
starts listening for packets.

./recv.py
"Host: h2"

ilubuntu-vm: /home/admin# |. /recv.py
g on h2-eth®o

Figure 29. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command.

./send.py 10.0.0.2 HelloWorld

"Host: h1"

root@lubuntu-vm: /home/admin# |. /send.py 10.0.0.2 Helloworld
sending on interface hl-eth® to 10.0.0.2
###[ Ethernet ]###
dst S e e B e
Src 00:00:00:00:00:01
type = IPv4
### IP ###
version = 4
ihl 5
tos
len 50
id o
flags
frag 0
ttl 64
proto tcp
chksum 0x66C3
src 10.0.0.1
dst = 10.0.0.2
\options \

Figure 30. Sending a test packet from host h1 to host h2.

Step 4. Inspect the logs on switch s1 terminal.

Page 20



Lab 5: Introduction to Match-action Tables

root@s1l: /behavioral-model

root@sl:/behavioral-model# nanomsg client.py

'--socket' not provided, using ipc:///tmp/bm-log.ipc (obtained from switch)

Obtaining JSON from switch...

Done — —

"IN, port in: (

XSER T P - parser)
PARSER EXTRACT, header id: (ethernet)
PARSER EXTRACT, header id:

type: PARSER DONE, parser id: 0 (|

PIPELINE START, pipeline_

ye: PACKET

DONE, pipeline 1d: O (ingress
PIPELINE START, pipeline id: 1 (egress)
PIPELINE DONE, pipeline id: 1 (egress)
DEPARSER START, deparser id: 0 (deparser)
CHECKSUM UPDATE, cksum id: © (cksum)
DEPARSER EMIT, header id: 2 (ethernet)
DEPARSER EMIT, header id: 3 (ipv4)

Figure 31. Inspecting the logs in switch s1.

Note how the parser parsed the IPv4 header since the packet is IPv4. Also, we can see
that the condition evaluated to True (the condition here refers to
[(hdr.ipv4.isvalid ()] in the P4 program). Consequently, the table forwarding was
applied, and because we have a hit on the destination IP address (i.e., 10.0.0.2, inserted
through the script), the packet was forwarded to host h2.

Step 5. Verify that the packet was received on host h2.

Step 6. On host hl’s terminal, type the following command to send an IPv6 packet to host
h2.

./send ipv6.py bbbb::1 HelloWorld

Page 21



Lab 5: Introduction to Match-action Tables

"Host: h1"

root@lubuntu-vm: /home/admin# |./send ipv6.py bbbb::1 Helloworld

bbbb:

sendi

### |
dst

Src

2 |
ng on interface hl-eth® to bbbb::1
Ethernet ]##

= Tttt 11T

= 00:00:00:00:00:01

type = IPv6
### [

Step 7.

IPV6 |###
version =6
= 0
0
= 20
TCP
= 64
aaaa::1
= bbbb::1

= 57137
dport = 1234

Figure 32. Sending an IPv6 test packet from host h1 to host h2.

Inspect the logs on switch s1 terminal. The arrow indicates where the logs of the

new packet starts.

root@s1l: /behavioral-model

PIPELINE START, pipeline id: 0 (ingress)

CONDITION EVAL, condition id: © (node 2), result: True
TABLE HIT, table id: © (MyIngress.forwarding), entry hdl: ©
ACTION EXECUTE, action id: © (MyIngress.forward)
PIPELINE DONE, pipeline id: © (ingress)

PIPELINE START, pipeline id: 1 ( S

PIPELINE DONE, pipeline id:

DEPARSER START, deparser id:

CHECKSUM UPDATE, cksum id: © (ck

DEPARSER EMIT, header id: 2

DEPARSER EMIT, header id: 3 (ipv4)

DEPARSER DONE, deparser id: 0 (deparser)
PACKET OUT, port out: 1
PACKET IN, s

Figure 33. Inspecting the logs in switch s1.

Note how the parser now did not parse IPv4 since the packet is IPv6. Also, we can see that
the condition evaluated to False (the condition here refersto[if (hdr.ipv4.isvalid())]
in the P4 program) and the packet is dropped. Consequently, the table was not applied,

and the packet was not forwarded to host h2.

This concludes lab 5. Stop the emulation and then exit out of MiniEdit.



Lab 5: Introduction to Match-action Tables

References
1. “p4c core.p4d”. [Online]. Available:

https://github.com/p4lang/p4c/blob/main/p4include/core.p4.
2. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.

Page 23



A

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 6: Introduction to Match-action Tables (Part 2)

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Lab 6: Introduction to Match-action Tables (Part 2)

Contents
OVEIVIBW ...ttt ettt ettt e e e et et e e e e et e e e e e e et e e e e e e e e eeeeeees 3
(0] o 1101 4 V7= PUPPP 3
(1Y Y=Y T =P PP P UPPPRUPPPPR 3
(1Y o o - o [ g T- T o IO PP UPPPRUPPRPR 3
R 101 1 o Yo [0t d o T o IO PP PUPPPRUPTPPR 3
1.1 Longest prefix match (LPM) ....oo it 3
P IF- | o I o] o Yo Lo} -1V 20U PP PUPPPRTPPR 5
2.1 Starting @NA NOSES .oeveiiiiieeeee e e 7
3 Defining a table with LPM mMatChing........ccoocuiieiiiiiei et 8
3.1 Loadingthe programming environNmMeNnt......c..ccccciirieieriie e 8
3.2 Programming the ingress block........ccuvirieeiii e, 8
4 Loading the P4 Program... ... ccccciiiieeee et e e e e e e e e s et rer e e e e e e e e s nnneeees 13
4.1 Compiling and loading the P4 program to switch sl .......cccccceiiiiiciiiiieeneeeienes 13
4.2  Verifying the configuration ... 15
5 Configuring SWItCh SL....coiiiiiiiee e et e e e e naee s 15
5.1  Mapping P4 program’s POItS........ecccciieeeieiieeeeeiiieeeeeeireeeeesteeeessnneeesenssseessennnns 16
5.2  Loading the rulesto the switCh.......ccccmiriiei i, 17
6  Testing and verifying the P4 programi........cccccceeeeieciiiiieeeee e ee e e e e eesevrreneee e 18
REFEIENCES ...ttt et e e sttt e e s st e e s s abbee e e sareeeesennreeesanns 21

Page 2



Lab 6: Introduction to Match-action Tables (Part 2)

Overview

This lab describes match-action tables and how to define them in a P4 program. It then
explains the different types of matching that can be performed on keys. The lab further
shows how to track the misses/hits of a table key while a packet is received on the switch.

Objectives

By the end of this lab, students should be able to:
Understand what match-action tables are used for.
Describe the basic syntax of a match-action table.

Implement a simple table in a P4.
Trace a table’s misses/hits when a packet enters to the switch.

PwnNPE

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap
This lab is organized as follows:

Section 1: Introduction.

Section 2: Lab topology.

Section 3: Defining a table with LPM matching.
Section 4: Loading the P4 program.

Section 5: Configuring switch s1.

Section 6: Testing and verifying the P4 program.

AN A

1 Introduction

1.1 Longest prefix match (LPM)

Page 3



Lab 6: Introduction to Match-action Tables (Part 2)

Table 2 is an example of a match-action table that uses LPM. Assume that the key is
formed with the destination IP address. If an incoming packet has the destination IP
address 172.168.3.5, two entries match. The first entry matches because the first 29 bits
in the entry are the same as the first 29 bits of the destination IP. The second entry also
matches because the first 16 bits in the entry are the same as the first 16 bits of the
destination IP. The LPM algorithm will select 172.168.3.0/29 because of the longest prefix
preference.

Table 2. Match-action table using LPM as the lookup algorithm.

Key Action Action data
172.168.3.0/29 forward port 1,
macAddr=00:00:00:00:00:01
172.168.0.0/16 forward port 2,
macAddr=00:00:00:00:00:02
default drop

Figure 1 shows the ingress control block portion of a P4 program. Two actions are defined,
[drop| and [forward. The [drog| action (lines 5 - 7) invokes the mark to drop| primitive,
causing the packet to be dropped at the end of the ingress processing. The action
(lines 8 - 11) accepts as input (action data) the port and the destination MAC address.
These parameters are inserted by the control plane and updated in the packet during the
ingress processing.

In line 9, the P4 program assigns the new egress port to the standard metadatal egress
port field (i.e., the field that the traffic manager looks at to determine which port the
packet must be sent to). Line 10 assigns the destination MAC address passed as parameter
to the packet's new destination address.

Lines 12-22 implement a table named [ipv4 1pn]. The table is matching against the
destination IP address using the LPM type. The actions associated with the table are
[forward and [drop| The default action is invoked when there is a miss. The maximum
number of entries is defined by the programmer (i.e., 1024 entries, see line 20).

The control block starts executing from the apply statement (see lines 23-27) which
contains the control logic. In this program, the table is activated in case the
incoming packet has a valid IPv4 header.

Page 4



Lab 6: Introduction to Match-action Tables (Part 2)

/J >k 3k >k >k >k %k ok >k kok ok skok sk sk skosk sk sksk sk OINGRESS PROCESSING k sk >k >k sk >k >k >k kk >k Kok 5k kok 5k 5k skok 5k kook ’%1/
control MyIngress(inout headers hdr,

inout metadata meta,

inout standard_metadata_t standard_metadata){

action drop(){
mark_to_drop(standard_metadata);

b

action forward(egressSpec_t port, macAddr_t dstAddr) {
standard_metadata.egressSpec = port;
hdr.ethernet.dstAddr = dstAddr;

W oo NOUVE WNPRE

¥
table ipv4_1pm {
key = {
hdr.ipv4.dstAddr:1pm;
b
actions = {
forward;
drop;
b
size = 1024;
default_action = drop();
b
apply {
if (hdr.ipv4.isValid()){
ipv4_lpm.apply();

Figure 1. Ingress control block portion of a P4 program. The code implements a match-action table
with LPM lookup.

2 Lab topology

Let’s get started by opening a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch.
h1 s1 h3

=~

P
h1-ethO sl-eth0 1&/ sl-eth2 h3-eth0

sl-ethl

/a/a
Wt

[uny
©
©
o
=y

30.0.0.1

h2-etho| N2

N

W =1

20.0.0.1
Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|.
Page 5



Lab 6: Introduction to Match-action Tables (Part 2)

Computern

MiniEdit

Terminal
Figure 3. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the /ab6 folder and search for the topology file called lab6.mn and click on
Open. A new topology will be loaded to MiniEdit.

- MiniEdit

Edit Run Help

New

= m  open - x|
Save

Export Level 2 Script Directory:  /home/admin/P4_Labs/lab6 —| B i
aui 8] o0

[« ¥

File name: |lab6.mn [Open]

Files of type: Mininet Topology (*.mn) —'I Cancel ]

L

Figure 4. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Stop W

Figure 5. Running the emulation.

Page 6



Lab 6: Introduction to Match-action Tables (Part 2)

2.1 Starting end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host hl and
allows the execution of commands on that host.

File Edit Run Help

R

(]

h1 Host Options

R
= — .
g1 h3

Terminal

= =

Figure 6. Opening a terminal on host h1l.

Step 2. Verify the interfaces’ configuration by issuing the following command.

ifconfig

“"Host: h1"

root@lubuntu-vm: /home/admin# |ifconfig
hl-eth®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 0.0.0.0
ether 00:00:00:00:00:01 txqueuelen 1000 (Ethernet)
RX packets © bytes 0 (6.0 B)
RX errors © dropped © overruns © frame 0
TX packets 3 bytes 270 (270.0 B)
TX errors © dropped © overruns © carrier © collisions ©

, LOOPBACK,RUNNING> mtu 65536
netmask 255.0.0.0
prefixlen 128 scopeid 0x10<host>

len 1000 (Local Loopback)

bytes © (0.0 B)
X errors © dropped © overruns © frame ©

packets © bytes 0 (0.0 B)

X errors © dropped © overruns © carrier @ collisions 0

root@lubuntu-vm: /home/admin# I

Figure 7. Verifying the configuration host h1 interfaces.

Page 7



Lab 6: Introduction to Match-action Tables (Part 2)

3 Defining a table with LPM matching

This section demonstrates how to implement a simple table in P4 that uses LPM matching
on the packet’s destination IP address. When there is a match, the switch forwards the
packet from a certain port. Otherwise, the switch drops the packet.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

CompuLern

MiniEdit

Terminal

Figure 8. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4 Labs/labé6

admin@lubuntu-vm: ~
File Actions Edit View Help
admin@lubuntu-vm: ~ (]
admin@lubuntu-vm: ~$

Figure 9. Launching the editor and opening the lab6 directory.

3.2 Programming the ingress block

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Page 8



Lab 6: Introduction to Match-action Tables (Part 2)

ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X

2
3 /'Ovi-rvk-v‘-vttv--v-O-:v'V"-Vv-O'VVVV'O'vv-t'v-n'xv-vat(--v-vvwx-bvv-vv-v
4 vewexoxooosk TNGRESS PROCESSING  eokimkmnkmkikinks
5 e *¥ )
6
7 - control MyIngress(inout headers hdr,
8 inout metadata meta,

ab6.mn 9 inout standard metadata t standard metadata) {

parser.p4 10
11}
12

Figure 10. Opening the ingress processing block.

We can see that the ingress.p4 declares a control block named MyIngress]. Inside the
block, we will define a table that is used to match on the destination IP
address and forward/drop the packet. There are two actions that will be invoked in this
table: [forward and [drop]

e [forward]: This action defines a set of basic operations on a packet header. Such
operations are defined as follows: 1) Updating the egress port so the packet is
forwarded to its destination through the correct port. 2) Updating the source MAC
address with the packet’s previous destination MAC address. 3) Changing the
destination MAC address of the packet with the one corresponding to the next
hop. 4) Decrementing the time-to-live (TTL) field in the IPv4 header.

® [drop]: this action will be used to drop the packet.

