

P4-PERFSONAR LAB SERIES

Book Version: 08-07-2024

Principal Investigator: Jorge Crichigno
Co-Principal Investigator: Elie Kfoury
Developers: Ali Mazloum, Jose Gomez

P4-PERFSONAR LAB SERIES

Contents

Lab 1: Introduction to Mininet
Lab 2: P4 Program Building Blocks
Lab 3: Measuring Flow's Throughput
Lab 4: Monitoring the RTT of TCP Flows using P4
Lab 5: Configuring Regular Tests Using pScheduler CLI
Lab 6: Connecting perfSONAR to Grafana Dashboard
Lab 7: Retrieving Per-flow Statistics from the Data Plane
Lab 8: Collecting P4 Measurements using perfSONAR's Archiver

P4-PERFSONAR LAB SERIES

Lab 1: Introduction to Mininet

Document Version: 06-12-2024

Lab 1: Introduction to Mininet

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to Mininet .. 3

2 Invoke Mininet using the CLI .. 5

2.1 Invoke Mininet using the default topology .. 5

2.2 Test connectivity .. 9

3 Build and emulate a network in Mininet using the GUI ... 10

3.1 Build the network topology ... 10

3.2 Test connectivity .. 13

3.3 Automatic assignment of IP addresses .. 16

3.4 Save and load a Mininet topology ... 18

References .. 19

Lab 1: Introduction to Mininet

 Page 3

Overview

This lab provides an introduction to Mininet, a virtual testbed used for testing network
tools and protocols. It demonstrates how to invoke Mininet from the command-line
interface (CLI) utility and how to build and emulate topologies using a graphical user
interface (GUI) application.

Objectives

By the end of this lab, you should be able to:

1. Understand what Mininet is and why it is useful for testing network topologies.
2. Invoke Mininet from the CLI.
3. Construct network topologies using the GUI.
4. Save/load Mininet topologies using the GUI.

Lab settings

The information in Table 1 provides the credentials of the Client machine.

Table 1. Credentials to access the Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Mininet.
2. Section 2: Invoke Mininet using the CLI.
3. Section 3: Build and emulate a network in Mininet using the GUI.

1 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools and
protocols. With a single command, Mininet can create a realistic virtual network on any
type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides
an inexpensive solution and streamlined development running in line with production
networks1. Mininet offers the following features:

• Fast prototyping for new networking protocols.

Lab 1: Introduction to Mininet

 Page 4

• Simplified testing for complex topologies without the need of buying expensive
hardware.

• Realistic execution as it runs real code on the Unix and Linux kernels.

• Open-source environment backed by a large community contributing extensive
documentation.

Figure 1. Hardware network vs. Mininet emulated network.

Mininet is useful for development, teaching, and research as it is easy to customize and
interact with it through the CLI or the GUI. Mininet was originally designed to experiment
with OpenFlow2 and Software-Defined Networking (SDN)3. This lab, however, only focuses
on emulating a simple network environment without SDN-based devices.

Mininet’s logical nodes can be connected into networks. These nodes are sometimes
called containers, or more accurately, network namespaces. Containers consume
sufficiently fewer resources that networks of over a thousand nodes have created,
running on a single laptop. A Mininet container is a process (or group of processes) that
no longer has access to all the host system’s native network interfaces. Containers are
then assigned virtual Ethernet interfaces, which are connected to other containers
through a virtual switch4. Mininet connects a host and a switch using a virtual Ethernet
(veth) link. The veth link is analogous to a wire connecting two virtual interfaces, as
illustrated below.

Figure 2. Network namespaces and virtual Ethernet links.

Each container is an independent network namespace, a lightweight virtualization feature
that provides individual processes with separate network interfaces, routing tables, and
Address Resolution Protocol (ARP) tables.

h1 s1 h2s2

s3

Hardware NetworkMininet Emulated Network

Lab 1: Introduction to Mininet

 Page 5

Mininet provides network emulation opposed to simulation, allowing all network
software at any layer to be simply run as is, i.e., nodes run the native network software
of the physical machine. On the other hand, in a simulated environment applications and
protocol implementations need to be ported to run within the simulator before they can
be used.

2 Invoke Mininet using the CLI

In following subsections, you will start Mininet using the Linux CLI.

2.1 Invoke Mininet using the default topology

Step 1. Launch a Linux terminal by clicking on the Linux terminal icon in the task bar.

Figure 3. Linux terminal icon.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. To start a minimal topology, enter the command shown below. When prompted
for a password, type password and hit enter. Note that the password will not be visible
as you type it.

sudo mn

Lab 1: Introduction to Mininet

 Page 6

Figure 4. Starting Mininet using the CLI.

The above command starts Mininet with a minimal topology, which consists of a switch
connected to two hosts as shown below.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth1 s1-eth2 h2-eth0

s1

10.0.0.0/8

Figure 5. Mininet’s default minimal topology.

When issuing the sudo mn command, Mininet initializes the topology and launches its
command line interface which looks like this:

containernet>

Step 3. To display the list of Mininet CLI commands and examples on their usage, type the
following command:

help

Lab 1: Introduction to Mininet

 Page 7

Figure 6. Mininet’s help command.

Step 4. To display the available nodes, type the following command:

nodes

Figure 7. Mininet’s nodes command.

The output of the nodes command shows that there is a controller (c0), two hosts (host
h1 and host h2), and a switch (s1).

Step 5. It is useful sometimes to display the links between the devices in Mininet to
understand the topology. Issue the command shown below to see the available links.

net

Lab 1: Introduction to Mininet

 Page 8

Figure 8. Mininet’s net command.

The output of the net command shows that:

1. Host h1 is connected using its network interface h1-eth0 to the switch on
interface s1-eth1.

2. Host h2 is connected using its network interface h2-eth0 to the switch on
interface s1-eth2.

3. Switch s1:
a. Has a loopback interface lo.
b. Connects to h1-eth0 through interface s1-eth1.
c. Connects to h2-eth0 through interface s1-eth2.

4. Controller c0 does not have any connection.

Mininet allows you to execute commands on a specific device. To issue a command for a
specific node, you must specify the device first, followed by the command.

Step 6. To proceed, issue the command:

h1 ifconfig

Figure 9. Output of h1 ifconfig command.

Lab 1: Introduction to Mininet

 Page 9

This command h1 ifconfig executes the ifconfig Linux command on host h1. The
command shows host h1’s interfaces. The display indicates that host h1 has an interface
h1-eth0 configured with IP address 10.0.0.1, and another interface lo configured with IP
address 127.0.0.1 (loopback interface).

2.2 Test connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1
and host h2 respectively. To test connectivity between them, you can use the command
ping. The ping command operates by sending Internet Control Message Protocol (ICMP)
Echo Request messages to the remote computer and waiting for a response or reply.
Information available includes how many responses are returned and how long it takes
for them to return.

Step 1. On the CLI, type the command shown below. The command h1 ping 10.0.0.2
tests the connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The
figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets to
host h2 (10.0.0.2) and successfully received the expected responses.

h1 ping 10.0.0.2

Figure 10. Connectivity test between host h1 and host h2.

Step 2. Stop the emulation by typing the following command:

exit

Lab 1: Introduction to Mininet

 Page 10

Figure 11. Stopping the emulation using exit.

If Mininet were to crash for any reason, the sudo mn – c command can be utilized to
clean a previous instance. However, the sudo mn -c command is often used within the
Linux terminal and not the Mininet CLI.

Step 3. After stopping the emulation, close the Linux terminal by clicking the X in the
upper-right corner.

Figure 12. Closing the Linux CLI.

3 Build and emulate a network in Mininet using the GUI

In this section, you will use the application MiniEdit to deploy the topology illustrated
below. MiniEdit is a simple GUI network editor for Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth1 s1-eth2 h2-eth0

s1

10.0.0.0/8

Figure 13. Lab topology.

3.1 Build the network topology

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.
MiniEdit will start, as illustrated below.

Lab 1: Introduction to Mininet

 Page 11

Figure 14. MiniEdit Desktop shortcut.

MiniEdit will start, as illustrated below.

Lab 1: Introduction to Mininet

 Page 12

Figure 15. MiniEdit Graphical User Interface (GUI).

The main buttons are:

1. Select: allows selection/movement of the devices. Pressing Delete on the
keyboard
after selecting the device removes it from the topology.

2. Host: allows addition of a new host to the topology. After clicking this button, click
anywhere in the blank canvas to insert a new host.

3. perfSONAR node (Docker): allows the addition a perfSONAR node. After clicking
this button, click anywhere in the blank canvas to insert a perfSONAR node.

4. P4 switch (Docker): allows the addition of P4 switch. After clicking this button, click
anywhere in the blank canvas to insert the P4 switch.

5. Legacy switch: allows the addition of a new Ethernet switch to the topology. After
clicking this button, click anywhere in the blank canvas to insert the switch.

6. Legacy router: allows the addition of a new legacy router to the topology. After
clicking this button, click anywhere in the blank canvas to insert the router.

7. Link: connects devices in the topology (mainly switches and hosts). After clicking
this button, click on a device and drag to the second device to which the link is to
be established.

8. Controller: allows the addition of a new OpenFlow controller.
9. Run: starts the emulation. After designing and configuring the topology, click the

run button.
10. Stop: stops the emulation.

Step 2. To build the topology illustrated in Figure 13, two hosts and one switch must be
deployed. Deploy these devices in MiniEdit, as shown below.

Figure 16. MiniEdit’s topology.

Lab 1: Introduction to Mininet

 Page 13

Use the buttons described in the previous step to add and connect devices. The
configuration of IP addresses is described in Step 3.

Step 3. Configure the IP addresses of host h1 and host h2. Host h1’s IP address is
10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the
right click and selecting properties on the device. For example, host h2 is assigned the IP
address 10.0.0.2/8 in the figure below. Click OK for the settings to be applied.

Figure 17. Configuration of a host’s properties.

3.2 Test connectivity

Before testing the connection between host h1 and host h2, the emulation must be
started.

Step 1. Click the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 18. Starting the emulation.

Step 2. Open a terminal by right-clicking on host h1 and select Terminal. This opens a
terminal on host h1 and allows the execution of commands on the host h1. Repeat the
procedure on host h2.

Lab 1: Introduction to Mininet

 Page 14

Figure 19. Opening a terminal on host h1.

The network and terminals at host h1 and host h2 will be available for testing.

Figure 20. Terminals at host h1 and host h2.

Step 3. On host h1’s terminal, type the command shown below to display its assigned IP
addresses. The interface h1-eth0 at host h1 should be configured with the IP address
10.0.0.1 and subnet mask 255.0.0.0.

ifconfig

Lab 1: Introduction to Mininet

 Page 15

Figure 21. Output of ifconfig command on host h1.

Repeat Step 3 on host h2. Its interface h2-eth0 should be configured with IP address
10.0.0.2 and subnet mask 255.0.0.0.

Step 4. On host h1’s terminal, type the command shown below. This command tests the
connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The figure
below shows a successful connectivity test. Host h1 (10.0.0.1) sent six packets to host h2
(10.0.0.2) and successfully received the expected responses.

ping 10.0.0.2

Figure 22. Connectivity test using ping command.

Step 5. Stop the emulation by clicking on the Stop button.

Figure 23. Stopping the emulation.

