

Principal Investigator: Jorge Crichigno

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Book Version: 06-25-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Introduction to P4 Programmable Data Planes

Contents

Lab 1: Introduction to Mininet
Exercise 1: Building a Basic Topology
Lab 2: Introduction to P4 and BMv2
Exercise 2: Compiling and Running a P4 Program
Lab 3: P4 Program Building Blocks
Lab 4: Parser Implementation
Exercise 3: Parsing UDP and RTP
Lab 5: Introduction to Match-action Tables (Part 1)
Lab 6: Introduction to Match-action Tables (Part 2)
Exercise 4: Implementing NAT using Match-action Tables
Lab 7: Populating and Managing Match-action Tables at Runtime
Exercise 5: Configuring Match-action Tables at Runtime
Lab 8: Checksum Recalculation and Packet Deparsing
Exercise 6: Building a Packet Reflector

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 1: Introduction to Mininet

Document Version: 01-25-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 1: Introduction to Mininet

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to Mininet .. 3

2 Invoke Mininet using the CLI .. 5

2.1 Invoke Mininet using the default topology .. 5

2.2 Test connectivity .. 9

3 Build and emulate a network in Mininet using the GUI ... 10

3.1 Build the network topology ... 10

3.2 Test connectivity .. 13

3.3 Automatic assignment of IP addresses .. 16

3.4 Save and load a Mininet topology ... 18

References .. 19

Lab 1: Introduction to Mininet

 Page 3

Overview

This lab provides an introduction to Mininet, a virtual testbed used for testing network
tools and protocols. It demonstrates how to invoke Mininet from the command-line
interface (CLI) utility and how to build and emulate topologies using a graphical user
interface (GUI) application.

Objectives

By the end of this lab, you should be able to:

1. Understand what Mininet is and why it is useful for testing network topologies.
2. Invoke Mininet from the CLI.
3. Construct network topologies using the GUI.
4. Save/load Mininet topologies using the GUI.

Lab settings

The information in Table 1 provides the credentials of the Client machine.

Table 1. Credentials to access the Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Mininet.
2. Section 2: Invoke Mininet using the CLI.
3. Section 3: Build and emulate a network in Mininet using the GUI.

1 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools and
protocols. With a single command, Mininet can create a realistic virtual network on any
type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides
an inexpensive solution and streamlined development running in line with production
networks1. Mininet offers the following features:

• Fast prototyping for new networking protocols.

Lab 1: Introduction to Mininet

 Page 4

• Simplified testing for complex topologies without the need of buying expensive
hardware.

• Realistic execution as it runs real code on the Unix and Linux kernels.

• Open-source environment backed by a large community contributing extensive
documentation.

Figure 1. Hardware network vs. Mininet emulated network.

Mininet is useful for development, teaching, and research as it is easy to customize and
interact with it through the CLI or the GUI. Mininet was originally designed to experiment
with OpenFlow2 and Software-Defined Networking (SDN)3. This lab, however, only focuses
on emulating a simple network environment without SDN-based devices.

Mininet’s logical nodes can be connected into networks. These nodes are sometimes
called containers, or more accurately, network namespaces. Containers consume
sufficiently fewer resources that networks of over a thousand nodes have created,
running on a single laptop. A Mininet container is a process (or group of processes) that
no longer has access to all the host system’s native network interfaces. Containers are
then assigned virtual Ethernet interfaces, which are connected to other containers
through a virtual switch4. Mininet connects a host and a switch using a virtual Ethernet
(veth) link. The veth link is analogous to a wire connecting two virtual interfaces, as
illustrated below.

Figure 2. Network namespaces and virtual Ethernet links.

Each container is an independent network namespace, a lightweight virtualization feature
that provides individual processes with separate network interfaces, routing tables, and
Address Resolution Protocol (ARP) tables.

h1 s1 h2s2

s3

Hardware NetworkMininet Emulated Network

Lab 1: Introduction to Mininet

 Page 5

Mininet provides network emulation opposed to simulation, allowing all network
software at any layer to be simply run as is; i.e. nodes run the native network software of
the physical machine. On the other hand, in a simulated environment applications and
protocol implementations need to be ported to run within the simulator before they can
be used.

2 Invoke Mininet using the CLI

In following subsections, you will start Mininet using the Linux CLI.

2.1 Invoke Mininet using the default topology

Step 1. Launch a Linux terminal by clicking on the Linux terminal icon in the task bar.

Figure 3. Linux terminal icon.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. To start a minimal topology, enter the command shown below. When prompted
for a password, type password and hit enter. Note that the password will not be visible
as you type it.

sudo mn

Lab 1: Introduction to Mininet

 Page 6

Figure 4. Starting Mininet using the CLI.

The above command starts Mininet with a minimal topology, which consists of a switch
connected to two hosts as shown below.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth1 s1-eth2 h2-eth0

s1

10.0.0.0/8

Figure 5. Mininet’s default minimal topology.

When issuing the sudo mn command, Mininet initializes the topology and launches its
command line interface which looks like this:

containernet>

Step 3. To display the list of Mininet CLI commands and examples on their usage, type the
following command:

help

Lab 1: Introduction to Mininet

 Page 7

Figure 6. Mininet’s help command.

Step 4. To display the available nodes, type the following command:

nodes

Figure 7. Mininet’s nodes command.

The output of the nodes command shows that there is a controller (c0), two hosts (host
h1 and host h2), and a switch (s1).

Step 5. It is useful sometimes to display the links between the devices in Mininet to
understand the topology. Issue the command shown below to see the available links.

net

Lab 1: Introduction to Mininet

 Page 8

Figure 8. Mininet’s net command.

The output of the net command shows that:

1. Host h1 is connected using its network interface h1-eth0 to the switch on
interface s1-eth1.

2. Host h2 is connected using its network interface h2-eth0 to the switch on
interface s1-eth2.

3. Switch s1:
a. Has a loopback interface lo.
b. Connects to h1-eth0 through interface s1-eth1.
c. Connects to h2-eth0 through interface s1-eth2.

4. Controller c0 does not have any connection.

Mininet allows you to execute commands on a specific device. To issue a command for a
specific node, you must specify the device first, followed by the command.

Step 6. To proceed, issue the command:

h1 ifconfig

Figure 9. Output of h1 ifconfig command.

Lab 1: Introduction to Mininet

 Page 9

This command h1 ifconfig executes the ifconfig Linux command on host h1. The
command shows host h1’s interfaces. The display indicates that host h1 has an interface
h1-eth0 configured with IP address 10.0.0.1, and another interface lo configured with IP
address 127.0.0.1 (loopback interface).

2.2 Test connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1
and host h2 respectively. To test connectivity between them, you can use the command
ping. The ping command operates by sending Internet Control Message Protocol (ICMP)
Echo Request messages to the remote computer and waiting for a response or reply.
Information available includes how many responses are returned and how long it takes
for them to return.

Step 1. On the CLI, type the command shown below. The command h1 ping 10.0.0.2
tests the connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The
figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets to
host h2 (10.0.0.2) and successfully received the expected responses.

h1 ping 10.0.0.2

Figure 10. Connectivity test between host h1 and host h2.

Step 2. Stop the emulation by typing the following command:

exit

Lab 1: Introduction to Mininet

 Page 10

Figure 11. Stopping the emulation using exit.

If Mininet were to crash for any reason, the sudo mn – c command can be utilized to
clean a previous instance. However, the sudo mn -c command is often used within the
Linux terminal and not the Mininet CLI.

Step 3. After stopping the emulation, close the Linux terminal by clicking the X in the
upper-right corner.

Figure 12. Closing the Linux CLI.

3 Build and emulate a network in Mininet using the GUI

In this section, you will use the application MiniEdit to deploy the topology illustrated
below. MiniEdit is a simple GUI network editor for Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth1 s1-eth2 h2-eth0

s1

10.0.0.0/8

Figure 13. Lab topology.

3.1 Build the network topology

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.
MiniEdit will start, as illustrated below.

Lab 1: Introduction to Mininet

 Page 11

Figure 14. MiniEdit Desktop shortcut.

MiniEdit will start, as illustrated below.

(5) Legacy switch

(3) P4 switch (Docker)

(2) Host

(1) Select

(7) Link

(9) Run

(10) Stop

(4) OpenFlow switch

(8) Controller

(6) Legacy router

Figure 15. MiniEdit Graphical User Interface (GUI).

Lab 1: Introduction to Mininet

 Page 12

The main buttons are:

1. Select: allows selection/movement of the devices. Pressing Del on the keyboard
after selecting the device removes it from the topology.

2. Host: allows addition of a new host to the topology. After clicking this button, click
anywhere in the blank canvas to insert a new host.

3. P4 switch (Docker): allows the addition of P4 switch. After clicking this button, click
anywhere in the blank canvas to insert the P4 switch.

4. OpenFlow switch: allows the addition of a new OpenFlow-enabled switch. After
clicking this button, click anywhere in the blank canvas to insert the switch.

5. Legacy switch: allows the addition of a new Ethernet switch to the topology. After
clicking this button, click anywhere in the blank canvas to insert the switch.

6. Legacy router: allows the addition of a new legacy router to the topology. After
clicking this button, click anywhere in the blank canvas to insert the router.

7. Link: connects devices in the topology (mainly switches and hosts). After clicking
this button, click on a device and drag to the second device to which the link is to
be established.

8. Controller: allows the addition of a new OpenFlow controller.
9. Run: starts the emulation. After designing and configuring the topology, click the

run button.
10. Stop: stops the emulation.

Step 2. To build the topology illustrated in Figure 13, two hosts and one switch must be
deployed. Deploy these devices in MiniEdit, as shown below.

Figure 16. MiniEdit’s topology.

Use the buttons described in the previous step to add and connect devices. The
configuration of IP addresses is described in Step 3.

Lab 1: Introduction to Mininet

 Page 13

Step 3. Configure the IP addresses of host h1 and host h2. Host h1’s IP address is
10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the
right click and selecting properties on the device. For example, host h2 is assigned the IP
address 10.0.0.2/8 in the figure below. Click OK for the settings to be applied.

Figure 17. Configuration of a host’s properties.

3.2 Test connectivity

Before testing the connection between host h1 and host h2, the emulation must be
started.

Step 1. Click the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 18. Starting the emulation.

Step 2. Open a terminal by right-clicking on host h1 and select Terminal. This opens a
terminal on host h1 and allows the execution of commands on the host h1. Repeat the
procedure on host h2.

Lab 1: Introduction to Mininet

 Page 14

Figure 19. Opening a terminal on host h1.

The network and terminals at host h1 and host h2 will be available for testing.

Figure 20. Terminals at host h1 and host h2.

Step 3. On host h1’s terminal, type the command shown below to display its assigned IP
addresses. The interface h1-eth0 at host h1 should be configured with the IP address
10.0.0.1 and subnet mask 255.0.0.0.

ifconfig

Lab 1: Introduction to Mininet

 Page 15

Figure 21. Output of ifconfig command on host h1.

Repeat Step 3 on host h2. Its interface h2-eth0 should be configured with IP address
10.0.0.2 and subnet mask 255.0.0.0.

Step 4. On host h1’s terminal, type the command shown below. This command tests the
connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The figure
below shows a successful connectivity test. Host h1 (10.0.0.1) sent six packets to host h2
(10.0.0.2) and successfully received the expected responses.

ping 10.0.0.2

Figure 22. Connectivity test using ping command.

Step 5. Stop the emulation by clicking on the Stop button.

Figure 23. Stopping the emulation.

Lab 1: Introduction to Mininet

 Page 16

3.3 Automatic assignment of IP addresses

In the previous section, you manually assigned IP addresses to host h1 and host h2. An
alternative is to rely on Mininet for an automatic assignment of IP addresses (by default,
Mininet uses automatic assignment), which is described in this section.

Step 1. Remove the manually assigned IP address from host h1. Right-click on host h1 and
select Properties. Delete the IP address, leaving it unassigned, and press the OK button as
shown below. Repeat the procedure on host h2.

Figure 24. Host h1 properties.

Step 2. In the MiniEdit application, navigate to Edit > Preferences. The default IP base is
10.0.0.0/8. Modify this value to 15.0.0.0/8, and then press the OK button.

Figure 25. Modification of the IP Base (network address and prefix length).

Lab 1: Introduction to Mininet

 Page 17

Step 3. Run the emulation again by clicking on the Run button. The emulation will start
and the buttons of the MiniEdit panel will be disabled.

Figure 26. Starting the emulation.

Step 4. Open a terminal by right-clicking on host h1 and select Terminal.

Figure 27. Opening a terminal on host h1.

Step 5. Type the command shown below to display the IP addresses assigned to host h1.
The interface h1-eth0 at host h1 now has the IP address 15.0.0.1 and subnet mask
255.0.0.0.

ifconfig

Lab 1: Introduction to Mininet

 Page 18

Figure 28. Output of ifconfig command on host h1.

You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host
h2’s terminal. The corresponding interface h2-eth0 at host h2 has now the IP address
15.0.0.2 and subnet mask 255.0.0.0.

Step 6. Stop the emulation by clicking on Stop button.

Figure 29. Stopping the emulation.

3.4 Save and load a Mininet topology

In this section you will save and load a Mininet topology. It is often useful to save the
network topology, particularly when its complexity increases. MiniEdit enables you to
save the topology to a file.

Step 1. In the MiniEdit application, save the current topology by clicking File. Provide a
name for the topology and notice myTopology as the topology name. Ensure you are in
the lab1 folder and click Save.

Lab 1: Introduction to Mininet

 Page 19

Figure 30. Saving the topology.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab1 folder and search for the topology file called lab1.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 31. Opening a topology.

This concludes lab 1. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. Mininet walkthrough. [Online]. Available: http://Mininet.org.
2. Mckeown N., Anderson T., Balakrishnan H., Parulkar G., Peterson L., Rexford J.,

Shenker S., Turner J., “OpenFlow,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

Lab 1: Introduction to Mininet

 Page 20

3. Esch J., “Prolog to, software-defined networking: a comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 10–13, 2015.

4. Dordal P., “An Introduction to computer networks,”. [Online]. Available:
https://intronetworks.cs.luc.edu/.

5. Lantz B., Gee G. “MiniEdit: a simple network editor for Mininet.” 2013. [Online].
Available: https://github.com/Mininet/Mininet/blob/master/examples.

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Exercise 1: Building a Basic Topology

Document Version: 01-14-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Exercise 1: Building a Basic Topology

Contents

1 Exercise description .. 3

1.1 Credentials ... 3

1.2 Exercise topology ... 3

2 Deliverables ... 3

Exercise 1: Building a Basic Topology

1 Exercise description

In this exercise, you will build a topology and run Mininet commands to verify the
configuration. Additionally, you will perform a connectivity test.

1.1 Credentials

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

1.2 Exercise topology

The topology comprises two legacy switches and two end hosts.

h2h1 s1 s2

Figure 1. Exercise topology.

2 Deliverables

Follow the steps below to complete the exercise.

a) Open MiniEdit by double-clicking the shortcut on the desktop. If a password is required
type password.

Exercise 1: Building a Basic Topology

Figure 2. MiniEdit shortcut.

b) Using end hosts and legacy switches, build the topology presented in Figure 1. Those
devices are highlighted in the figure below.

Figure 3. Building a topology using end hosts and legacy switches available in MiniEdit.

c) Enable Mininet’s CLI navigating into Edit->Preferences and set the Start CLI box.

Exercise 1: Building a Basic Topology

Figure 4. Enabling Mininet’s CLI.

d) In the Mininet CLI, run the corresponding commands to verify the name of the
interfaces, links, and nodes in the topology. Which interface in switch s1 connects to
switch s2?

e) In the hosts’ CLI, verify the IP and MAC addresses. Report the MAC address of host
h2.

f) In a host’s terminal, perform a connectivity test between host h1 and host h2. Is the
test successful?