Step 2. The following code fragment describes the behavior of the action. Insert
the code below inside the Myingress control block.

action forward(macAddr t dstAddr, egressSpec t port) {
standard metadata.egress spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4d.ttl = hdr.ipvéd.ttl - 1;

ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X
v LAB6 )
- 1 2
basic.p4 “
3 J AR R AR A AR AR KRR X T TItittti R R R R O
checksum.p4
a4 sxrsdrnsnrrst T NGRESS PROGCESSTING  *esssksirsinttiris
deparser.p4 5 KRR KRR R e
s.pd 6
headers.p4 7 control MyIngress(inout headers hdr,

[

inout metadata meta,

e 9 inout standard metadata t standard metadata) {
ab6.mn 10
parser.p4 11 action forward(macAddr t dstAddr, egressSpec t port){
12 standard metadata.egress spec = port;
13 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
14 hdr.ethernet.dstAddr = dstAddr;
15 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
16 }
17
18}
19

Page 9



Lab 6: Introduction to Match-action Tables (Part 2)

Figure 11. Defining the action.

The action accepts as parameters the next hop’s MAC address (i.e.,
[dstaddr]) and the port number (i.e., [egresssSpec t port]) to be used by the switch to

forward the packet. Note thategresssSpec_t]is just a typedef that corresponds to

and is a typedef that corresponds to pit<48>] These types are defined in the
headers.p4 file.

The[standard metadatalis an instance of the [standard metadata t|struct provided by
the V1Model?. This struct contains intrinsic metadata used in packet processing and in
more advanced features. For example, to determine the port on which a packet arrives,
we can use the [ingress port] field in the [standard metadatd (i.e.,
[standard metadata.ingress port]). Similarly, the egress portegress spedfield of the
[standard metadatadefines the egress port. Line 12 shows how to assign the egress port
to forward an incoming packet to its destination.

To modify header fields inside the packet, we refer to the field name based on where it
exists inside the headers. Recall that the names of the headers and the fields are defined
by the programmer. The file headers.p4 defines the program’s headers. Line 13 shows
how we are assigning the destination MAC address of the packet (i.e.,
lhdr.ethernet.dstAddr]) to be the new source MAC of the packet (i.e.,
lhdr.ethernet.srcAddr]). Line 14 shows how we are assigning the destination MAC
address which is provided as a parameter (assigned later in the control plane) to be the
new destination MAC of the packet.

It is possible in P4 to perform basic arithmetic operations on header fields and other
variables. In line 15, we are decrementing the TTL value of the header field.

Step 3. Define the drop action by appending the following code into the Mylngress control
block.

action drop() {
mark to drop (standard metadata);

}

Page 10



Lab 6: Introduction to Match-action Tables (Part 2)

ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X
v LAB6 ngress.p4
basic.p4 3 Y e et
fh@[‘p";l,ﬁ?]).l 4 R o ok ok ok ok ok INGRESS PP\OCESSING ok ok ok ok Rk Rk Rk
5 t4x¢-¢$~0'0v«00¢p-‘,-"~0,-.0ttw',:-o.vxﬁ'»,a.'¢v¢4..0.';¢;'..Q-‘;t'-.iyﬁ.v.nvv-0..-d~v1.n/
6
headers.p4 7 control MyIngress(inout headers hdr,
ingress.p4 8 inout metadata meta,
ab&mn 9 inout standard metadata t standard_metadata) {
parser.p4 10
11 action forward(macAddr t dstAddr, egressSpec_t port){
12 standard metadata.egress_spec = port;
13 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
14 hdr.ethernet.dstAddr = dstAddr;
15 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
16 }
17
18 action drop(){
19 mark to drop(standard metadata);
20 }
21
22}
23 |

Figure 12. Defining the action.
Step 4. Define an exact match table by appending the following piece of code.

table ipvé4 exact {
key = {
hdr.ipv4.dstAddr: exact;

}

actions = {
forward;
drop;

}

size = 1024;
default action = drop();

ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

ingress.p4 X

5S.p4

145 HUT L SUHTH T L. UD LAUUL  — UdLwAuul,
Pe 15 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
um.pd 16 }
deparser.p4 17
egress.p4 18 action drop(){
headets o 19 mark to drop(standard metadata);
i 20 }
ingress.p4 21
lab6.mn 22 table ipv4 exact {
parser.p4 23 key = {
24 hdr.ipv4.dstAddr: exact;
25 }
26 actions = {
27 forward;
28 drop;
29 }
30 size = 1024;
31 default _action = drop();
32 }
33
34 }
35

Figure 13. Defining the table implementing exact match lookup.

Page 11



Lab 6: Introduction to Match-action Tables (Part 2)

Step 5. Now we will define a table that performs a LPM on the destination IP address of
the packet. The table will be invoking the forward and the drop actions, and hence, those
actions will be listed inside the table definition.

table ipv4 lpm {
key = {
hdr.ipv4.dstAddr: lpm;
}
actions = {
forward;
drop;
}
size = 1024;
default action = drop():;

] ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help
EXPLORER ingress.p4 X

ss.04

forward;
drop;
}
size = 1024;
default_action = drop();

WwWwwwwwNnNNN
UL WNRMWOWON

headers.p4 }
ingress.p4
b6 rn table ipv4 1lpm {
key = {
Parser 36 hdr.ipv4.dstAddr: lpm;
37 }
38 actions = {
39 forward;
40 drop;
41 }
42 size = 1024;
43 default_action = drop();
44 }
45
46 )

Figure 14. Defining the table implementing LPM lookup.

Step 6. Add the following code at the end of the Mylngress block. The block defines
the sequential flow of packet processing. It is required in every control block, otherwise
the program will not compile. It describes the sequence of tables to be invoked, in
addition to other packet processing instructions.

apply {
if (hdr.ipv4.isValid()) {
if (ipv4 exact.apply () .miss) {
ipv4 lpm.apply();
}

Page 12



Lab 6: Introduction to Match-action Tables (Part 2)

ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X

34 table ipv4 1lpm {

35 key = {
36 hdr.ipv4.dstAddr: 1lpm;
ss 37 }
headers.p4 38 actions = {
ngress.p4 39 forward;
ab6.mn 49 drop;
41 }
paisscpa 42 size = 1024;
43 default action = drop();
44 }
45
46 apply {
47 if(hdr.ipv4.isvalid()){
48 if(ipv4 exact.apply().miss){
49 ipv4 lpm.apply();
50 }
51 }
52 }
53
54 }

Figure 15. Defining the block.

The logic of the code above is as follows: if the packet has an IPv4 header, apply the
table which performs an exact match lookup on the destination IP address.
If there is no hit (i.e., the table does not contain a rule that corresponds to this IPv4
address, denoted by the miss keyword), apply the table, which matches the
destination IP address of the packet against a network address.

Step 7. Save the changes to the file by pressing[ctrl + s

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the VS Code to compile
the program.

pé4c basic.pd

Page 13



Lab 6: Introduction to Match-action Tables (Part 2)

ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER

v LAB6
basic.json
basic.p4
basic.p4i
checksum.p4
deparser.p4
egress.p4
headers.p4
ingress.p4
lab6.mn

parser.p4

ingress.p4 X

ngress.p4
35 key = {
36 hdr.ipv4.dstAddr: lpm;
37 }
38 actions = {
39 forward;
40 drop;
41 }
42 size = 1024;
43 default action = drop();
44 }
45
46 apply {
47 if(hdr.ipv4.isvalid()){
48 if(ipv4_exact.apply().miss){
49 ipv4 lpm.apply();
50 }
51 }
52 }
53
54 }
55

PROBLEMS OUTPUT  .TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab6$
L

admin@lubuntu-vm:~/P4_Labs/1ab6$

Figure 16. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password [password].

push to switch basic.json sl

ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER

~ LAB6
basic.json
basic.pa
basic.p4i
checksum.p4
deparser.p4
egress.p4
headers.p4
ingress.p4
lab6.mn
parser.pd

ingress.p4 x

ingress.p4

o R ————————
35 key = {

36 hdr.ipv4.dstAddr: lpm;

37 }

38 actions = {

39 forward;

40 drop;

41 }

42 size = 1824;

43 default_action = drop();

a4 }

45

46 apply {

47 if(hdr.ipv4.isValid()){

48 if(ipv4_exact.apply().miss){
a9 ipv4 lpm.apply();

50 1

PROBLEMS QUTPUT TERMINAL DEB LE

admin@lubuntu-vm:~/P4_Labs/lab6% p4c basic.p4

admin@lubuntu-vm:~/P4_Labs/lab6%[push to switch basic.json sl
[sudo] password for admin:
admin@lubuntu-vm:~/P4_Labs/lab6s [l

Figure 17. Pushing the basic.json file to switch s1.

Page 14



Lab 6: Introduction to Match-action Tables (Part 2)

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

= gterminal - 2 windows B MiniEdit basic.p4 - ...Studio Code

Figure 18. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

File Edit Run Help

) —

h1 Docker Options h3

h2

Figure 19. Opening switch s1 terminal.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the following command on switch s1 terminal to inspect the content of the
current folder.

1s

root@sl: /behavioral-model

1avioral -model#| 1s

1avioral -model# I

Figure 20. Displaying the content of the current directory in the switch s1.
We can see that the switch contains the basic.json file that was pushed previously after

compiling the P4 program.

5 Configuring switch s1

Page 15



Lab 6: Introduction to Match-action Tables (Part 2)

5.1 Mapping P4 program’s ports
Step 1. Issue the following command on switch s1.

ifconfig

root@s1: /behavioral-model

51:/behavioral-model#|ifconfig
Link encap:Ethernet HWaddr 02:42:ac:11:00:02
inet addr:172.17.0.2 Bcast:172.17.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:27 errors:0 dropped:0 overruns:0 fre :
TX packets:0 errors:0 dropped:© overruns:0 carrier:0
collisions:® txqueuelen:0O
RX bytes:3265 (3.2 KB) TX bytes:0 (0.0 B)

Link encap:Loca

inet addr:127.0.0.1 Mask:

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:0 errors:® dropped:® overruns:® frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0® txqueuelen:1000

RX bytes:® (0.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr 0Oe:7e:48:32:53:a3

UP BROADCAST RUNNING MULTICAS MTU:1500 Metric:1
RX packets:4 errors:0 dropped:® overruns:0 fra 0
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
collisions:0® txqueuelen:1000

RX bytes:356 (356.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr 9e:¢5:42:78:07:16

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3 errors:0 dropped:® overruns:® frame:0
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:270 (270.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr 26:15:f3:b2:bl:d4

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3 errors:0 dropped:® overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:270 (270.0 B) TX bytes:0 (0.0 B)

Figure 21. Displaying switch s1 interfaces.

The output displays switch s1 interfaces (i.e., s1-eth0, s1-eth1 and s1-eth2). The interface
s1-ethO on the switch s1 connects to the host hl. The interface s1-ethl on the switch sl
connects to the host h2 and s2-eth2 is connected to host h3.

Step 2. Start the switch daemon and map the logical interfaces (i.e., ports) to the switch’s

interfaces by issuing the following command. The parameter is used to
instruct the switch daemon to provide the switch’s logs.

Page 16



Lab 6: Introduction to Match-action Tables (Part 2)

simple switch -i O@sl-eth0O -i 1@sl-ethl -i 2@sl-eth2 --nanolog ipc:///tmp/bm-
log.ipc Dbasic.json &

root@s1: /behavioral-model - O X

root@sl:/behavioral-model#|simple switch -i 0@sl-eth® -i 1@sl-ethl -i 2@sl-eth2 --nanolog
ipc:///tmp/bm-log.1pC basic.json &
[1] 39

root@sl:/behavioral-model# Calling target program-options parser
Adding interface sl-eth® as port ©
Adding interface sl-ethl as port 1
Adding interface sl-eth2 as port 2

Figure 22. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

root@s1l: /behavioral-model

root@sl:/behavioral-model# simple switch -i ©
h2 --nanolog ipc:///tmp/bm-log.ipc basic.json&

[1] 34

root@sl:/behavioral-model# Calling target program-options parser
Adding interface sl-eth® as port

Adding interface sl-ethl as port

Adding interface sl-eth2 as port

root@sl:/behavioral-model# l

Figure 23. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab6/rules.cmd

root@s1l: /behavioral-model

root@sl:/behavioral-model# |[simple switch CLI < ~/lab6/rules.cmd
Obtaining JSON from switch...

Done

Control utility for runtime P4 table manipulation

RuntimeCmd: Adding entry to lpm match table MyIngress.ipv4 1pm
match key: LPM-0a:00:00:00/8

pction: MyIn ss.fo rd

Funtime data: 00:00 00:00:01 ©00:00

Entry has be idded with handle ©

RuntimeCn try to lpm match table MyIngress.ipv4 1lpm

LPM-14:00:00:00/8

0:00:00:00:02 00:01
' added h handle 1
Adding en / act match table MyIngress.ipv4 exact
:00:00:01
action: M) . s.fo rd
runtime data: : 0:03 00:02
Entry has been added with handle ©
RuntimeCmd:
root@sl:/behavioral-model# [

Figure 24. Populating the forwarding table into switch s1.

Page 17



Lab 6: Introduction to Match-action Tables (Part 2)

The scr
entries

6

Step 1.

ipt above pushes the rules to the switch daemon. We can see that we added three

tothe[ipv4 exact]and[ipv4 1pntables.

The key of the first entry is 10.0.0.0/8 (which translates to 0a:00:00:00 in
hexadecimal as shown in the figure above, next to match key) and its action is
forward. This entry is added to the table. The action parameters or
runtime data are 00:00:00:00:00:01 for the destination MAC (i.e., host h1’s MAC
address) and 0 for the output port (i.e., the port facing host h1).

The key of the second entry is 20.0.0.0/8 (which translates to 14:00:00:00 in
hexadecimal as shown in the figure above, next to match key) and its action is
forward. This entry is added to the table. The action parameter or
runtime data are 00:00:00:00:00:02 for the destination MAC (i.e., host h2’s MAC
address) and 1 for the output port (i.e., the port facing host h2).

The key of the third entry is 30.0.0.1 (which translates to 1e:00:00:01 in
hexadecimal as shown in the figure above, next to match key) and its action is
forward. This entry is added to the table. The action values are
00:00:00:00:00:03 for the destination MAC (i.e., host h3’s MAC address) and 2 for
the output port (i.e., the port facing host h3).