Lab 1: Introduction to Mininet

 Page 16

3.3 Automatic assignment of IP addresses

In the previous section, you manually assigned IP addresses to host h1 and host h2. An
alternative is to rely on Mininet for an automatic assignment of IP addresses (by default,
Mininet uses automatic assignment), which is described in this section.

Step 1. Remove the manually assigned IP address from host h1. Right-click on host h1 and
select Properties. Delete the IP address, leaving it unassigned, and press the OK button as
shown below. Repeat the procedure on host h2.

Figure 24. Host h1 properties.

Step 2. In the MiniEdit application, navigate to Edit > Preferences. The default IP base is
10.0.0.0/8. Modify this value to 15.0.0.0/8, and then press the OK button.

Figure 25. Modification of the IP Base (network address and prefix length).

Lab 1: Introduction to Mininet

 Page 17

Step 3. Run the emulation again by clicking on the Run button. The emulation will start
and the buttons of the MiniEdit panel will be disabled.

Figure 26. Starting the emulation.

Step 4. Open a terminal by right-clicking on host h1 and select Terminal.

Figure 27. Opening a terminal on host h1.

Step 5. Type the command shown below to display the IP addresses assigned to host h1.
The interface h1-eth0 at host h1 now has the IP address 15.0.0.1 and subnet mask
255.0.0.0.

ifconfig

Lab 1: Introduction to Mininet

 Page 18

Figure 28. Output of ifconfig command on host h1.

You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host
h2’s terminal. The corresponding interface h2-eth0 at host h2 has now the IP address
15.0.0.2 and subnet mask 255.0.0.0.

Step 6. Stop the emulation by clicking on Stop button.

Figure 29. Stopping the emulation.

3.4 Save and load a Mininet topology

In this section you will save and load a Mininet topology. It is often useful to save the
network topology, particularly when its complexity increases. MiniEdit enables you to
save the topology to a file.

Step 1. In the MiniEdit application, save the current topology by clicking File. Provide a
name for the topology and notice myTopology as the topology name. Ensure you are in
the lab1 folder and click Save.

Lab 1: Introduction to Mininet

 Page 19

Figure 30. Saving the topology.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab1 folder and search for the topology file called lab1.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 31. Opening a topology.

This concludes lab 1. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. Mininet walkthrough. [Online]. Available: http://Mininet.org.
2. Mckeown N., Anderson T., Balakrishnan H., Parulkar G., Peterson L., Rexford J.,

Shenker S., Turner J., “OpenFlow,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

3. Esch J., “Prolog to, software-defined networking: a comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 10–13, 2015.

4. Dordal P., “An Introduction to computer networks,”. [Online]. Available:
https://intronetworks.cs.luc.edu/.

Lab 1: Introduction to Mininet

 Page 20

5. Lantz B., Gee G. “MiniEdit: a simple network editor for Mininet.” 2013. [Online].
Available: https://github.com/Mininet/Mininet/blob/master/examples.

P4-PERFSONAR LAB SERIES

Lab 2: P4 Program Building Blocks

Document Version: 01-25-2022

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 2: P4 Program Building Blocks

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 The PISA architecture .. 3

1.1 The PISA architecture ... 4

1.2 Programmable parser .. 4

1.3 Programmable match-action pipeline ... 5

1.4 Programmable deparser .. 5

1.5 The V1Model .. 5

1.6 P4 program mapping to the V1Model ... 6

2 Lab topology.. 6

2.1 Starting host h1 and host h2 .. 8

3 Navigating through the components of a basic P4 program 9

3.1 Loading the programming environment .. 9

3.2 Describing the components of the P4 program ... 10

3.3 Programming the pipeline sequence ... 15

4 Loading the P4 program .. 16

4.1 Compiling and loading the P4 program to switch s1 ... 16

4.2 Verifying the configuration .. 17

5 Configuring switch s1 .. 18

5.1 Mapping the P4 program’s ports ... 18

5.2 Loading the rules to the switch .. 20

6 Testing and verifying the P4 program ... 21

References .. 23

Lab 2: P4 Program Building Blocks

 Page 3

Overview

This lab describes the building blocks and the general structure of a P4 program. It maps
the program’s components to the Protocol-Independent Switching Architecture (PISA), a
programmable pipeline used by modern whitebox switching hardware. The lab also
demonstrates how to track an incoming packet as it traverses the pipeline of the switch.
Such capability is very useful to debug and troubleshoot a P4 program.

Objectives

By the end of this lab, students should be able to:

1. Understand the PISA architecture.
2. Understand on high-level the main building blocks of a P4 program.
3. Map the P4 program components to the components of the programmable

pipeline.
4. Trace the lifecycle of a packet as it traverses the pipeline.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: The PISA architecture.
2. Section 2: Lab topology.
3. Section 3: Navigating through the components of a basic P4 program.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Testing and verifying the P4 program.

1 The PISA architecture

Lab 2: P4 Program Building Blocks

 Page 4

1.1 The PISA architecture

The Protocol Independent Switch Architecture (PISA)1 is a packet processing model that
includes the following elements: programmable parser, programmable match-action
pipeline, and programmable deparser, see Figure 1. The programmable parser permits
the programmer to define the headers (according to custom or standard protocols) and
to parse them. The parser can be represented as a state machine. The programmable
match-action pipeline executes the operations over the packet headers and intermediate
results. A single match-action stage has multiple memory blocks (e.g., tables, registers)
and Arithmetic Logic Units (ALUs), which allow for simultaneous lookups and actions.
Since some action results may be needed for further processing (e.g., data dependencies),
stages are arranged sequentially. The programmable deparser assembles the packet
headers back and serializes them for transmission. A PISA device is protocol independent.
The P4 program defines the format of the keys used for lookup operations. Keys can be
formed using packet header’s information. The control plane populates table entries with
keys and action data. Keys are used for matching packet information (e.g., destination IP
address) and action data is used for operations (e.g., output port).

Programmable match-
action pipeline

...

Programmable
parser

ALU

Packets

Memory (e.g., table)

Programmable
deparser

Stage 1 Stage N

State

Packets

Switch
ASIC

Figure 1. A PISA-based data plane.

Programmable switches do not introduce performance penalty. On the contrary, they
may produce better performance than fixed-function switches. When compared with
general purpose CPUs, ASICs remain faster at switching, and the gap is only increasing.

1.2 Programmable parser

The programmable parser permits the programmer to define the headers (according to
custom or standard protocols) and to describe how the switch should process those
headers. The parser de-encapsulates the headers, converting the original packet into a
parsed representation of the packet. The programmer declares the headers that must be
recognized and their order in the packet. The parser can be represented as a state
machine without cycles (direct acyclic graph), with one initial state (start) and two final
states (accept or reject).

Lab 2: P4 Program Building Blocks

 Page 5

1.3 Programmable match-action pipeline

The match-action pipeline implements the processing occurring at a switch. The pipeline

consists of multiple identical stages (N stages are shown in Figure 1). Practical

implementations may have 10/15 stages on the ingress and egress pipelines. Each stage

contains multiple match-action units (4 units per stage in Figure 1). A match-action unit

has a match phase and an action phase. During the match phase, a table is used to match

a header field of the incoming packet against entries in the table (e.g., destination IP

address). Note that there are multiple tables in a stage (4 tables per stage in Figure 1),

which permit the switch to perform multiple matches in parallel over different header

fields. Once a match occurs, a corresponding action is performed by the ALU. Examples

of actions include: modify a header field, forward the packet to an egress port, drop the

packet, and others. The sequential arrangement of stages allows for the implementation

of serial dependencies. For example, if the result of an operation is needed prior to

perform a second operation, then the compiler would place the first operation at an

earlier stage than the second operation.

1.4 Programmable deparser

The deparser assembles back the packet and serializes it for transmission. The
programmer specifies the headers to be emitted by the deparser. When assembling the
packet, the deparser emits the specified headers followed by the original payload of the
packet.

1.5 The V1Model

Figure 2 depicts the V1Model2 architecture components. The V1Model architecture
consists of a programmable parser, an ingress match-action pipeline, a traffic manager,
an egress match-action pipeline, and a programmable deparser. The traffic manager
schedules packets between input ports and output ports and performs packet replication
(e.g., replication of a packet for multicasting). The V1Model architecture is implemented
on top BMv2’s simple_switch target3.

Programmable match-
action pipeline

...

Programmable
parser

ALU

Packets

Traffic
Manager

Memory (e.g., table)

Programmable match-
action pipeline

...

Programmable
deparser

Ingress match-action and checksum verification Egress match-action and checksum verification

Stage 1 Stage N Stage 1 Stage N

Configurable
component

State

Figure 2. The V1Model architecture.

Lab 2: P4 Program Building Blocks

 Page 6

1.6 P4 program mapping to the V1Model

The P4 program used in this lab is separated into different files. Figure 3 shows the
V1Model and its associated P4 files. These files are as follows:

• headers.p4: this file contains the packet headers’ and the metadata’s definitions.

• parser.p4: this file contains the implementation of the programmable parser.

• ingress.p4: this file contains the ingress control block that includes match-action
tables.

• egress.p4: this file contains the egress control block.

• deparser.p4: this file contains the deparser logic that describes how headers are
emitted from the switch.

• checksum.p4: this file contains the code that verifies and computes checksums.

• basic.p4: this file contains the starting point of the program (main) and invokes
the other files. This file must be compiled.

Programmable match-
action pipeline

...

Programmable
parser

Packets

Traffic
Manager

Programmable match-
action pipeline

...

Programmable
deparser

Ingress match-action and checksum verification Egress match-action and checksum verification

Stage 1 Stage N Stage 1 Stage N

Configurable
component

headers.p4 parser.p4 ingress.p4 egress.p4 deparser.p4

checksum.p4 checksum.p4Non-programmable

ALUMemory (e.g., table)State

Figure 3. Mapping of P4 files to the V1Model’s components.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 2: P4 Program Building Blocks

 Page 7

Figure 5. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab2 folder and search for the topology file called lab2.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 6. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Lab 2: P4 Program Building Blocks

 Page 8

Figure 7. Running the emulation.

2.1 Starting host h1 and host h2

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Figure 8. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Lab 2: P4 Program Building Blocks

 Page 9

Figure 9. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded on the switch.

3 Navigating through the components of a basic P4 program

This section shows the steps required to compile the P4 program. It illustrates the editor
that will be used to modify the P4 program, and the P4 compiler that will produce a data
plane program for the software switch.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 10. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4-perfSONAR_Labs/lab2/

Lab 2: P4 Program Building Blocks

 Page 10

Figure 11. Launching the editor and opening the lab3 directory.

3.2 Describing the components of the P4 program

Step 1. Once the previous command is executed, VS Code will start. Click on basic.p4 in
the file explorer panel on the left hand side to open the P4 program in the editor.

Figure 12. The main P4 file and how it includes other user-defined files.

The basic.p4 file includes the starting point of the P4 program and other files that are
specific to the language (core.p4) and to the architecture (v1model.p4). To make the P4
program easier to read and understand, we separated the whole program into different
files. Note how the files in the explorer panel correspond to the components of the
V1Model. To use those files, the main file (basic.p4) must include them first. For example,
to use the parser, we need to include the parser.p4 file (#include “parser.p4”).

We will navigate through the files in sequence as they appear in the architecture.

Step 2. Click on the headers.p4 file to display the content of the file.