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 2: Introduction to P4 and BMv2

Document Version: 01-25-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 2: Introduction to P4 and BMv2

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Workflow of a P4 program ... 4

1.2 Workflow used in this lab series .. 5

2 Lab topology.. 6

2.1 Verifying connectivity between host h1 and host h2 .. 7

3 Loading the P4 program .. 8

3.1 Loading the programming environment .. 9

3.2 Compiling and loading the P4 program to switch s1 ... 11

3.3 Verifying the configuration .. 13

4 Configuring switch s1 .. 14

4.1 Mapping P4 program’s ports.. 14

4.2 Loading the rules to the switch .. 16

References .. 17

Lab 2: Introduction to P4 and BMv2

 Page 3

Overview

This lab introduces programmable data plane switches and their role in the Software-
defined Networking (SDN) paradigm. The lab introduces the Programming Protocol-
independent Packet Processors (P4), the de facto programming language used to describe
the behavior of the data planes of programmable switches. The focus of this lab is to
provide a high-level overview of the general lifecycle of programming, compiling, and
running a P4 program on a software switch.

Objectives

By the end of this lab, students should be able to:

1. Define the need for SDN and data plane programmability.
2. Understand the structure of a P4 program.
3. Compile a simple P4 program and deploy it to a software switch.
4. Start the switch daemon and allocate virtual interfaces to the switch.
5. Perform a connectivity test to verify the correctness of the program.

Lab settings

Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Loading the P4 program.
4. Section 4: Configuring switch s1.

1 Introduction

Since the emergence of the world wide web and the explosive growth of the Internet in
the 1990s, the networking industry has been dominated by closed and proprietary

Lab 2: Introduction to P4 and BMv2

 Page 4

hardware and software. The progressive reduction in the flexibility of protocol design
caused by standardized requirements, which cannot be easily removed to enable protocol
changes, has perpetuated the status quo. This protocol ossification1, 2 has been
characterized by a slow innovation pace at the hand of few network vendors. As an
example, after being initially conceived by Cisco and VMware3, the Application Specific
Integrated Circuit (ASIC) implementation of the Virtual Extensible LAN (VXLAN)4, a simple
frame encapsulation protocol, took several years, a process that could have been reduced
to weeks by software implementations. The design cycle of switch ASICs has been
characterized by a lengthy, closed, and proprietary process that usually takes years. Such
process contrasts with the agility of the software industry.

The programmable forwarding can be viewed as a natural evolution of Software-Defined
Networking (SDN), where the software that describes the behavior of how packets are
processed, can be conceived, tested, and deployed in a much shorter time span by
operators, engineers, researchers, and practitioners in general. The de-facto standard for
defining the forwarding behavior is the P4 language5, which stands for Programming
Protocol-independent Packet Processors. Essentially, P4 programmable switches have
removed the entry barrier to network design, previously reserved to network vendors.

1.1 Workflow of a P4 program

Programming a P4 switch, whether a hardware or a software target, requires a software
development environment that includes a compiler. Consider Figure 1. The compiler
maps the target-independent P4 source code (P4 program) to the specific platform. The
compiler, the architecture model, and the target device are vendor specific and are
provided by the vendor. The P4 source code on the other hand is supplied by the user.

The compiler generates two artifacts after compiling the P4 program. First, it generates a
data plane configuration (Data plane runtime) that implements the forwarding logic
specified in the P4 input program. This configuration includes the instructions and
resource mappings for the target. Second, it generates runtime APIs that are used by the
control plane / user to interact with the data plane. Examples include adding/removing
entries from match-action tables and reading/writing the state of extern objects (e.g.,
counters, meters, registers). The APIs contain the information needed by the control
plane to manipulate tables and objects in the data plane, such as the identifiers of the
tables, fields used for matches, keys, action parameters, and others.

Lab 2: Introduction to P4 and BMv2

 Page 5

P4 program

Architecture

Data plane
runtime

Tables
Extern
objects

User supplied

Vendor supplied

Target switch
Compiler

Load

Data plane

Control plane

API

Control signalsAPI

Load

Figure 1. Generic workflow design. The compiler, the architecture model, and the target switch
are provided by the vendor of the device. The P4 source code is customized by the user. The
compiler generates a data plane runtime to be loaded into the target, and the APIs used by the
control plane to communicate with the data plane at runtime.

1.2 Workflow used in this lab series

This section demonstrates the P4 workflow that will be used in this lab series. Consider
Figure 2. We will use the Visual Studio Code (VS Code) as the editor to modify the basic.p4
program. Then, we will use the p4c compiler with the V1Model architecture to compile
the user supplied P4 program (basic.p4). The compiler will generate a JSON output (i.e.,
basic.json) which will be used as the data plane program by the switch daemon (i.e.,
simple_switch). Finally, we will use the simple_switch_CLI at runtime to populate and
manipulate table entries in our P4 program. The target switch (vendor supplied) used in
this lab series for testing and debugging P4 programs is the behavioral model version 2
(BMv2)6.

Lab 2: Introduction to P4 and BMv2

 Page 6

basic.p4

Architecture
(V1Model)

Runtime CLI
(simple_switch_CLI)

basic.json

Software switch
(BMv2)

Compiler
(p4c)

Load

Data Plane

Control Plane

Table
manipulation

User supplied

Vendor supplied

Controller

Figure 2. Workflow used in this lab series.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Lab 2: Introduction to P4 and BMv2

 Page 7

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab2, select the file lab2.mn, and click on
Open.

Figure 5. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 6. Running the emulation.

2.1 Verifying connectivity between host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Lab 2: Introduction to P4 and BMv2

 Page 8

Figure 7. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 8. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded into the switch.

3 Loading the P4 program

This section shows the steps required to implement a P4 program. It describes the editor
that will be used to modify the P4 program and the P4 compiler that will produce a data
plane program for the software switch.

VS Code will be used as the editor to modify P4 programs. It highlights the syntax of P4
and provides an integrated terminal where the P4 compiler will be invoked. The P4
compiler that will be used is p4c, the reference compiler for the P4 programming language.

Lab 2: Introduction to P4 and BMv2

 Page 9

p4c supports both P414 and P416, but in this lab series we will only focus on P416 since it is
the newer version and is currently being supported by major programming ASIC
manufacturers7.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on
the desktop.

Figure 9. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4_Labs/lab2

Figure 10. Launching the editor and opening the lab2 directory.

Step 3. Once the previous command is executed, VS Code will start. Click on basic.p4 in
the file explorer panel on the left hand side to open the P4 program in the editor.

Lab 2: Introduction to P4 and BMv2

 Page 10

Figure 11. Opening the programming environment in VS Code.

Step 4. Identify the components of VS Code highlighted in the grey boxes.

Lab 2: Introduction to P4 and BMv2

 Page 11

(2) File explorer

(1) Editor

(3) Terminal

Figure 12. VS Code graphical interface components.

The VS Code interface consists of three main panels:

1. Editor: the editor panel will display the content of the file selected in the file
explorer. In the figure above, the basic.p4 program is shown in the Editor.

2. File explorer: this panel contains all the files in the current directory. You will see
the basic.p4 file which contains the P4 program that will be used in this lab, and
the topology file for the current lab (i.e., lab2.mn).

3. Terminal: this is a regular Linux terminal integrated in the VS Code. This is where
the compiler (p4c) is invoked to compile the P4 program and generate the output
for the switch.

3.2 Compiling and loading the P4 program to switch s1

Step 1. In this lab, we will not modify the P4 code. Instead, we will just compile it and
download it to the switch s1. To compile the P4 program, issue the following command
in the terminal panel inside the VS Code.

p4c basic.p4

Lab 2: Introduction to P4 and BMv2

 Page 12

Figure 13. Compiling the P4 program using the VS Code terminal.

The command above invokes the p4c compiler to compile the basic.p4 program. After
executing the command, if there are no messages displayed in the terminal, then the P4
program was compiled successfully. You will see in the file explorer that two files were
generated in the current directory:

• basic.json: this file is generated by the p4c compiler if the compilation is successful.
This file will be used by the software switch to describe the behavior of the data
plane. You can think of this file as the binary or the executable to run on the switch
data plane. The file type here is JSON because we are using the software switch.
However, in hardware targets, most probably this file will be a binary file.

• basic.p4i: the output from running the preprocessor of the compiler on your P4
program.

At this point, we will only be focusing on the basic.json file.

Now that we have compiled our P4 program and generated the JSON file, we can
download the program to the switch and start the switch daemon.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1. The script accepts as input the JSON output of the p4c compiler, and the
target switch name (e.g., s1). If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 2: Introduction to P4 and BMv2

 Page 13

Figure 14. Downloading the compiled program to switch s1.

3.3 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 15. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Lab 2: Introduction to P4 and BMv2

 Page 14

Figure 16. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 3. Issue the following command to list the files in the current directory.

ls

Figure 17. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

4 Configuring switch s1

4.1 Mapping P4 program’s ports

Step 1. Issue the following command to display the interfaces in switch s1.

ifconfig

Lab 2: Introduction to P4 and BMv2

 Page 15

Figure 18. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-eth0 and s1-eth1. The interface s1-eth0
on the switch s1 connects to the host h1. The interface s1-eth1 on the switch s1 connects
to the host h2.

Step 2. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 basic.json &

Figure 19. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Lab 2: Introduction to P4 and BMv2

 Page 16

s1-eth0 0 s1-eth11

Figure 20. Ports 0 and 1 are mapped to the interfaces s1-eth0 and s1-eth1 of switch s1.

4.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 21. Returning to switch s1 CLI.

Step 2. Populate the table with forwarding rules by typing the following command.

simple_switch_CLI < ~/lab2/rules.cmd

Figure 22. Loading table entries to switch s1.

The figure above shows the table entries described in the file rules.cmd.

Step 3. Go back to host h1 terminal to test the connectivity between host h1 and host h2
by issuing the following command.

Lab 2: Introduction to P4 and BMv2

 Page 17

ping 10.0.0.2 -c 4

Figure 23. Performing a connectivity test between host h1 and host h2.

Now that the switch has a program with tables properly populated, the hosts can ping
each other.

This concludes lab 2. Stop the emulation and then exit out of MiniEdit.

References

1. B. Trammell, M. Kuehlewind. “RFC 7663: Report from the IAB workshop on stack
evolution in a middlebox internet (SEMI).” 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7663.

2. G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom, K.-J. Grinnemo,
P. Hurtig, N. Khademi, M. Tüxen, M. Welzl, D. Damjanovic,
S. Mangiante. ‘‘De-ossifying the internet transport layer: A survey and
future perspectives,’’ IEEE Communications. Surveys and Tutorials., 2017.

3. The Register. “VMware, Cisco stretch virtual LANs across
the heavens.” 2011. [Online]. Available: https://tinyurl.com/y6mxhqzn.

4. M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright, “Virtual eXtensible Local Area Network (VXLAN): a framework for
overlaying virtualized layer 2 networks over layer 3 networks,” RFC7348.
[Online]. Available: http://www. rfc-editor.org/rfc/rfc7348.txt

5. P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, ‘‘P4: Programming protocol-independent
packet processors,’’ ACM SIGCOMM Computer Communications. 2014.

6. P4lang. “Behavioral model”. [Online]. Available:
https://github.com/p4lang/behavioral-model.

7. V. Gurevich, A. Fingerhut, “P416 for Intel TofinoTM using Intel P4 StudioTM”. 2021
P4 Workshop, ONF. [Online]. Available: https://tinyurl.com/yckzkybf.

 INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Exercise 2: Compiling and Running a P4 Program

Document Version: 01-14-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Exercise 2: Compiling and Running a P4 Program

Contents

1 Exercise description .. 3

1.1 Credentials ... 3

1.2 Exercise topology ... 3

2 Setting the environment ... 3

3 Deliverables ... 5

Exercise 2: Compiling and Running a P4 Program

1 Exercise description

In this exercise, you will compile and run a P4 program on two P4 switches in the same
topology. Then, you will push the table entries to the switches at runtime.

1.1 Credentials

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

1.2 Exercise topology

The topology comprises two P4 switches and two end hosts.

h2h1 s1 s2

10.0.0.1 10.0.0.2

s1-eth0 s1-eth1 s2-eth0 s2-eth1 h2-eth0h1-eth0

Figure 1. Exercise topology.

2 Setting the environment

Follow the steps below to set the exercise’s environment.

Step 1. Open MiniEdit by double-clicking the shortcut on the desktop. If a password is
required type password.

Exercise 2: Compiling and Running a P4 Program

Figure 2. MiniEdit shortcut.

Step 2. Load the topology located at /home/admin/P4_Exercises/Exercise2/.

Figure 3. Opening the exercise topology.

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

Figure 4. Running the emulation.

Exercise 2: Compiling and Running a P4 Program

Step 4. In the Linux terminal, type the command below. This command launches the
Visual Studio Code (VS Code) and opens the directory where the P4 program for this
exercise is located.

code P4_Exercises/Exercise2/

Figure 5. Opening the working directory.

3 Deliverables

Follow the steps below to complete the exercise.

a) Compile the basic.p4 in the VS Code. Which files were generated?

b) Push the output file of the compiler to both switches s1 and s2.

c) Start the daemon on both switches and map the ports to the corresponding interfaces

(see Figure 6). Will there be connectivity between the hosts at this point?

s1-eth0 0 s1-eth11

s1

s2-eth0 0 s2-eth11

s2

Figure 6. Port mapping.

d) Push the table entries to the switches. The files rules_s1.cmd and rules_s2.cmd for

switches s1 and s2, respectively, are located in ~/exercise2/.

e) Run a connectivity test between the hosts using ping. Is there connectivity?

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 3: P4 Program Building Blocks

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 3: P4 Program Building Blocks

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 The PISA architecture .. 3

1.1 The PISA architecture ... 4

1.2 Programmable parser .. 4

1.3 Programmable match-action pipeline ... 5

1.4 Programmable deparser .. 5

1.5 The V1Model .. 5

1.6 P4 program mapping to the V1Model ... 6

2 Lab topology.. 6

2.1 Starting host h1 and host h2 .. 8

3 Navigating through the components of a basic P4 program 8

3.1 Loading the programming environment .. 9

3.2 Describing the components of the P4 program ... 9

3.3 Programming the pipeline sequence ... 14

4 Loading the P4 program .. 15

4.1 Compiling and loading the P4 program to switch s1 ... 15

4.2 Verifying the configuration .. 17

5 Configuring switch s1 .. 18

5.1 Mapping the P4 program’s ports ... 18

5.2 Loading the rules to the switch .. 20

6 Testing and verifying the P4 program ... 21

References .. 23

Lab 3: P4 Program Building Blocks

 Page 3

Overview

This lab describes the building blocks and the general structure of a P4 program. It maps
the program’s components to the Protocol-Independent Switching Architecture (PISA), a
programmable pipeline used by modern whitebox switching hardware. The lab also
demonstrates how to track an incoming packet as it traverses the pipeline of the switch.
Such capability is very useful to debug and troubleshoot a P4 program.

Objectives

By the end of this lab, students should be able to:

1. Understand the PISA architecture.
2. Understand on high-level the main building blocks of a P4 program.
3. Map the P4 program components to the components of the programmable

pipeline.
4. Trace the lifecycle of a packet as it traverses the pipeline.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: The PISA architecture.
2. Section 2: Lab topology.
3. Section 3: Navigating through the components of a basic P4 program.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Testing and verifying the P4 program.

1 The PISA architecture

Lab 3: P4 Program Building Blocks

 Page 4

1.1 The PISA architecture

The Protocol Independent Switch Architecture (PISA)1 is a packet processing model that
includes the following elements: programmable parser, programmable match-action
pipeline, and programmable deparser, see Figure 1. The programmable parser permits
the programmer to define the headers (according to custom or standard protocols) and
to parse them. The parser can be represented as a state machine. The programmable
match-action pipeline executes the operations over the packet headers and intermediate
results. A single match-action stage has multiple memory blocks (e.g., tables, registers)
and Arithmetic Logic Units (ALUs), which allow for simultaneous lookups and actions.
Since some action results may be needed for further processing (e.g., data dependencies),
stages are arranged sequentially. The programmable deparser assembles the packet
headers back and serializes them for transmission. A PISA device is protocol independent.
The P4 program defines the format of the keys used for lookup operations. Keys can be
formed using packet header’s information. The control plane populates table entries with
keys and action data. Keys are used for matching packet information (e.g., destination IP
address) and action data is used for operations (e.g., output port).

Programmable match-
action pipeline

...

Programmable
parser

ALU

Packets

Memory (e.g., table)

Programmable
deparser

Stage 1 Stage N

State

Packets

Switch
ASIC

Figure 1. A PISA-based data plane.

Programmable switches do not introduce performance penalty. On the contrary, they
may produce better performance than fixed-function switches. When compared with
general purpose CPUs, ASICs remain faster at switching, and the gap is only increasing.