Testing and verifying the P4 program

Type the following command to display the switch logs.

nanomsg_ client.py

root@s
'--s0cC
Obtain
Done

Step 2.
starts li

./recv.

root@

sniff

Step 3.

root@s1: /behavioral-model

1:/behavioral-model#|nanomsg client.py
ket' not provided, using 1ipc:///tmp/bm-log.ipc (obtained from switch)
ing JSON from switch...

Figure 25. Displaying switch s1 logs.

On host h2’s terminal, type the command the command below so that the host
stening for packets.

Py
"Host: h2"

ibuntu-vm: /home/admin# |. /recv.py
1g on h2-ethe

Figure 26. Listening for incoming packets in host h2.

On host h1’s terminal, type the following command to send a message to host h2.

The output will show the Ethernet, IP and TCP header fields and their values. The payload

isHellowWorld.

Page 18



Lab 6: Introduction to Match-action Tables (Part 2)

./send.py 20.0.0.1 HelloWorld

"Host: h1"

root@lubuntu-vm: /home/admin# |./send.py 20.0.0.1 HellowWorld
sending on interface hl-eth® to 20.0.0.1
Ethernet |###
i 3 805 5 50 g i 1
00:00:00:00:00
IPv4

S
:01

version
ihl
tos
len

id

flags

frag

ttl

proto

chksum

src

dst

\options

TCP ]
sport
dport

##H#

59046
1234
Figure 27. Sending a test packet from host h1 to host h2.

Step 4. Inspect the logs on switch s1 terminal.

root@s1: /behavioral-model

Obtaining JSON from switch...

PACKET
: PARSER
PARSER
PARSER
: PARSER

IN, port in: ©
START, parser id: @ (parser)
EXTRACT, header id: 2 (ethernet)
EXTRACT, header id: 3 (ipv4)
DONE, parser id: 0 (parser)

: © (ingress)
: |JCONDITION EVAL, condition id: © (node 2), result:
: [TABLE MISS, table id: © (MyIngress.ipv4 exact)
: |JACTION EXECUTE, action id: 2 (MyIngress.drop)
table id: 1 (MyIngress.ipv4 lpm), entry hdl:
 Fidecal: « ngress.forward)
DONE, pipeline id: © (ingress)

True

: ITABLE HIT,
XECUTE, acti

: PIPELINE

PIPELINE
: DEPARSER
: CHECKSUM
: DEPARSER
: DEPARSER
: DEPARSER

START, pipeline id: 1 (egress)
DONE, pipeline id: 1 (egress)
START, deparser id: 0 (deparser)
UPDATE, cksum id: © (cksum)
EMIT, header id: 2 (ethernet)
EMIT, header id: 3 (ipv4)

DONE, deparser id: © (deparser)

: [PACKET_0UT, port out: I}

Figure 28. Inspecting the logs in switch s1.

Results show that there is a miss in the table, but there is a hit on the
[ipv4 lpnjtable. Then, the packet is forwarded through port 1, which is connected to host
h2. This behavior corresponds to the logic described by the block in the ingress
processing.

Page 19



Lab 6: Introduction to Match-action Tables (Part 2)

Step 5. Verify that the packet was received on host h2. Notice that the TTL was
decremented.

Step 6. On host hl’s terminal, type the following command to send a message to host h3.

./send.py 30.0.0.1 HelloWorld

"Host: h1"

root@lubuntu-vm: /home/admin# |. /send.py 30.0.0.1 Helloworld
sending on interface hl-etho to 30.0.0.1
### Ethernet |###
= ffeff:ff:fFf.:Fff:Ff
= 00:00:00:00:00:01

IP |###

version

ihl

tos

len

id

flags

frag

ttl

proto

chksum

i ge

dst

\options

TCP 1###

sport
dport

Figure 29. Sending a test packet from host h1 to host h3.

Step 7. Inspect the logs on switch s1 terminal.

root@s1l: /behavioral-model

DEPARSER DONE, deparser

r id: © (deparser)
PACKET OUT, port out: 1

PACKET IN, port in:

PARSER START, parser id: 0 (parser)

PARSER EXTRACT, 3 d: 2 (ethernet)

PARSER EXTRACT, er id: 3 (ipv4)

PARSER DONE, parser id: © (parser)

PIPELINE START, pipeline id: © (ingress)

CONDITION EVAL, condition id: © (node 2), result: True

TABLE HIT, table id: © (MyIngress.ipv4 exact), entry hdl: ©
ACTION EXECUTE, action id: © (MyIngress.forward)
PIPELINE DONE, pipeline id: ©
"PIPECINE START, pipeline 1d: I (ed
type: PIPELINE DONE, pipeline id: 1 (egr
type: DEPARSER START, deparser id: © (deparser)
type: CHECKSUM UPDATE, cksum id: © (cksum)

DEPARSER EMIT, header id: 2 (ethernet)
DEPARSER EMIT, eader id: 3 (ipv4)
DEPARSER - id: © (deparser)

Figure 30. Inspecting the logs in switch s1.

Page 20



Lab 6: Introduction to Match-action Tables (Part 2)

The figure above shows that there is a hit in the table. Then, the packet is
forwarded through port 2, which is connected to host h3.

This concludes lab 6. Stop the emulation and then exit out of MiniEdit.

References

1. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.

Mininet walkthrough. [Online]. Available: http://Mininet.org.

3. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping
platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

4. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

5. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

N

Page 21



\\//
S
) i

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Exercise 4: Implementing NAT using Match-Action
Tables

Document Version: 01-14-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Exercise 4: Implementing NAT using Match-Action Tables

Contents

R o Y ol Y= o [T T ] A o [ PURR

1.1 Credentials o e e e aaaee s
2 Setting the eNVIFONMENT.......iiii i e e s e e e e s earaeeeenes
T B = 1YY o] (=T PPPUPPPPTPPR



Exercise 4: Implementing NAT using Match-Action Tables

1 Exercise description

In this exercise, you will implement match-action tables that perform IP address
translation. The translation resembles the one performed with Network Address
Translation (NAT).

Consider the figure below. The P4 switch s1 modifies the source IP address of a packet
coming from host h1l. On the other hand, if the packet is coming from host h2, switch s1
modifies the destination IP address.

Source IP Destination IP Source IP  Destination IP
hi 10.0.0.1 172.32.0.10 s1 172.32.0.1 | 172.32.0.10 h2
————————————— > ———mm————————
R h1-ethO s1-eth0 'g‘y sl-ethl h2-eth0 R
o port0 F ort1 °
p
X DI < S N
Source IP Destination IP Source IP Destination IP
10001 |17232010| 120001 | | 172320.10 | 1723201 | 172.32.0.10

Figure 1. Lab topology.

Implement the table [translate address| for this exercise: The key and actions of the
table are as follows:

e Matches on the destination IP of the packet using matching.
e Invokes an action[change source|that modifies the source IP address of a packet

coming from host h1.
e Invokes an action [change destination|that modifies the destination IP address
of a packet coming from host h2.

Implement another table called with the following key and actions.
e Matches on the destination IP using matching.
e Invokes the action to forward a packet.

1.1 Credentials
The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password

Client admin password




Exercise 4: Implementing NAT using Match-Action Tables

2 Setting the environment
Follow the steps below to set the exercise’s environment.

Step 1. Open MiniEdit by double-clicking the shortcut on the desktop. If a password is

required type fpassword|.

Computer.

MiniEdit

Terminal

Figure 2. MiniEdit shortcut.

Step 2. Load the topology located at /home/admin/P4_Exercises/Exercise4/.

MiniEdit

Edit Run Help

New

Save

Export Level 2 Script ] Open -0 X
Quit Directory: I[home,‘admin!P4_Exercises,‘Exercise4I 4‘ @

B topology.mn

[E] [
File name: |topology.mn |gpen|
Files of type: Mininet Topology (*.mn) = | Cancel ‘

Figure 3. Opening exercise’s topology.

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.



Exercise 4: Implementing NAT using Match-Action Tables

Run

Stop ["J

Figure 4. Running the emulation.

Step 4. In the terminal, type the command below. This command launches the Visual
Studio Code and opens the directory where the P4 program for this exercise is located.

code P4 Exercises/Exercised/

admin@lubuntu-vm: ~

File Actions Edit View Help

admin@lubuntu-vm: ~

admin@lubuntu-vm:~5| code P4 Exercises/Exercised/

Figure 5. Opening the working directory.

3 Deliverables

Follow the steps below to complete the exercise.

a) Implement the table [translate address|] with the following actions:
[change source|and[change destination]

b) Implement the table [forwarding].

c) Compile the basic.p4 in the Visual Studio Code. Push the output file of the compiler
to the switch s1.

d) Start the switch daemon, then push the table entries to the switches. The file
rules.cmd is in the directory ~/exercise4/.

e) From host h1, send a packet using the send.py program. Verify which table this packet
is hitting by inspecting the logs of the switch using the tool.

f) Similarly, from host h2 send a packet using the script send.py and verify which table
is the packet hitting.



\\//
S
) i

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 7: Populating and Managing Match-action
Tables at Runtime

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Lab 7: Populating and Managing Match-action Tables at Runtime

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [ o= o T PP UPPPRUPPPPR 3
R 101 1 o Yo U Tt d o T o IO PP PUPPPUPTPPR 3
LiL  RUNE MG e eb st eb b aanannnnnnnnna 3
P IF- | o I o] o Yo Lo} -1V 20U SRR UPRPURTPPR 4
2.1 Starting @Nd NOSES ..uuuiiiiiiiie e 6
3 Navigating the SWItCh’S CLI ....coiiiuiiiiiiiiiee e s e e 7
3.1 Loading the programming enviroNmMeNt........cccoecuiieeiiiiieeeeniiee e 8
3.2 Compiling and loading the P4 program to switch s1 ......ccccoevviiiiviiieeiiniiieee e, 8
3.3 Verifying the configuration .........ccoeiiiiiieciie e 10
4 ConfigUring SWILCN SL.....uviiiiiiiiie e e e e s e e e e e 11
4.1  Navigating the SWitCh’s CLI......coiiiiiii i 13
4.2 Displaying ports, tables, and actions.........ccccecvveiiiiiiiee i 14
5 Populating match-action tables using the switch’s CLI .........ccccceveveiiieeiiiiieeeecee. 16
5.1 Displaying the table’s basic information.........c.cccceeeeiiiiii e, 16
5.2 Manipulating a match-action table with exact lookup .......cccccvveeeeiiriicniinnnnn.n. 17
5.3  Manipulating a match-action table with LPM lookup.......ccccovvveieeiiniiciiinennn, 20
REFEIENCES ...ttt et e e sttt e e s st e e s s abbee e e sareeeesennreeesanns 21

Page 2



Lab 7: Populating and Managing Match-action Tables at Runtime
Overview
This lab describes how to populate and manage match-action tables at runtime. It then
explains a tool (simple_switch_CLI) that is used with the software switch (BMv2) to
manage the tables.
Objectives
By the end of this lab, students should be able to:
1. Understand how to populate match-action tables.
2. Describe the basic syntax of the simple_switch_CLI tool.
3. Verify the insertion of rules in the tables.
Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.

2. Section 2: Lab topology.

3. Section 3: Navigating the switch’s CLI.

4. Section 4: Configuring switch s1.

5. Section 5: Populating match-action tables using the switch’s CLI.
1 Introduction

1.1 Runtime
Once a P4 program is compiled into a target-specific configuration, the output is loaded

into the data plane of the device. Then, the behavior of the P4 target can be managed at
runtime by the control plane via data plane Application Programming Interface (APIs).

Page 3



Lab 7: Populating and Managing Match-action Tables at Runtime

Runtime operations include inserting, updating, and deleting entries in P4 tables as well
as controlling other entities of the program such as counters, meters, etc.

Runtime APIs can be divided into program-dependent and program-independent APIs.
Program-dependent APIs comprise functions whose names are derived from the P4
program itself. Thus, any changes to the P4 program would modify the names and the
definitions of the APIs’ functions. Program-independent APIs comprise a set of fixed
functions that are independent of the P4 program. Therefore, changes in the P4 programs
do not affect those APIs.

The control plane that manages the data plane tables and externs can be remote or local
on the device. Remote control planes invoke API calls through Remote Procedure Calls
(RPCs) while relying on asynchronous message frameworks such as Thrift! and gRPC2.
Such frameworks use protocol buffers (protobuf) to define service APl and message, and
HTTP/2.0 and TLS for transport. On the other hand, a local control plane runs on the
Central Processing Unit (CPU) of the device and invokes API calls locally. It is implemented
by the driver of the device.

Figure 1 shows the runtime environment used in this lab series to control the P4 target
(BMv2). The control plane uses the [simple switch CLI|tool to interact with the data
plane. The [simple switch CLI|includes a program-independent CLI and a Thrift client
which connects to the program-independent control server residing on the BMv2 switch.

simple_switch_CLI

Program-independent CLI and

client
A

TCP Socket

(Thrift) Control plane
Data plane

A\ 4
Program-independent control
server

simple_switch (BMv2)

Figure 1. Runtime management of a P4 target (BMv2).

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch.

Page 4



Lab 7: Populating and Managing Match-action Tables at Runtime

h1l sl h3
RS
h1-ethO sl-etho &' sl-eth2 h3-eth0| o
N
sl-ethl
10.0.0.1 30.0.0.1
h2-eth0 | ph2
20.0.0.1

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|.

Computer

MiniEdit

Terminal

Figure 3. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the /ab7 folder and search for the topology file called lab7.mn and click on

Open. A new topology will be loaded to MiniEdit.

Page 5



Lab 7: Populating and Managing Match-action Tables at Runtime

MiniEdit

Edit Run Help

New

Export Level 2 Script ; =
Directory: |,-‘home,-‘adm|n,-‘P4_Lab5!Iab?| — | @ ‘

& o7 )

File name: |lab7.mn Igpenl

Files of type: Mininet Topology (*.mn) _.‘ Cancel ‘

Figure 4. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Stop l.,__Ji

Figure 5. Running the emulation.

2.1 Starting end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host hl and
allows the execution of commands on that host.