Lab 2: P4 Program Building Blocks

 Page 11

Figure 13. The defined headers.

The headers.p4 above shows the headers that will be used in our pipeline. We can see
that the ethernet and the IPv4 headers are defined. We can also see how they are
grouped into a structure (struct headers). The headers name will be used throughout
the program when referring to the headers. Furthermore, the file shows how we can use
typedef to provide an alternative name to a type.

Step 3. Click on the parser.p4 file to display the content of the parser.

Lab 2: P4 Program Building Blocks

 Page 12

Figure 14. The parser implementation.

The figure above shows the content of the parser.p4 file. We can see that the parser is
already written with the name MyParser. This name will be used when defining the
pipeline sequence.

Step 4. Click on the ingress.p4 file to display the content of the file.

Lab 2: P4 Program Building Blocks

 Page 13

Figure 15. The ingress component.

The figure above shows the content of the ingress.p4 file. We can see that the ingress is
already written with the name MyIngress. This name will be used when defining the
pipeline sequence.

Step 5. Click on the egress.p4 file to display the content of the file.

Figure 16. The egress component.

The figure above shows the content of the egress.p4 file. We can see that the egress is
already written with the name MyEgress. This name will be used when defining the
pipeline sequence.

Step 6. Click on the checksum.p4 file to display the content of the file.

Lab 2: P4 Program Building Blocks

 Page 14

Figure 17. The checksum component.

The figure above shows the content of the checksum.p4 file. We can see that the
checksum is already written with two control blocks: MyVerifyChecksum and
MyComputeChecksum. These names will be used when defining the pipeline sequence.
Note that MyVerifyChecksum is empty since no checksum verification is performed in
this lab.

Step 7. Click on the deparser.p4 file to display the content of the file.

Figure 18. The deparser component.

The figure above shows the content of the deparser.p4 file. We can see that the deparser
is already written with two instructions that reassemble the packet.

Lab 2: P4 Program Building Blocks

 Page 15

3.3 Programming the pipeline sequence

Now it is time to write the pipeline sequence in the basic.p4 program.

Step 1. Click on the basic.p4 file to display the content of the file.

Figure 19. Selecting the basic.p4 file.

Step 2. Write the following block of code at the end of the file

V1Switch (

MyParser(),

MyVerifyChecksum(),

MyIngress(),

MyEgress(),

MyComputeChecksum(),

MyDeparser()

) main;

Figure 20. Writing the pipeline sequence in the basic.p4 program

Lab 2: P4 Program Building Blocks

 Page 16

We can see here that we are defining the pipeline sequence according to the V1Model
architecture. First, we start by the parser, then we verify the checksum. Afterwards, we
specify the ingress block and the egress block, and we recompute the checksum. Finally,
we specify the deparser.

Step 3. Save the changes by pressing Ctrl+s.

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

Figure 21. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

Lab 2: P4 Program Building Blocks

 Page 17

push_to_switch basic.json s1

Figure 22. Downloading the P4 program to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 23. Maximizing the MiniEdit window.

Step 2. In MiniEdit, right-click on the P4 switch icon and start the Terminal.

Lab 2: P4 Program Building Blocks

 Page 18

Figure 24. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the

previous step.

ls

Figure 25. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded to switch s1
after compiling the P4 program.

5 Configuring switch s1

5.1 Mapping the P4 program’s ports

Step 1. Issue the following command to display the interfaces on the switch s1.

ifconfig

Lab 2: P4 Program Building Blocks

 Page 19

Figure 26. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-eth0 and s1-eth1. The interface s1-eth0
on the switch s1 connects host h1. The interface s1-eth1 on the switch s1 connects host
h2.

Step 2. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 --nanolog ipc:///tmp/bm-log.ipc

basic.json &

Figure 27. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The --nanolog option is used to instruct the switch daemon that we want to see the
logs of the switch.

Lab 2: P4 Program Building Blocks

 Page 20

s1-eth0 0 s1-eth11

Figure 28. Mapping of the logical interface numbers (0, 1) to the Linux interfaces (s1-eth0, s1-
eth1).

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 29. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/P4-perfSONAR_Labs/Lab2/rules.cmd

Figure 30. Loading the forwarding table entries into switch s1.

Now the forwarding table in the switch is populated.

Lab 2: P4 Program Building Blocks

 Page 21

6 Testing and verifying the P4 program

Step 1. Type the following command to initiate the nanolog client that will display the
switch logs.

nanomsg_client.py

Figure 31. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command below so that the host starts listening
for incoming packets.

./recv.py

Figure 32. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command to send a packet to host h2.

./send.py 10.0.0.2 HelloWorld

Lab 2: P4 Program Building Blocks

 Page 22

Figure 33. Sending a test packet from host h1 to host h2.

Now that the switch has a program with tables properly populated, the hosts are able to
reach each other.

Step 4. Go back to switch s1 terminal and inspect the logs.

Figure 34. Inspecting the logs in switch s1.

The figure above shows the processing logic as the packet enters switch s1. The packet
arrives on port 0 (port_in: 0), then the parser starts extracting the headers. After the

Lab 2: P4 Program Building Blocks

 Page 23

parsing is done, the packet is processed in the ingress and in the egress pipelines. Then,
the checksum update is executed and the deparser reassembles and emits the packet
using port 1 (port_out: 1).

Step 5. Verify that the packet was received on host h2.

This concludes lab 2. Stop the emulation and then exit out of MiniEdit.

References

1. C. Cascaval, D. Daly. "P4 Architectures." [Online]. Available:
https://tinyurl.com/3zk8vs6a.

2. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.
3. P4lang/behavioral-model github repository. “The BMv2 Simple Switch target.”

[Online]. Available: https://tinyurl.com/vrasamm.

P4-PERFSONAR LAB SERIES

Lab 3: Measuring Flow’s Throughput

Document Version: 06-13-2024

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 3: Measuring Flow’s Throughput

 Page 2

Contents

Overview ... 3
Objectives.. 3
Lab settings ... 3
Lab roadmap ... 3
1 Introduction .. 3

1.1 Lab scenario .. 4
2 Lab topology.. 5

2.1 Verifying connectivity between host h1 and host h2 ... 7
3 Developing a P4 program to report per-flow throughput .. 8

3.1 Loading the programming environment... 8
3.2 Defining a custom header ... 9
3.3 Performing the cloning operation every one second 11
3.4 Processing and mirroring packets to the collector ... 17

4 Loading the P4 program .. 25
4.1 Compiling and loading the P4 program to switch s1 .. 25
4.2 Verifying the configuration ... 27

5 Configuring switch s1 .. 28
5.1 Mapping the P4 program’s ports .. 28
5.2 Loading the rules to the switch... 29
5.3 Defining packet mirroring ... 30

6 Testing and verifying the P4 program ... 31
6.1 Starting the collector .. 31
6.2 Testing the P4 program... 32

References .. 33

Lab 3: Measuring Flow’s Throughput

 Page 3

Overview

Programmable data planes provide fine-grained monitoring capabilities, allowing for
statistics to be reported on a per-flow basis. In this lab, participants will implement a P4
program that utilizes the mirroring operation to report throughput to a collector. For each
flow, the switch will clone one packet every second, add the flow's bit count to the cloned
packet, and then send it to the collector for analysis. This approach enables detailed flow-
level monitoring and measurement of throughput within the network.

Objectives

By the end of this lab, students should be able to:

1. Understand how packet cloning works in P4.
2. Understand how packet mirroring works in P4.
3. Report measurements using time intervals.
4. Collect measurements on a per-flow basis.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client Admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to packet cloning in P4.
2. Section 2: Lab topology.
3. Section 3: Developing a P4 program to report per-flow throughput.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Testing and verifying the P4 program.

1 Introduction

Lab 3: Measuring Flow’s Throughput

 Page 4

Clone operation generates a new version of a packet, allowing the user to process the
cloned packet differently from the original packet. The cloning operation does not disturb
the ongoing connection as the original packet can be forwarded to its destination, while
the cloned packet is directed to the ingress or egress blocks for additional processing.
There are four types of cloning: 1) ingress to ingress; 2) ingress to egress; 3) egress to
ingress; and 4) egress to egress.

The user can specify a list of metadata to be preserved by the cloned packets. Multiple
lists can be defined in the metadata data, where the order of the defined lists specify their
IDs. The order of the lists starts from 0 (i.e., first list has ID 0, second list has ID 1 and so
on). Upon cloning, the user can specify which list to use by including its ID in the cloned
function. If no lists are defined, the ID of value 0 is used to indicate that no metadata
should be preserved. Another parameter of the cloning function is the session ID. The
session ID field groups the packets into groups, where different actions can be performed
based on the value of this field.

One function of packet cloning is mirroring. Mirroring (also known as port mirroring) is a
standard networking functionality used to send a copy of a packet received on a specific
port to a networking monitoring system (e.g., collector) on another port2,3. To implement
the mirroring functionality in P4, the user should identify which packets to be monitored,
generate the mirrored instances of the identified packets, and specify the actions to be
performed on those instances.

Specifying which packets to be monitored is application dependent. For example, suppose
the application should report the flows’ throughput every one-second interval. In that
case, the switch should calculate the time difference between the arrival time of the
current packet and the time the last report of the current flow has been sent. If the time
difference is larger than one second, the switch should clone the packet, append the
counted bits in the last second to the cloned instances, and forward them to a collector.
It is important to differentiate between packet cloning and packet mirroring. The term
"clone" is used instead of "mirror" to emphasize that it solely generates a new packet
version without requiring additional configuration for mirroring2.

1.1 Lab scenario

In this lab, participants will develop a P4 application to measure and report the
throughput of individual flows in real-time. The application will run on a switch and
periodically send the throughput values to a designated collector for display. The switch
will use the 5-tuple (source IP, destination IP, source port, destination port, and protocol)
to classify packets into distinct flows. For each flow, the switch will calculate the number
of bits transmitted within a one-second interval, representing the flow's throughput.

Lab 3: Measuring Flow’s Throughput

 Page 5

Sender

Receiver

Collector

L

1

n
1

n 1

Data packets Mirrored packets

2

Figure 1. Lab scenario.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

s1

10.0.02

10.0.0.3

h2

h3

s1-eth0

h2-eth0

10.0.0.1

h1

h3-eth0

s1-eth1

s1-eth2

h1-eth0

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 3: Measuring Flow’s Throughput

 Page 6

Figure 3. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab3 folder and search for the topology file called lab3.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 4. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Lab 3: Measuring Flow’s Throughput

 Page 7

Figure 5. Running the emulation.

2.1 Verifying connectivity between host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 7. Performing a connectivity test between host h1 and host h2.

Lab 3: Measuring Flow’s Throughput

 Page 8

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded into the switch. Note that there will be no connectivity between any
two hosts in the topology before loading a P4 program to the switch.

3 Developing a P4 program to report per-flow throughput

In this section, you will create a P4 program to report per-flow throughput values to the
collector. For each flow, the switch will report the counted number of bits per second.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 8. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code P4-perfSOANR_Labs/Lab3

Lab 3: Measuring Flow’s Throughput

 Page 9

Figure 9. Loading the development environment.

3.2 Defining a custom header

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Figure 10. Inspecting the headers.p4 file.

Step 2. Define the following custom header by adding the code shown below.

header report_t {

 bit<32> src_ip;

 bit<32> dst_ip;

 bit<48> throughput;

}

Figure 11. Defining a custom header type.