1.2 Programmable parser

The programmable parser permits the programmer to define the headers (according to
custom or standard protocols) and to describe how the switch should process those
headers. The parser de-encapsulates the headers, converting the original packet into a
parsed representation of the packet. The programmer declares the headers that must be
recognized and their order in the packet. The parser can be represented as a state
machine without cycles (direct acyclic graph), with one initial state (start) and two final
states (accept or reject).

Lab 3: P4 Program Building Blocks

 Page 5

1.3 Programmable match-action pipeline

The match-action pipeline implements the processing occurring at a switch. The pipeline

consists of multiple identical stages (N stages are shown in Figure 1). Practical

implementations may have 10/15 stages on the ingress and egress pipelines. Each stage

contains multiple match-action units (4 units per stage in Figure 1). A match-action unit

has a match phase and an action phase. During the match phase, a table is used to match

a header field of the incoming packet against entries in the table (e.g., destination IP

address). Note that there are multiple tables in a stage (4 tables per stage in Figure 1),

which permit the switch to perform multiple matches in parallel over different header

fields. Once a match occurs, a corresponding action is performed by the ALU. Examples

of actions include: modify a header field, forward the packet to an egress port, drop the

packet, and others. The sequential arrangement of stages allows for the implementation

of serial dependencies. For example, if the result of an operation is needed prior to

perform a second operation, then the compiler would place the first operation at an

earlier stage than the second operation.

1.4 Programmable deparser

The deparser assembles back the packet and serializes it for transmission. The
programmer specifies the headers to be emitted by the deparser. When assembling the
packet, the deparser emits the specified headers followed by the original payload of the
packet.

1.5 The V1Model

Figure 2 depicts the V1Model2 architecture components. The V1Model architecture
consists of a programmable parser, an ingress match-action pipeline, a traffic manager,
an egress match-action pipeline, and a programmable deparser. The traffic manager
schedules packets between input ports and output ports and performs packet replication
(e.g., replication of a packet for multicasting). The V1Model architecture is implemented
on top BMv2’s simple_switch target3.

Programmable match-
action pipeline

...

Programmable
parser

ALU

Packets

Traffic
Manager

Memory (e.g., table)

Programmable match-
action pipeline

...

Programmable
deparser

Ingress match-action and checksum verification Egress match-action and checksum verification

Stage 1 Stage N Stage 1 Stage N

Configurable
component

State

Figure 2. The V1Model architecture.

Lab 3: P4 Program Building Blocks

 Page 6

1.6 P4 program mapping to the V1Model

The P4 program used in this lab is separated into different files. Figure 3 shows the
V1Model and its associated P4 files. These files are as follows:

• headers.p4: this file contains the packet headers’ and the metadata’s definitions.

• parser.p4: this file contains the implementation of the programmable parser.

• ingress.p4: this file contains the ingress control block that includes match-action
tables.

• egress.p4: this file contains the egress control block.

• deparser.p4: this file contains the deparser logic that describes how headers are
emitted from the switch.

• checksum.p4: this file contains the code that verifies and computes checksums.

• basic.p4: this file contains the starting point of the program (main) and invokes
the other files. This file must be compiled.

Programmable match-
action pipeline

...

Programmable
parser

Packets

Traffic
Manager

Programmable match-
action pipeline

...

Programmable
deparser

Ingress match-action and checksum verification Egress match-action and checksum verification

Stage 1 Stage N Stage 1 Stage N

Configurable
component

headers.p4 parser.p4 ingress.p4 egress.p4 deparser.p4

checksum.p4 checksum.p4Non-programmable

ALUMemory (e.g., table)State

Figure 3. Mapping of P4 files to the V1Model’s components.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 3: P4 Program Building Blocks

 Page 7

Figure 5. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab3 folder and search for the topology file called lab3.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 6. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 7. Running the emulation.

Lab 3: P4 Program Building Blocks

 Page 8

2.1 Starting host h1 and host h2

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Figure 8. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 9. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded on the switch.

3 Navigating through the components of a basic P4 program

Lab 3: P4 Program Building Blocks

 Page 9

This section shows the steps required to compile the P4 program. It illustrates the editor
that will be used to modify the P4 program, and the P4 compiler that will produce a data
plane program for the software switch.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 10. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4_Labs/lab3/

Figure 11. Launching the editor and opening the lab3 directory.

3.2 Describing the components of the P4 program

Step 1. Once the previous command is executed, VS Code will start. Click on basic.p4 in
the file explorer panel on the left hand side to open the P4 program in the editor.

Lab 3: P4 Program Building Blocks

 Page 10

Figure 12. The main P4 file and how it includes other user-defined files.

The basic.p4 file includes the starting point of the P4 program and other files that are
specific to the language (core.p4) and to the architecture (v1model.p4). To make the P4
program easier to read and understand, we separated the whole program into different
files. Note how the files in the explorer panel correspond to the components of the
V1Model. To use those files, the main file (basic.p4) must include them first. For example,
to use the parser, we need to include the parser.p4 file (#include “parser.p4”).

We will navigate through the files in sequence as they appear in the architecture.

Step 2. Click on the headers.p4 file to display the content of the file.

Lab 3: P4 Program Building Blocks

 Page 11

Figure 13. The defined headers.

The headers.p4 above shows the headers that will be used in our pipeline. We can see
that the ethernet and the IPv4 headers are defined. We can also see how they are
grouped into a structure (struct headers). The headers name will be used throughout

the program when referring to the headers. Furthermore, the file shows how we can use
typedef to provide an alternative name to a type.

Step 3. Click on the parser.p4 file to display the content of the parser.

Lab 3: P4 Program Building Blocks

 Page 12

Figure 14. The parser implementation.

The figure above shows the content of the parser.p4 file. We can see that the parser is
already written with the name MyParser. This name will be used when defining the
pipeline sequence.

Step 4. Click on the ingress.p4 file to display the content of the file.

Figure 15. The ingress component.

Lab 3: P4 Program Building Blocks

 Page 13

The figure above shows the content of the ingress.p4 file. We can see that the ingress is
already written with the name MyIngress. This name will be used when defining the
pipeline sequence.

Step 5. Click on the egress.p4 file to display the content of the file.

Figure 16. The egress component.

The figure above shows the content of the egress.p4 file. We can see that the egress is
already written with the name MyEgress. This name will be used when defining the
pipeline sequence.

Step 6. Click on the checksum.p4 file to display the content of the file.

Figure 17. The checksum component.

Lab 3: P4 Program Building Blocks

 Page 14

The figure above shows the content of the checksum.p4 file. We can see that the
checksum is already written with two control blocks: MyVerifyChecksum and
MyComputeChecksum. These names will be used when defining the pipeline sequence.
Note that MyVerifyChecksum is empty since no checksum verification is performed in
this lab.

Step 7. Click on the deparser.p4 file to display the content of the file.

Figure 18. The deparser component.

The figure above shows the content of the deparser.p4 file. We can see that the deparser
is already written with two instructions that reassemble the packet.

3.3 Programming the pipeline sequence

Now it is time to write the pipeline sequence in the basic.p4 program.

Step 1. Click on the basic.p4 file to display the content of the file.

Figure 19. Selecting the basic.p4 file.

Step 2. Write the following block of code at the end of the file

Lab 3: P4 Program Building Blocks

 Page 15

V1Switch (

MyParser(),

MyVerifyChecksum(),

MyIngress(),

MyEgress(),

MyComputeChecksum(),

MyDeparser()

) main;

Figure 20. Writing the pipeline sequence in the basic.p4 program

We can see here that we are defining the pipeline sequence according to the V1Model
architecture. First, we start by the parser, then we verify the checksum. Afterwards, we
specify the ingress block and the egress block, and we recompute the checksum. Finally,
we specify the deparser.

Step 3. Save the changes by pressing Ctrl+s.

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

Lab 3: P4 Program Building Blocks

 Page 16

Figure 21. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 3: P4 Program Building Blocks

 Page 17

Figure 22. Downloading the P4 program to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 23. Maximizing the MiniEdit window.

Step 2. In MiniEdit, right-click on the P4 switch icon and start the Terminal.

Figure 24. Starting the terminal on the switch.

Lab 3: P4 Program Building Blocks

 Page 18

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 25. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded to switch s1
after compiling the P4 program.

5 Configuring switch s1

5.1 Mapping the P4 program’s ports

Step 1. Issue the following command to display the interfaces on the switch s1.

ifconfig

Lab 3: P4 Program Building Blocks

 Page 19

Figure 26. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-eth0 and s1-eth1. The interface s1-eth0
on the switch s1 connects host h1. The interface s1-eth1 on the switch s1 connects host
h2.

Step 2. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 --nanolog ipc:///tmp/bm-log.ipc

basic.json &

Figure 27. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The --nanolog option is used to instruct the switch daemon that we want to see the
logs of the switch.

Lab 3: P4 Program Building Blocks

 Page 20

s1-eth0 0 s1-eth11

Figure 28. Mapping of the logical interface numbers (0, 1) to the Linux interfaces (s1-eth0, s1-
eth1).

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 29. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab3/rules.cmd

Figure 30. Loading the forwarding table entries into switch s1.

Now the forwarding table in the switch is populated.

Lab 3: P4 Program Building Blocks

 Page 21

6 Testing and verifying the P4 program

Step 1. Type the following command to initiate the nanolog client that will display the
switch logs.

nanomsg_client.py

Figure 31. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command below so that the host starts listening
for incoming packets.

./recv.py

Figure 32. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command to send a packet to host h2.

./send.py 10.0.0.2 HelloWorld

Lab 3: P4 Program Building Blocks

 Page 22

Figure 33. Sending a test packet from host h1 to host h2.

Now that the switch has a program with tables properly populated, the hosts are able to
reach each other.

Step 4. Go back to switch s1 terminal and inspect the logs.

Figure 34. Inspecting the logs in switch s1.

The figure above shows the processing logic as the packet enters switch s1. The packet
arrives on port 0 (port_in: 0), then the parser starts extracting the headers. After the

Lab 3: P4 Program Building Blocks

 Page 23

parsing is done, the packet is processed in the ingress and in the egress pipelines. Then,
the checksum update is executed and the deparser reassembles and emits the packet
using port 1 (port_out: 1).

Step 5. Verify that the packet was received on host h2.

This concludes lab 3. Stop the emulation and then exit out of MiniEdit.

References

1. C. Cascaval, D. Daly. "P4 Architectures." [Online]. Available:
https://tinyurl.com/3zk8vs6a.

2. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.
3. P4lang/behavioral-model github repository. “The BMv2 Simple Switch target.”

[Online]. Available: https://tinyurl.com/vrasamm.

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 4: Parser Implementation

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 4: Parser Implementation

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Program headers and definitions ... 4

1.2 Programmable parser .. 6

2 Lab topology.. 7

2.1 Starting host h1 and host h2 .. 9

3 Defining the program’s headers ... 10

3.1 Loading the programming environment .. 10

3.2 Coding header’s definitions into the headers.p4 file ... 11

4 Parser Implementation ... 14

5 Loading the P4 program .. 17

5.1 Compiling and loading the P4 program to switch s1 ... 17

5.2 Verifying the configuration .. 19

6 Configuring switch s1 .. 20

6.1 Mapping P4 program’s ports.. 20

6.2 Loading the rules to the switch .. 22

7 Testing and verifying the P4 program ... 22

8 Augmenting the P4 program to parse IPv6 .. 24

9 Testing and verifying the augmented P4 program ... 28

References .. 31

Lab 4: Parser Implementation

 Page 3

Overview

This lab starts by describing how to define custom headers in a P4 program. It then
explains how to implement a simple parser that parses the defined headers. The lab
further shows how to track the parsing states of a packet inside the software switch.

Objectives

By the end of this lab, students should be able to:

1. Define custom headers in a P4 program.
2. Understand how the parser transitions between states and how it extracts the

headers from the packets.
3. Implement a simple parser in P4.
4. Trace the parsed states when a packet enters to the switch.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Defining the headers.
4. Section 4: Parser implementation.
5. Section 5: Loading the P4 program.
6. Section 6: Configuring switch s1.
7. Section 7: Testing and verifying the P4 program.
8. Section 8: Augmenting the P4 program to parse IPv6.
9. Section 9: Testing and verifying the augmented P4 program.

1 Introduction

Lab 4: Parser Implementation

 Page 4

1.1 Program headers and definitions

For several decades, the networking industry operated in a bottom-up approach. At the
bottom of the system are the fixed-function Application Specific Integrated Circuits
(ASICs), which enforce protocols, features, and processes available in the switch.
Programmers and operators are limited to these capabilities when building their systems.
Consequently, systems have features defined by ASIC vendors that are rigid and may not
fit the network operators’ needs. Programmable switches and P4 represent a disruption
of the networking industry by enabling a top-down approach for the design of network
applications. With this approach, the programmer or network operator can precisely
describe features and how packets are processed in the ASIC, using a high-level language,
P4.

With the Protocol Independent Switch Architecture (PISA)1, the programmer defines the
headers and corresponding parser as well as actions executed in the match-action
pipeline and the deparser. The programmer has the flexibility of defining custom headers
(i.e., a header not standardized). Such capability is not available in non-programmable
devices.

Destination Address Ether TypeSource Address

48 bits 16 bits48 bits

Figure 1. Ethernet header.

Bit 0 2 3 4 5 6 7 81 9 11 12 13 14 15 16 1710 18 20 21 22 23 24 25 2619 27 29 30 3128

Version IHL DSCP ECN Total Length

Identifier Flags Fragment Offset

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options (if IHL > 5)

0

32

64

96

128

160

Figure 2. IPv4 header.

Bit 0 2 3 4 5 6 7 81 9 11 12 13 14 15 16 1710 18 20 21 22 23 24 25 2619 27 29 30 3128

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source IP Address

Destination IP Address

0

32

64

192

Figure 3. IPv6 header.

Lab 4: Parser Implementation

 Page 5

Figure 4 shows an excerpt of a P4 program where the headers are defined. This is typically
written at the top of the program before the parsing starts. We can see that the
programmer defined a header corresponding to Ethernet (lines 11-15). The Ethernet
header fields are shown in Figure 1.

The programmer also defined an IPv4 header (lines 26-40). The IPv4 header format is
shown in Figure 2 and the IPv6 header is shown in Figure 3.

 1: #include <core.p4>

 2: #include <v1model.p4>

 3: const bit<16> TYPE_IPV4 = 0x800;

 4:

 5: /*************************HEADERS*************************/

 6:

 7: typedef bit<9> egressSpec_t;

 8: typedef bit<48> macAddr_t;

 9: typedef bit<32> ip4Addr_t;

10:

11: header ethernet_t{

12: macAddr_t dstAddr;

13: macAddr_t srcAddr;

14: bit<16> etherType;

15: }

16:

17: struct metadata {

18: /* empty */

19: }

20:

21: struct headers{

22: ethernet_t ethernet;

23: ipv4_t ipv4;

24: }

25:

26: header ipv4_t {

27: bit<4> version;

28: bit<4> ihl;
29: bit<6> DSCP;
30: bit<2> ECN;

31: bit<16> totalLen;

32: bit<16> identification;

33: bit<3> flags;

34: bit<13> fragOffset;

35: bit<8> ttl;

36: bit<8> protocol;

37: bit<16> hdrChecksum;

38: ip4Addr_t srcAddr;

39: ip4Addr_t dstAddr;

40: }

Figure 4. Program headers and definitions.

The code starts by including the core.p4 file (line 1) which defines some common types
and variables used in all P4 programs. For instance, the packet_in and packet_out
extern types which represent incoming and outgoing packets, respectively, are declared
in core.p42. Next, the v1model.p43 file is included (line 2) to define the V1Model
architecture4 and all its externs used when writing P4 programs. Line 3 creates a 16-bit

Lab 4: Parser Implementation

 Page 6

constant TYPE_IPV4 with the value 0x800. This means that TYPE_IPV4 can be used later
in the P4 program to reference the value 0x800. The typedef declarations (lines 7 - 9) are
used to assign alternative names to types. Subsequently, the headers and the metadata
structs that will be used in the program are defined. These headers are customized
depending on how the programmer wants the packets to be parsed. The program in
Figure 1 defines the Ethernet header (lines 11-15) and the IPv4 header (lines 26-40). The
declarations inside each header are usually written after referring to the standard
specifications of the protocol. Note in the ethernet_t header the macAddr_t is used
rather than using a 48-bit field. Lines 17 - 19 show how to declare user-defined metadata,
which are passed from one block to another as the packet propagates through the
architecture. For simplicity, this program does not require any user metadata.