Page 6



Lab 7: Populating and Managing Match-action Tables at Runtime

File Edit Run Help

R

h1 Host Options

R
I —
sl

Terminal

= -

Figure 6. Opening a terminal on host h1l.

Step 2. Verify the interfaces’ configuration by issuing the following command.

ifconfig

“"Host: h1"

root@lubuntu-vm: /home/admin# |ifconfig
hl-eth®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 0.0.0.0
ether 00:00:00:00:00:01 txqueuelen 1000 (Ethernet)
RX packets © bytes 0 (6.0 B)
RX errors © dropped © overruns © frame 0
TX packets 3 bytes 270 (270.0 B)
TX errors © dropped © overruns © carrier © collisions ©

lo: f <UP, LOOPBACK,RUNNING> mtu 65536
127.0.0.1 netmask 255.0.0.0
::1 prefixlen 128 scopeid 0x10<host>
» 1000 (Local Loopback)
bytes © (0.0 B)
X errors © dropped © overruns © frame ©
packets © bytes 0 (0.0 B)
TX errors © dropped © overruns @ carrier @ collisions 0

root@lubuntu-vm: /home/admin# I
Figure 7. Verifying the configuration host h1 interfaces.

3 Navigating the switch’s CLI

This section demonstrates how to navigate the switch’s CLI using the
[simple switch CLI] tool. This tool is used to manage P4 objects at runtime. This tool

Page 7



Lab 7: Populating and Managing Match-action Tables at Runtime

works with the BMv2 software switch. Other targets have their own tools (e.g., Intel
Tofino targets use the Barefoot Runtime).

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Computer

MiniEdit

Terminal

Figure 8. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4 Labs/lab7

admin@lubuntu-vm: ~

File Actions Edit View Help
admin@lubuntu-vm: ~ (<]
admin@lubuntu-vm:~$ [code ~/P4 Labs/1lab7/§

Figure 9. Launching the editor and opening the lab7 directory.

3.2 Compiling and loading the P4 program to switch s1

Step 1. We will not modify the P4 source code. The P4 program is already written. Issue
the following command in the terminal panel inside the VS Code to compile the program.

pdc basic.p4

Page 8



Lab 7: Populating and Managing Match-action Tables at Runtime

basic.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER basic.p4 X
v LAB7 basic.p4

basic.json 1 iE =R PEE Sk K
basic.p4 2 #include <core.p4>
basic.pai 3 #;nclude <vlmodel.p4>
; 4 #include "parser.p4"
checksm.pa 5  #include "checksum.p4"
deparser.p4 6 #include "ingress.p4"
egress.p4 7  #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 9
lab7.mn 10 :
arerpd 11 V1Switch(

12 MyParser(),

13 MyVerifyChecksum(),

14  MyIngress(),

15  MyEgress(),

16  MyComputeChecksum(),

17  MyDeparser()

18 ) main;

19

PROBLEMS  OUTPUT  TERMINAL  DEBUG CC

admin@lubuntu-vm:~/P4_Labs/1ab7$
admin@lubuntu-vm:~/P4_Labs/1ab7$
Figure 10. Compiling a P4 program.
Step 2. Type the command below in the terminal panel to push the basic.json file to the

switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password passwozrd].

push to switch basic.json sl

Page 9



Lab 7: Populating and Managing Match-action Tables at Runtime

basic.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER basic.p4 X
~ LAB7 basic.p4
basic.json 1+ -*- P4 16 -*- #/
basic.p4 2  #include <core.p4=
Bl o 3 #?nclude <vlmodel.p4=
. 4  #include "parser.p4"
sheckalmund 5  #include "checksum.p4"
deparser.p4 6 #include "ingress.p4"
egress.pd 7  #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 9
lab7.mn 1o )
SRSt 11 V1Switch(
12 MyParser(),
13 MyVerifyChecksum(),
14  MyIngress(),
15  MyEgress(),
16 MyComputeChecksum(),
17  MyDeparser()
18 ) main;
19

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab74% p4c basic.p4

admin@lubuntu-vm:~/P4_Labs/lab7$|push to switch basic.json sl1|
[sudo] password for admin:
admin@lubuntu-vm:~/P4 Labs/1ab7$ ]

Figure 11. Pushing the basic.json file to switch s1.

3.3 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

gterminal - 2 windows B MiniEdit .p4 - ...Studio Code

Figure 12. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

- MiniEdit

File Edit Run Help

e =
hl Docker Options ‘ h3

h2

Figure 13. Starting the terminal on the switch.

Page 10



Lab 7: Populating and Managing Match-action Tables at Runtime
Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command [1s] on the terminal of the switch s1 that was opened in the
previous step.

1s

root@s1l: /behavioral-model

1avioral -model#|1s

1avioral-mod

Figure 14. Displaying the contents of the current directory in the switch s1.
We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.
4 Configuring switch s1

Step 1. Issue the command on the terminal of the switch s1.

ifconfig

Page 11



Lab 7: Populating and Managing Match-action Tables at Runtime

root@s1: /behavioral-model

root@sl:/behavioral-model#|ifconfig

ethe Link encap:Ethernet HWaddr 02:42:ac:11:00:02
inet addr:172.17.0.2 Bcast:172.17.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:27 errors:0 dropped:0 overruns:® frame:©
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen:0O
RX bytes:3265 (3.2 KB) TX bytes:0 (0.0 B)

Link encap:Local Loopback

inet addr:127.0.0.1 q - 0.0

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:0 errors:0 dropped:® overruns:® frame:0
packets:0 errors:0 dropped:® overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWwaddr 0e:7e:48:32:53:a3

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:® overruns:0 frame:0
TX packets:0 errors:0 dropped:© overruns:0 carr
collisions:0® txqueuelen:1000

RX bytes:356 (356.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr 9e:¢5:42:78:07:16

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3 errors:0 dropped:® overruns:® frame:0
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
co sion ueuelen:1000

RX bytes:270 (270.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr 26:15:f3:b2:bl:d4

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:® txqueuelen:1000

RX bytes:270 (270.0 B) TX bytes:0 (0.0 B)

Figure 15. Displaying switch s1 interfaces.

The output displays switch s1 interfaces (i.e., s1-eth0, s1-eth1 and s1-eth2). The interface
s1-eth0 on the switch s1 connects to the host hl. The interface s1-ethl on the switch sl
connects to the host h2 and s2-eth2 is connected to host h3.

Step 2. Start the switch daemon by typing the following command.

simple switch -i 0@sl-eth0O -i 1@sl-ethl -i 2@sl-eth2 --nanolog ipc:///tmp/bm-
log.ipc Dbasic.json &

root@s1: /behavioral-model - O X

root@sl:/behavioral-model#|simple switch -i 0@sl-eth® -i 1@sl-ethl -i 2@sl-eth2 --nanolog
ipc:///tmp/bm-log.1pc basic.json &
[1] 39

root@sl:/behavioral-model# Calling target program-options parser
Adding interface sl-eth® as port ©
Adding interface sl-ethl as port 1
Adding interface sl-eth2 as port 2

Figure 16. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Page 12



Lab 7: Populating and Managing Match-action Tables at Runtime

The option is used to instruct the switch daemon that we want to see the
logs of the switch.

4.1 Navigating the switch’s CLI
Step 1. In switch s1 terminal, press Enter to return the CLI.

root@s1l: /behavioral-model

root@sl:/behavioral-model# simple switch -i 0@sl-eth® -i 1@sl-ethl
h2 --nanolog ipc:///tmp/bm-log.ipc basic.json &

[1] 34

root@sl:/behavioral-model# Calling target program-options parser

Adding interface sl-eth® as port ©
Adding interface sl-ethl as port 1
Adding 1inter sl-eth2 as port 2

root@sl:/behavioral-model# I

Figure 17. Returning to the CLI.
Step 2. Start switch s1 CLI tool by typing the following command.
simple switch CLI
root@sl: /behavioral-model

avioral-model#|simple switch CLI
JSON from tch...

Done
Control utility for runtime P4 table manipulation
Runtimecmd: [J

Figure 18. Starting the [simple switch CLI|runtime program.

Step 3. Type a question mark ([?]) to see the available commands in the tool.

Page 13



Lab 7: Populating and Managing Match-action Tables at Runtime

root@s1l: /behavioral-model

Control utility for runtime P4 table manipulation
RuntimeCmd:| ?

Documented commands (type help <topic>):

add member to group reset state
create group serialize state
create member set crclé parameters
delete group set crc32 parameters
delete member set queue depth
dump set queue rate
dump group shell
dump member show actions
modify member show ports
remove member from group show pvs
counter read show tables
counter reset swap configs
counter write switch info
get time elapsed table add
get time since epoch table clear
help table delete
load new config file table dump
mc dump table dump entry

Figure 19. Displaying the available commands in the [simple switch CLI|

Use the key to autocomplete a command.

Step 4. To get help on a specific command, type fhelp <topic>, where is the
command that you would like to explore. For example, to see the syntax of table_dump,
type the following.

help table dump

root@sl: /behavioral-model

dump

atch-table: table dump <table name=

Figure 20. Displaying the syntax of the command.

4.2 Displaying ports, tables, and actions

Step 1. To display the list of ports in our switch and their mapping to Linux interface names,
type the following command.

show ports

Page 14



Lab 7: Populating and Managing Match-action Tables at Runtime

root@sl: /behavioral-model

RuntimeCmd: |show ports
1tace name status extra info

sl-eth@ UP
sl-ethl upP
sl-eth2 upP

RuntimeCmd: [
Figure 21. Displaying the ports used by switch s1.

Step 2. To display the list of tables defined in the P4 program, type the following
command.

show tables

root@s1l: /behavioral-model

RuntimeCmd: [show tables

MyIngress.ipv4 host [implementation=None, mk=ipv4.dstAddr(exact, 32)]
MyIngress.ipv4 1lpm [implementation=None, mk=ipv4.dstAddr(lpm, 32)]
RuntimeCmd: [

Figure 22. Showing the tables defined in the ingress block.
Step 3. List the actions defined in the P4 program by issuing the command below.
show actions

root@sl: /behavioral-model

[]

[dstAddr( " port(9)]

Figure 23. Showing the actions defined in the P4 program.

Notice that theMyIngress.drop|action does not have any action data whereas the action
MyIngress.forward modifies the destination MAC address (i.e., [dstaddr (48)]) and the
egress port (i.e., port (9)]).

Step 4. To display basic information about the switch, type the following command.
switch info

root@s1l: /behavioral-model

RuntimeCmd: [switch info
device id : 0
thrift port : 9090

notifications socket : ipc:///tmp/bmv2-0-notifications.ipc
elogger socket : ipc:///tmp/bm-log.ipc

debugger socket : None

RuntimeCmd: [

Figure 24. Displaying switch’s information.
Step 5. To display the time since the switch was turned on, type the following command.

Page 15



Lab 7: Populating and Managing Match-action Tables at Runtime

get time elapsed

root@sl: /behavioral-model

get time elapsec

Figure 25. Showing the uptime of switch s1.

The command above displays the time since the switch was turned on in microseconds.

5 Populating match-action tables using the switch’s CLI

This section demonstrates how to manage and populate the tables using the switch CLI
tool.

5.1 Displaying the table’s basic information

Step 1. To display information about a table in the P4 program, type the following
command.

table info MyIngress.ipv4 host

root@s1: /behavioral-model

RuntimeCmd: |table info MyIngress.ipv4 host
MyIngress.ipv4 host [implementation=None, mk=ipv4.dstAddr(exact, 32)]

S R O O O O O R R SRS R R
MyIngress.drop [1]

MyIngress.forward [dstAddr(48), port(9)]

RuntimeCmd: [}

Figure 26. Showing information about the table MyIngress.ipv4 host|

Step 2. Issue the following command to display the actions corresponding to a table. The
output shows the actions contained in the table MyIngress.ipv4 host]

table show actions MyIngress.ipv4 host

root@sl: /behavioral-model

table sl ess.ipv4 host

port(9)]

Figure 27. Displaying the actions associated with table MyIngress.ipv4 host].

Step 3. Dump the entries of MyIngress.ipv4 host] table by issuing the following
command.

table dump MyIngress.ipv4 host

Page 16



Lab 7: Populating and Managing Match-action Tables at Runtime

root@sl: /behavioral-model

Figure 28. Showing the entries of the table MyIngress.ipv4 host]|.

The output above shows that the table has not been populated.

Step 4. Display the number of rules/entries in the MyIngress.ipv4d host|table by issuing
the following command. The output will show that there are no entries added so far.

table num entries MyIngress.ipv4 host

root@sl: /behavioral-model

RuntimeCmd: |[table num entries MyIngress.ipv4 host

[0}
RuntimeCmd:

Figure 29. Displaying the number of entries in the table MyIngress.ipv4 host].

5.2 Manipulating a match-action table with exact lookup

Step 1. Issue the following command to display the syntax of table add]

help table add

root@s1l: /behavioral-model

RuntimeCmd: |help table add

Add entry to a match table: table add <table name> <action name> <match fields>
=> <action parameters> [priority]
RuntimeCmd: [

Figure 30. Showing the syntax of table add]

The parameters of the [table add can be summarized as follows:

e [table name>: name of the P4 table that we would like to add rules to. The list
of tables can be displayed using the command.

[Kaction name>]: the action associated with the entry.

e [Kmatch fields>]: the key used to match against the incoming packet.

e [action parameter>: the parameter associated with the entry.

[[priority]]: the priority of the entry.

Page 17



Lab 7: Populating and Managing Match-action Tables at Runtime

Step 2. Add an entry/rule to the table MyIngress.ipv4 host| by issuing the following
command.

table add MyIngress.ipv4 host MyIngress.forward 30.0.0.1 => 00:00:00:00:00:03 2

root@s1l: /behavioral-model - O X

RuntimeCmd: [table add MyIngress.ipv4 host MyIngress.forward 30.0.0.1 => 00:00
:00:00:00:03 2
Adding entry to exact match table MyIngress.ipv4 host

match key: EXACT-1e:00:00:01
action: MyIngress.forward
runtime data: 00:00:00:00:00:03 00:02
Entry has been added with handle ©
RuntimeCmd: [

Figure 31. Adding an entry to the table MyIngress.ipv4 host]|

The output shows the details of the new table entry. The match key is 0x1e:00:00:01 (i.e.,
the hexadecimal value of the IP address 30.0.0.1) and the lookup mechanism is exact. The
action executed when this entry is hit will be the one defined in MyIngress. forward. The
action data associated with the entry is the MAC address of the destination host (i.e.,
00:00:00:00:00:03) and the egress port (i.e., 00:02).