Step 3. Define the following field list by adding the code below to the metadata struct.

Lab 3: Measuring Flow’s Throughput

 Page 10

@field_list(0)

bit<16> flow_id;

bit<32> src_ip;

bit<32> dst_ip;

Figure 12. Defining a field list.

The clone function uses a field list to preserve a list of metadata fields after cloning a
packet. By including the ID of a field list in the cloning function, the switch preserves all
the fields defined by the field list.

In the code above, @field_list(0) defines a field list with ID 0. This list has three
metadata fields that will be used to preserve the flow ID the packet belongs to and the
source IP address and the destination IP address of the flow.

Step 4. Append the custom header to current headers by inserting the following line of
code.

report_t report;

Lab 3: Measuring Flow’s Throughput

 Page 11

Figure 13. Appending the custom header.

Step 5. Save the changes to the file by pressing Ctrl + s.

3.3 Performing the cloning operation every one second

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Figure 14. Inspecting the ingress.p4 file.

Step 2. Define the action compute_flow_id by adding the following piece of code.

action compute_flow_id() {

 hash (

 meta.flow_id,

 HashAlgorithm.crc16,

 (bit<1>)0,

 {

 hdr.ipv4.srcAddr,

 hdr.ipv4.dstAddr,

 hdr.ipv4.protocol,

Lab 3: Measuring Flow’s Throughput

 Page 12

 hdr.tcp.srcPort,

 hdr.tcp.dstPort

 },

 (bit<16>)65535

);

}

Figure 15. Defining the action compute_flow_id.

The code in the figure above hashes flows based on their source and destination IP
addresses, their protocol, and their source and destination TCP ports. The hash function
hash produces a 16-bits output using the following parameters:

• meta.flow_id: The variable used to store the output.

• HashAlgorithm.crc16: the hash algorithm.

• bit<1>0: the minimum (or base) value produced by the hash algorithm.

• hdr.ipv4.srcAddr, hdr.ipv4.dstAddr, hdr.ipv4.protocol,
hdr.tcp.srcPort, hdr.tcp.dstPort: the data to be hashed.

• bit<16>65535: the maximum value produced by the hash algorithm.

Step 3. Add the following code to define a register array that will store the timestamp of
the last report sent.

register<bit<48>>(65536) last_timestamp_reg;

Lab 3: Measuring Flow’s Throughput

 Page 13

Figure 16. Defining a register array.

Step 4. Add the following code inside the apply block to apply the forwarding table if
the packet has the IPv4 header.

if(hdr.ipv4.isValid()){

 forwarding.apply();

}

Figure 17. Applying forwarding table.

Step 5. Add the following code to compute the ID of the flow if the packet has the IPv4
and the TCP headers.

if(hdr.tcp.isValid()){

 compute_flow_id();

}

Lab 3: Measuring Flow’s Throughput

 Page 14

Figure 18. Computing flow ID.

Step 6. Add the following code to define a new variable, retrieve the timestamp of the
last report sent from the register array, and store it in the defined variable.

bit<48> last_timestamp;

last_timestamp_reg.read(last_timestamp, (bit<32>)meta.flow_id);

Figure 19. Retrieving the timestamp of the last report.

Step 7. Add the following code to modify the last_timestamp_reg to the current
timestamp if the packet does not belong to an existing flow (i.e., it is the first packet of
the flow).

Lab 3: Measuring Flow’s Throughput

 Page 15

if(last_timesatmp == 0){

 last_timestamp_reg.write((bit<32>)meta.flow_id,\

 standard_metadata.ingress_global_timestamp);

}

Figure 20. Setting the value of last_timestamp_reg for new flows.

The default value of register in P4 is 0. The code above checks if the value of the register
last_timestamp_reg at index meta.flow_id is 0. If yes, then the current packet is the
first packet of the flow. The last_timestamp_reg value will be set to the current time
using the standard_metadata.ingress_global_timestamp.

If the value of the last_timestamp_reg at the index meta.flow_id is not 0, then the
program should check the time difference between the last report sent and current time.
If the time difference is larger than a predefined threshold, a new report should be sent.

Step 8. Add the following code to check if 1 second has passed since the last report sent.
Note that 1000000 is in microseconds (i.e., it is equivalent to 1 second).

else if(standard_metadata.ingress_global_timesatmp –\

 last_timestamp > 1000000){

}

Lab 3: Measuring Flow’s Throughput

 Page 16

Figure 21. Checking if 1 second has passed since the last sent report.

If the condition of the else if statement is satisfied (i.e., 1 second has passed since the last
duration), then a new report should be sent and the value of the last_timestamp_reg
should be set to the current time.

Step 9. Add the following code inside the else if statement to clone the current packet
and set the timestamp of the last report sent to the current time.

clone_preserving_field_list(CloneType.I2E, 5, 0);

last_timestamp_reg.write((bit<32>)meta.flow_id,\

 standard_metadata.ingress_global_timestamp);

Figure 22. Cloning the packet and modifying the timestamp of the last report sent.

Lab 3: Measuring Flow’s Throughput

 Page 17

The action clone_preserving_field_list has three parameters:

• Clone type: this parameter indicates the cloning type (e.g., ingress to egress).

• Session ID: this parameter indicates the session ID to be attached to the
cloned packets. The user defines the mirroring port of the cloned packets using
their session IDs.

• ID of the field list: this parameter indicates which list of metadata fields
to preserve after cloning the packet. A field list should be defined in the metadata
header.

In the code above, the parameters have the following values:

• Clone type is CloneType.I2E indicating that the cloning will be from the
ingress to the egress.

• Session ID is 5 indicating that the cloned packets will have session ID of value 8.

• ID of the field list is 0 indicating that the fields of the field list with ID 0
will be preserved.

This P4 program will use cloned packets to send the throughput reports to the collector.
The egress block will process the cloned packets to include the number of bits of their
flow within the last second, and then mirror them to the collector.

Step 10. Save the changes to the file by pressing Ctrl + s.

3.4 Processing and mirroring packets to the collector

Step 1. Click on the egress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Figure 23. Inspecting the egress.p4 file.

Step 2. Add the following code in the egress.p4 file to assign value 1 to the variable
PKT_INSTANCE_TYPE_INGRESS_CLONE.

#define PKT_INSTANCE_TYPE_INGRESS_CLONE 1

Lab 3: Measuring Flow’s Throughput

 Page 18

Figure 24. Defining the variable PKT_INSTANCE_TYPE_INGRESS_CLONE with value 1.

Step 3. Add the following code to define a register array and a variable.

register<bit<48>>(65536) per_flow_tput_reg;

bit<48> per_flow_tput;

Figure 25. Defining a register and a variable.

Step 4. Add the following code to define the action get_and_reset_flow_tput.

action get_and_reset_flow_tput(){

 per_flow_tput_reg.read(per_flow_tput, (bit<32>) meta.flow_id);

 per_flow_tput_reg.write((bit<32>) meta.flow_id, 0);

}

Lab 3: Measuring Flow’s Throughput

 Page 19

Figure 26. Defining the get_and_reset_flow_tput action.

In the code above, the action get_and_reset_flow_tput first retrieves the throughput
of the flow from the register per_flow_tput_reg and stores it in the variable
per_flow_tput, then it resets the value of the register array at the same index to 0. Note
that meta.flow_id metadata is used to index the register array in the retrieving and in
the resetting processes.

Step 5. Add the following code to define the action count_flow_bits.

action count_flow_bits(){

 per_flow_tput_reg.read(per_flow_tput, (bit<32>) meta.flow_id);

 per_flow_tput = per_flow_tput + ((bit<48>)hdr.ipv4.totalLen << 3);

 per_flow_tput_reg.write((bit<32>) meta.flow_id, per_flow_tput);

}

Lab 3: Measuring Flow’s Throughput

 Page 20

Figure 27. Defining the action count_flow_bits.

In the code above, the action count_flow_bits first retrieves the number of bits of the
current flow from the register per_flow_tput_reg and stores it inside the variable
per_flow_tput. Then, the action adds the number of bits of the current packet to the
variable per_flow_tput. Finally, the action stores back the updated number of bits in the
register. Note that the value of hdr.ipv4.totalLen is shifted by 3 (i.e.,
hdr.ipv4.totalLen << 3) to transform the value from bytes to bits.

Step 6. Add the following code inside the apply block to check if the current packet is a
cloned instance.

if(standard_metadata.instance_type == PKI_INSTANCE_TYPE_INGRESS_CLONE){

}

Lab 3: Measuring Flow’s Throughput

 Page 21

Figure 28. Checking the instance type of the packet.

In the code above, standard_metadata.instance_type specifies if the packet is an
original instance or a cloned instance. If the instance type is 1, then the instance is a
cloned packet. Otherwise, the instance is an original packet. Thus, the if statement checks
if the current packet is cloned instance.

Step 7. Add the following code inside the if statement to apply the action
get_and_reset_flow_tput.

get_and_reset_flow_tput();

Figure 29. Applying get_and_reset_flow_tput on cloned packets.

Lab 3: Measuring Flow’s Throughput

 Page 22

Recall that the ingress pipeline will clone a packet to the egress pipeline only if a new
report should be sent (i.e., 1 second has passed since the last sent report to the collector).
Thus, upon receiving a cloned packet, the egress pipeline should retrieve the number of
bits of the flow collected over the last second in order to append it to the cloned packet
before mirroring it to the collector. After that, the egress pipeline should reset the
number of bits stored for the flow.

Step 8. Add the following code to set the header hdr.report to valid and to populate the
header.

hdr.report.setValid();

hdr.report.throughput = (bit<48>)per_flow_tput;

hdr.report.src_ip = hdr.ipv4.srcAddr;

hdr.report.dst_ip = hdr.ipv4.dstAddr;

Figure 30. Populating header hdr.report.

In the code above, the header hdr.report is set to valid so that the header can be
assembled with the packet in the deparser. The number of bits (which is stored in
per_flow_tput) is assigned to the throughput field of the header (i.e.,
hdr.report.througput). The source and destination addresses of the flow are assigned
to the src_ip and dst_ip fields of the report header.

Step 9. Add the following code to discard the ipv4 and tcp headers of the cloned packets.

hdr.ipv4.setInvalid();

hdr.tcp.setInvalid();

Lab 3: Measuring Flow’s Throughput

 Page 23

Figure 31. Discarding the ipv4 and tcp headers of the cloned packets.

In the code above, hdr.ipv4.setInvalid() action discards the IPv4 header, and
consequently, discards all the data stored inside the header. This reduces the size of the
cloned packet, reducing the needed storage at the collector. hdr.tcp.setInvalid()
action discards the TCP header.

Note that the Ethernet header is not discarded because it is used to route the packets to
the collector. Because the collector and the switch are at the same network, the cloned
packets can be routed using the Ethernet header only. However, if the collector was at a
different network than the switch, then the IPv4 should be used to route the packet.

Step 10. Add the following code inside the else statement to discard the cloned packets’
payload.

truncate((bit<32>28);

Lab 3: Measuring Flow’s Throughput

 Page 24

Figure 32. Discarding the packets’ payload.

In the code above, truncate((bit<32>)28) leaves the first 28 bytes of the packets and
drops everything else. The 28 bytes represent the Ethernet and report headers as follows:
6 bytes for the source MAC address, 6 bytes for the destination MAC address, 2 bytes to
the Ethernet Type, 6 bytes for the throughput field of the report header, 4 bytes to the
src_ip field of the report header, and 4 bytes to the dst_ip of the report header.