1.2 Programmable parser

The programmable parser permits the programmer to describe how the switch will
process the packet. The parser de-encapsulates the headers, converting the original
packet into a parsed representation of the packet. The parser can be represented as a
state machine without cycles (direct acyclic graph), with one initial state (start) and two
final states (accept or reject).

parse_ipv4

etherType == TYPE_IPv4 etherType TYPE_IPv4

Accept

Reject

parse_ethernet

Start

(a)

Lab 4: Parser Implementation

 Page 7

 1: /*************************HEADERS*************************/

 2: parser MyParser(packet_in packet, out headers hdr,

 3: inout metadata meta,

 4: inout standard_metadata_t standard_metadata){

 5: state start {

 6: transition parse_ethernet;

 7: }

 8: state parse_ethernet {

 9: packet.extract(hdr.ethernet);

10: transition select(hdr.ethernet.etherType) {

11: TYPE_IPV4: parse_ipv4;

12: default: reject;

13: }

14: }

15: state parse_ipv4 {

16: packet.extract(hdr.ipv4);

17: transition accept;

18: }

19: }
(b)

Figure 5. Example of a parser. (a) Graphical representation of the parser. (b) In P4, the parser
always starts with the initial state called start. First, we transition unconditionally to

parse_ethernet. Then, we can create some conditions to direct the parser. Finally, when we

transition to the accept state, the packet is moved to the ingress block of the pipeline. A packet

that reaches the reject state will be dropped.

Figure 5a shows the graphical representation of the parser and Figure 5b its
corresponding P4 code. Note that packet is an instance of the packet_in extern (specific
to V1Model) and is passed as a parameter to the parser. The extract method associated
with the packet extracts N bits, where N is the total number of bits defined in the
corresponding header (for example, 112 bits for Ethernet). Afterwards, the etherType
field of the Ethernet header is examined using the select statement, and the program
branches to the parse_ipv4 state if the etherType field corresponds to IPv4. The state
transitions to the reject if it is not an IPv4 header, as shown in the figure above (Line
12). In the parse_ipv4 state, the IPv4 header is extracted, and the program
unconditionally transitions to the accept state.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit.

10.0.0.1
aaaa::1

10.0.0.2
bbbb::1

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 6. Lab topology.

Lab 4: Parser Implementation

 Page 8

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 7. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab4 folder and search for the topology file called lab4.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 8. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Lab 4: Parser Implementation

 Page 9

Figure 9. Running the emulation.

2.1 Starting host h1 and host h2

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Figure 10. Opening a terminal on host h1.

Step 2. Test connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 11. Connectivity test using ping command.

Lab 4: Parser Implementation

 Page 10

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded on the switch.

3 Defining the program’s headers

This section demonstrates how to define custom headers in a P4 program. It also shows
how to use constants and typedefs to make the program more readable.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 12. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4_Labs/lab4

Figure 13. Launching the editor and opening the lab4 directory.

Lab 4: Parser Implementation

 Page 11

3.2 Coding header’s definitions into the headers.p4 file

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Figure 14. Inspecting the headers.p4 file.

We can see that the headers.p4 is empty and we have to fill it.

Step 2. We will start by defining some typedefs and constants. Write the following in the
headers.p4 file.

typedef bit<48> macAddr_t;

typedef bit<32> ip4Addr_t;

const bit<16> TYPE_IPV4 = 0x800;

Figure 15. Data types and constant definitions.

In the figure above the typedef declarations used (lines 2 - 3) are used to assign alternative
names to types. Here we are saying that macAddr_t can be used instead of bit<48>, and
ip4Addr_t instead of bit<32>. We will use those typedefs when defining the headers.

Lab 4: Parser Implementation

 Page 12

Line 4 shows how to define a constant with the name TYPE_IPV4 and a value of 0x800.
We will use this value in the parser implementation.

Step 3. Now we will define the Ethernet header. Add the following code to the headers.p4
file.

header ethernet_t {

 macAddr_t dstAddr;

 macAddr_t srcAddr;

 bit<16> etherType;

}

Figure 16. Adding the Ethernet header definition.

Note how we used the typedef macAddr_t which corresponds to bit<48> when defining
the destination MAC address field (dstAddr) and the source MAC address field (srcAddr).

Step 4. Now we will define the IPv4 header. Add the following to the headers.p4 file.

header ipv4_t {

 bit<4> version;

 bit<4> ihl;

 bit<8> diffserv;

 bit<16> totalLen;

 bit<16> identification;

 bit<3> flags;

 bit<13> fragOffset;

 bit<8> ttl;

 bit<8> protocol;

 bit<16> hdrChecksum;

 ip4Addr_t srcAddr;

 ip4Addr_t dstAddr;

}

Lab 4: Parser Implementation

 Page 13

Figure 17. Adding the IPv4 header definition.

Consider the figure above. Note how we used the typedef ip4Addr_t which corresponds
to bit<32> when defining the source IP address field (srcAddr) and the destination IP
address field (dstAddr). Also, note how we are mapping the fields to those defined in the
standard IPv4 header (see Figure 3).

Step 5. Now we will create a struct to represent our metadata. Metadata are passed from
one block to another as the packet propagates through the architecture. For simplicity,
this program does not require any user metadata, and hence we will define it as empty
with no fields. Add the following to the headers.p4 file.

struct metadata {

 /* empty */

}

Figure 18. Adding the metadata structures.

Step 6. Now we will create a struct to contain our headers (Ethernet and IPv4). Append
the following code to the headers.p4 file.

Lab 4: Parser Implementation

 Page 14

struct headers {

 ethernet_t ethernet;

 ipv4_t ipv4;

}

Figure 19. Appending the headers’ data structure to the headers.p4 file.

Step 7. Save the changes by pressing Ctrl+s.

4 Parser Implementation

Now it is time to define how the parser works.

Step 1. Click on the parser.p4 file to display the content of the file.

Figure 20. Inspecting the parse.p4 file.

Lab 4: Parser Implementation

 Page 15

We can see that the headers.p4 file that we just filled is included here in the parser. The
file also includes a starter code which declares a parser named MyParser. Note how the
headers and the metadata structs that we defined previously are passed as parameters
to the parser.

Step 2. Add the start state inside the parser by inserting the following code.

state start {

 transition parse_ethernet;

}

Figure 21. Adding start state to the parser.p4 file.

The start state is the state where the parser begins parsing the packet. Here we are
transitioning unconditionally to the parse_ethernet state.

Step 3. Add the parse_ethernet state inside the parser by inserting the following code.

state parse_ethernet {

 packet.extract(hdr.ethernet);

 transition select(hdr.ethernet.etherType) {

 TYPE_IPV4: parse_ipv4;

 default: accept;

 }

}

Lab 4: Parser Implementation

 Page 16

Figure 22. Adding parse_ethernet state to the parser.p4 file.

The parse_ethernet state extracts the Ethernet header and checks for the value of the
header field etherType. Note how we reference a header field by specifying the header
to which that field belongs (i.e., hdr.ethernet.etherType). If the value of etherType is
TYPE_IPV4 (which corresponds to 0x800 as defined previously), the parser transitions to
the parse_ipv4 state. Otherwise, the execution of the parser terminates.

Step 4. Add the parse_ipv4 state inside the parser by inserting the following code.

state parse_ipv4 {

 packet.extract(hdr.ipv4);

 transition accept;

}

Lab 4: Parser Implementation

 Page 17

Figure 23. Adding parse_ipv4 state to the parser.p4 file.

The parse_ipv4 state extracts the IPv4 header and terminates the execution of the
parser.

Step 5. Save the changes to the file by pressing Ctrl + s.

5 Loading the P4 program

5.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

Lab 4: Parser Implementation

 Page 18

Figure 24. Compiling the code.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 4: Parser Implementation

 Page 19

Figure 25. Pushing the P4 program to switch s1.

5.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 26. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Lab 4: Parser Implementation

 Page 20

Figure 27. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 28. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

6 Configuring switch s1

6.1 Mapping P4 program’s ports

Step 1. Issue the following command on switch s1 terminal to display the interfaces.

ifconfig

Lab 4: Parser Implementation

 Page 21

Figure 29. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-eth0 and s1-eth1. The interface s1-eth0
on the switch s1 connects host h1. The interface s1-eth1 on the switch s1 connects host
h2.

Step 2. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 --nanolog ipc:///tmp/bm-log.ipc

basic.json &

Figure 30. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The --nanolog parameter is used to instruct the switch daemon that we want to see
the logs of the switch.

Lab 4: Parser Implementation

 Page 22

6.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 31. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab4/rules.cmd

Figure 32. Populating the forwarding table into switch s1.

7 Testing and verifying the P4 program

Step 1. Type the following command to initiate the nanolog client that will display the
switch logs.

nanomsg_client.py

Lab 4: Parser Implementation

 Page 23

Figure 33. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command below so that the host starts listening
for packets.

./recv.py

Figure 34. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command to send a packet to host h2.

./send.py 10.0.0.2 HelloWorld

Figure 35. Sending a test packet from host h1 to host h2.

Step 4. Inspect the logs on switch s1 terminal.

Lab 4: Parser Implementation

 Page 24

Figure 36. Inspecting the logs in switch s1.

The figure above shows that the Ethernet and IPv4 header are extracted.

8 Augmenting the P4 program to parse IPv6

Now we will augment the program to parse IPv6 packets. Figure 4 shows the IPv6 header
fields.

Step 1. Go back to the headers.p4 file and add the following constant definition.

const bit<16> TYPE_IPV6 = 0x86dd;

Figure 37. Adding the IPv6 type definition.

Step 2. Add the IPv6 header definition as shown below.

header ipv6_t{

 bit<4> version;

 bit<8> trafficClass;

 bit<20> flowLabel;

 bit<16> payloadLen;

 bit<8> nextHdr;

 bit<8> hopLimit;

Lab 4: Parser Implementation

 Page 25

 bit<128> srcAddr;

 bit<128> dstAddr;

}

Figure 38. Adding the IPv6 header definition.

Step 3. Append the IPv6 header to the header’s data structure.

ipv6_t ipv6;

Figure 39. Adding IPv6 type to the header data structure.

Step 4. Go to the parser.p4 file and add the following line to the parse_ethernet state.

Lab 4: Parser Implementation

 Page 26

TYPE_IPV6: parse_ipv6;

Figure 40. Including the IPv6 state transition into the parse_ethernet state.

Step 5. Add the parse_ipv6 state inside the parser by inserting the following code.

state parse_ipv6 {

 packet.extract(hdr.ipv6);

 transition accept;

}

Figure 41. Adding parse_ipv6 state to the parser.p4 file.

Step 6. Save the changes by pressing Ctrl+s.

Lab 4: Parser Implementation

 Page 27

Step 7. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

Figure 42. Compiling the P4 program.

Step 8. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 4: Parser Implementation

 Page 28

Figure 43. Pushing the P4 program to switch s1.

9 Testing and verifying the augmented P4 program

Step 1. In switch s1 terminal, press Ctrl + c to return to the CLI. The figure below shows
the output after executing the command.

Figure 44. Returning to the CLI.

Lab 4: Parser Implementation

 Page 29

Step 2. Type the command below in the terminal of switch s1 to stop the running daemon.

pkill simple_switch

Figure 45. Ending switch s1 P4 process.

Step 3. Type the command below in the terminal of the switch s1 to start the daemon
with the new P4 program.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 --nanolog ipc:///tmp/bm-log.ipc

basic.json &

Figure 46. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Step 4. In switch s1 terminal, press Enter to return the CLI.

Figure 47. Returning to switch s1 CLI.

Step 5. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab4/rules.cmd

Lab 4: Parser Implementation

 Page 30

Figure 48. Populating the forwarding table into switch s1.

Step 6. Type the following command to display the switch logs.

nanomsg_client.py

Figure 49. Inspecting the logs in switch s1.

Step 7. On host h1’s terminal, type the following command to send an IPv6 packet to host
h2. Note that bbbb::1 is IPv6 address of host h2.

./send_ipv6.py bbbb::1 HelloWorld

Figure 50. Sending an IPv6 test packet from host h1 to host h2.

Lab 4: Parser Implementation

 Page 31

Step 8. Go back to switch s1 and inspect the logs.

Figure 51. Inspecting the logs in switch s1.

The figure above shows that the Ethernet and IPv6 header are extracted.

This concludes lab 4. Stop the emulation and then exit out of MiniEdit.

References

1. C. Cascaval, D. Daly. "P4 Architectures." [Online]. Available:
https://tinyurl.com/3zk8vs6a.

2. “p4c core.p4”. [Online]. Available:
https://github.com/p4lang/p4c/blob/main/p4include/core.p4.

3. “p4c v1model.p4”. [Online]. Available:
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4.

4. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Exercise 3: Parsing UDP and RTP

Document Version: 01-14-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Exercise 3: Parsing UDP and RTP

Contents

1 Exercise description .. 3

1.1 Ethernet header ... 3

1.2 IPv4 header... 3

1.3 UDP header .. 3

1.4 RTP header ... 4

1.5 Exercise topology ... 4

1.6 Credentials ... 4

2 Setting the environment ... 4

3 Deliverables ... 6

Exercise 3: Parsing UDP and RTP

1 Exercise description

In this exercise, you will implement the parser for the User Datagram Protocol (UDP) and
the Real-time Transport Protocol (RTP). RTP is used to deliver audio and video over IP
networks. The figure below shows the headers of packets arriving to the switch.

RTP

UDP

IPv4

Ethernet

Figure 1. Packet header to be implemented in this exercise.

The header definitions are shown below.

1.1 Ethernet header

Ethernet determines that the next header is IPv4 if the value of EtherType is 0x0800.

Destination Address Ether TypeSource Address Payload

48 bits 16 bits 46-1500 bytes48 bits

Figure 2. Ethernet header.

1.2 IPv4 header

Bit 0 2 3 4 5 6 7 81 9 11 12 13 14 15 16 1710 18 20 21 22 23 24 25 2619 27 29 30 3128

Version IHL DSCP ECN Total Length

Identifier Flags Fragment Offset

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options (if IHL > 5)

0

32

64

96

128

160

Figure 3. IPv4 header.

The switch can determine that the next header after IPv4 is UDP by inspecting the
protocol field of the IPv4 header. The protocol field corresponding to UDP is 17 (i.e., 0x11
in hexadecimal).

1.3 UDP header

Exercise 3: Parsing UDP and RTP

We will assume that after parsing UDP, the switch can determine that the next header is
RTP by inspecting the destination port of UDP. If the value is 5004 (i.e., 0x138C in
hexadecimal), then the next header is RTP.

Bit 0 2 3 4 5 6 7 81 9 11 12 13 14 15 16 1710 18 20 21 22 23 24 25 2619 27 29 30 3128

Source Port Destination Port

Length Checksum

0

32

Figure 4. UDP header.

1.4 RTP header

The RTP header format is as follows:

Bit 0 2 3 4 5 6 7 81 9 11 12 13 14 15 16 1710 18 20 21 22 23 24 25 2619 27 29 30 3128

P Sequence Number

Timestamp

0

32

64 SSRC identfier

Ver. X CC M PT

Figure 5. RTP header.

1.5 Exercise topology

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 6. Lab topology.

1.6 Credentials

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

2 Setting the environment

Follow the steps below to set the exercise’s environment.

Exercise 3: Parsing UDP and RTP

Step 1. Open MiniEdit by double-clicking the shortcut on the desktop. If a password is
required type password.

Figure 7. MiniEdit shortcut.

Step 2. Load the topology located at /home/admin/P4_Exercises/Exercise3/.

Figure 8. Opening the exercise’s topology.

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

Exercise 3: Parsing UDP and RTP

Figure 9. Running the emulation.

Step 4. In the terminal, type the command below. This command launches the Visual
Studio Code and opens the directory where the P4 program for this exercise is located.

code ~/P4_Exercises/Exercise3/

Figure 10. Opening the working directory.

3 Deliverables

Follow the steps below to complete the exercise.

a) Implement the headers for Ethernet, IPv4, UDP, and RTP in the headers.p4 file.

b) Implement the parser.

c) Compile the basic.p4 in the Visual Studio Code terminal. Push the output file of the

compiler to the switch s1.

d) Start the switch daemon and load the rules located in ~/exercise3/.

e) In switch s1 terminal, run the nanomsg_client.py program to log the events in the

switch.

f) Send a packet using the following command.