Step 3. Issue the following command to show the entries in the table
MyIngress.ipv4 host]

table dump MyIngress.ipv4 host

root@sl: /behavioral-model

[RuntimeCmd: |table dump MyIngress.ipvé4 host
\

TABLE ENTRIES

B S S

IDumping entry 0x0

Match key:

|+ ipv4.dstAddr : EXACT 1e000001
|Action entry: MyIngress.forward - 03, 02

|IDumping default entry
!Action entry: MyIngress.drop -

[RuntimecCmd: |
|

Figure 32. Showing the entries of the table MyIngress.ipv4 host]|.

Step 4. Display the number of entries in the table MyIngress.ipv4 host| by typing the
following command.

table num entries MyIngress.ipvé4 host

root@s1: /behavioral-model

RuntimeCmd: [table num entries MyIngress.ipv4 host

1
RuntimecCmd: [

Figure 33. Displaying the number of entries in the table MyIngress.ipv4 host]

Page 18



Lab 7: Populating and Managing Match-action Tables at Runtime

Step 5. We can also display the entry in a table by using its match key as follows.

table dump entry from key MyIngress.ipv4 host 0x1e000001

root@sl: /behavioral-model

RuntimeCmd: dump entry from key MyIngress.ipv4 host 0Ox

EX le@oBee1
Action /: MyIngress.forward - 03, 02
Runtimecmd: [J

Figure 34. Dumping a table entry by specifying the key.

Match-action tables can contain too many entries and dumping the whole table will
produce a large output that is hard to read.

Step 6. Another way to display the entry in a table is by specifying the entry handle, which

in this case is 0. Issue the following command to show the table entry using the handle of
the entry.

table dump entry MyIngress.ipv4 host 0

root@sl: /behavioral-model

dump entry MyIng .ipv4 host @

IMatch k
* ipv4
Action

Figure 35. Dumping a table entry by specifying the handle.
Step 7. Issue the following command to modify an existing entry.
table modify MyIngress.ipv4 host MyIngress.forward 0 00:00:00:00:00:05 5

root@sl: /behavioral-model

RuntimeCmd: [table modify MyIngress.ipv4 host MyIngr

act match table MyIngres

Figure 36. Modifying a table’s entry.

The parameters of ftable modify]are described as follows:

e [MylIngress.ipv4 host| refers to the table that implements an exact lookup.
e [MylIngress.forward|: specifies the action.

e [0 the table’s entry handle.

e [00:00:00:00:00:05 the new MAC address.

Page 19



Lab 7: Populating and Managing Match-action Tables at Runtime

e [5: the new egress port.

Step 8. Dump the content of the table MyIngress.ipv4 host] by typing the following
command.

table dump entry MyIngress.ipv4 host 0

root@s1l: /behavioral-model

dump entry MyIngress.ipv4 host @

Action entry:
RuntimeCmd:

Figure 37. Dumping a table entry by specifying the handle.

The output shows the details of the modified entry. The match key is Ox1e:00:00:01 (i.e.,
the hexadecimal value of the IP address 30.0.0.1) and the lookup mechanism is exact. The
action executed when this entry is hit will be the one defined in MyIngress. forward. The
action data specifies 5 (i.e., the hexadecimal value 00:00:00:00:00:05) as the new
destination MAC address and port 5 as the egress.

5.3 Manipulating a match-action table with LPM lookup

Step 1. Add an entry/rule to the MyIngress.ipv4 1pn table by issuing the following
command.

table add MyIngress.ipv4 lpm MyIngress.forward 20.0.0.0/8 => 00:00:00:00:00:02
1

root@s1: /behavioral-model - O X

RuntimeCmd:| table add MyIngress.ipv4 lpm MyIngress.forward 20.0.0.0/8 => 00:00:0
0:00:00:02 1
Adding entry to 1pm match table MyIngress.ipv4 1lpm

match key: LPM-14:00:00:00/8
action: MyIngress.forward
runtime data: 00:00:00:00:00:02 00:01
Entry has been added with handle ©
RuntimeCmd: I

Figure 38. Adding an entry to the table MyIngress.ipv4 lpn.

The parameters of table add| are described as follows:

e MyIngress.ipv4 lpm refersto the table that implements LPM lookup.
e |MyIngress.forward]: specifies the action.

e [20.0.0.0/8f:is entry’s key.

e [00:00:00:00:00:02: the destination MAC address.

e [1]: specifies the egress port.

Page 20



Lab 7: Populating and Managing Match-action Tables at Runtime

Step 2. To delete a specific entry in a P4 table, type the following command.

table delete MyIngress.ipv4 lpm 0

root@sl: /behavioral-model

ipv4 1lpm ©

Figure 39. Removing an entry from the table MyIngress.ipv4 lpmnl|.

This command deletes the entry with the handle 0 in the MyIngress.ipv4 1lpnjtable.

Step 3. It is also possible to delete all entries from a match action table by issuing the
following command.

table clear MylIngress.ipv4 lpm

root@sl: /behavioral-model

RuntimeCmd: |[table clear MyIngress.ipv4 lpm

Figure 40. Removing all the entries from the table MyIngress.ipv4 lpmi.

Step 4. Verify that the table MyIngress.ipv4 1pnis cleared by issuing the following
command. The output will show that the table MyIngress.ipv4 1pmis empty.

table num entries MyIngress.ipv4 lpm

root@sl: /behavioral-model

RuntimeCmd: |table num entries MyIngress.ipv4 1pm

RuntimeCmd: [

Figure 41. Displaying the number of entries in the table MyIngress.ipv4 lpml|

This concludes lab 7. Stop the emulation and then exit out of MiniEdit.

References

1. Apache. “Apache Thrift.” [Online]. Available: https://thrift.apache.org/.

Google. “gRPC.” [Online]. Available: https://grpc.io/.

3. Google. “Protocol Buffers.” [Online]. Available:
https://developers.google.com/protocol-buffers.

N

Page 21



\,
,\\ﬁ.
()

o T

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Exercise 5: Configuring Match-action Tables at
Runtime

Document Version: 01-14-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Exercise 5: Configuring Match-action Tables at Runtime

Contents

R o Y ol Y= o [T T ] A o [ PURR

1.1 Credentials o e e e aaaee s
2 Setting the eNVIFONMENT.......iiii i e e s e e e e s earaeeeenes
T B = 1YY o] (=T PPPUPPPPTPPR



Exercise 5: Configuring Match-action Tables at Runtime

1

Exercise description

In this exercise, you will populate and manage the tables of the P4 switches by using the
runtime interface.

11

h1 sl s2 h2

h1l-ethO sl-ethO sl-ethl s2-eth0 s2-ethl h2-eth0

NS NS
X s2-eth2 X
10.0.0.1 10.0.0.2
s4-ethl
s3-ethl s4-eth0
s3 s4
Figure 1. Lab topology.
Credentials

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password

Client admin password

2

Setting the environment

Follow the steps below to set the exercise’s environment.

Step 1. Open MiniEdit by double-clicking the shortcut on the desktop. If a password is
required type jpassword|.




Exercise 5: Configuring Match-action Tables at Runtime

Computer,

MiniEdit

Terminal

Figure 2. MiniEdit shortcut.

Step 2. Load the topology located at /home/admin/P4_Exercises/Exercise5/.

MiniEdit

Edit Run Help

MNew

Save
Export Level 2 Script

Directory: |fhome,‘admian4_Exercises,‘ExerciseS| 4|

Quit
G -

(4] [+
- File name: |topology.mn |gpen|

i Files of type: Mininet Topology (*.mn) 4| Cancel |

e
\

/7

Figure 3. Opening the exercise’s topology.

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

Run

Stop F:Ji

Figure 4. Runniné the emulation.




Exercise 5: Configuring Match-action Tables at Runtime

Step 4. In the terminal, type the command below. This command launches the Visual
Studio Code and opens the directory where the P4 program for this exercise is located.

code P4 Exercises/Exercise5/

5 admin@lubuntu-vm: ~
File Actions Edit View Help

admin@lubuntu-vm: ~ X

admin@lubuntu-vm:~$ |code P4 _Exercises/Exercise5/

Figure 5. Opening the working directory.

3 Deliverables
Follow the steps below to complete the exercise.

a) Compile the basic.p4 in the Visual Studio Code. Push the output file of the compiler
to all switches s1, s2, s3, and s4.

b) Start the daemon on all switches and associate the interfaces to their corresponding

ports and enable nanolog]

c) Inswitch s1, use the CLI to determine the table names on the switches. Then, list the
actions associated with the tables. What are the actions and what parameters do they
accept?

d) Push the table entries to the switches so that a packet sent from h1 to h2 traverses
switches s1-s2.

e) Initiate the nanomsg_client.py program in switches s1 and s2.
f) Modify the path so that the packet traverses the switches s1-s3-s4-s2.
g) Delete all the rules on the switches. Write the rules that create a loop in the switches

s1-s2-s4-s3-s1-s2-s4-s2... Verify that the packet is being transmitted infinitely
between the switches. Suggest a solution for breaking the loop.



\,
,\\ﬁ.
()

o T

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 8: Checksum Recalculation and Packet
Deparsing

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Lab 8: Checksum Recalculation and Packet Deparsing

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [ o= o T PP UPPPRUPPPPR 3
1 Introduction tO ChECKSUMS .....couviiieiiiiiee et e s s eaea e e e 4
1.1 CheCKSUMS IN P ...ttt e e e s aaae e s s st e e e e e s naaee s 4
A B =T o 1= 1 Y o V=SSP U PR OO 5
P IF- | o I o] o Yo Lo} -1V 20U PP PUPPPRTPPR 6
2.1 Starting the end hOStS ..ccouviiiiicee e 7
3 Implementing checksum calculation in P4 .........cccviiiiiiiiiiiieee e 8
3.1 Loading the programming enviroNmMeNt........cccoecvieeiiiiieee e 8
3.2 INSPectiNng the P4 COUE ....uumiiiiiiiee et 9
N o - To o T d o ol o A o T o Y= [ o PSP 10
4.1 Compiling and loading the P4 program to switch S1 .......cccccceviiiivivniiieeecsnnenn, 10
4.2  Verifying the configuration ........ccccceei i 11
5 Configuring SWItCh SL....coiiiiiiiee e et e e e e naee s 12
5.1  Mapping P4 Program’s POItS........ccccccuieeeieiiiieeeeiiieeeeeiieeeeeeisseeeesssaeeessnssseeesennnns 12
5.2  Loading the rulesto the switCh.......ccccmiriiei i, 14
6  Manipulating the checksum and deparser ..., 14
6.1  Sending a packet without checksum update .......cccceeeiiieiiciie e, 14
6.2  Sending a packet with checksum update.........ccccvvvveiiiiiicici e, 16
6.3  Updating the deparserin the P4 code .......coooviiiiiiiieiiii e, 21
REFEIENCES ...ttt e e sttt e e s st e e e s abt e e e e sareeeeseneeeesanns 25

Page 2



Lab 8: Checksum Recalculation and Packet Deparsing

Overview

This lab describes how to recompute the checksum of a header. Recomputing the
checksum is necessary if the packet header was modified by the P4 program. The lab also
describes how a P4 program performs deparsing to emit headers.

Objectives
By the end of this lab, students should be able to:

1. Understand checksums and the need to recompute them if the header was
modified.

2. Implement checksum update in the P4 program.

Validate the checksum of a header.

4. Understand deparsing and how to implement a deparser in P4.

w

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap
This lab is organized as follows:

Section 1: Introduction to checksums.

Section 2: Lab topology.

Section 3: Implementing checksum calculation in P4.
Section 4: Loading the P4 program.

Section 5: Configuring switch s1.

Section 6: Manipulating the checksum and deparser.

ok wWwNE

Page 3



Lab 8: Checksum Recalculation and Packet Deparsing

1 Introduction to checksums

Several protocols use checksums to validate the integrity of the packet headers. A
checksum is a small value derived from another data block, often through a checksum
algorithm such as the Cyclic Redundancy Check (CRC). The checksum calculation and
verification start with the sender calculating the checksum of the data before transmitting
the packet. Then, the checksum value is inserted into the packet header. Upon receiving
the packet, the receiver computes the checksum of the received packet using the same
algorithm as the one used by the sender. If the calculated checksum value matches the
one in the packet header, the packet is verified; otherwise, a transmission error has
occurred. Incorrect checksums typically lead to dropping the packet by the switch.

1.1 Checksums in P4

In a P4 program, the developer may change the packet headers. For example, if the
program is implementing a routing function, then header fields such as the Time-to-live
(TTL) must be modified. Any change to the header fields will cause the checksum value to
change. Therefore, it is necessary to recompute the checksum in the P4 program in case
modifications are made to the header fields.

Figure 1 shows an example of computing the checksum in a P4 program.

