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Introduction

• Attackers often use a Command and Control (C2) server to establish communication and send
commands to infected machines for malicious acts

• Communication with the C2 server can either be static or dynamic

➢ Static communication: the C2 server has a fixed IP address and domain name

➢ Dynamic communication: the C2 server’s IP and/or domain name change frequently

• Domain Generation Algorithms (DGAs) are the de facto dynamic C2 communication method used
by a broad array of modern malware, including botnets, ransomware, and many others1

1 “Dynamic Resolution: Domain Generation Algorithms.” [Online]. Available: https://tinyurl.com/44hz9hpm.
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DGA Attacks

• DGAs evade domain-based firewall controls by
frequently changing the domain name selected from a
large pool of candidates

• The malware makes Domain Name System (DNS)
queries in an attempt to resolve the IP addresses of
these generated domains

• Only a few IPs will typically be registered and associated
with the C2

• Non-Existent Domain (NXD) responses will coincide with
the remainder of the DNS queries, denoting that the
domain is not registered or the DNS server could not
resolve it
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Existing Mitigation Strategies

• Most research efforts focus on DGA detection, i.e., they perform binary classification in order to
segregate DGAs from benign traffic

• Approaches rely on contextual network traffic analysis (context-aware) or domain name analysis,
without considering network traffic (context-less)

• In addition to DGA detection, it is helpful to classify DGA malware based on the family (Trojan,
Backdoor, etc.)

➢ The multiclass classification of DGA families allows security professionals to assess the severity of the
exploit and apply the appropriate remediation policies in the network1

1 A. Drichel, N. Faerber, and U. Meyer, “First Step Towards Explainable DGA Multiclass Classification,” in The 16th International 

Conference on Availability, Reliability and Security, pp. 1–13, 2021.
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Motivation

• Context-aware approaches analyze the network traffic behavior to fingerprint DGAs

➢ Slow since they typically analyze batches of traffic offline

• Context-less approaches obtain high accuracy with advanced ML models

➢ Require a general-purpose CPU/GPU to process and analyze the domain names, which could create a
bottleneck due to the ubiquitous use of DNS on the Internet

• There is a need for a system that uses context-aware and context-less features to classify DGAs
without degrading high-throughput networks
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Contribution

• Proposing a novel P4 scheme that uses a hybrid context-aware and context-less feature 
extraction technique entirely in the data plane

• Implementing an in-network Deep Packet Inspection (DPI) on Intel’s Tofino ASIC that extracts and 
analyzes the entirety of the domain name within 3 microseconds

• Evaluating the proposed approach on 50 DGA families collected by crawling GBs of malware 
samples

• Highlighting the effectiveness of the proposed work in terms of accuracy, performance
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Related Work

• DGA binary and multiclass classification

➢ [1, 2] use NetFlow and an SDN controller to collect
context-aware features

➢ [3] uses ML models on context-aware and context-less
features on batches of DNS traffic

➢ [4-7] use machine learning trained on features of the
domain name (statistical, structural, linguistic, etc.)

• DGA multiclass classification

➢ EXPLAIN [8] and [9] extract numerous features from a
domain name to classify DGAs

8



Overview P4 Switches

• P4 switches permit programmer to program the data plane

• Customized packet processing

• High granularity in measurements

• Per-packet traffic analysis and inspection

• Stateful memory processing

• If the P4 program compiles, it runs on the chip at line rate

Programmable chip
P4 code
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Proposed System

• The P4 PDP switch collects and stores the context-
aware features of the hosts

• When an NXD response is received, the switch
performs DPI on the domain name to extract its
context-less features

• The switch sends the collected features to the
control plane

• The control plane runs the intelligence to classify
the DGA family and initiate the appropriate
incidence response
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Proposed System

• Context-aware features

➢ It characterizes the network behavior of DGAs while they attempt to contact the C2 server

➢ For each host in the network, the following features are stored in the data plane:

▪ Number of IPs contacted

▪ Number of DNS requests made

▪ Time it takes to for the first NXD response to arrive

▪ Inter-arrival Time (IAT) between subsequent NXD responses

➢ Collected in the data plane without involving the control plane (until an NXD response is
received)
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Proposed System

• Context-less features

➢ It computes the bigram of the domain name; a bigram model may suffice to predict whether a domain 
name is a legitimate human readable domain

➢ Other domain name attributes include length of the domain name and number of subdomains

➢ For each NXD response received, the data plane extracts the following features from the domain name

▪ Randomness of a domain name d according to its bigram frequency

➢ Example: bigrams of “google” are: “$g”, “go”, “oo”, “og”, “gl”, “le”, “e$”

Where          is the frequency of the bigram 

b in the subdomain s 

𝑓𝑠
𝑏
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P4 Implementation

• The parser parses DNS packets in the data plane

➢ Packet recirculation maybe required for certain 
domain names

➢ To compute the randomness of a domain, each 
bigram b will be applied to a Match-Action Table 
(MAT)

➢ The frequencies of the bigrams are computed offline 
using the English dictionary; thus, the lower the 
score the more it is considered random

➢ The MATs are pre-populated by the control plane 
with the frequency of each bigram
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Evaluation

• Dataset

➢ Hundreds of GB of malware samples from cyber security websites were crawled

➢ Each sample was instrumented in an isolated environment to capture its network traffic behavior

➢ To collect DGA-based malware, only samples that receive NXD responses containing domain names 
generated by DGAs (based on DGArchive1) are considered

➢ The resulting dataset includes 1,311 samples containing 50 DGA families

• Experimental setup

➢ The collected dataset was used to train ML models offline on a general-purpose CPU

➢ 80% of data was used for training and 20% for testing

➢ 5-fold Cross Validation (CV) was used to avoid overfitting the model

➢ Weights were assigned for every class (DGA family) to deal with class imbalance

1 D. P LOHMANN, “DGArchive.” [Online]. Available: https://tinyurl. com/yc6whwrc.
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Evaluation

• Accuracy (Acc), F1 score, and Precision (Prec) of different ML classifiers during the first 8 NXD 
responses received were reported 

• The Random Forest (RF) model performed best

• The Accuracy (Acc) starts at 92% from the first NXD response received and reaches 95% by the 8th NXD 
response
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Evaluation

• Performance of the proposed approach amid varying 
NXD responses on a subset of samples grouped by 
their attack category

• The accuracy of critical attacks, such as ransomware, 
is high from the first NXD response

• The majority of attacks are classified with high 
confidence by the 5th NXD response

• Feature extraction time of our work and EXPLAIN

• EXPLAIN’s available source code was tested on a 
general-purposed CPU with 64 GB RAM, 2.9 GHz 
processor with 8 cores

Accuracy 16



Evaluation
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• Our approach only recirculates NXD responses

• NXDs account for 0.01% of the traffic in campus traffic1

• The rest of the traffic undergoes shallow packet inspection (few hundreds of nanoseconds)

• Number of recirculations for domain names in DGArchive

• 80% of the domains require a maximum of four recirculations

1 Garcia, Sebastian, et al. "An empirical comparison of botnet detection methods." computers & security 45 (2014): 100-123.



Conclusion and Discussion

• In this work, we propose a hybrid feature extraction technique relying on context-aware and 
context-less features to classify DGA families

• Context-aware features characterize the network traffic behavior of the DGAs and require 
shallow packet inspection (no degradation to the throughput)

• Context-less features study the statistical and structural characteristics of the domain names 
relating to NXDs using DPI

• With 50 DGA families analyzed, the proposed approach achieves 92% accuracy with RF classifier 
from the first NXD response and reaches up to 98% by the 8th NXD response

• In the future, we aim to explore other techniques that are robust against encrypted DNS traffic, in 
addition to collecting more DGA families
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