./send_rtp.py 10.0.0.2 HelloWorld

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 5: Introduction to Match-action Tables (Part 1)

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 5: Introduction to Match-action Tables

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to control blocks .. 3

1.1 Tables ... 4

1.2 Match types .. 4

1.3 Exact match .. 4

2 Lab topology.. 6

2.1 Starting host h1 and host h2 .. 7

3 Defining a table with exact match lookup .. 8

3.1 Loading the programming environment .. 8

3.2 Programming the exact table in the ingress block ... 9

4 Loading the P4 program .. 15

4.1 Compiling and loading the P4 program to switch s1 ... 15

4.2 Verifying the configuration .. 16

5 Configuring switch s1 .. 17

5.1 Mapping P4 program’s ports.. 17

5.2 Loading the rules to the switch .. 19

6 Testing and verifying the P4 program ... 19

References .. 23

Lab 5: Introduction to Match-action Tables

 Page 3

Overview

This lab describes match-action tables and how to define them in a P4 program. It then
explains the different types of matching that can be performed on keys. The lab further
shows how to track the misses/hits of a table key while a packet is received on the switch.

Objectives

By the end of this lab, students should be able to:

1. Understand what match-action tables are used for.
2. Describe the basic syntax of a match-action table.
3. Implement a simple table in a P4.
4. Trace a table’s misses/hits when a packet enters to the switch.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to control blocks.
2. Section 2: Lab topology.
3. Section 3: Defining a table with exact match lookup.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Testing and verifying the P4 program.

1 Introduction to control blocks

Control blocks are essential for processing a packet. For example, a control block for layer-
3 forwarding may require a forwarding table that is indexed by the destination IP address.
The control block may include actions to forward a packet when a hit occurs, and to drop

Lab 5: Introduction to Match-action Tables

 Page 4

the packet otherwise. To forward a packet, a switch must perform routing lookup on the
destination IP address. Figure 1 shows the basic structure of a control block.

Match

... ...

Action Match

... ...

Action

Control
block

Control
block

Control
block

...

Figure 1. Control blocks.

1.1 Tables

Tables are essential components that define the processing behavior of a packet inside

the switch. A table is specified in the P4 program and has one or more entries (rows)

which are populated by the control plane. An entry contains a key, an action, and action

data.

• Key: it is it is used for lookup operations. The switch builds a key for the incoming
packet using one or more header fields (e.g., destination IP address) and then
lookups for that value in the table.

• Action: once a match occurs, the action specified in the entry is performed by the
arithmetic logic unit. Actions are simple operations such as modify a header field,
forward the packet to an egress port, and drop the packet. The P4 program
contains the possible actions.

• Action data: it can be considered as parameter/s used along with the action. For
example, the action data may represent the port number the switch must use to
forward the packet. Action data is populated by the control plane.

1.2 Match types

There are three types of matching: exact match, Longest Prefix match (LPM), and ternary
match. They are defined in the standard library (core.p41). Note that architectures may
define and implement additional match types. For example, the V1Model2 also has
matching based on ranges and selectors. In this lab we will discuss exact match.

1.3 Exact match

Assume that the exact match lookup is used to search for a specific value of an entry in a
table. Assume that Table 2 matches on the destination IP address. If an incoming packet
has 10.0.0.2 as the destination IP address, then it will match against the second entry and
the P4 program will forward the packet using port 2 as the egress port.

Lab 5: Introduction to Match-action Tables

 Page 5

Table 2. Exact match table.

Key Action Action data

10.0.0.1 forward port 1

10.0.0.2 forward port 2

default drop

Figure 2 shows the ingress control block portion of a P4 program. Two actions are defined,
drop and forward. The drop action (lines 5 - 7) invokes the mark_to_drop primitive,
causing the packet to be dropped at the end of the ingress processing. The forward action
(lines 8 - 10) accepts as input (i.e., action data) the destination port. This parameter is
inserted by the control plane and updated in the packet during the ingress processing. In
line 9, the P4 program assigns the egress port defined by the control plane to the
standard_metadata egress specification field (i.e., the field that the traffic manager
looks at to determine which port the packet will be sent to). Lines 11-21 implement a
table named ipv4_exact. The match is against the destination IP address using the exact
lookup method. The actions associated with the table are forward and drop. The default
action which is invoked when there is a miss is drop. The maximum number of entries a
table can support is configured manually by the programmer (i.e., 1024 entries, see line
19). Note, however, that the number of entries is limited by the amount of memory in the
switch.

The control block starts executing from the apply statement (see lines 22-26) which
contains the control logic. In this program, the ipv4_exact table is enabled when the
incoming packet has a valid IPv4 header.

 1: /************************INGRESS PROCESSING************************/

 2: control MyIngress(inout headers hdr,

 3: inout metadata meta,

 4: inout standard_metadata_t standard_metadata){

 5: action drop(){

 6: mark_to_drop(standard_metadata);

 7: }

 8: action forward(egressSpec_t port) {

 9: standard_metadata.egressSpec = port;

10: }

11: table ipv4_exact {

12: key = {

13: hdr.ipv4.dstAddr:exact;

14: }

15: actions = {

16: forward;

17: drop;

18: }

19: size = 1024;

20: default_action = drop();

21: }

22: apply {

23: if (hdr.ipv4.isValid()){

24: ipv4_exact.apply();

25: }

26: }

27: }

Figure 2. Ingress control block portion of a P4 program. The code implements a match-action table
with exact match lookup.

Lab 5: Introduction to Match-action Tables

 Page 6

2 Lab topology

Let us get started with creating a simple Mininet topology using MiniEdit.

10.0.0.1
aaaa::1

10.0.0.2
bbbb::1

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab5 folder and search for the topology file called lab5.mn and click on
Open. A new topology will be loaded to MiniEdit.

Lab 5: Introduction to Match-action Tables

 Page 7

Figure 5. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 6. Running the emulation.

2.1 Starting host h1 and host h2

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Lab 5: Introduction to Match-action Tables

 Page 8

Figure 7. Opening a terminal on host h1.

Step 2. Test connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 8. Connectivity test using ping command.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded on the switch.

3 Defining a table with exact match lookup

This section demonstrates how to implement a simple table in P4 that uses exact
matching on the destination IP address of the packet. When there is a match, the switch
forwards the packet from a certain port. Otherwise, the switch drops the packet.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Lab 5: Introduction to Match-action Tables

 Page 9

Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI).

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4_Labs/lab5

Figure 10. Launching the editor and opening the lab5 directory.

3.2 Programming the exact table in the ingress block

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Figure 11. Opening the ingress processing block.

Lab 5: Introduction to Match-action Tables

 Page 10

We can see that the ingress.p4 declares a control block named MyIngress. Note that the
body of the control block is empty. Our objective is to define a P4 table, its actions, and
then invoke them inside the block.

Step 2. We will start by defining the possible actions that a table will call. In this simple
forwarding program, we have two actions:

• forward: this action will be used to forward the packet out of a switch port.

• drop: this action will be used to drop the packet.

Step 3. Now we will define the behavior of the forward action. Insert the code below
inside the MyIngress control block.

action forward (egressSpec_t port) {

 standard_metadata.egress_spec = port;

}

Figure 12. Defining the forward action.

The action forward accepts as parameters the port number (egressSpec_t port) to be
used by the switch to forward the packet. Note that egressSpec_t is just a typedef that
corresponds to bit<9>. It is defined in the headers.p4 file.

The standard_metadata is an instance of the standard_metadata_t struct provided by
the V1Model. This struct contains intrinsic metadata that are useful in packet processing
and in more advanced features. For example, to determine the port on which a packet
arrives, we can use the ingress_port field in the standard_metadata. If we want to
specify the port to which the packet must be sent to, we need to use the egress_spec
field of the standard_metadata.

Now that we know what standard_metadata is, the egress port (which will be passed
through the control plane) is specified by egress_spec field (i.e., the port to which the
packet must be sent to) of the standard_metadata.

Lab 5: Introduction to Match-action Tables

 Page 11

In summary, when the forward action is executed, the packet will be sent out of the port
number specified as parameter.

Step 4. Now we will define the drop action. Insert the code below inside the MyIngress
control block.

action drop() {

 mark_to_drop(standard_metadata);

}

Figure 13. Defining the drop action.

The drop() action invokes a primitive action mark_to_drop() that modifies the
standard_metadata.egress_spec to an implementation-specific special value that
causes the packet to be dropped.

Step 5. Now we will define the table named forwarding. Write the following piece of
code inside the body of the MyIngress control block.

table forwarding {

}

Lab 5: Introduction to Match-action Tables

 Page 12

Figure 14. Declaring the forwarding table.

Tables require keys and actions. In the next step we will define a key.

Step 6. Add the following code inside the forwarding table.

key = {

 hdr.ipv4.dstAddr:exact;

}

Figure 15. Specifying the key and the match type.

The inserted code specifies that the destination IPv4 address of a packet
(hdr.ipv4.dstAddr) will be used as a key in the table. Also, the match type is exact,

Lab 5: Introduction to Match-action Tables

 Page 13

denoting that the value of the destination IP address will be matched as is against a value
specified later in the control plane.

Step 7. Add the following code inside the forwarding table to list the possible actions that
will be used in this table.

actions = {

 forward;

 drop;

}

Figure 16. Adding the actions to the forwarding table.

The code above defines the possible actions.

Step 8. Add the following code inside the forwarding table. The size keyword specifies
the maximum number of entries that can be inserted into this table from the control plane.
The default_action keyword specifies which default action to be invoked whenever
there is a miss.

size = 1024;

default_action = drop();

Lab 5: Introduction to Match-action Tables

 Page 14

Figure 17. Specifying the size and default action of the forwarding table.

The code above denotes that a maximum of 1024 rules can be inserted into the table, and
the default action to take whenever we have a miss is the drop() action.

Step 9. Add the following code inside the MyIngress block. The apply block defines the
sequential flow of packet processing. It is required in every control block, otherwise the
program will not compile. It describes in order, the sequence of tables to be invoked,
among other packet processing instructions.

apply {

 if(hdr.ipv4.isValid()) {

 forwarding.apply();

 }else{

 drop();

 }

}

Figure 18. Defining the apply block.

Lab 5: Introduction to Match-action Tables

 Page 15

In the code above, we are calling the table forwarding (forwarding.apply()) only if the
IPv4 header is valid (if (hdr.ipv4.isValid()), otherwise the packet is dropped. The
validity of the header is set if the parser successfully parsed said header (see parser.p4 for
a recap on the parser details). Note that if we received an IPv6 packet, the if-statement
that checks for the validity of the IPv4 header will evaluate to false, and the forwarding
table won’t be applied.

Step 10. Save the changes to the file by pressing Ctrl + s.

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

Figure 19. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 5: Introduction to Match-action Tables

 Page 16

Figure 20. Pushing the basic.json file to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 21. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Figure 22. Starting the terminal on the switch.

Lab 5: Introduction to Match-action Tables

 Page 17

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 23. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

5 Configuring switch s1

5.1 Mapping P4 program’s ports

Step 1. Issue the command ifconfig on the terminal of the switch s1.

ifconfig

Lab 5: Introduction to Match-action Tables

 Page 18

Figure 24. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-eth0 and s1-eth1. The interface s1-eth0
on the switch s1 connects host h1. The interface s1-eth1 on the switch s1 connects host
h2.

Step 2. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 --nanolog ipc:///tmp/bm-log.ipc

basic.json &

Figure 25. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The --nanolog option is used to instruct the switch daemon that we want to see the
logs of the switch.

Lab 5: Introduction to Match-action Tables

 Page 19

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 26. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab5/rules.cmd

Figure 27. Populating the forwarding table into switch s1.

The script above pushes the rules to the switch daemon. We can see that we added two
entries to the forwarding table. The key of the first entry is 10.0.0.2 (which translates to
0a:00:00:02 in hexadecimal as shown in the figure above, next to match key), its action is
forward, and its action data is 00:01, which specifies port 1. Similarly, the key of the
second entry is 10.0.0.1 (which translates to 0a:00:00:01 in hexadecimal as shown in the
figure above, next to match key), its action is forward, and its action data is 00:00, which
specifies port 0.

6 Testing and verifying the P4 program

Step 1. Type the following command to display the switch logs.

nanomsg_client.py

Lab 5: Introduction to Match-action Tables

 Page 20

Figure 28. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command the command below so that, the host
starts listening for packets.

./recv.py

Figure 29. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command.

./send.py 10.0.0.2 HelloWorld

Figure 30. Sending a test packet from host h1 to host h2.

Step 4. Inspect the logs on switch s1 terminal.

Lab 5: Introduction to Match-action Tables

 Page 21

Figure 31. Inspecting the logs in switch s1.

Note how the parser parsed the IPv4 header since the packet is IPv4. Also, we can see
that the condition evaluated to True (the condition here refers to if

(hdr.ipv4.isValid() in the P4 program). Consequently, the table forwarding was
applied, and because we have a hit on the destination IP address (i.e., 10.0.0.2, inserted
through the script), the packet was forwarded to host h2.

Step 5. Verify that the packet was received on host h2.

Step 6. On host h1’s terminal, type the following command to send an IPv6 packet to host
h2.

./send_ipv6.py bbbb::1 HelloWorld

Lab 5: Introduction to Match-action Tables

 Page 22

Figure 32. Sending an IPv6 test packet from host h1 to host h2.

Step 7. Inspect the logs on switch s1 terminal. The arrow indicates where the logs of the
new packet starts.

Figure 33. Inspecting the logs in switch s1.

Note how the parser now did not parse IPv4 since the packet is IPv6. Also, we can see that
the condition evaluated to False (the condition here refers to if (hdr.ipv4.isValid())
in the P4 program) and the packet is dropped. Consequently, the table was not applied,
and the packet was not forwarded to host h2.

This concludes lab 5. Stop the emulation and then exit out of MiniEdit.

Lab 5: Introduction to Match-action Tables

 Page 23

References

1. “p4c core.p4”. [Online]. Available:
https://github.com/p4lang/p4c/blob/main/p4include/core.p4.

2. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 6: Introduction to Match-action Tables (Part 2)

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 6: Introduction to Match-action Tables (Part 2)

Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Longest prefix match (LPM) ... 3

2 Lab topology.. 5

2.1 Starting end hosts .. 7

3 Defining a table with LPM matching ... 8

3.1 Loading the programming environment .. 8

3.2 Programming the ingress block .. 8

4 Loading the P4 program .. 13

4.1 Compiling and loading the P4 program to switch s1 ... 13

4.2 Verifying the configuration .. 15

5 Configuring switch s1 .. 15

5.1 Mapping P4 program’s ports.. 16

5.2 Loading the rules to the switch .. 17

6 Testing and verifying the P4 program ... 18

References .. 21

Lab 6: Introduction to Match-action Tables (Part 2)

Page 3

Overview

This lab describes match-action tables and how to define them in a P4 program. It then
explains the different types of matching that can be performed on keys. The lab further
shows how to track the misses/hits of a table key while a packet is received on the switch.

Objectives

By the end of this lab, students should be able to:

1. Understand what match-action tables are used for.
2. Describe the basic syntax of a match-action table.
3. Implement a simple table in a P4.
4. Trace a table’s misses/hits when a packet enters to the switch.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Defining a table with LPM matching.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Testing and verifying the P4 program.

1 Introduction

1.1 Longest prefix match (LPM)

Lab 6: Introduction to Match-action Tables (Part 2)

Page 4

Table 2 is an example of a match-action table that uses LPM. Assume that the key is
formed with the destination IP address. If an incoming packet has the destination IP
address 172.168.3.5, two entries match. The first entry matches because the first 29 bits
in the entry are the same as the first 29 bits of the destination IP. The second entry also
matches because the first 16 bits in the entry are the same as the first 16 bits of the
destination IP. The LPM algorithm will select 172.168.3.0/29 because of the longest prefix
preference.

Table 2. Match-action table using LPM as the lookup algorithm.