/’i >k >k >k >k 3k 3k skok 3k skook sk skosk sk sk skok QQCHECKSUM COMPUTATIONQ K >k >k >k >k >k >k 3k skook sk 3k sk 3k skosk 3k 3k 3k iQ/
control MyComputeChecksum(inout header hdr, inout metadata meta){
apply{
update_checksum(
hdr.ipv4.isValid(),
{ hdr.ipv4.version,
hdr.ipv4.ihl,
hdr.ipv4.diffserv,
hdr.ipv4.totallen,
hdr.ipv4.identification,
hdr.ipv4.flags,
hdr.ipv4.fragOffset,
hdr.ipv4.ttl,
hdr.ipv4.protocol,
hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr },
hdr.ipv4.hdrChecksum,
HashAlgorithm.csum16);

coONOUVT A WNER

Figure 1. Updating the checksum of IPv4 header.
The syntax for updating the checksum in P4 (V1Model) is as follows:

update checksum(condition, data, checksum output, algorithm)

® [condition| a condition that is evaluated before updating the checksum. If the
condition is true, the checksum is updated. Otherwise, the checksum remains as

Page 4



Lab 8: Checksum Recalculation and Packet Deparsing

it is in the packet. Here we often check if the header is valid (i.e., it was parsed or
set to be valid by the programmer). For example, in Figure 1, the IPv4 header is
checked if valid.

e [datal: the data whose checksum is to be computed. This typically includes the
header fields of the protocol which uses the checksum. The example above shows
the header fields of IPv4.

e [checksum output] the parameter that the checksum will be written to once it has
been computed. In the example above, we are writing the resulting checksum
value to the field of IPv4.

e [algorithm): the algorithm used by the protocol to compute the checksum. For
example, for IPv4, the IETF RFC 791! state that the checksum field is the 16-bit
one’s complement of the one’s complement sum of all 16-bit words in the header.
This checksum is implemented in the V1Model using the [HashAlgorithm.csumlé|
hash function.

It is also possible in P4 to verify the checksum. The V1Model provides the checksum
verification extern function verify checksun which sets the checksum error]bitin the
standard metadata in case the verification fails, causing the packet to be dropped. The
syntax for the [verify checksun] is the same as that of update checksun] described
above.

verify checksum(condition, data, checksum output, algorithm)

1.2 Deparsing

The P4 program includes a deparser that specifies which headers are to be emitted. The
deparser emits the headers and the payload of the original packet. Note that only the
valid headers are emitted. A header is considered valid after it has been parsed in the P4
program or after the program explicitly validates the header with the function

setValid ()|

The deparser is defined as a control block and is executed after finishing the packet
processing by the other control blocks. Consider Figure 2. The deparser has a
type in its parameters. The type includes the method which accepts
the headers to be reassembled when the deparser constructs the outgoing packet. Note
that the order of emitting packets' headers is important, and the headers are only emitted
in case they are valid.

control MyDeparser(packet _out packet, in headers hdr){

apply{
packet.emit(hdr.ethernet);

packet.emit(hdr.ipv4);

Figure 2. Deparser implementation.

Page 5



Lab 8: Checksum Recalculation and Packet Deparsing

2 Lab topology

Let’s get started by loading a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch.

h1 s1 h3
[0S

NS > S

o h1-ethO sl-etho & sl-eth2 h3-etho| e

N N

sl-ethl
10.0.0.1 30.0.0.1
h2-eth0| K2
20.0.0.1

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|.

Computer

MiniEdit

Terminal

Figure 4. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the /ab8 folder and search for the topology file called lab8.mn and click on
Open. A new topology will be loaded to MiniEdit.

Page 6



Lab 8: Checksum Recalculation and Packet Deparsing

MiniEdit

Edit Run Help

New

Export Level 2 Script
Directory: |/home/admin/P4_Labs/labs| = ‘ 74 ‘

O

L i

File name: lab8.mn [Open|

Files of type: Mininet Topology (*.mn) _.| Cancel ‘

:\/

Figure 5. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Stop l.__Ji

Figure 6. Running the emulation.

2.1 Starting the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host hl and
allows the execution of commands on that host.

Page 7



Lab 8: Checksum Recalculation and Packet Deparsing

- MiniEdit

File Edit Run Help

P

h1 Host Options h3

Terminal

h2

Figure 7. Opening a terminal on host h1l.

3 Implementing checksum calculation in P4

This section demonstrates how to update the checksum of an IPv4 packet after being
modified by the P4 program. We will be using the P4 program that implements the routing
function.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Computer

MinfEdit

Terminal

Figure 8. Shortcut to open a Linux terminal.

Page 8



Lab 8: Checksum Recalculation and Packet Deparsing

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4 Labs/lab8

admin@lubuntu-vm: ~

File Actions Edit View Help
admin@lubuntu-vm: ~ [

'ci'min'ubuntu-vm:

Figure 9. Launching the editor and opening the lab8 directory.

3.2 Inspecting the P4 code

Step 1. Inspect the content of the ingress.p4 file before implementing the checksum
calculation. Navigate into the file by clicking on ingress.p4 in the file explorer

) ingress.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X
viaes [ B U & ngress.p4
baS\CJSO') /ﬁ-'-&v‘v-0-0‘»&-0-?*00-0'0“0'0'07vv-$'v¢‘0'9'0'1"0'0"V-0-&v¢7'0-¢ﬁ»~v0
basic.p4 kEkpecsxsx: I NG RESS PROECESSING RN ek Kok
V"'"’vﬁ.""‘v~"0'0$"'?v""v"—Q-"VVV'"'”V“"’VV"0""?""’7'."0"""/
basic.p4i

checksum.p4

deparser.p4

1

2

3

4

5 v control MyIngress(inout headers hdr,
6 inout metadata meta,
7
8

egress.p4 inout standard metadata t standard metadata) {
headers.p4
= ingress.p4 9 v action forward(macAddr t dstAddr, egressSpec t port) {
labg.mn 10 standard_metadata.egress _spec = port;
Harsera 11 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
12 hdr.ethernet.dstAddr = dstAddr;
13 |hdr.ipv4.ttl = hdr.ipv4.ttl - 1;|
14 }
15
16 v action drop() {
17 mark to drop(standard metadata);
18 }
19
20 v table ipv4 1lpm {
21 v key = {

Figure 10. Inspecting the ingress block.
Note how the action [forward| is modifying the TTL value in the IPv4 header. Since the
program is modifying the header fields, it is necessary to recompute and update the

checksum of the header.

Step 2. Navigate into the checksum file by clicking on checksum.p4 in the file explorer.

Page 9



Lab 8: Checksum Recalculation and Packet Deparsing

checksum.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 checksum.p4 X
v LAB8 [’iﬁo@ ecksum.pd
basxcpd 1 /0-'\'0¢0~v-00 ----- S e o o o o e o o o o o ko e o o e ok
T —— 2 ¥exkexexkrxt CHECKSUM VERIFICATION #rorroketrnes
3 AR AR KA R R R AR R AR R KRR K
deparser.p4
4
CQIEsS: S 5  control MyVerifyChecksum(inout headers hdr, inout metadata meta) {
headers.p4 6 apply {
ingress.p4 7
lab8.mn 8 X
parser.p4 9 }
10
R L g T T DT P
12 EXRESREELEAES EHECKS UM CONPUTATIO RERERRE AT LR RN
13 vvvvv Ao ok R R R o Rk o k& q'Qp-‘vt'i‘l’-vv"v‘vli'bv’r‘y‘Q~§-y-""'v-10v/
14
15 control MyComputeChecksum(inout headers hdr, inout metadata meta) {
16 apply {
17
18 }
19 1}
20

Figure 11. Inspecting the checksum block.

The figure above shows that two empty control blocks exist in the checksum.p4 file. The
first control MyVerifyChecksun verifies the checksum for the packet. The second control
block MyComputeChecksun| updates the checksum of the packet. We will only focus for
now on computing the checksum. The upcoming steps show what happens when the
checksum is not updated after modifying the IPv4 header (i.e., decrementing the TTL).

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Compile the program by issuing the following command in the terminal.

pdc basic.p4

Page 10



Lab 8: Checksum Recalculation and Packet Deparsing

checksum.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 checksum.p4 X
v LAB8 checks
baS]CA)SOn l / 3 o 3 o ok K S i ok R kK o R ROk ok ok R ok o ok ok ok R o Ok Sk Sk Sk i R I K Sk Ok Sk i R i RO R R O ok ok ek ok i ok ok ok ook R ok ok R ok Ok
basic.p4 2 exeewkrkeskx CHECKSUM VERIFICATION & ewkrskkknone
3 Q.Q.'.ﬁ.-.'.*»ﬁ...'»',J.'.tﬂ,f"".V'.*.'..ﬁ.(.’-’ﬂ&.)..'.l-*-’--'-"»’-,’-'-t-’-'-'V-&V-"-'-K'»"'"-.'-'K'-.‘Q."..i.”.’.’.‘ﬁ/
basic.p4i i
FAEE ST 5 control MyVerifyChecksum(inout headers hdr, inout metadata meta) {
deparser.p4 6 apply {
egress.p4 7
headers.p4 8 }
ingress.p4 9 %
lab8.mn 10
ll /*AQ&'.&.‘.V-AQ”-0.#10,’.0’—0.0'.6.(6.:.&,0~.0,:.0x.6$.v#1'-'(0'0.&.%0.)&?.0*Oxtv.i.OQt&'lt.&ﬁ.&x.&).t#&&z#
parser.p4
12 BREERER R CHECKSUM COMPUTATILON Xeerxacoeor
13 n..vx/c.-mv'.v-.txtv.vt:v-'.ﬁn.e.v'.x.tk¢.¢xv.x.v.v~'xAdivﬁttv.*tn*:t’ttt.t-&r'*ﬁﬁ»m-ﬁ‘*#ﬁ-’n/
14
15 control MyComputeChecksum(inout headers hdr, inout metadata meta) {
16 apply {
17
18 }
19 }
20

PROBLEMS OUTPUT TERMINAL DEB!

admin@lubuntu-vm:~/P4_Labs/lab8$

admin@lubuntu-vm:~/P4_Labs/1ab8$

Figure 12. Compiling a P4 program.

Step 2. Push the output of the compiler to the switch by using the following command.

push to switch basic.json sl

checksum.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

4.2

EXPLORER ingress.p4 checksum.p4 X
v LABS8 checksum.pd
baslc.json 1 /0,«0K#*Qv’OJV'&#vﬁxOQa'tVr.t,&#v,-Vﬂ?k'kxO.«t'ik».#-'&ﬁ»&#.tﬂkv&a'xt'akﬁ',-Qv‘&vﬁ,
basic.pd 2 ekekerkkrk CHECKSUM VERIFICATION  ®eekekrsckones
) I T T
basic.p4i
4
h 4 ; ) :
SR 5 control MyVerifyChecksum(inout headers hdr, inout metadata meta) {
deparser.p4 6 apply {
egress.p4 7
headers.p4 8 }
ingress.p4 9 &
lab8.mn 10
11 /t.-Qxﬁv'vv'.&tv&.ﬁv%-OVﬁ'vi.v.ﬁ..vamt-i.vvk-'v.??)v0-0..-0tv'-.¢'a.vv'..-o:ﬁv'.v-'.-.?vn.'v&.
BareeRps 12 wkmkswkrssksk CHECKSUM COMPUTATION skt
13 xv-Q’0VtVIOXQkQV1'10¢4¢vtliﬁle"041'10'004*x#x'wvv‘?*ﬁ@v"OXQﬁxtxOJL'Arﬁt’/
14
15  control MyComputeChecksum(inout headers hdr, inout metadata meta) {
16 apply {
17
18 }
19 ¥
20

PROBLEMS OUTPUT TERMINAL DE LE

admin@lubuntu-vm:~/P4_Labs/lab8$ p4c basic.p4
admin@lubuntu-vm:~/P4_Labs/lab8$ [push to switch basic.json sif

[sudo] password for admin:

admin@lubuntu-vm:~/P4_Labs/labs$ [
Figure 13. Downloading the basic.json file to switch s1.

Verifying the configuration

Page 11



Lab 8: Checksum Recalculation and Packet Deparsing

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Y B & :- *= gterminal -2 windows | [l MiniEdit basic.p4 - ...Studio Code

Figure 14. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

File Edit Run Help

hl Docker Options

h2

Figure 15. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the following command on switch s1 terminal to inspect the content of the
current folder.

1s

root@sl: /behavioral-model

1avioral -model#| 1s

1avioral -model# I

Figure 16. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded into switch
s1 after compiling the P4 program.

5 Configuring switch s1

51 Mapping P4 program’s ports

Step 1. Issue the following command on switch s1.

Page 12



Lab 8: Checksum Recalculation and Packet Deparsing

ifconfig

root@s1l: /behavioral-model

asl:/behavioral-model#|ifconfig

Link encap:Ethernet AWaddr ©2:42:ac:11:00:02

inet addr:172.17.0.2 Bcast:172.17.255.255 Mask:255.255.0.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

TX packets:0 errors:0 dropped:® overruns:0 carrier:0
collisions:0® txqueuelen:0O
RX bytes:3265 (3.2 KB) TX bytes:0 (0.0 B)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:0 errors:0 dropped:® overruns:® frame:0
TX packets:0 errors:0 dropped:0® overruns:0 carrier:
collisions:0 txqueuelen:1000

RX bytes:0 (0.0 B TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr Oe:7e:48:32:53:a3

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:® overruns:0 frame:©
TX packets:0 errors:0 dropped:© overruns:0 carrier:e
collisions:0® txqueuelen:1000

RX bytes:356 (356.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr 9e:¢5:42:78:07:16

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3 errors:0 dropped:® overruns:0 frame:©
TX packets:0 errors:0 dropped:® overruns:0 carrier:@
collisions:® txqueuelen:1000

RX bytes:270 (270.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr 26:15:f3:b2:bl:d4

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3 errors:0 dropped:® overruns:0 frame:©
TX packets:0 errors:0 dropped:® overruns:0 carrier:
collisions:0® txqueuelen:1000

RX bytes:270 (270.0 B) TX bytes:0 (0.0 B)

Figure 17. Displaying switch s1 interfaces.

The output displays switch s1 interfaces (i.e., s1-eth0, s1-eth1 and s1-eth2). The interface
s1-ethO on the switch s1 connects to the host hl. The interface s1-ethl on the switch sl
connects to the host h2 and s2-eth2 is connected to host h3.

Step 2. Start the switch daemon by typing the following command, then press Enter.

simple switch -i 0@sl-ethO -i 1@sl-ethl -i 2@sl-eth2 --nanolog ipc:///tmp/bm-
log.ipc Dbasic.json &

Page 13



Lab 8: Checksum Recalculation and Packet Deparsing

root@s1: /behavioral-model

root@sl:/behavioral-model#|simple switch -i 0@sl-eth® -i 1@sl-ethl -i 2@sl-eth2 --nanolog
ipc:///tmp/bm-Llog.1pc basic.json &

[1] 39

root@sl:/behavioral-model# Calling target program-options parser

Adding interface sl-eth® as port ©

Adding interface sl-ethl as port 1

Adding interface sl-eth2 as port 2

Figure 18. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The option is used to instruct the switch daemon that we want to see the
logs of the switch.