Step 11. Add the following code to modify the Ethernet type of the cloned packets.

hdr.ethernet.etherType = 0X1234;

Lab 3: Measuring Flow’s Throughput

 Page 25

Figure 33. Modifying the Ethernet type field of the cloned packets.

It is necessary to modify the Ethernet type field (hdr.ethernet.etherType) so that the
collector can process the cloned packets. The cloned packets have the custom header
report. Because the report header is after the Ethernet header, the Ethernet Type field
should be modified to indicate that the next header is report and not IPv4 or IPv6. The
value of the Ethernet Type field should not be preserved by any protocol (e.g., 0x800 is
preserved to IPv4 header and cannot be used).

Step 12. Add the following code to update the number of bits of the flow if the packet is
not a cloned instance.

else {

 count_flow_bits();

}

Figure 34. Updating the number of bits of original instances.

Step 13. Save the changes to the file by pressing Ctrl + s.

4 Loading the P4 program

In this section, you will compile and load the P4 binary into the switches.

4.1 Compiling and loading the P4 program to switch s1

Lab 3: Measuring Flow’s Throughput

 Page 26

Step 1. Issue the following command in the terminal panel inside VS Code to compile the
program.

p4c basic.p4

Figure 35. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 3: Measuring Flow’s Throughput

 Page 27

Figure 36. Pushing the basic.json file to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 37. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Lab 3: Measuring Flow’s Throughput

 Page 28

Figure 38. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 39. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

5 Configuring switch s1

In this section, you will map switch s1 interfaces to the ports in the P4 program and start
the switch daemon. Then, you will load the rules to populate the match action tables.
After that, you will set the packet mirroring.

5.1 Mapping the P4 program’s ports

Step 1. Start the switch daemon by typing the following command.

Lab 3: Measuring Flow’s Throughput

 Page 29

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 basic.json &

Figure 40. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 41. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/P4-perfSONAR_Labs/Lab3/rules.cmd

Lab 3: Measuring Flow’s Throughput

 Page 30

Figure 42. Populating the forwarding table into switch s1.

The script above pushes the rules into the match-action table forwarding. This table
forwards packets matching the destination IPv4 address.

5.3 Defining packet mirroring

Step 1. Type the following command to start switch s1’s CLI.

simple_switch_CLI

Figure 43. Starting switch s1’s CLI.

Step 2. In switch s1’s CLI, type the command below to forward the mirrored packets
with session 5 from port 2.

mirroring_add 5 2

Figure 44. Defining packet mirroring.

Lab 3: Measuring Flow’s Throughput

 Page 31

6 Testing and verifying the P4 program

In this section, the user will use the collector to display the throughput measurements
collected from the switch.

6.1 Starting the collector

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 45. Maximizing the MiniEdit window.

Step 2. Hold the right-click on host h3 and select Terminal. This opens the terminal of host
h3 and allows the execution of commands on that host.

Figure 46. Opening a terminal on host h3.

Step 3. Run the collector by issuing the command bellow.

python3 get_throughput.py

Figure 47. Starting the collector script.

Lab 3: Measuring Flow’s Throughput

 Page 32

The Python script get_througput.py collects, processes, and displays the throughput
measurements from the packets mirrored by the switch.

6.2 Testing the P4 program

Step 1. Open a terminal in host h2 and start the Iperf3 server by issuing the following
command.

iperf3 -s

Figure 48. Starting Iperf3 server on h2.

Step 2. Go back to host h1 terminal and start the iperf3 client by issuing the command
bellow.

iperf3 -c 10.0.0.2

Figure 49. Running an iperf3 test between host h1 and host h2.

The figure above shows that the bitrate is around 65 Mbits/sec.

Step 3. Go back to h3 terminal and inspect the throughput reported by the switch.

Lab 3: Measuring Flow’s Throughput

 Page 33

Figure 50. Monitoring the throughput reported by the switch.

In the figure above, the throughput reported by the switch is around 67 Mbits/sec. Note
that iperf3 reports the goodput5 (i.e., the payload of the packets without considering the
size of the header). However, the switch reports the throughput. For this, there is slight
difference between the measurement reported by iperf3 and the measurement reported
by the switch.

This concludes lab 3. Stop the emulation and then exit out of MiniEdit.

References

1. Qalcafe. “What is a network microburst and how can you detect them?”
[Online]. Available: https://tinyurl.com/3yyudn2k

2. The P4 Language Consortium . ” The P4 Language Specification.” [Online].
Available: https://tinyurl.com/4j37n4mj

3. WIKIPEDIA. “Port mirroring.” [Online]. Available: https://tinyurl.com/bdujd6ty
4. P4lang/p4-guide github repository. “p4-guide/v1model-special-ops.” [Online].

Available: https://tinyurl.com/mrkw3wfu
5. “TCP/IP with iperf3.”[Online]. Available: https://tinyurl.com/bdcr3xfd

P4-PERFSONAR LAB SERIES

Lab 4: Monitoring the RTT of TCP Flows with P4

Document Version: 07-03-2024

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 2

Contents

Overview ... 3
Objectives.. 3
Lab settings ... 3
Lab roadmap ... 3
1 Introduction .. 3

1.1 RTT calculation process ... 4
1.2 Lab scenario .. 4

2 Lab topology.. 5
2.1 Verifying connectivity between host h1 and host h2 ... 7

3 Measuring the RTT of TCP flows in the data plane ... 8
3.1 Loading the programming environment... 8
3.2 Inspecting the ingress pipeline ... 9
3.2.1 Understanding the forwarding logic ... 9
3.2.2 Understanding the components of the RTT calculation logic 11
3.2.3 Understanding how the forwarding and RTT calculation logic are applied . 15

4 Compiling and loading the P4 program in the software switch 18
4.1 Compiling the P4 program .. 18
4.2 Loading the P4 program .. 18
4.3 Verifying the configuration ... 19

5 Configuring switch s1 .. 20
5.1 Mapping the P4 program’s ports .. 20
5.2 Loading the rules to the switch... 21

6 Testing and evaluating the P4 program .. 22
References .. 24

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 3

Overview

In this lab, you will learn how Round-Trip Time (RTT) is measured using a P4-
programmable data plane (PDP). The lab details the RTT calculation process, which is
performed using a hash table implemented on a P4 switch. You will generate traffic
between a sender and a receiver and observe the RTT measurements collected by a
monitoring system.

Objectives

By the end of this lab, students should be able to:

1. Understand how packets are paired to generate an RTT sample.
2. Implement the forwarding and RTT calculation logic in a PDP.
3. Evaluate the system by generating traffic between two end hosts.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Measuring the RTT of TCP flows in the data plane.
4. Section 4: Compiling and loading the P4 program in the software switch.
5. Section 5: Testing and evaluating the P4 program.

1 Introduction

The Round-Trip Time (RTT) is an essential metric to evaluate network performance.
Increasing or fluctuating RTT values can degrade user Quality of Experience (QoE) and
signal potential network performance or security issues like congestion or routing
alterations. While end hosts often have access to RTT statistics, Internet Service Providers

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 4

(ISPs) lack direct insights into the latency their customers experience. Even in data centers,
continuously tracking RTTs across all hosts is computing intensive. Therefore, continuous
RTT monitoring can enhance an ISP's ability to evaluate network security and
performance, covering aspects like BGP routing security, IP spoofing detection, Service-
Level Agreement (SLA) compliance, and QoE. Traditionally, network operators measure
RTT using active tools such as perfSONAR2, typically in response to client-reported service
quality issues. On the other hand, passive measurement tools generally provide RTT
samples based only on the initial three-way TCP handshake. These tools fail to capture
latency variations during prolonged TCP connections, such as video streaming.

With the emergence of P4-programmable data planes (PDPs), it is possible to calculate
the RTT of TCP flows in a scalable way. This approach has various benefits such as
detecting abnormal behaviors, identifying congested links, and enabling the development
of applications that mitigate RTT-related issues at line rate3,4. Additionally, this approach
can complement active measurement tools such as perfSONAR to provide a more
accurate visibility of network events5.

1.1 RTT calculation process

Figure 1 shows the process of calculating RTT on a per-flow basis in the data plane. This
technique links the TCP sequence number (SEQ) and acknowledgment (ACK) numbers in
incoming and outgoing packets. The system determines the RTT by measuring the time
difference between these packets. This calculation occurs in the data plane using flow
identification (FID) and the expected acknowledgment (eACK) of outgoing packets as the
key for timestamp (Tstamp) values. The eACK is obtained by adding the packet length to
the SEQ. When an incoming packet matches the expected acknowledgment, an RTT
sample is generated by computing the difference between the timestamps.

TstampFID

A -> B

A -> B

A -> C

eACK

...

.........

T = 101

T = 105

T = 2002000

1004

1001

Outgoing packet

A -> B

Seq = 1001

Len = 3

Incoming packet

C -> A

ACK = 2000
Data plane

: Insert record : Match & erase

Key Value

Figure 1. RTT calculation. When a TCP packet is received, its timestamp is compared with the
timestamp of the corresponding outgoing packet. This calculation uses a flow identifier (FID) and
the expected acknowledgment (eACK) as the key to retrieve the stored timestamp (Tstamp) value1.

1.2 Lab scenario

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 5

In this lab, you will initiate a data transfer over TCP between two hosts. The P4 switch will
run a P4 program designed to calculate the RTT and send the RTT samples to a collector.
The collector will then display the RTT values calculated by the P4 switch.

P4 switch

Collector

Sender Receiver

TCP flow TCP flow

RTT sample

Figure 2. Lab scenario.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

s1 h2

h3

s1-eth0 h2-eth0

h1

h3-eth0

s1-eth2

s1-eth1h1-eth0

10.0.0.1 10.0.0.2

10.0.0.3
Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 6

Figure 4. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab4 folder and search for the topology file called lab4.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 5. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 7

Figure 6. Running the emulation.

2.1 Verifying connectivity between host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Figure 7. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 8. Performing a connectivity test between host h1 and host h2.

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 8

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded into the switch. Note that there will be no connectivity between any
two hosts in the topology before loading a P4 program to the switch.

3 Measuring the RTT of TCP flows in the data plane

In this section, you will examine the ingress pipeline of the P4 program used to compute
the RTT of TCP flows. The ingress pipeline implements the forwarding and the RTT
calculation logics.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code P4-perfSOANR_Labs/Lab4

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 9

Figure 10. Loading the development environment.

3.2 Inspecting the ingress pipeline

The ingress pipeline implements the forwarding and the RTT calculation logic. It uses a
hash table to index the timestamps to calculate the RTT values as explained in section 1.

3.2.1 Understanding the forwarding logic

The actions and table needed to implement the forwarding logic are already provided in
this lab. The goal of this section is to understand its behavior.

Step 1. Click on the ingress.p4 file in the file explorer on the left-hand side.

Figure 11. Navigating into the ingress.p4 file.

Step 2. Inspect the forward and drop actions.

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 10

Figure 12. Inspecting the forward and drop actions.

These actions are explained as follows:

• forward(): this action receives as parameters the destination MAC address (i.e.,
macAddr_t dstAddr) and the egress port (i.e., egressSpec_t port). The values
of these parameters are provided by the control plane. The behavior of the action
specifies the egress port and performs the swapping between the source and
destination of the MAC addresses. Finally, this action decreases the TTL value in
the IPv4 header.