Key Action Action data

172.168.3.0/29 forward port 1,
macAddr=00:00:00:00:00:01

172.168.0.0/16 forward port 2,
macAddr=00:00:00:00:00:02

default drop

Figure 1 shows the ingress control block portion of a P4 program. Two actions are defined,
drop and forward. The drop action (lines 5 - 7) invokes the mark_to_drop primitive,
causing the packet to be dropped at the end of the ingress processing. The forward action
(lines 8 - 11) accepts as input (action data) the port and the destination MAC address.
These parameters are inserted by the control plane and updated in the packet during the
ingress processing.

In line 9, the P4 program assigns the new egress port to the standard_metadata egress
port field (i.e., the field that the traffic manager looks at to determine which port the
packet must be sent to). Line 10 assigns the destination MAC address passed as parameter
to the packet's new destination address.

Lines 12-22 implement a table named ipv4_lpm. The table is matching against the
destination IP address using the LPM type. The actions associated with the table are
forward and drop. The default action is invoked when there is a miss. The maximum
number of entries is defined by the programmer (i.e., 1024 entries, see line 20).

The control block starts executing from the apply statement (see lines 23-27) which
contains the control logic. In this program, the ipv4_lpm table is activated in case the
incoming packet has a valid IPv4 header.

Lab 6: Introduction to Match-action Tables (Part 2)

Page 5

 1: /************************INGRESS PROCESSING************************/

 2: control MyIngress(inout headers hdr,

 3: inout metadata meta,

 4: inout standard_metadata_t standard_metadata){

 5: action drop(){

 6: mark_to_drop(standard_metadata);

 7: }

 8: action forward(egressSpec_t port, macAddr_t dstAddr) {

 9: standard_metadata.egressSpec = port;

10: hdr.ethernet.dstAddr = dstAddr;

11: }

12: table ipv4_lpm {

13: key = {

14: hdr.ipv4.dstAddr:lpm;

15: }

16: actions = {

17: forward;

18: drop;

19: }

20: size = 1024;

21: default_action = drop();

22: }

23: apply {

24: if (hdr.ipv4.isValid()){

25: ipv4_lpm.apply();

26: }

27: }

28: }

Figure 1. Ingress control block portion of a P4 program. The code implements a match-action table
with LPM lookup.

2 Lab topology

Let’s get started by opening a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch.

10.0.0.1 30.0.0.1

h1 h3

h1-eth0 s1-eth0 s1-eth2 h3-eth0

s1

s1-eth1

h2-eth0 h2

20.0.0.1
Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 6: Introduction to Match-action Tables (Part 2)

Page 6

Figure 3. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab6 folder and search for the topology file called lab6.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 4. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 5. Running the emulation.

Lab 6: Introduction to Match-action Tables (Part 2)

Page 7

2.1 Starting end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Figure 7. Verifying the configuration host h1 interfaces.

Lab 6: Introduction to Match-action Tables (Part 2)

Page 8

3 Defining a table with LPM matching

This section demonstrates how to implement a simple table in P4 that uses LPM matching
on the packet’s destination IP address. When there is a match, the switch forwards the
packet from a certain port. Otherwise, the switch drops the packet.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 8. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4_Labs/lab6

Figure 9. Launching the editor and opening the lab6 directory.

3.2 Programming the ingress block

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 6: Introduction to Match-action Tables (Part 2)

Page 9

Figure 10. Opening the ingress processing block.

We can see that the ingress.p4 declares a control block named MyIngress. Inside the
block, we will define a table ipv4_host that is used to match on the destination IP

address and forward/drop the packet. There are two actions that will be invoked in this
table: forward and drop.

• forward: This action defines a set of basic operations on a packet header. Such
operations are defined as follows: 1) Updating the egress port so the packet is
forwarded to its destination through the correct port. 2) Updating the source MAC
address with the packet’s previous destination MAC address. 3) Changing the
destination MAC address of the packet with the one corresponding to the next
hop. 4) Decrementing the time-to-live (TTL) field in the IPv4 header.

• drop: this action will be used to drop the packet.

Step 2. The following code fragment describes the behavior of the forward action. Insert
the code below inside the MyIngress control block.

action forward(macAddr_t dstAddr, egressSpec_t port){

 standard_metadata.egress_spec = port;

 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

 hdr.ethernet.dstAddr = dstAddr;

 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

Lab 6: Introduction to Match-action Tables (Part 2)

Page 10

Figure 11. Defining the forward action.

The action forward accepts as parameters the next hop’s MAC address (i.e., macAddr_t
dstAddr) and the port number (i.e., egressSpec_t port) to be used by the switch to
forward the packet. Note that egressSpec_t is just a typedef that corresponds to bit<9>
and macAddr_t is a typedef that corresponds to bit<48>. These types are defined in the
headers.p4 file.

The standard_metadata is an instance of the standard_metadata_t struct provided by
the V1Model1. This struct contains intrinsic metadata used in packet processing and in
more advanced features. For example, to determine the port on which a packet arrives,
we can use the ingress_port field in the standard_metadata (i.e.,
standard_metadata.ingress_port). Similarly, the egress port egress_spec field of the
standard_metadata defines the egress port. Line 12 shows how to assign the egress port
to forward an incoming packet to its destination.

To modify header fields inside the packet, we refer to the field name based on where it
exists inside the headers. Recall that the names of the headers and the fields are defined
by the programmer. The file headers.p4 defines the program’s headers. Line 13 shows
how we are assigning the destination MAC address of the packet (i.e.,
hdr.ethernet.dstAddr) to be the new source MAC of the packet (i.e.,
hdr.ethernet.srcAddr). Line 14 shows how we are assigning the destination MAC
address which is provided as a parameter (assigned later in the control plane) to be the
new destination MAC of the packet.

It is possible in P4 to perform basic arithmetic operations on header fields and other
variables. In line 15, we are decrementing the TTL value of the header field.

Step 3. Define the drop action by appending the following code into the MyIngress control
block.

action drop() {

 mark_to_drop(standard_metadata);

}

Lab 6: Introduction to Match-action Tables (Part 2)

Page 11

Figure 12. Defining the drop action.

Step 4. Define an exact match table by appending the following piece of code.

table ipv4_exact {

 key = {

 hdr.ipv4.dstAddr: exact;

 }

 actions = {

 forward;

 drop;

 }

 size = 1024;

 default_action = drop();

}

Figure 13. Defining the table ipv4_exact implementing exact match lookup.

Lab 6: Introduction to Match-action Tables (Part 2)

Page 12

Step 5. Now we will define a table that performs a LPM on the destination IP address of
the packet. The table will be invoking the forward and the drop actions, and hence, those
actions will be listed inside the table definition.

table ipv4_lpm {

 key = {

 hdr.ipv4.dstAddr: lpm;

 }

 actions = {

 forward;

 drop;

 }

 size = 1024;

 default_action = drop();

}

Figure 14. Defining the table ipv4_lpm implementing LPM lookup.

Step 6. Add the following code at the end of the MyIngress block. The apply block defines
the sequential flow of packet processing. It is required in every control block, otherwise
the program will not compile. It describes the sequence of tables to be invoked, in
addition to other packet processing instructions.

apply {

 if(hdr.ipv4.isValid()) {

 if(ipv4_exact.apply().miss) {

 ipv4_lpm.apply();

 }

 }

}

Lab 6: Introduction to Match-action Tables (Part 2)

Page 13

Figure 15. Defining the apply block.

The logic of the code above is as follows: if the packet has an IPv4 header, apply the
ipv4_exact table which performs an exact match lookup on the destination IP address.
If there is no hit (i.e., the table does not contain a rule that corresponds to this IPv4
address, denoted by the miss keyword), apply the ipv4_lpm table, which matches the
destination IP address of the packet against a network address.

Step 7. Save the changes to the file by pressing Ctrl + s.

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

Lab 6: Introduction to Match-action Tables (Part 2)

Page 14

Figure 16. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Figure 17. Pushing the basic.json file to switch s1.

Lab 6: Introduction to Match-action Tables (Part 2)

Page 15

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 18. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Figure 19. Opening switch s1 terminal.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the following command on switch s1 terminal to inspect the content of the
current folder.

ls

Figure 20. Displaying the content of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

5 Configuring switch s1

Lab 6: Introduction to Match-action Tables (Part 2)

Page 16

5.1 Mapping P4 program’s ports

Step 1. Issue the following command on switch s1.

ifconfig

Figure 21. Displaying switch s1 interfaces.

The output displays switch s1 interfaces (i.e., s1-eth0, s1-eth1 and s1-eth2). The interface
s1-eth0 on the switch s1 connects to the host h1. The interface s1-eth1 on the switch s1
connects to the host h2 and s2-eth2 is connected to host h3.

Step 2. Start the switch daemon and map the logical interfaces (i.e., ports) to the switch’s
interfaces by issuing the following command. The --nanolog parameter is used to
instruct the switch daemon to provide the switch’s logs.

Lab 6: Introduction to Match-action Tables (Part 2)

Page 17

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 --nanolog ipc:///tmp/bm-

log.ipc basic.json &

Figure 22. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 23. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab6/rules.cmd

Figure 24. Populating the forwarding table into switch s1.

Lab 6: Introduction to Match-action Tables (Part 2)

Page 18

The script above pushes the rules to the switch daemon. We can see that we added three
entries to the ipv4_exact and ipv4_lpm tables.

• The key of the first entry is 10.0.0.0/8 (which translates to 0a:00:00:00 in
hexadecimal as shown in the figure above, next to match key) and its action is
forward. This entry is added to the ipv4_lpm table. The action parameters or
runtime data are 00:00:00:00:00:01 for the destination MAC (i.e., host h1’s MAC
address) and 0 for the output port (i.e., the port facing host h1).

• The key of the second entry is 20.0.0.0/8 (which translates to 14:00:00:00 in
hexadecimal as shown in the figure above, next to match key) and its action is
forward. This entry is added to the ipv4_lpm table. The action parameter or
runtime data are 00:00:00:00:00:02 for the destination MAC (i.e., host h2’s MAC
address) and 1 for the output port (i.e., the port facing host h2).

• The key of the third entry is 30.0.0.1 (which translates to 1e:00:00:01 in
hexadecimal as shown in the figure above, next to match key) and its action is
forward. This entry is added to the ipv4_host table. The action values are
00:00:00:00:00:03 for the destination MAC (i.e., host h3’s MAC address) and 2 for
the output port (i.e., the port facing host h3).

6 Testing and verifying the P4 program

Step 1. Type the following command to display the switch logs.

nanomsg_client.py

Figure 25. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command the command below so that the host
starts listening for packets.

./recv.py

Figure 26. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command to send a message to host h2.
The output will show the Ethernet, IP and TCP header fields and their values. The payload
is HelloWorld.

Lab 6: Introduction to Match-action Tables (Part 2)

Page 19

./send.py 20.0.0.1 HelloWorld

Figure 27. Sending a test packet from host h1 to host h2.

Step 4. Inspect the logs on switch s1 terminal.

Figure 28. Inspecting the logs in switch s1.

Results show that there is a miss in the ipv4_exact table, but there is a hit on the
ipv4_lpm table. Then, the packet is forwarded through port 1, which is connected to host
h2. This behavior corresponds to the logic described by the apply block in the ingress
processing.

Lab 6: Introduction to Match-action Tables (Part 2)

Page 20

Step 5. Verify that the packet was received on host h2. Notice that the TTL was
decremented.

Step 6. On host h1’s terminal, type the following command to send a message to host h3.

./send.py 30.0.0.1 HelloWorld

Figure 29. Sending a test packet from host h1 to host h3.

Step 7. Inspect the logs on switch s1 terminal.

Figure 30. Inspecting the logs in switch s1.

Lab 6: Introduction to Match-action Tables (Part 2)

Page 21

The figure above shows that there is a hit in the ipv4_exact table. Then, the packet is
forwarded through port 2, which is connected to host h3.

This concludes lab 6. Stop the emulation and then exit out of MiniEdit.

References

1. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.
2. Mininet walkthrough. [Online]. Available: http://Mininet.org.
3. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

4. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

5. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Exercise 4: Implementing NAT using Match-Action

Tables

Document Version: 01-14-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Exercise 4: Implementing NAT using Match-Action Tables

Contents

1 Exercise description .. 3

1.1 Credentials ... 3

2 Setting the environment ... 4

3 Deliverables ... 5

Exercise 4: Implementing NAT using Match-Action Tables

1 Exercise description

In this exercise, you will implement match-action tables that perform IP address
translation. The translation resembles the one performed with Network Address
Translation (NAT).

Consider the figure below. The P4 switch s1 modifies the source IP address of a packet
coming from host h1. On the other hand, if the packet is coming from host h2, switch s1
modifies the destination IP address.

10.0.0.1

h1 s110.0.0.1 172.32.0.10

Source IP Destination IP

172.32.0.10

h2172.32.0.1 172.32.0.10

Source IP Destination IP

172.32.0.10 10.0.0.1

Source IP Destination IP

172.32.0.10 172.32.0.1

Source IP Destination IP

s1-eth0 s1-eth1h1-eth0 h2-eth0

port 0 port 1

Figure 1. Lab topology.

Implement the table translate_address for this exercise: The key and actions of the
table are as follows:

• Matches on the destination IP of the packet using exact matching.

• Invokes an action change_source that modifies the source IP address of a packet
coming from host h1.

• Invokes an action change_destination that modifies the destination IP address
of a packet coming from host h2.

Implement another table called forwarding with the following key and actions.

• Matches on the destination IP using exact matching.

• Invokes the forward action to forward a packet.

1.1 Credentials

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

Exercise 4: Implementing NAT using Match-Action Tables

2 Setting the environment

Follow the steps below to set the exercise’s environment.

Step 1. Open MiniEdit by double-clicking the shortcut on the desktop. If a password is
required type password.

Figure 2. MiniEdit shortcut.

Step 2. Load the topology located at /home/admin/P4_Exercises/Exercise4/.

Figure 3. Opening exercise’s topology.

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

Exercise 4: Implementing NAT using Match-Action Tables

Figure 4. Running the emulation.

Step 4. In the terminal, type the command below. This command launches the Visual
Studio Code and opens the directory where the P4 program for this exercise is located.

code P4_Exercises/Exercise4/

Figure 5. Opening the working directory.

3 Deliverables

Follow the steps below to complete the exercise.

a) Implement the table translate_address with the following actions:

change_source and change_destination.

b) Implement the table forwarding.

c) Compile the basic.p4 in the Visual Studio Code. Push the output file of the compiler

to the switch s1.

d) Start the switch daemon, then push the table entries to the switches. The file

rules.cmd is in the directory ~/exercise4/.

e) From host h1, send a packet using the send.py program. Verify which table this packet
is hitting by inspecting the logs of the switch using the nanomsg tool.

f) Similarly, from host h2 send a packet using the script send.py and verify which table

is the packet hitting.

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 7: Populating and Managing Match-action

Tables at Runtime

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Runtime .. 3

2 Lab topology.. 4

2.1 Starting end hosts .. 6

3 Navigating the switch’s CLI ... 7

3.1 Loading the programming environment .. 8

3.2 Compiling and loading the P4 program to switch s1 ... 8

3.3 Verifying the configuration .. 10

4 Configuring switch s1 .. 11

4.1 Navigating the switch’s CLI ... 13

4.2 Displaying ports, tables, and actions.. 14

5 Populating match-action tables using the switch’s CLI .. 16

5.1 Displaying the table’s basic information .. 16

5.2 Manipulating a match-action table with exact lookup 17

5.3 Manipulating a match-action table with LPM lookup.. 20

References .. 21

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 3

Overview

This lab describes how to populate and manage match-action tables at runtime. It then
explains a tool (simple_switch_CLI) that is used with the software switch (BMv2) to
manage the tables.

Objectives

By the end of this lab, students should be able to:

1. Understand how to populate match-action tables.
2. Describe the basic syntax of the simple_switch_CLI tool.
3. Verify the insertion of rules in the tables.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Navigating the switch’s CLI.
4. Section 4: Configuring switch s1.
5. Section 5: Populating match-action tables using the switch’s CLI.

1 Introduction

1.1 Runtime

Once a P4 program is compiled into a target-specific configuration, the output is loaded
into the data plane of the device. Then, the behavior of the P4 target can be managed at
runtime by the control plane via data plane Application Programming Interface (APIs).

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 4

Runtime operations include inserting, updating, and deleting entries in P4 tables as well
as controlling other entities of the program such as counters, meters, etc.