5.2 Loading the rules to the switch
Step 1. In switch s1 terminal, press Enter to return the CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab8/rules.cmd

root@s1l: /behavioral-model

root@sl:/behavioral-model#|simple switch CLI < ~/1lab8/rules.cmd
Obtaining JSON from 1tch. ..
Done
Control utility for runtime P4 table manipulation
Runtime : Adding entry to 1lpm match table MyIngress.ipv4 1lpm
match - LPM-0a:00:00:00/8
MyIngr .forward

ta: 00:00:00:00:00:01 ©00:00
Entry has been added with handle ©
RuntimeCmd: Adding entry to 1lpm match table MyIngress.ipv4 lpm
match key: LPM-14:00:00:00/8
action: MyIngr .forward
runtime data: 00:00: 00:00:02 ©00:01
Entry has been added with handle 1
RuntimeCmd: Adding entry to exact match table MyIngress.ipv4 exact
match key: EXACT-1e:00:00:01
action: MyIngr .forward
runtime data: 00:00:00:00:00:03 00:02
Entry has been added with handle ©
RuntimeCmd:
root@sl:/behavioral-model# [}

Figure 19. Populating the forwarding table into switch s1.

6 Manipulating the checksum and deparser

6.1 Sending a packet without checksum update

Step 1. On host h3’s terminal, type the command below to launch Wireshark. Wireshark
is a network analyzer used to inspect the content of network packets.

Page 14



Lab 8: Checksum Recalculation and Packet Deparsing

wireshark

"Host: h3"

Figure 20. Opening Wireshark from host h3.

Step 2. Select the interface h3-eth0O and start capturing packets by clicking on the icon
located in the upper left-hand side.

The Wireshark Network Analyzer
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

w6 mrREeaEssEEaaan

Welcome to Wireshark

Capture

..using this filter: (I [Enter a capt

Loopback: lo

an

bluetooth-monitor

nflog

nfqueue

DisplayPort AUX channel monitor capture: dpauxmon
Random packet generator: randpkt

systemd Journal Export: sdjournal

UDP Listener remote capture: udpdump

eeee

Figure 21. Starting packet capture.

Step 3. Apply the following filter in Wireshark by issuing the following keyword in the filter
box, then press Enter.

tcp
5 Capturing from h3-etho
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
_Welc XNCO QeEmEF S = QQQ I
No. Time Source Destination Protocol Lengtt Info

Figure 22. Filtering TCP packets only.

Step 4. On host h1’s terminal, send a packet to host h3 by issuing the following command.

./send.py 30.0.0.1 HelloWorld

Page 15



Lab 8: Checksum Recalculation and Packet Deparsing

"Host: h1"

root@lubuntu-vm: /home/admin# |. /send.py 30.0.0.1 Helloworld
sending on interface hl-ethe to 30.0.0.1
###| Ethernet |###
dst I % b i P B Pl P A
src = 00:00:00:00:00:01
= IPv4

| ###

version
ihl
tos
len
id
flags
frag
ttl = 64
proto = tcp
chksum 0x52c4
Src 10.0.0.1
dst 30.0.0.1
\options )
###[ TCP |###
sport
dport

Figure 23. Sending a test packet from host h1 to host h3.

Step 5. Navigate back to the Wireshark window and click on the packet to see information
about the received packet from h1.

‘.
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
[ | ® X @ Q Q F

- |tcp

LO
g
|||l| )i
ol
il

No. Time Source Destination Protocol Lengtt Info

» Frame 1: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface h3-eth®, id @
» Ethernet II, Src: Broadcast (ff:ff:ff:ff:ff:ff), Dst: 00:00:00_00:00:03 (00:00:00:00:00:03)
] Internet Protocol Version 4, Src: 10.0.0.1, Dst: 30.0.0.1
0160 .... = Version: 4
.... 0101 = Header Length: 20 bytes (5)
» Differentiated Services Field: ©x0@ (DSCP: CSO, ECN: Not-ECT)
Total Length: 50
Identification: 0x0001 (1)
» Flags: 0x00
...0 0000 00G@ 0BOO = Fragment Offset: ©
Time to Live: 63

We can see that the checksum in that packet is incorrect. This is because the P4 program
changed the header field value (i.e., TTL), but did not update the checksum in the packet.

6.2 Sending a packet with checksum update

Page 16



Lab 8: Checksum Recalculation and Packet Deparsing

Step 1. Navigate back to the VS Code window and add the following code in the
MyComputeChecksun] block of the checksum.p4 file.

update checksum (
hdr.ipv4.isvValid(),

{
hdr.ipvé4.version,
hdr.ipv4.ihl,
hdr.ipv4.diffserv,
hdr.ipv4.totallen,
hdr.ipv4.identification,
hdr.ipv4d.flags,
hdr.ipvé4.fragOffset,
hdr.ipv4d.ttl,
hdr.ipv4.protocol,
hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr },

hdr.ipv4.hdrChecksum,

HashAlgorithm.csuml6) ;

checksum.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help
EXPLORER ingress.p4 checksum.p4 X

v LABS checksum.p4

14 control MyComputeChecksum(inout headers hdr, inout metadata meta) {

c.pd

15 apply {
basic.p4i 16 update checksum(
checksum.p4 17 hdr.ipv4.isvalid(),
deparser.p4 18 {
egress.pd 19 hdr.ipv4.version,
RO 20 hdr.ipv4.ihl,
headers.p4d = >

21 hdr.ipv4.diffserv,
INgIESE pa 22 hdr.ipv4.totalLen,
lab8.mn 23 hdr.ipv4.identification,
parser.p4 24 hdr.ipv4.flags,

25 hdr.ipv4.frag0ffset,

26 hdr.ipv4.ttl,

27 hdr.ipv4.protocol,

28 hdr.ipv4.srcAddr,

29 hdr.ipv4.dstAddr },

30 hdr.ipv4.hdrChecksum,

31 HashAlgorithm.csuml6) ;

32 }

33 }

34 |

Figure 25. P4 code to update the checksum.

Step 2. Press to save the changes.

Step 3. Issue the following command in the terminal panel inside the VS Code to compile
the program.

pdc basic.p4

Page 17



Lab 8: Checksum Recalculation and Packet Deparsing

checksum.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER
v LABS8
basic.json
basic.pd4
basic.pdi
checksum.p4

deparser.p4

rs.p4
ingress.p4
lab8.mn

parser.p4

16

N bt
VA WNRMEWO®-N

(=)}

WWWWNNNNNNNNN
o0~

WN =W

w
iy

2

checksum.pd X

control MyComputeChecksum(inout headers

apply {
update checksum(

hdr.ipv4.isvalid(),

{
hdr.ipv4.version,
hdr.ipv4.ihl,
hdr.ipv4.diffserv,
hdr.ipv4.totallLen,
hdr.ipv4.identification,
hdr.ipv4.flags,
hdr.ipv4.fragoffset,
hdr.ipv4.ttl,
hdr.ipv4.protocol,
hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr },

hdr.ipv4.hdrChecksum,

HashAlgorithm.csuml6);

OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab8$|p4c basic.p4
admin@lubuntu-vm:~/P4_Labs/1ab8s$ 1]

Figure 26. Compiling a P4 program.

hdr, inout metadata meta) {

Step 4. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password passwozrd].

push to switch basic.json sl

checksum.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER

basic.p4di

checksum.p4
deparser.p4
egress.p4
headers.p4
ingress.pd
lab8.mn

parser.p4

ingress.p4 checksum.pd4 X

control MyComputeChecksum(inout headers

apply {
update_checksum(

hdr.ipv4.isvalid(},

{
hdr.ipv4.version,
hdr.ipv4.ihl,
hdr.ipv4.diffserv,
hdr.ipv4.totallLen,
hdr.ipv4.identification,
hdr.ipv4.flags,
hdr.ipv4.fragoffset,
hdr.ipv4.ttl,
hdr.ipv4.protocol,
hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr },

hdr.ipv4.hdrChecksum,

HashAlgorithm.csuml6);

OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab8% pdc basic.p4

admin@lubuntu-vm:~/P4_Labs/lab8$[push to switch basic.json sl]
admin@lubuntu-vm:~/P4_Labs/lab8s

Figure 27. Pushing the basic.json file to switch s1.

hdr, inout metadata meta)

-~

Page 18



Lab 8: Checksum Recalculation and Packet Deparsing

Step 5. Navigate to the window of the switch s1 and stop the daemon of the switch by
using the following command.

pkill switch

root@sl: /behavioral-model

/behavioral-model# |pkill switch

: /behavioral -model#

Figure 28. Terminating switch s1 process.

Step 6. Start the switch daemon by typing the following command, then press Enter.

simple switch -i 0@sl-ethO -i 1@sl-ethl -i 2@sl-eth2 --nanolog ipc:///tmp/bm-
log.ipc Dbasic.json &

root@s1: /behavioral-model - O X

root@sl:/behavioral-model#|simple switch -i 0@sl-eth® -i 1@sl-ethl -i 2@sl-eth2 --nanolog
ipc:///tmp/bm-log.1pC basic.json &

[1] 39

root@sl:/behavioral-model# Calling target program-options parser

Adding interface sl-eth® as port ©

Adding interface sl-ethl as port 1

Adding interface sl-eth2 as port 2

Figure 29. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Step 7. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab8/rules.cmd

root@s1l: /behavioral-model

root@sl:/behavioral-model#|simple switch CLI < ~/1ab8/rules.cmd
Obtaining JSON from switch...

Done

Control utility for runtime P4 table manipulation

RuntimeCmd: Adding entry to lpm match table MyIngress.ipv4 1lpm
match key: LPM-0a:00:00:00/8

action: MyIngress.forward

runtime data: 00:00:00:00:00:01 ©00:00

Entry has been added with handle ©

RuntimeCmd: Adding entry to 1lpm match table MyIngress.ipv4 1lpm
match key: LPM-14:00:00:00/8

action: MyIngr .forward

runtime data: 00:00:00:00:00:02 ©00:01

Entry has been added with handle 1

RuntimeCmd: Adding entry to exact match table MylIngress.ipv4 exact
match key: EXACT-1e:00:00:01

action: MyIngr .forward

runtime data: 00:00:00:00:00:03 00:02

Entry has been added with handle ©

RuntimeCmd:

root@sl:/behavioral-model# [}

Figure 30. Populating the tables in switch s1.

Step 8. On host h1’s terminal, send a packet to host h3 by issuing the following command.

Page 19



Lab 8: Checksum Recalculation and Packet Deparsing

./send.py 30.0.0.1 HelloWorld

"Host: h1"

root@lubuntu-vm: /home/admin# |. /send.py 30.0.0.1 Helloworld
sending on interface hl-etho to 30.0.0.1
### Ethernet |###
dst 0 o 0By 17 i 8 [N % P Y P A
00:00:00:00:00:01

IP
version
ihl
tos
len
id
flags
frag
ttl = 64
proto = tcp
chksum Ox52c4
Src 10.0.0.1
dst = 30.0.0.1
\options
###[ TCP |###
sport 535
dport 234
1

Figure 31. Sending a test packet from host h1 to host h3.

Step 9. Navigate back to the Wireshark window and click on the packet to see information
about the received packet from h1.

6 h3-etho

s
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
@ Q | TF

||
L
4
IHh li
h
[

No. Time Source Destination Protocol Lengtt Info
1 ). 1 0.0.0.1 TCF 4 5734 1234 [SYN] Seq=0 Win=8192 Len=1
30.0.0.1 TCP 64 53399 ~ 1234 [SYN] Seq=0 Win=8192 Len=10

1 ] ]
2 284.544914989 10.0.0.1

» Frame 2: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface h3-eth®, id @
» Ethernet II, Src: Broadcast (ff:ff:ff:ff:ff:ff), Dst: 00:00:00_00:00:03 (00:00:00:00:00:03)
~ Internet Protocol Version 4, Src: 10.0.0.1, Dst: 30.0.0.1
0160 .... = Version: 4
. 0101 = Header Length: 20 bytes (5)
» Differentiated Services Field: ©x0@ (DSCP: CS®, ECN: Not-ECT)
Total Length: 50
Identification: 0x0001 (1)
» Flags: 0x00
...0 0000 00BO 0000 = Fragment Offset: ©
Time to Live: 63
Protocol: TCP (6)
Header Checksum: 0x53c4 [correct]
a e um us:

Figure 32. Inspecting the content of the IPv4 header.

Page 20



Lab 8: Checksum Recalculation and Packet Deparsing

We can see that the checksum in that packet is now correct. This is because the P4
program updated the checksum in the IPv4 header after changing the header field value
(i.e., TTL).

6.3 Updating the deparser in the P4 code

In this section we will update the code of the deparser so that the IPv4 header is not
emitted. We will then verify this operation using Wireshark.

Step 1. Navigate into the deparser block by clicking on deparser.p4 in the file explorer of
the VS Code application.

deparser.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLOREF ingress.p4 checksum.p4 deparser.p4 X

1
3 /.Q-Q * * T T T T T T T T T T T T T T T T T T T T T A R kK *
3 AR K A kxx% DEPARSER *#sxs RN - -
PR . R R RPN R ERiR ——

checksum.p4d 5

= deparser.p4 6 control MyDeparser(packet out packet, in headers hdr) {

egress.p4 7 apply {

headers.pa 8 packet.emit(hdr.ethernet);

ingress.p4 9 packet.emit(hdr.ipv4);

10 }
11 ¥

lab8.mn

parser.p4

Figure 33. Inspecting the deparser block.

We can see in the figure above that the deparser is emitting both the Ethernet header
and the IPv4 header. We verified in the previous step that Wireshark was able to
recognize both headers.