• drop(): this action uses the mark_to_drop() primitive to indicate through the
standard metadata that the current packet must be dropped.

Step 3. Inspect the forwarding table.

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 11

Figure 13. Inspecting the forwarding table.

This match-action table has the following components:

• key: which in this example is the destination IPv4 address. The match type is exact.

• actions: the list of actions that this table implements.

• size: the maximum number of entries that the table will allocate.

• default_action: the action that will be executed when there is a miss in the
table i.e., when the IPv4 destination address is not present in the table.

3.2.2 Understanding the components of the RTT calculation logic

The RTT calculation logic consist of calculating the difference between the time stamps of
two types of TCP segments: 1) the SEQ and 2) the corresponding ACK. This is performed
by implementing a hash table where the keys are the flow ID (i.e., source and destination
IPv4 addresses and port numbers, and the protocol specified in the IPv4 header) and the
expected ACK (i.e., eACK). This logic is explained with more details in Section 1.

Step 1. Consider lines 38-52 to see how the flow ID is computed.

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 12

Figure 14. Inspecting flow ID computation action.

This action computes a unique identifier (meta.flow_id) for the flow using a CRC16 hash
of the source and destination IP addresses, the protocol, and the source and destination
TCP ports.

Step 2. Consider the actions mark_SEQ() and mark_ACK(). These actions mark packets
as either SEQ (sequence) or ACK (acknowledgment) based on their type.

Figure 15. Inspecting the packet type marking actions.

Step 3. Scroll down and consider lines 62-80 and inspect the table get_packet_type.

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 13

Figure 16. Inspecting the packet type match-action table.

This table classifies packets as SEQ or ACK based on their TCP flags and total length. SEQ
packets are marked with mark_SEQ() and ACK packets with mark_ACK(). Certain TCP
flags like RST and FIN result in the packet being dropped.

Step 4. Inspect lines to understand how the expected ACK is computed.

Figure 17. Inspecting the expected ACK computation action.

This action calculates the expected ACK number (meta.expected_ack) for a SEQ packet.
It accounts for the total length of the IPv4 packet and adjusts based on the header lengths
of IPv4 and TCP. If the packet is a SYN, the expected ACK is incremented by 1.

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 14

Step 5. Inspect lines 92-106 to understand how the SEQ signature is calculated.

Figure 18. Inspecting the packet signature computation action (SEQ).

These actions compute a unique signature for SEQ and ACK packets using a CRC32 hash.
The signature for SEQ packets includes the source and destination IP addresses and ports,
along with the expected ACK number. For ACK packets, the signature includes the same
fields but swaps the source and destination addresses and ports and uses the actual ACK
number.

Step 6. Similarly, inspect lines 108-122 to understand how the ACK signature is calculated.

Figure 19. Inspecting the get packet signature action (ACK).

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 15

Step 7. Consider the following register. This register stores timestamps, indexed by the
packet signatures.

Figure 20. Inspecting the register that stores the last timestamp.

3.2.3 Understanding how the forwarding and RTT calculation logic are applied

In this section you will understand how the forwarding and RTT calculation logics are
applied. The forwarding logic consists of applying the forwarding table. This logic is
implemented in the apply block in the ingress pipeline. The RTT calculation logic applies
the following steps:

1. When a SEQ packet arrives, the flow ID and expected ACK are computed. A
signature is then created using these values.

2. The timestamp of the SEQ packet is stored in the register using the packet
signature as the index.

3. When an ACK packet corresponding to a previously seen SEQ packet arrives, its
signature is computed similarly.

4. The current time is retrieved, and the stored timestamp for the corresponding SEQ
packet is fetched from the register.

5. The RTT is calculated by subtracting the stored timestamp from the current time.

Step 1. Inspect the ingress pipeline logic by scrolling down until the apply block. Line 130
contains the statement that verifies if the IPv4 header is valid, and the following line
applies the forwarding logic.

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 16

Figure 21. Inspecting how the forwarding logic is applied.

Step 2. Consider lines 133-135 that applies TCP header validation, flow ID computation,
and packet type determination.

Figure 22. Inspecting how the flow ID and packet types are obtained.

Step 3. The code fragment below applies the SEQ packet handling.

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 17

Figure 23. Inspecting how the sequence number is collected.

If the packet is a SEQ packet:

• compute_expected_ack() calculates the expected ACK number.

• get_pkt_signature_SEQ() computes a unique signature for the SEQ packet.

• The current timestamp is stored in the last_timestamp_reg register, indexed by
the packet signature.

Step 4. The code fragment below applies the ACK packet handling.

Figure 24. Inspecting how the expected ACK is computed.

If the packet is an ACK packet:

• get_pkt_signature_ACK() computes a unique signature for the ACK packet.

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 18

• The timestamp of the corresponding SEQ packet is read from the
last_timestamp_reg register using the computed signature.

• The RTT sample (meta.rtt_sample) is calculated as the difference between the
current timestamp and the extracted timestamp.

• The packet is cloned and sent to the control plane for further analysis or action
using clone_preserving_field_list(CloneType.I2E, 5, 0), where 5 is the
session ID that determines how the packet is cloned and 0 is the field list ID that
specifies which packet fields to preserve in the clone.

4 Compiling and loading the P4 program in the software switch

In this section, you will compile and load the P4 binary into the switches. You will also
verify that the binaries reside in the switch’ filesystem.

4.1 Compiling the P4 program

Step 1. Issue the following command in the terminal panel inside VS Code to compile the
program.

p4c basic.p4

Figure 25. Compiling a P4 program.

As a result, the compilation process will produce a .json file (i.e., basic.json), which is
similar to a binary that is interpreted by the software switch.

4.2 Loading the P4 program

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 19

Step 1. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Figure 26. Pushing the basic.json file to switch s1.

4.3 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 27. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 20

Figure 28. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 29. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

5 Configuring switch s1

In this section, you will map switch s1 interfaces to the ports in the P4 program and start
the switch daemon. Then, you will load the rules to populate the match action tables.

5.1 Mapping the P4 program’s ports

Step 1. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 basic.json &

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 21

Figure 30. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 31. Returning to switch s1 CLI.

Step 2. Inspect the control plane rules by issuing the following command:

cat ~/lab4/rules.cmd

Figure 32. Displaying the content of the file that contains the control plane rules.

Step 3. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab4/rules.cmd

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 22

Figure 33. Populating the forwarding table into switch s1.

The script above pushes the rules into the match-action table forwarding. This table
forwards packets matching the destination IPv4 address.

6 Testing and evaluating the P4 program

In this section you will initiate a data transfer over TCP between host h1 and host h2. Then,
you will observe the RTT values in host h3. You will run an iPerf3 client and server to
reproduce the data transfer and a python script on host h3 to capture the RTT samples.

Step 1. Navigate to host h2 terminal by clicking on the icon in the taskbar as shown below.

Figure 34. Navigating into host h2 terminal.

Step 2. Start the iPerf3 server in host h2 by issuing the following command:

iperf3 -s

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 23

Figure 35. Starting the iPerf3 server on host h2.

Step 3. Navigate to host h3 terminal by clicking on the icon in the taskbar as shown below.

Figure 36. Navigating into host h3 terminal.

Step 4. Start the sniffing script on host h3 by issuing the following command:

python3 get_rtt.py

Figure 37. Starting the sniffing script on host h3.

Step 5. Navigate to host h1 terminal by clicking on the icon in the taskbar as shown below.

Figure 38. Navigating into host h1 terminal.

Step 6. Start the iPerf3 client by issuing the following command. The -c parameters
specify that iPerf3 runs in client mode, 10.0.0.2 is IP address of host h2, and -t 120
determines that the test duration is 120 seconds.

iperf3 -c 10.0.0.2 -t 120

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 24

Figure 39. Starting the iPerf3 client on host h1.

Step 7. Go back to host h3 and observe the RTT values of the TCP flows. You will note that
the value in microseconds is around 20,000, which is around 20ms.

Figure 40. Observing the RTT values on host h3.

This concludes lab 4. Stop the emulation and then exit out of MiniEdit.

References

1. C. Xiaoqi, H. Kim, J. Aman, W. Chang, M. Lee, and J. Rexford, "Measuring TCP round-

trip time in the data plane," In Proceedings of the Workshop on Secure
Programmable Network Infrastructure, 2020.

2. perfSONAR Project, “perfSONAR installation options,” [Online]. Available:
https://docs.perfsonar.net/install_options.html

3. J. Gomez, E. Kfoury, J. Crichigno, G. Srivastava, “Reducing the impact of RTT
unfairness using P4-Programmable data planes”. The 2024 IEEE International
Conference on Communications, Denver, CO, June 2024.

4. J. Gomez, E. Kfoury, J. Crichigno, G. Srivastava, “Improving TCP fairness in non-
programmable networks using P4-programmable data planes,” IEEE International
Black Sea Conference on Communications and Networking, Tbilisi, Georgia, June
2023.

5. A. Mazloum, J. Gomez, E. Kfoury, and J. Crichigno, "Enhancing perfSONAR
measurement capabilities using P4 programmable data planes" In Proceedings of

Lab 4: Monitoring the RTT of TCP Flows with P4

 Page 25

the SC'23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, Denver, CO, 2023.

6. B. Lantz, G. Gee, “MiniEdit: a simple network editor for Mininet,” [Online]. Available:
https://github.com/Mininet/Mininet/blob/master/examples

7. P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, "P4:
programming protocol-independent packet processors," ACM SIGCOMM Computer
Communication Review 44, no. 3, 2014.

 P4-PERFSONAR LAB SERIES

Lab 5: Configuring Regular Tests Using
 pScheduler CLI

Document Version: 07-17-2024

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 2

Contents

Overview ... 3
Objectives.. 3
Lab settings ... 3
Lab roadmap ... 3
1 Introduction to pScheduler commands .. 3

1.1 The pScheduler command .. 5
2 Loading and running the lab topology .. 6

2.1 Setting IPv4 addresses, static routes, and link conditions 8
3 Throughput tests ... 9

3.1 iPerf3 ... 9
3.2 Nuttcp ... 11

4 Latency tests ... 12
4.1 One-way ping .. 12
4.2 Two-way ping .. 14
4.3 Round-Trip Time (RTT) .. 16

5 Traceroute tests .. 17
5.1 Traceroute ... 17
5.2 Tracepath .. 19
5.3 Paris-traceroute .. 20

6 Running tests on remote perfSONAR nodes .. 21
7 Repeating tasks ... 22
8 Exporting and importing tasks .. 23
9 Displaying the schedule .. 24

9.1 pScheduler monitor .. 25
9.2 pScheduler schedule ... 26

10 Canceling tasks .. 27
References .. 28

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 3

Overview

This lab is an introduction to pScheduler commands and their utilization for conducting
latency, throughput, and trace tests. In this lab, the user will use both the default and
specific tools available in pScheduler for running network measurement tests.