Runtime APIs can be divided into program-dependent and program-independent APIs.
Program-dependent APIs comprise functions whose names are derived from the P4
program itself. Thus, any changes to the P4 program would modify the names and the
definitions of the APIs’ functions. Program-independent APIs comprise a set of fixed
functions that are independent of the P4 program. Therefore, changes in the P4 programs
do not affect those APIs.

The control plane that manages the data plane tables and externs can be remote or local
on the device. Remote control planes invoke API calls through Remote Procedure Calls
(RPCs) while relying on asynchronous message frameworks such as Thrift1 and gRPC2.
Such frameworks use protocol buffers (protobuf) to define service API and message, and
HTTP/2.0 and TLS for transport. On the other hand, a local control plane runs on the
Central Processing Unit (CPU) of the device and invokes API calls locally. It is implemented
by the driver of the device.

Figure 1 shows the runtime environment used in this lab series to control the P4 target
(BMv2). The control plane uses the simple_switch_CLI tool to interact with the data
plane. The simple_switch_CLI includes a program-independent CLI and a Thrift client
which connects to the program-independent control server residing on the BMv2 switch.

Data plane
Control plane

simple_switch_CLI

Program-independent CLI and
client

TCP Socket
(Thrift)

Program-independent control
server

simple_switch (BMv2)

Figure 1. Runtime management of a P4 target (BMv2).

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch.

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 5

10.0.0.1

20.0.0.1

h1

h2

h1-eth0 s1-eth0 s1-eth2

h2-eth0

s1

30.0.0.1

h3

h3-eth0

s1-eth1

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab7 folder and search for the topology file called lab7.mn and click on
Open. A new topology will be loaded to MiniEdit.

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 6

Figure 4. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 5. Running the emulation.

2.1 Starting end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 7

Figure 6. Opening a terminal on host h1.

Step 2. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Figure 7. Verifying the configuration host h1 interfaces.

3 Navigating the switch’s CLI

This section demonstrates how to navigate the switch’s CLI using the
simple_switch_CLI tool. This tool is used to manage P4 objects at runtime. This tool

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 8

works with the BMv2 software switch. Other targets have their own tools (e.g., Intel
Tofino targets use the Barefoot Runtime).

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 8. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4_Labs/lab7

Figure 9. Launching the editor and opening the lab7 directory.

3.2 Compiling and loading the P4 program to switch s1

Step 1. We will not modify the P4 source code. The P4 program is already written. Issue
the following command in the terminal panel inside the VS Code to compile the program.

p4c basic.p4

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 9

Figure 10. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 10

Figure 11. Pushing the basic.json file to switch s1.

3.3 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 12. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Figure 13. Starting the terminal on the switch.

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 11

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 14. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

4 Configuring switch s1

Step 1. Issue the command ifconfig on the terminal of the switch s1.

ifconfig

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 12

Figure 15. Displaying switch s1 interfaces.

The output displays switch s1 interfaces (i.e., s1-eth0, s1-eth1 and s1-eth2). The interface
s1-eth0 on the switch s1 connects to the host h1. The interface s1-eth1 on the switch s1
connects to the host h2 and s2-eth2 is connected to host h3.

Step 2. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 --nanolog ipc:///tmp/bm-

log.ipc basic.json &

Figure 16. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 13

The --nanolog option is used to instruct the switch daemon that we want to see the
logs of the switch.

4.1 Navigating the switch’s CLI

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 17. Returning to the CLI.

Step 2. Start switch s1 CLI tool by typing the following command.

simple_switch_CLI

Figure 18. Starting the simple_switch_CLI runtime program.

Step 3. Type a question mark (?) to see the available commands in the tool.

?

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 14

Figure 19. Displaying the available commands in the simple_switch_CLI.

Use the TAB key to autocomplete a command.

Step 4. To get help on a specific command, type help <topic>, where <topic> is the
command that you would like to explore. For example, to see the syntax of table_dump,
type the following.

help table_dump

Figure 20. Displaying the syntax of the table_dump command.

4.2 Displaying ports, tables, and actions

Step 1. To display the list of ports in our switch and their mapping to Linux interface names,
type the following command.

show_ports

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 15

Figure 21. Displaying the ports used by switch s1.

Step 2. To display the list of tables defined in the P4 program, type the following
command.

show_tables

Figure 22. Showing the tables defined in the ingress block.

Step 3. List the actions defined in the P4 program by issuing the command below.

show_actions

Figure 23. Showing the actions defined in the P4 program.

Notice that the MyIngress.drop action does not have any action data whereas the action
MyIngress.forward modifies the destination MAC address (i.e., dstAddr(48)) and the
egress port (i.e., port(9)).

Step 4. To display basic information about the switch, type the following command.

switch_info

Figure 24. Displaying switch’s information.

Step 5. To display the time since the switch was turned on, type the following command.

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 16

get_time_elapsed

Figure 25. Showing the uptime of switch s1.

The command above displays the time since the switch was turned on in microseconds.

5 Populating match-action tables using the switch’s CLI

This section demonstrates how to manage and populate the tables using the switch CLI
tool.

5.1 Displaying the table’s basic information

Step 1. To display information about a table in the P4 program, type the following
command.

table_info MyIngress.ipv4_host

Figure 26. Showing information about the table MyIngress.ipv4_host.

Step 2. Issue the following command to display the actions corresponding to a table. The
output shows the actions contained in the table MyIngress.ipv4_host.

table_show_actions MyIngress.ipv4_host

Figure 27. Displaying the actions associated with table MyIngress.ipv4_host.

Step 3. Dump the entries of MyIngress.ipv4_host table by issuing the following
command.

table_dump MyIngress.ipv4_host

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 17

Figure 28. Showing the entries of the table MyIngress.ipv4_host.

The output above shows that the table has not been populated.

Step 4. Display the number of rules/entries in the MyIngress.ipv4_host table by issuing
the following command. The output will show that there are no entries added so far.

table_num_entries MyIngress.ipv4_host

Figure 29. Displaying the number of entries in the table MyIngress.ipv4_host.

5.2 Manipulating a match-action table with exact lookup

Step 1. Issue the following command to display the syntax of table_add.

help table_add

Figure 30. Showing the syntax of table_add.

The parameters of the table_add can be summarized as follows:

• <table_name>: name of the P4 table that we would like to add rules to. The list
of tables can be displayed using the show_tables command.

• <action name>: the action associated with the entry.

• <match fields>: the key used to match against the incoming packet.

• <action parameter>: the parameter associated with the entry.

• [priority]: the priority of the entry.

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 18

Step 2. Add an entry/rule to the table MyIngress.ipv4_host by issuing the following
command.

table_add MyIngress.ipv4_host MyIngress.forward 30.0.0.1 => 00:00:00:00:00:03 2

Figure 31. Adding an entry to the table MyIngress.ipv4_host.

The output shows the details of the new table entry. The match key is 0x1e:00:00:01 (i.e.,
the hexadecimal value of the IP address 30.0.0.1) and the lookup mechanism is exact. The
action executed when this entry is hit will be the one defined in MyIngress.forward. The
action data associated with the entry is the MAC address of the destination host (i.e.,
00:00:00:00:00:03) and the egress port (i.e., 00:02).

Step 3. Issue the following command to show the entries in the table
MyIngress.ipv4_host.

table_dump MyIngress.ipv4_host

Figure 32. Showing the entries of the table MyIngress.ipv4_host.

Step 4. Display the number of entries in the table MyIngress.ipv4_host by typing the
following command.

table_num_entries MyIngress.ipv4_host

Figure 33. Displaying the number of entries in the table MyIngress.ipv4_host.

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 19

Step 5. We can also display the entry in a table by using its match key as follows.

table_dump_entry_from_key MyIngress.ipv4_host 0x1e000001

Figure 34. Dumping a table entry by specifying the key.

Match-action tables can contain too many entries and dumping the whole table will
produce a large output that is hard to read.

Step 6. Another way to display the entry in a table is by specifying the entry handle, which
in this case is 0. Issue the following command to show the table entry using the handle of
the entry.

table_dump_entry MyIngress.ipv4_host 0

Figure 35. Dumping a table entry by specifying the handle.

Step 7. Issue the following command to modify an existing entry.

table_modify MyIngress.ipv4_host MyIngress.forward 0 00:00:00:00:00:05 5

Figure 36. Modifying a table’s entry.

The parameters of table_modify are described as follows:

• MyIngress.ipv4_host: refers to the table that implements an exact lookup.

• MyIngress.forward: specifies the action.

• 0: the table’s entry handle.

• 00:00:00:00:00:05: the new MAC address.

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 20

• 5: the new egress port.

Step 8. Dump the content of the table MyIngress.ipv4_host by typing the following
command.

table_dump_entry MyIngress.ipv4_host 0

Figure 37. Dumping a table entry by specifying the handle.

The output shows the details of the modified entry. The match key is 0x1e:00:00:01 (i.e.,
the hexadecimal value of the IP address 30.0.0.1) and the lookup mechanism is exact. The
action executed when this entry is hit will be the one defined in MyIngress.forward. The
action data specifies 5 (i.e., the hexadecimal value 00:00:00:00:00:05) as the new
destination MAC address and port 5 as the egress.

5.3 Manipulating a match-action table with LPM lookup

Step 1. Add an entry/rule to the MyIngress.ipv4_lpm table by issuing the following
command.

table_add MyIngress.ipv4_lpm MyIngress.forward 20.0.0.0/8 => 00:00:00:00:00:02

1

Figure 38. Adding an entry to the table MyIngress.ipv4_lpm.

The parameters of table_add are described as follows:

• MyIngress.ipv4_lpm: refers to the table that implements LPM lookup.

• MyIngress.forward: specifies the action.

• 20.0.0.0/8: is entry’s key.

• 00:00:00:00:00:02: the destination MAC address.

• 1: specifies the egress port.

Lab 7: Populating and Managing Match-action Tables at Runtime

 Page 21

Step 2. To delete a specific entry in a P4 table, type the following command.

table_delete MyIngress.ipv4_lpm 0

Figure 39. Removing an entry from the table MyIngress.ipv4_lpm.

This command deletes the entry with the handle 0 in the MyIngress.ipv4_lpm table.

Step 3. It is also possible to delete all entries from a match action table by issuing the
following command.

table_clear MyIngress.ipv4_lpm

Figure 40. Removing all the entries from the table MyIngress.ipv4_lpm.

Step 4. Verify that the table MyIngress.ipv4_lpm is cleared by issuing the following
command. The output will show that the table MyIngress.ipv4_lpm is empty.

table_num_entries MyIngress.ipv4_lpm

Figure 41. Displaying the number of entries in the table MyIngress.ipv4_lpm.

This concludes lab 7. Stop the emulation and then exit out of MiniEdit.

References

1. Apache. “Apache Thrift.” [Online]. Available: https://thrift.apache.org/.
2. Google. “gRPC.” [Online]. Available: https://grpc.io/.
3. Google. “Protocol Buffers.” [Online]. Available:

https://developers.google.com/protocol-buffers.

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Exercise 5: Configuring Match-action Tables at

Runtime

Document Version: 01-14-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Exercise 5: Configuring Match-action Tables at Runtime

Contents

1 Exercise description .. 3

1.1 Credentials ... 3

2 Setting the environment ... 3

3 Deliverables ... 5

Exercise 5: Configuring Match-action Tables at Runtime

1 Exercise description

In this exercise, you will populate and manage the tables of the P4 switches by using the
runtime interface.

10.0.0.1

h1 s1

10.0.0.2

h2s2

s3 s4

h1-eth0 h2-eth0s1-eth0 s1-eth1

s1-eth2

s2-eth0

s3-eth0

s3-eth1 s4-eth0

s4-eth1

s2-eth2

s2-eth1

Figure 1. Lab topology.

1.1 Credentials

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

2 Setting the environment

Follow the steps below to set the exercise’s environment.

Step 1. Open MiniEdit by double-clicking the shortcut on the desktop. If a password is
required type password.

Exercise 5: Configuring Match-action Tables at Runtime

Figure 2. MiniEdit shortcut.

Step 2. Load the topology located at /home/admin/P4_Exercises/Exercise5/.

Figure 3. Opening the exercise’s topology.

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

Figure 4. Running the emulation.

Exercise 5: Configuring Match-action Tables at Runtime

Step 4. In the terminal, type the command below. This command launches the Visual
Studio Code and opens the directory where the P4 program for this exercise is located.

code P4_Exercises/Exercise5/

Figure 5. Opening the working directory.

3 Deliverables

Follow the steps below to complete the exercise.

a) Compile the basic.p4 in the Visual Studio Code. Push the output file of the compiler

to all switches s1, s2, s3, and s4.

b) Start the daemon on all switches and associate the interfaces to their corresponding

ports and enable nanolog.

c) In switch s1, use the CLI to determine the table names on the switches. Then, list the
actions associated with the tables. What are the actions and what parameters do they
accept?

d) Push the table entries to the switches so that a packet sent from h1 to h2 traverses
switches s1-s2.

e) Initiate the nanomsg_client.py program in switches s1 and s2.

f) Modify the path so that the packet traverses the switches s1-s3-s4-s2.

g) Delete all the rules on the switches. Write the rules that create a loop in the switches

s1-s2-s4-s3-s1-s2-s4-s2… Verify that the packet is being transmitted infinitely
between the switches. Suggest a solution for breaking the loop.

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Lab 8: Checksum Recalculation and Packet

Deparsing

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to checksums ... 4

1.1 Checksums in P4 ... 4

1.2 Deparsing.. 5

2 Lab topology.. 6

2.1 Starting the end hosts .. 7

3 Implementing checksum calculation in P4 ... 8

3.1 Loading the programming environment .. 8

3.2 Inspecting the P4 code ... 9

4 Loading the P4 program .. 10

4.1 Compiling and loading the P4 program to switch s1 ... 10

4.2 Verifying the configuration .. 11

5 Configuring switch s1 .. 12

5.1 Mapping P4 program’s ports.. 12

5.2 Loading the rules to the switch .. 14

6 Manipulating the checksum and deparser ... 14

6.1 Sending a packet without checksum update .. 14

6.2 Sending a packet with checksum update .. 16

6.3 Updating the deparser in the P4 code ... 21

References .. 25

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 3

Overview

This lab describes how to recompute the checksum of a header. Recomputing the
checksum is necessary if the packet header was modified by the P4 program. The lab also
describes how a P4 program performs deparsing to emit headers.

Objectives

By the end of this lab, students should be able to:

1. Understand checksums and the need to recompute them if the header was
modified.

2. Implement checksum update in the P4 program.
3. Validate the checksum of a header.
4. Understand deparsing and how to implement a deparser in P4.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to checksums.
2. Section 2: Lab topology.
3. Section 3: Implementing checksum calculation in P4.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Manipulating the checksum and deparser.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 4

1 Introduction to checksums

Several protocols use checksums to validate the integrity of the packet headers. A
checksum is a small value derived from another data block, often through a checksum
algorithm such as the Cyclic Redundancy Check (CRC). The checksum calculation and
verification start with the sender calculating the checksum of the data before transmitting
the packet. Then, the checksum value is inserted into the packet header. Upon receiving
the packet, the receiver computes the checksum of the received packet using the same
algorithm as the one used by the sender. If the calculated checksum value matches the
one in the packet header, the packet is verified; otherwise, a transmission error has
occurred. Incorrect checksums typically lead to dropping the packet by the switch.

1.1 Checksums in P4

In a P4 program, the developer may change the packet headers. For example, if the
program is implementing a routing function, then header fields such as the Time-to-live
(TTL) must be modified. Any change to the header fields will cause the checksum value to
change. Therefore, it is necessary to recompute the checksum in the P4 program in case
modifications are made to the header fields.

Figure 1 shows an example of computing the checksum in a P4 program.

 1: /*********************CHECKSUM COMPUTATION*********************/

 2: control MyComputeChecksum(inout header hdr, inout metadata meta){

 3: apply{

 4: update_checksum(

 5: hdr.ipv4.isValid(),

 6: { hdr.ipv4.version,

 7: hdr.ipv4.ihl,

 8: hdr.ipv4.diffserv,

 9: hdr.ipv4.totalLen,

10: hdr.ipv4.identification,

11: hdr.ipv4.flags,

12: hdr.ipv4.fragOffset,

13: hdr.ipv4.ttl,

14: hdr.ipv4.protocol,

15: hdr.ipv4.srcAddr,

16: hdr.ipv4.dstAddr },

17: hdr.ipv4.hdrChecksum,

18: HashAlgorithm.csum16);

19: }

20: }
Figure 1. Updating the checksum of IPv4 header.