Step 2. Update the deparser code to emit only the Ethernet header and save the file.

deparser.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER o ingress.p4 checksum.p4 deparser.p4 X
1 f
1
5 JEeh . S o K K R R KR ok kK R K
3 K o R oK ok o KO ¥ DEPARSER *tsssstsrnss KRR xh "
4 N, Y

checksum.p4

deparser.p4 6 control MyDeparser(packet out packet, in headers hdr) {

7 apply {
8 packet.emit(hdr.ethernet);
9 |
lab8.mn 10 }
11, %

parser.p4

Figure 34. Emitting only the Ethernet header.

Step 3. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

Page 21



Lab 8: Checksum Recalculation and Packet Deparsing

deparser.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 checksum.p4 deparser.pd X
~ LABB leparser.p4
basic.json il
basic.p4 2 F e e et
S —— R S RS R K R
basic.pai 3 DEPARSER
4 TTTT o e o o o o R SR S K R K Rk R f
checksum.p4 5
G RITE 6 control MyDeparser(packet_out packet, in headers hdr) {
egress.pd 7 apply {
headers.p4 8 packet.emit(hdr.ethernet);
ingress.p4 9
lab8.mn 10 }
parser.pd L }

Problems (Ctrl+Shift+M) - Total O Problems

PROBLEMS OUTPUT

TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab8$
admin@lubuntu-vm:~/P4_Labs/lab8%

Figure 35. Compiling a P4 program.

Step 4. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password passwozrd].

push to switch basic.json sl

deparser.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 checksum.p4 deparser.p4 X
v LABB leparser.p4
basic.json L
b'!"rp’l 2 /‘.}*l‘t" ook o o e e o e o o o o o o e o e e o o o e e e e o o o e o ek
e e o ok ok o e o e ke e oo o e e e e o o o e o
basic.pai 3 DEPARSER
4 * + * oo o '-OJ#D‘Q."v‘.b"t«i.»l-»}-0«:.----0.;#}-#--0-.}&1‘{.»---.}»l‘c.--/
checksum.p4 5
deparser.p4 6 control MyDeparser(packet_out packet, in headers hdr) {
egress.p4 7 apply {
headers.p4 8 packet.emit(hdr.ethernet);
ingress.p4 9
lab8.mn 10 }
parser.p4 11 }
PROBLEMS  OUTPUT E

TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab8$ pdc basic.p4d
admin@lubuntu-vm: ~/P4_Labs/lab8$|push to switch basic.json sl
admin@lubuntu-vm:~/P4_Labs/lab8$

Figure 36. Downloading the basic.json file to switch s1.

Page 22



Lab 8: Checksum Recalculation and Packet Deparsing

Step 5. Navigate to the window of the switch s1 and stop the daemon of the switch by
using the following command.

pkill switch

root@sl: /behavioral-model

@sl:/behavioral-model#|pkill switch
1: /behavioral -model#

Figure 37. Terminating switch s1 process.

Step 6. Start the switch daemon by typing the following command, then press Enter.

simple switch -i 0@sl-ethO -i 1@sl-ethl -i 2@sl-eth2 --nanolog ipc:///tmp/bm-
log.ipc Dbasic.json &

root@s1: /behavioral-model

root@sl:/behavioral-model#|simple switch -i 0@sl-eth® -i 1@sl-ethl -i
ipc:///tmp/bm-Llog.1pc basic.json &

[1] 39

root@sl:/behavioral-model# Calling target program-options parser

Adding interface sl-eth® as port ©

Adding interface sl-ethl as port 1

Adding interface sl-eth2 as port 2

Figure 38. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Step 7. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab8/rules.cmd

root@s1l: /behavioral-model

root@sl:/behavioral-model#|simple switch CLI < ~/1ab8/rules.cmd
Obtaining JSON from switch...
Done
Control utility for runtime P4 table manipulation
RuntimeCmd: Adding entry to lpm match table MyIngress.ipv4 lpm
match key: LPM-0a:00:00:00/8
action: MyIngress.forward
runtime data: 00:00
Entry has been added with handle ©
RuntimeCmd: Adding entry to 1lpm match table MyIngress.ipv4 1lpm
match key: LPM-14:00:00:00/8
action: MyIngress.forward
runtime data: 00:00 :00:00:02 00:01
Entry has been added with h le 1
RuntimeCmd: Adding entry to exact match table MylIngress.ipv4 exact
match key: EXACT-1e:00:00:01
action: MyIngr .forward
runtime data: 00:00:00:00:00:03 00:02
Entry has been added with handle ©
RuntimeCmd:
@s1:/behavioral-model# [}

Figure 39. Populating the tables in switch s1.

Step 8. On host h1’s terminal, send a packet to host h3 by issuing the following command.

Page 23



Lab 8: Checksum Recalculation and Packet Deparsing

./send.py 30.0.0.1 HelloWorld

"Host: h1"

root@lubuntu-vm: /home/admin# |. /send.py 30.0.0.1 Helloworld
sending on interface hl-etho to 30.0.0.1
Ethernet |###
dst S 7 0 e i B R e
Src = 00:00:00:00:00:01
Lype IPv4
###| IP |#&##
version
ihl
tos
len
id
flags
frag
tTl = 64
proto = tcp
chksum Ox52c4
sSrc 10.0.0.1
dst 30.0.0.1
\options )
###[ TCP |###
sport
dport

Figure 40. Sending a test packet from host h1 to host h3.

Step 9. Navigate back to the Wireshark window and remove the tcp keyword from the
filter and press Enter.

£ *h3-etho
Fi

le Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
m oG QemEF IEE QaaqiE

No. Time Source Destination Protocol Lengtt Info

544914 10.0.0 .
550.144858566 Broadcast.

2 284
3 558. 1

» Frame 3: 44 bytes on wire (352 bits), 44 bytes captured (352 bits) on interface h3-eth®, id O
» Ethernet II, Src: Broadcast (ff:ff:ff:ff:ff:ff)_, Dst: 00:00:00_00:00:03 (00:09:_99:09:09:03)

» Internet Protocol Version 4

Figure 41. Removing the TCP filter from Wireshark.

Step 10. Click on the new packet (No. 3) to inspect its headers.

Page 24



Lab 8: Checksum Recalculation and Packet Deparsing

/o *h3-etho
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
i
Q Q Q TF

mae N[O ResdES &
I[A:ﬂr y a display filter ... <Ctr

il

No. Time Source Destination Protocol Lengtt Info

» Frame 3: 44 bytes on wire (352 bits), 44 bytes captured (352 bits) on interface h3-eth@, id @
ésthernet II, Src: Broadcast (ff:ff:ff:ff:ff:ff), Dst: 00:00:00_00:00:03 (00:00:00:00:00:03)

[Expert Info (Error/Protocol): Bogus IPv4 version]
[Bogus IPv4 version]
[Severity level: Error]
[Group: Protocol]

Figure 42. Inspecting the content of the IPv4 header.

The result above indicates that the IPv4 header is bogus. This error could occur due to the
following reasons:

e The Ethernet header field etherType contains the value 0x0800 which indicates
that the next header is of type IPv4.

e Since the P4 program did not emit the IPv4 header, the packet contains only the
Ethernet header followed by the original payload of the packet.

e Wireshark is assuming that the next header is IPv4 (because of the etherType field
of the Ethernet header), and hence it is interpreting the payload of the packet as
the IPv4 header. Thus, Wireshark is alerting that the IPv4 header is bogus.

The IPv4 header must be emitted in the P4 program to solve this issue. Note that if you
defined your own custom header in the P4 program and emit it in the deparser, Wireshark
will not recognize it and might produce error messages.

This concludes lab 8. Stop the emulation and then exit out of MiniEdit.

References

1. RFC791. “Internet Protocol.” 1981.

Mininet walkthrough. [Online]. Available: http://Mininet.org.

3. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping
platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

4. R.Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

5. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

N

Page 25



A

UNIVERSITY OF

SOUTH CAROLINA

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Exercise 6: Building a Packet Reflector

Document Version: 06-15-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”



Exercise 6: Building a Packet Reflector

Contents

R o Y ol Y= o [T T ] A o [ PURR
0 R = o o V=T o o U=l =T o [ RSP
10 A 1 Y7 T To =Y R PURPPE
300G T 1 Y G =T To =Y R PURPPE
R0 S = =T ol T I o] o To) (o =AY A RSP
O S 00 Te [T o | =1 U PURPRE

2 Setting the ENVIFONMENT......uiiiiiiee e e e s s e e e e s saraeeeenes

3 (DL AT = o] (=L PO TR TOPRRR



Exercise 6: Building a Packet Reflector

1 Exercise description

In this exercise, you will implement a P4 program that acts as a packet reflector. This
means that the switch will bounce back a packet to the port the packet came from. You
will be implementing the whole P4 program. This includes the headers definition, the
parser, the control blocks, and the checksum update.

The header definitions are shown below.

1.1 Ethernet header

Ethernet determines that the next header is IPv4 if the value of EtherType is 0x0800.

48 bits 48 bits 16 bits 46-1500 bytes

Destination Address Source Address Ether Type Payload

Figure 1. Ethernet header.

1.2 IPv4 header

Bit [0[ 1[2[3[4[5[6[7[8[9[10[11[12[13]14[15[16[17[18[19[20]21[22]23[24[25[26[27[28[29[30[31
0 Version IHL DSCP ECN Total Length

32 Identifier Flags Fragment Offset

64 Time To Live Protocol Header Checksum

96 Source IP Address

128 Destination IP Address

160 Options (if IHL > 5)

Figure 2. IPv4 header.

1.3 IPv6 header

Bit 0] 1] 234 [5]6]7]8]9]10]11[12]13[14]15[16[17]18]19]20]21]22[23]24]25]26]27]28]29[30[31

0 Version Traffic Class Flow Label
32 Payload Length Next Header Hop Limit
64

Source IP Address

192

Destination IP Address

Figure 3. IPv6 header.

14 Exercise topology



Exercise 6: Building a Packet Reflector

10.0.0.1
aaaa:l

15

MyIngress.reflect_ipv4
. Action Data
Key (Source IP) Action (New source IP)
source P Destination 1P 10.0.0.1 forward_ipva 15001  |e-
| 10001 [ 17232010
aaaa::l cccc::10 sl L,/
/7
_____________ _}
o _____ &
o N Mylngress.reflect_ipv6
Source IP Destination IP N Action Dat
) ction Data
15.0.0.1 10.0.0.1 Key (SourcelP) Action (New source IP)
bbbb::1 aaaa::1 aaaa::1l forward_ipv6 bbbb::1 <«
Figure 4. Lab topology.
Credentials

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client

admin

password

2

Setting the environment

Follow the steps below to set the exercise’s environment.

Step 1. Open MiniEdit by double-clicking the shortcut on the desktop. If a password is
required type jpassword|.

Computer

MiniEdit

Terminal

Figure 5. MiniEdit shortcut.



Exercise 6: Building a Packet Reflector

Step 2. Load the topology located at /home/admin/P4_Exercises/Exercise6/.

- MiniEdit
Edit Run Help
New

Save
Quit Directory: |!homefadmin!P4_Exercises{Exerciseﬁl 4| 4

I8] copology.mn

File name: topology.mn

Files of type: Mininet Topology (*.mn) = | Cancel ‘

A1k

Figure 6. Opening exercise’s topology.

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

Stop [E_

Figure 7. Running the emulation.

Step 4. In the terminal, type the command below. This command launches the Visual
Studio Code and opens the directory where the P4 program for this exercise is located.

code ~/P4 Exercises/Exercise6/

admin@lubuntu-vm: ~
File Actions Edit View Help
admin@lubuntu-vm: ~ (<]
admin@lubuntu-vm:~$|code P4 Exercises/Exercise6/|]

Figure 8. Opening the working directory.

3 Deliverables

Follow the steps below to complete the exercise.



Exercise 6: Building a Packet Reflector

a) Define the headers for the Ethernet, IPv4, and IPv6 protocols.

b) Implement the parser. Recall that the Ethernet header uses the Ethertype field to
identify the next header. The Ethertype is 0x800 for IPv4 and 0x86DD for IPv6.

c) Implement the match-action tables [reflect ipv4|and[reflect ipvé|in the ingress
pipeline. The actions in this table are [forward ipv4|and[forward ipvé|.

The action [forward ipv4] must execute the following operations:

e Set the egress port the same as the ingress port. Note that the ingress port is
available in the standard metadata [standard metadata.ingress port]

e Set the source IPv4 address as the destination IPv4 address. Note that the
packet is sent back to host h1.

e Assign a new destination IPv4 address.

e Decrement the TTL field in the IPv4 header.

Similarly, the action [forward ipve must execute the following operations:

e Set the egress port the same as the ingress port. Note that the ingress port is
available in the standard metadata [standard metadata.ingress port]

e Set the source IPv6 address as the destination IPv6 address. Note that the
packet is sent back to host h1l.

e Assign a new destination IPv6 address.

e Decrement the hop limit field in the IPv6 header.

d) Implement the action.

e) Write the code to update the checksum of IPv4. Note that no checksum is needed for
IPv6.

f) Start the daemon in switch s1 and associate the interfaces to their corresponding ports

and enable nanolog].

g) Populate the tables at runtime using the [simple switch CLI]

h) Open a terminal in host hl and run the following command:

./recv.py

i) Using another terminal, send an IPv4 packet using the send.py program. Verify that the
tables are matching by inspecting the logs of the switch using the tool. Verify
that the TTL field and hop limit field are decremented.

j) Repeat i) using the send_ipv6.py program.



	Cover
	Contents
	Lab 1 - Introduction to Mininet
	Exercise 1 - Building a Basic Topology
	Lab 2 - Introduction to P4 and BMv2
	Exercise 2 - Compiling and Running a P4 Program
	Lab 3 - P4 Program Building Blocks
	Lab 4 - Parser Implementation
	Exercise 3 - Parsing UDP and RTP
	Lab 5 - Introduction to Match-action Tables (Part 1)
	Lab 6 - Introduction to Match-action Tables (Part 2)
	Exercise 4 - Implementing NAT using Match-action Tables
	Lab 7 - Populating and Managing Match-action Tables on Runtime
	Exercise 5 - Configuring Match-action Tables at Runtime
	Lab 8 - Checksum Recalculation and Packet Deparsing
	Exercise 6 - Building a Packet Reflector