Objectives

By the end of this lab, the user will:

1. Understand pScheduler commands.
2. Measure latency using owamp, twamp and ping tools.
3. Run throughput tests using iperf3 and nuttcp tools.
4. Use traceroute, tracepath and paris-tracecoute tools to identify the hops from a

source to a destination.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to pScheduler commands.
2. Section 2: Loading and running the lab topology.
3. Section 3: Throughput tests.
4. Section 4: Latency tests.
5. Section 5: Traceroute tests.
6. Section 6: Running tests on remote perfSONAR nodes.
7. Section 7: Repeating tasks.
8. Section 8: Exporting and importing tasks.
9. Section 9: Displaying the schedule.
10. Section 10: Cancelling tasks.

1 Introduction to pScheduler commands

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 4

pScheduler commands are used to manage network measurements and tasks within the
perfSONAR framework. When it comes to executing network measurements in
perfSONAR, the responsibility lies with pScheduler command-line operations. As depicted
in Figure 1, pScheduler forms an integral part of the scheduling layer, which encompasses
the following key functions:

• Scheduling Conflict Resolution: One of the primary tasks of the scheduling layer is
to identify suitable timeslots for running measurement tools while avoiding
conflicts that could potentially impact the accuracy and reliability of the results.
By carefully managing the scheduling process, pScheduler ensures that
measurements are executed in a controlled and optimized manner.

• Execution and Result Collection: pScheduler takes charge of executing the
designated measurement tools and collecting the corresponding results. This
includes coordinating with the relevant endpoints and managing any necessary
daemon setup. Through its robust execution capabilities, pScheduler streamlines
the process and ensures the seamless retrieval of measurement outcomes.

• Archiving Integration: In cases where long-term storage of results is required,
pScheduler facilitates the seamless transmission of collected data to the archiving
layer. By offering a convenient plugin architecture, it enables the integration of
various storage systems, allowing users to customize the data flow as per their
specific requirements.

 Figure 1. perfSONAR layers3.

While many of the tools employed within perfSONAR can operate independently,
pScheduler provides additional features that enhance their functionality. The following
features stand out:

• Measurement Integrity: pScheduler maintains a comprehensive schedule of all
measurements to be executed, ensuring that no conflicting measurements run

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 5

simultaneously. This meticulous approach prevents any undesirable resource
competition that could significantly impact the accuracy of results. For instance, it
intelligently avoids running multiple throughput tests concurrently, while latency
tests can be run simultaneously due to their low resource consumption.

• Simplified Coordination: Beyond simplifying task execution coordination,
pScheduler proactively handles interactions with end devices, seamlessly
managing daemon setup as required. Moreover, its plugin architecture facilitates
the effortless transmission of results to alternate storage systems or analysis tools
upon completion of measurements.

• Access Control: pScheduler incorporates a robust limits system, enabling
administrators to define rules governing the types of measurements permitted for
execution, as well as enforcing restrictions on test duration and node-specific
testing criteria. This ensures controlled access and adherence to predefined
measurement policies.

• Diagnostics: pScheduler equips users with powerful visualization tools to gain
insights into the schedule of executed, ongoing, and upcoming tasks. It provides
detailed information about task execution timestamps and stores outcome data
for a certain duration. This diagnostic capability proves invaluable when
troubleshooting network issues.

In addition to these fundamental features, pScheduler extends its capabilities by allowing
the development of plugins for new tests, tools, and archiving systems. This extensibility
empowers users to introduce novel measurement techniques, incorporate additional
functionalities, and seamlessly integrate with diverse storage and analysis platforms.

1.1 The pScheduler command

In the realm of perfSONAR, the primary means of interacting with the system is through
the utilization of the pScheduler command. This command serves as the gateway from
the command-line to create new pScheduler tasks, which are essential for conducting
measurements. The basic syntax for executing pScheduler commands is as follows:

pscheduler command [args] (1)

Here's a breakdown of the components involved:

• pScheduler: This command is used to initiate interactions with perfSONAR, serving
as the entry point for task creation and management.

• command: Each pScheduler command corresponds to a specific type of test or serves
administrative and diagnostic purposes. These commands are accompanied by their
respective lists of arguments (args). The task-related commands are as follows:

o task: This command allows users to provide pScheduler with a task, which

involves conducting one or more measurements.
o result: With this command, users can fetch and display the results of a

previously concluded run by specifying its URL.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 6

o watch: By attaching to a task identified by its URL, users can monitor the run
results in real-time as they become available.

o cancel: This command halts any future runs associated with a task,
effectively canceling its execution.

In addition to the task-related commands, pScheduler offers the following commands for
diagnostic and administrative purposes:

• ping: This command aids in determining if pScheduler is running on a specific host.

• clock: By employing the clock command, users can check and compare the
clocks on pScheduler hosts for synchronization purposes.

• debug: This command enables debugging functionality on the internal
components of pScheduler, facilitating troubleshooting activities.

• diags: With the diags command, users can generate a diagnostic dump, which
can be shared with the perfSONAR team for assistance in resolving any
encountered issues.

For more comprehensive information about pScheduler tasks, diagnosis, and
administrative commands, users can access the help section by typing the following
command:

pscheduler --help

To get more details about a specific command, using the format of the command (1) type:

pscheduler [command] –-help

These resources provide extensive guidance and support, ensuring users can leverage the
full potential of pScheduler for their measurement and administrative needs within
perfSONAR.

2 Loading and running the lab topology

The topology is loaded using MiniEdit6, which is the graphical tool used to create
topologies in Mininet. During this lab, the user will access perfSONAR CLI to run network
measurement tests.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 7

perfSONAR1

10.0.1.0/24

perfSONAR2

10.0.2.0/24

perfSONAR3

r1 r3

r2

.10

.10

.10

.1

.1 .1.2 .2

10.1.0.0/30 10.2.0.0/30

10.0.3.0/24

.1 .1

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab5 folder and search for the topology file called lab5.mn and click on
Open. A new topology will be loaded to MiniEdit.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 8

Figure 4. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 5. Running the emulation.

Wait for 20 seconds to allow the perfSONAR nodes to initialize within the network
topology. Once the topology is fully operational, MiniEdit’s toolbar on the left-hand side
will grey out.

2.1 Setting IPv4 addresses, static routes, and link conditions

Step 1. Open a Linux terminal by clicking on the icon located on the taskbar.

Figure 6. Opening a Linux terminal.

Step 2. To set up the lab environment, execute the following command in the Linux
terminal. This script will configure the IPv4 addresses of the routers, define static routes,
and establish specific link conditions, such as bandwidth limitations and minimum delays.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 9

sudo set_env lab5

Figure 7. Setting IPv4 addresses, static routes, links’ bandwidths, and delays.

3 Throughput tests

This section shows how to conduct throughput measurements utilizing pScheduler tools.
These tools, including iperf3 and nuttcp, are visually represented in the tools layer
depicted in Figure 1. Users will execute throughput tests using the default tool, iperf3,
and select nuttcp to conduct another test.

3.1 iPerf3

iPerf3 is a widely used network performance testing tool that allows users to measure the
maximum achievable bandwidth and throughput between two endpoints in a network. It
is designed to provide accurate and reliable measurements of TCP and UDP performance.
With iperf3, users can assess network performance by generating synthetic traffic and
measuring the resulting throughput, Round-trip Time (RTT), and packet loss. It supports
both client-server and peer-to-peer testing modes, making it versatile for various network
testing scenarios. iperf3 offers several key features, including the ability to set various
testing parameters such as packet size, TCP window size, and bandwidth limits. It provides
detailed statistics and reports on throughput, jitter, and packet loss, aiding in network
troubleshooting and optimization.

Step 1. Hold the right click on perfSONAR1 and select Terminal. The perfSONAR1 CLI will
emerge.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 10

Figure 8. Opening perfSONAR1 CLI.

Step 2. In perfSONAR terminal, type no and press Enter to enable the CLI.

Figure 9. Skipping initial configuration in perfSONAR1.

Step 3. Enlarge the terminal by clicking on the icon shown in the figure below.

Figure 10. Enlarging perfSONAR1 CLI.

Step 4. In perfSONAR1 issue the following command to run a throughput test using the
default tool. The nodes participating in this test are perfSONAR1 and perfSONAR2.

pscheduler task throughput --source 10.0.0.10 --dest 10.0.2.10

• pscheduler: command to interact with perfSONAR.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 11

• task: pScheduler command.

• throughput: test type.

• --source: specify where the test should originate, in this case it is perfSONAR1
node (10.0.1.10).

• --dest: destination node, in this case it is the perfSONAR2 node (10.0.2.10).

Figure 11. Running a throughput test using the default tool (iperf3).

Shortly after starting the test submission, the user will see that the tool used to run the
test is iperf3. The results above list the throughput every second (Interval), the number
of retransmissions (Retransmits) and the congestion window size (i.e., Current Window).
At the end, it is summarized the time interval when the test took place, in this case from
0 seconds to 10 seconds, the throughput is 1.83 Gbps and the number of retransmissions
is 2520.

3.2 Nuttcp

Nuttcp is a network performance testing tool that measures TCP and UDP throughput. It
is designed to provide accurate and reliable measurements of network performance in
terms of throughput and latency. Nuttcp offers various test modes, including bulk transfer,
request/response, and parallel testing. These modes allow for more flexibility in
conducting specific types of performance measurements.

Step 1. In perfSONAR1 issue the following command to run a throughput test using nuttcp.
The nodes participating in this test are perfSONAR1 and perfSONAR3.

pscheduler task –-tool nuttcp throughput --source 10.0.1.10 --dest 10.0.3.10

-i1

• pscheduler: command to interact with perfSONAR.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 12

• task: pScheduler command.

• --tool: command to specify the tool.

• nuttcp: tool used to run the test.

• throughput: test type.

• --source: specify where the test should originate, in this case it is perfSONAR1
node (10.0.1.10).

• --dest: destination node, in this case it is the perfSONAR3 node (10.0.3.10).

• i1: indicates the interval is 1 second.

Figure 12. Running a throughput test using nuttcp.

After starting the test submission, the user will see that the tool used to run the test is
nuttcp. The results above list the throughput every second (Interval), the number of
retransmissions (Retransmits) and the congestion window size (i.e., Current Window). At
the end, it is summarized the time interval when the test took place, in this case from 0
seconds to 10 seconds, the throughput is 927.69 Mbps and the number of retransmissions
is 2192.

4 Latency tests

In this section, users will conduct latency measurement tests utilizing the powerful
pScheduler tools. These tools, including One-Way Ping (owping), Two-Way Ping (twping),
and RTT, are harnessed by pScheduler to accurately measure network latency. The
section commences with a latency test employing the default configuration, followed by
the user's ability to specify a preferred tool for conducting a latency test.

4.1 One-way ping

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 13

Owping is a network performance testing tool that focuses on measuring one-way latency
between network endpoints. It allows users to assess the time it takes for packets to
travel from the sender to the receiver, providing insights into network performance and
potential bottlenecks. Owping operates by sending ICMP (Internet Control Message
Protocol) echo request packets from the sender to the receiver. The receiver records the
arrival time of each packet and sends an echo reply to the sender. By comparing the sent
and received timestamps, owping calculates the one-way latency. This tool is particularly
useful for evaluating the performance of specific network paths or detecting issues that
affect one-way traffic. It helps network administrators and operators pinpoint latency
problems, identify network congestion points, and troubleshoot connectivity issues.
owping provides real-time measurements and statistics, allowing users to monitor
network latency and make informed decisions regarding network optimization and
performance improvements.