The syntax for updating the checksum in P4 (V1Model) is as follows:

update_checksum(condition, data, checksum_output, algorithm)

• condition: a condition that is evaluated before updating the checksum. If the
condition is true, the checksum is updated. Otherwise, the checksum remains as

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 5

it is in the packet. Here we often check if the header is valid (i.e., it was parsed or
set to be valid by the programmer). For example, in Figure 1, the IPv4 header is
checked if valid.

• data: the data whose checksum is to be computed. This typically includes the
header fields of the protocol which uses the checksum. The example above shows
the header fields of IPv4.

• checksum_output: the parameter that the checksum will be written to once it has
been computed. In the example above, we are writing the resulting checksum
value to the hdrChecksum field of IPv4.

• algorithm: the algorithm used by the protocol to compute the checksum. For
example, for IPv4, the IETF RFC 7911 state that the checksum field is the 16-bit
one’s complement of the one’s complement sum of all 16-bit words in the header.
This checksum is implemented in the V1Model using the HashAlgorithm.csum16

hash function.

It is also possible in P4 to verify the checksum. The V1Model provides the checksum
verification extern function verify_checksum which sets the checksum_error bit in the
standard metadata in case the verification fails, causing the packet to be dropped. The
syntax for the verify_checksum is the same as that of update_checksum described
above.

verify_checksum(condition, data, checksum_output, algorithm)

1.2 Deparsing

The P4 program includes a deparser that specifies which headers are to be emitted. The
deparser emits the headers and the payload of the original packet. Note that only the
valid headers are emitted. A header is considered valid after it has been parsed in the P4
program or after the program explicitly validates the header with the function
setValid().

The deparser is defined as a control block and is executed after finishing the packet
processing by the other control blocks. Consider Figure 2. The deparser has a packet_out
type in its parameters. The packet_out type includes the emit method which accepts
the headers to be reassembled when the deparser constructs the outgoing packet. Note
that the order of emitting packets' headers is important, and the headers are only emitted
in case they are valid.

1: /**********************DEPARSER**********************/

2: control MyDeparser(packet_out packet, in headers hdr){

3: apply{

4: packet.emit(hdr.ethernet);

5: packet.emit(hdr.ipv4);

6: }

7: }

Figure 2. Deparser implementation.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 6

2 Lab topology

Let’s get started by loading a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch.

10.0.0.1

20.0.0.1

h1

h2

h1-eth0 s1-eth0 s1-eth2

h2-eth0

s1

30.0.0.1

h3

h3-eth0

s1-eth1

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab8 folder and search for the topology file called lab8.mn and click on
Open. A new topology will be loaded to MiniEdit.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 7

Figure 5. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 6. Running the emulation.

2.1 Starting the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 8

Figure 7. Opening a terminal on host h1.

3 Implementing checksum calculation in P4

This section demonstrates how to update the checksum of an IPv4 packet after being
modified by the P4 program. We will be using the P4 program that implements the routing
function.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 8. Shortcut to open a Linux terminal.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 9

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4_Labs/lab8

Figure 9. Launching the editor and opening the lab8 directory.

3.2 Inspecting the P4 code

Step 1. Inspect the content of the ingress.p4 file before implementing the checksum
calculation. Navigate into the file by clicking on ingress.p4 in the file explorer

Figure 10. Inspecting the ingress block.

Note how the action forward is modifying the TTL value in the IPv4 header. Since the
program is modifying the header fields, it is necessary to recompute and update the
checksum of the header.

Step 2. Navigate into the checksum file by clicking on checksum.p4 in the file explorer.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 10

Figure 11. Inspecting the checksum block.

The figure above shows that two empty control blocks exist in the checksum.p4 file. The
first control MyVerifyChecksum verifies the checksum for the packet. The second control
block MyComputeChecksum updates the checksum of the packet. We will only focus for
now on computing the checksum. The upcoming steps show what happens when the
checksum is not updated after modifying the IPv4 header (i.e., decrementing the TTL).

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Compile the program by issuing the following command in the terminal.

p4c basic.p4

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 11

Figure 12. Compiling a P4 program.

Step 2. Push the output of the compiler to the switch by using the following command.

push_to_switch basic.json s1

Figure 13. Downloading the basic.json file to switch s1.

4.2 Verifying the configuration

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 12

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 14. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Figure 15. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the following command on switch s1 terminal to inspect the content of the
current folder.

ls

Figure 16. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded into switch
s1 after compiling the P4 program.

5 Configuring switch s1

5.1 Mapping P4 program’s ports

Step 1. Issue the following command on switch s1.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 13

ifconfig

Figure 17. Displaying switch s1 interfaces.

The output displays switch s1 interfaces (i.e., s1-eth0, s1-eth1 and s1-eth2). The interface
s1-eth0 on the switch s1 connects to the host h1. The interface s1-eth1 on the switch s1
connects to the host h2 and s2-eth2 is connected to host h3.

Step 2. Start the switch daemon by typing the following command, then press Enter.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 --nanolog ipc:///tmp/bm-

log.ipc basic.json &

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 14

Figure 18. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The --nanolog option is used to instruct the switch daemon that we want to see the
logs of the switch.

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab8/rules.cmd

Figure 19. Populating the forwarding table into switch s1.

6 Manipulating the checksum and deparser

6.1 Sending a packet without checksum update

Step 1. On host h3’s terminal, type the command below to launch Wireshark. Wireshark
is a network analyzer used to inspect the content of network packets.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 15

wireshark

Figure 20. Opening Wireshark from host h3.

Step 2. Select the interface h3-eth0 and start capturing packets by clicking on the icon
located in the upper left-hand side.

Figure 21. Starting packet capture.

Step 3. Apply the following filter in Wireshark by issuing the following keyword in the filter
box, then press Enter.

tcp

Figure 22. Filtering TCP packets only.

Step 4. On host h1’s terminal, send a packet to host h3 by issuing the following command.

./send.py 30.0.0.1 HelloWorld

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 16

Figure 23. Sending a test packet from host h1 to host h3.

Step 5. Navigate back to the Wireshark window and click on the packet to see information
about the received packet from h1.

Figure 24. Inspecting the content of the IPv4 header.

We can see that the checksum in that packet is incorrect. This is because the P4 program
changed the header field value (i.e., TTL), but did not update the checksum in the packet.

6.2 Sending a packet with checksum update

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 17

Step 1. Navigate back to the VS Code window and add the following code in the
MyComputeChecksum block of the checksum.p4 file.

update_checksum(

 hdr.ipv4.isValid(),

 {

 hdr.ipv4.version,

 hdr.ipv4.ihl,

 hdr.ipv4.diffserv,

 hdr.ipv4.totalLen,

 hdr.ipv4.identification,

 hdr.ipv4.flags,

 hdr.ipv4.fragOffset,

 hdr.ipv4.ttl,

 hdr.ipv4.protocol,

 hdr.ipv4.srcAddr,

 hdr.ipv4.dstAddr },

 hdr.ipv4.hdrChecksum,

 HashAlgorithm.csum16);

Figure 25. P4 code to update the checksum.

Step 2. Press Ctrl + s to save the changes.

Step 3. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 18

Figure 26. Compiling a P4 program.

Step 4. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Figure 27. Pushing the basic.json file to switch s1.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 19

Step 5. Navigate to the window of the switch s1 and stop the daemon of the switch by
using the following command.

pkill switch

Figure 28. Terminating switch s1 process.

Step 6. Start the switch daemon by typing the following command, then press Enter.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 --nanolog ipc:///tmp/bm-

log.ipc basic.json &

Figure 29. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Step 7. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab8/rules.cmd

Figure 30. Populating the tables in switch s1.

Step 8. On host h1’s terminal, send a packet to host h3 by issuing the following command.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 20

./send.py 30.0.0.1 HelloWorld

Figure 31. Sending a test packet from host h1 to host h3.

Step 9. Navigate back to the Wireshark window and click on the packet to see information
about the received packet from h1.

Figure 32. Inspecting the content of the IPv4 header.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 21

We can see that the checksum in that packet is now correct. This is because the P4
program updated the checksum in the IPv4 header after changing the header field value
(i.e., TTL).

6.3 Updating the deparser in the P4 code

In this section we will update the code of the deparser so that the IPv4 header is not
emitted. We will then verify this operation using Wireshark.

Step 1. Navigate into the deparser block by clicking on deparser.p4 in the file explorer of
the VS Code application.

Figure 33. Inspecting the deparser block.

We can see in the figure above that the deparser is emitting both the Ethernet header
and the IPv4 header. We verified in the previous step that Wireshark was able to
recognize both headers.

Step 2. Update the deparser code to emit only the Ethernet header and save the file.

Figure 34. Emitting only the Ethernet header.

Step 3. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 22

Figure 35. Compiling a P4 program.

Step 4. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Figure 36. Downloading the basic.json file to switch s1.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 23

Step 5. Navigate to the window of the switch s1 and stop the daemon of the switch by
using the following command.

pkill switch

Figure 37. Terminating switch s1 process.

Step 6. Start the switch daemon by typing the following command, then press Enter.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 --nanolog ipc:///tmp/bm-

log.ipc basic.json &

Figure 38. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Step 7. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab8/rules.cmd

Figure 39. Populating the tables in switch s1.

Step 8. On host h1’s terminal, send a packet to host h3 by issuing the following command.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 24

./send.py 30.0.0.1 HelloWorld

Figure 40. Sending a test packet from host h1 to host h3.

Step 9. Navigate back to the Wireshark window and remove the tcp keyword from the
filter and press Enter.

Figure 41. Removing the TCP filter from Wireshark.

Step 10. Click on the new packet (No. 3) to inspect its headers.

Lab 8: Checksum Recalculation and Packet Deparsing

 Page 25

Figure 42. Inspecting the content of the IPv4 header.

The result above indicates that the IPv4 header is bogus. This error could occur due to the
following reasons:

• The Ethernet header field etherType contains the value 0x0800 which indicates
that the next header is of type IPv4.

• Since the P4 program did not emit the IPv4 header, the packet contains only the
Ethernet header followed by the original payload of the packet.

• Wireshark is assuming that the next header is IPv4 (because of the etherType field
of the Ethernet header), and hence it is interpreting the payload of the packet as
the IPv4 header. Thus, Wireshark is alerting that the IPv4 header is bogus.

The IPv4 header must be emitted in the P4 program to solve this issue. Note that if you
defined your own custom header in the P4 program and emit it in the deparser, Wireshark
will not recognize it and might produce error messages.

This concludes lab 8. Stop the emulation and then exit out of MiniEdit.

References

1. RFC 791. “Internet Protocol.” 1981.
2. Mininet walkthrough. [Online]. Available: http://Mininet.org.
3. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

4. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

5. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

INTRODUCTION TO P4 PROGRAMMABLE
DATA PLANES

Exercise 6: Building a Packet Reflector

Document Version: 06-15-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Exercise 6: Building a Packet Reflector

Contents

1 Exercise description .. 3

1.1 Ethernet header ... 3

1.2 IPv4 header... 3

1.3 IPv6 header... 3

1.4 Exercise topology ... 3

1.5 Credentials ... 4

2 Setting the environment ... 4

3 Deliverables ... 5

Exercise 6: Building a Packet Reflector

1 Exercise description

In this exercise, you will implement a P4 program that acts as a packet reflector. This
means that the switch will bounce back a packet to the port the packet came from. You
will be implementing the whole P4 program. This includes the headers definition, the
parser, the control blocks, and the checksum update.

The header definitions are shown below.

1.1 Ethernet header

Ethernet determines that the next header is IPv4 if the value of EtherType is 0x0800.

Destination Address Ether TypeSource Address Payload

48 bits 16 bits 46-1500 bytes48 bits

Figure 1. Ethernet header.

1.2 IPv4 header

Bit 0 2 3 4 5 6 7 81 9 11 12 13 14 15 16 1710 18 20 21 22 23 24 25 2619 27 29 30 3128

Version IHL DSCP ECN Total Length

Identifier Flags Fragment Offset

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options (if IHL > 5)

0

32

64

96

128

160

Figure 2. IPv4 header.

1.3 IPv6 header

Bit 0 2 3 4 5 6 7 81 9 11 12 13 14 15 16 1710 18 20 21 22 23 24 25 2619 27 29 30 3128

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source IP Address

Destination IP Address

0

32

64

192

Figure 3. IPv6 header.

1.4 Exercise topology

Exercise 6: Building a Packet Reflector

10.0.0.1

h1 s1

10.0.0.1 172.32.0.10

Source IP Destination IP

10.0.0.1

Source IP Destination IP

15.0.0.1

aaaa::1 cccc::10

aaaa::1bbbb::1aaaa::1
Key (Source IP)

aaaa::1

Action Data
(New source IP)

bbbb::1

MyIngress.reflect_ipv6

... ...

Action

forward_ipv6

...

Key (Source IP)

10.0.0.1

Action Data
(New source IP)

15.0.0.1

MyIngress.reflect_ipv4

... ...

Action

forward_ipv4

...

simple_switch_CLI

Figure 4. Lab topology.

1.5 Credentials

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

2 Setting the environment

Follow the steps below to set the exercise’s environment.

Step 1. Open MiniEdit by double-clicking the shortcut on the desktop. If a password is
required type password.

Figure 5. MiniEdit shortcut.

Exercise 6: Building a Packet Reflector

Step 2. Load the topology located at /home/admin/P4_Exercises/Exercise6/.

Figure 6. Opening exercise’s topology.

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

Figure 7. Running the emulation.

Step 4. In the terminal, type the command below. This command launches the Visual
Studio Code and opens the directory where the P4 program for this exercise is located.

code ~/P4_Exercises/Exercise6/

Figure 8. Opening the working directory.

3 Deliverables

Follow the steps below to complete the exercise.

Exercise 6: Building a Packet Reflector

a) Define the headers for the Ethernet, IPv4, and IPv6 protocols.

b) Implement the parser. Recall that the Ethernet header uses the Ethertype field to

identify the next header. The Ethertype is 0x800 for IPv4 and 0x86DD for IPv6.

c) Implement the match-action tables reflect_ipv4 and reflect_ipv6 in the ingress
pipeline. The actions in this table are forward_ipv4 and forward_ipv6.

The action forward_ipv4 must execute the following operations:

• Set the egress port the same as the ingress port. Note that the ingress port is
available in the standard metadata standard_metadata.ingress_port.

• Set the source IPv4 address as the destination IPv4 address. Note that the
packet is sent back to host h1.

• Assign a new destination IPv4 address.

• Decrement the TTL field in the IPv4 header.

Similarly, the action forward_ipv6 must execute the following operations:

• Set the egress port the same as the ingress port. Note that the ingress port is
available in the standard metadata standard_metadata.ingress_port.

• Set the source IPv6 address as the destination IPv6 address. Note that the
packet is sent back to host h1.

• Assign a new destination IPv6 address.

• Decrement the hop limit field in the IPv6 header.

d) Implement the drop action.

e) Write the code to update the checksum of IPv4. Note that no checksum is needed for
IPv6.

f) Start the daemon in switch s1 and associate the interfaces to their corresponding ports
and enable nanolog.

g) Populate the tables at runtime using the simple_switch_CLI.

h) Open a terminal in host h1 and run the following command:

./recv.py

i) Using another terminal, send an IPv4 packet using the send.py program. Verify that the
tables are matching by inspecting the logs of the switch using the nanomsg tool. Verify
that the TTL field and hop limit field are decremented.

j) Repeat i) using the send_ipv6.py program.

	Cover
	Contents
	Lab 1 - Introduction to Mininet
	Exercise 1 - Building a Basic Topology
	Lab 2 - Introduction to P4 and BMv2
	Exercise 2 - Compiling and Running a P4 Program
	Lab 3 - P4 Program Building Blocks
	Lab 4 - Parser Implementation
	Exercise 3 - Parsing UDP and RTP
	Lab 5 - Introduction to Match-action Tables (Part 1)
	Lab 6 - Introduction to Match-action Tables (Part 2)
	Exercise 4 - Implementing NAT using Match-action Tables
	Lab 7 - Populating and Managing Match-action Tables on Runtime
	Exercise 5 - Configuring Match-action Tables at Runtime
	Lab 8 - Checksum Recalculation and Packet Deparsing
	Exercise 6 - Building a Packet Reflector