Step 1. In perfSONAR1 issue the following command to run a throughput test using the
default tool. The nodes participating in this test are perfSONAR1 and perfSONAR3.

pscheduler task latency --source 10.0.1.10 --dest 10.0.3.10

• pscheduler: command to interact with perfSONAR.

• task: pScheduler command to specify a measurement test.

• latency: test type. The default tool is owping.

• --source: specify where the test should originate, in this case it is perfSONAR1
node (10.0.1.10).

• --dest: destination node, in this case it is the perfSONAR3 node (10.0.3.10).

Figure 13. Running a latency test using the default tool (owping).

The default tool utilized by pScheduler for the default test is the one-way ping (owping)
tool. Upon scheduling the task, the resulting report comprises three sections, each
providing specific insights:

• Packet Statistics: This section presents a summary of the sent and received
packets, along with details regarding packet loss, duplication, and reordering.

• One-way Latency Statistics: Here, the report offers a comprehensive overview of
the one-way latency statistics. Additionally, a histogram is provided to visualize
the distribution of delay values.

• TTL Statistics: The TTL (Time-to-Live) statistics section showcases the TTL values
observed during the test.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 14

Step 2. Scroll down to see the packet statistics, one-way latency statistics, common jitter
measurements, histogram, and Time-to-Live (TTL) statistics.

Figure 14. Visualizing the statistics of owping.

4.2 Two-way ping

Twping is a network performance testing tool that measures bidirectional latency
between network endpoints. It allows users to evaluate the RTT of packets traveling
between the sender and receiver. Unlike traditional ping, which only measures one-way
latency, twping employs a bidirectional approach. It sends test packets from the sender
to the receiver and back again, recording the time it takes for the round trip. By comparing
the sent and received timestamps, twping calculates the RTT, providing insights into the
overall latency of the network path. twping is useful for assessing the bidirectional
performance of network connections and identifying any asymmetry in latency between

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 15

the sender and receiver. It helps network administrators and operators troubleshoot
latency-related issues, optimize network performance, and ensure a balanced and
reliable communication path.

Step 1. In perfSONAR1 issue the following command to run a throughput test using the
default tool. The nodes participating in this test are perfSONAR1 and perfSONAR3.

pscheduler task –-tool twping latency --source 10.0.1.10 --dest 10.0.3.10

• pscheduler: command to interact with perfSONAR.

• task: pScheduler command to specify a measurement test.

• --tool: command to specify the tool.

• twping: tool for two-way ping measurement.

• latency: test type.

• --source: specify where the test should originate, in this case it is perfSONAR1
node (10.0.1.10).

• --dest: the destination node, in this case it is the perfSONAR3 node (10.0.3.10).

Figure 15. Running a latency test using twping.

Step 2. Scroll down to see the packet statistics, one-way latency statistics, common jitter
measurements, histogram, and Time-to-Live (TTL) statistics.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 16

Figure 16. Visualizing the statistics of twping.

4.3 Round-Trip Time (RTT)

The RTT tool works by sending ICMP (Internet Control Message Protocol) echo request
packets from the sender to the receiver and waiting for an echo reply. The sender records
the time it takes for the packet to reach the receiver and return, calculating the RTT in
milliseconds.

Step 1. In perfSONAR1 issue the following command to run a throughput test using the
default tool. The nodes participating in this test are perfSONAR1 and perfSONAR2.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 17

pscheduler task rtt --source 10.0.1.10 --dest 10.0.2.10

• pscheduler: command to interact with perfSONAR.

• task: pScheduler command to specify a measurement test.

• rtt: test type.

• --source: it specifies where the test should originate, in this case it is
perfSONAR1 node (10.0.1.10).

• --dest: destination node, in this case it is the perfSONAR2 node (10.0.2.10).

Figure 17. Running a latency test using the rtt tool.

The result above indicates that all five packets were received successfully by perfSONAR2
(0% packet loss) and that the minimum, mean, maximum, and standard deviation of the
RTT were 30.109, 30.16, 30.255 and 0.227 milliseconds respectively.

5 Traceroute tests

In this section, users will run traceroute tests using the powerful pScheduler tools. These
tools, namely traceroute, tracepath, and Paris-traceroute, enable the analysis of network
paths and routing. The section commences with a trace test utilizing the default
configuration, followed by the user's ability to specify a preferred tool for conducting a
customized trace test. Through this exploration, users can gain valuable insights into the
network topology, identify potential bottlenecks, and analyze the routing behavior of
their network.

5.1 Traceroute

Traceroute is a fundamental network diagnostic tool used to trace the path that packets
take from a source host to a destination host in a network. It provides valuable insights
into network topology and helps identify the routers or nodes encountered along the
route. By sending packets with incrementally increasing Time-to-Live (TTL) values,
traceroute determines the intermediate hops by examining the ICMP Time Exceeded

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 18

messages or ICMP Echo Reply messages received in response. It displays the IP addresses
or domain names of the routers encountered at each hop and measures the RTT for the
packets. Traceroute is widely used for troubleshooting network connectivity issues,
analyzing routing behavior, and assessing network performance. It allows network
administrators and operators to identify potential bottlenecks, latency problems, or
routing inconsistencies.

Step 1. In perfSONAR1 issue the following command to run a trace test using the default
tool (traceroute). The nodes participating in this test are perfSONAR1 and perfSONAR3.

pscheduler task trace --source 10.0.1.10 --dest 10.0.3.10

• pscheduler: command to interact with perfSONAR.

• task: pScheduler command to specify a measurement test.

• trace: test type. The default tool is traceroute.

• --source: specify where the test should originate, in this case it is perfSONAR1
node (10.0.1.10).

• --dest: destination node, in this case it is the perfSONAR3 node (10.0.3.10).

Figure 18. Running a trace test using the default tool (traceroute).

After submitting the test, the default tool used for tracing the route is traceroute. The
report generated consists of rows divided into columns, each representing a hop along
the route towards the destination.

• Hop number (first column): This column indicates the number of hops
encountered along the route. In this case, it took five hops to reach the destination,
with each hop representing a network node or router traversed.

• IP address (second column): The second column provides the IP address of the
intermediary devices along the path to the destination. For the previous hop, it
lists the IP address of the router that facilitated the connection. If available, the
domain name associated with the IP address may also be displayed, providing
additional context.

• RTT (third column): The subsequent column presents the RTT for the packet to
travel from the source host to the current hop and return back. RTT is measured

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 19

in milliseconds and reflects the time taken for the packet's round trip. It serves as
an indicator of the latency or delay experienced at each hop along the route.

5.2 Tracepath

Tracepath is a network diagnostic tool that traces the path from a source to a destination
while also discovering the Maximum Transmission Unit (MTU) along the route. It operates
by sending UDP or random port packets to the destination and analyzing the responses
received. Unlike traceroute, tracepath offers a simplified interface with fewer options,
making it easier to use for basic path tracing and MTU discovery. It is particularly useful
for non-superuser users, as it does not require elevated privileges to run tests. By utilizing
tracepath, users can efficiently trace the network path, identify intermediate hops, and
determine the MTU at each point. This information is valuable for troubleshooting
network issues related to packet fragmentation and optimizing network performance.

Step 1. In perfSONAR1 issue the following command to run a tracepath test using
tracepath. The nodes participating in this test are perfSONAR1 and perfSONAR3.

pscheduler task –-tool tracepath trace --source 10.0.1.10 --dest 10.0.3.10

• pscheduler: command to interact with perfSONAR.

• task: pScheduler command to specify a measurement test.

• --tool: command to specify the tool.

• tracepath: tool used for the measurement.

• trace: test type.

• --source: specify where the test should originate, in this case it is perfSONAR1
node (10.0.1.10).

• --dest: the destination node, in this case it is the perfSONAR3 node (10.0.3.10).

Figure 19. Running a trace test using tracepath.

The first column shows the hop number, the second column shows the IP address or
Domain name. The third column shows the RTT for the packet to reach that point and
return to the source host. The last column shows the Maximum Transmission Unit (MTU)
size.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 20

5.3 Paris-traceroute

Paris-traceroute represents an enhanced version of the traceroute network diagnostic
tool that specifically addresses issues related to load balancers. While the initial
traceroute implementation may encounter challenges with load balancers, Paris-
traceroute overcomes these obstacles.

By exerting control over the flow identifier of the probe packets, Paris-traceroute is
capable of accurately following paths within networks that employ load balancers. It can
identify and trace all the load-balanced paths leading to the destination, providing a
comprehensive view of network routing.

Step 1. In perfSONAR1 issue the following command to run a tracepath test using Paris-
traceroute. The nodes participating in this test are perfSONAR1 and perfSONAR3.

pscheduler task –-tool paris-traceroute trace --source 10.0.1.10 --dest

10.0.3.10

• pscheduler: command to interact with perfSONAR.

• task: pScheduler command to specify a measurement test.

• --tool: command to specify the tool.

• tracepath: tool used for the measurement.

• trace: test type.

• --source: specify where the test should originate, in this case it is perfSONAR1
node (10.0.1.10).

• --dest: the destination node, in this case it is the perfSONAR3 node (10.0.3.10).

Figure 20. Running a trace test using Paris-traceroute.

Once the task is submitted, the user can observe that the selected tool is Paris-traceroute.
The results obtained from the Paris-traceroute test can be interpreted in a similar manner
to the traceroute test. The report consists of multiple rows divided into columns,
representing the hops along the network route. To facilitate analysis, the results are
reordered and presented in a table format.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 21

Each row within the table corresponds to a specific hop in the route. The table consists of
five columns, providing relevant information for each hop:

• Hop number (first column): This column denotes the number of hops encountered
along the route. In this case, it takes five hops to reach the destination, and each
hop is assigned a unique number.

• IP address (second column): The second column displays the IP address of either
the destination or the router from the previous hop. If available, the
corresponding domain name may also be listed, providing additional context.

• RTT (third column): The subsequent three columns represent the RTT for the
packet to reach the specific hop and return to the source host. These RTT values
are measured in milliseconds. Since Paris-traceroute sends three separate signal
packets, there are three RTT columns. This allows for the evaluation of consistency,
or the lack thereof, in the route by comparing the RTT values across the three
packets.

6 Running tests on remote perfSONAR nodes

Step 1. In perfSONAR1 issue the following command to run a throughput test between
perfSONAR2 and perfSONAR3.

pscheduler task throughput --source 10.0.2.10 --dest 10.0.3.10

• pscheduler: is the command to interact with perfSONAR.

• task: is a pScheduler command to specify a measurement test.

• throughput: specifies the test.

• --source: is to specify where the test should originate, in this case it is
perfSONAR2 node (10.0.2.10).

• --dest: is the destination node, in this case is the perfSONAR3 node (10.0.3.10).

Figure 21. Running a throughput test between two remote perfSONAR nodes.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 22

7 Repeating tasks

A task can be configured to run periodically. In this section, it is shown step by step how
to repeat throughput and RTT tasks using pScheduler command. First the user will
configure pScheduler to run a throughput task every 30 seconds. Then, the user will run
an RTT task every 45 seconds. Any pScheduler task can be configured to run repeatedly
by adding options to the task command:

• --start TIMESTAMP: it runs the first iteration of the task at TIMESTAMP.

• --repeat DURATION: Repeat runs at intervals of DURATION.

• --max-runs N: Allow the task to run up to N times.

• --until TIMESTAMP: Repeat runs of the task until TIMESTAMP.

• --slip DURATION: Allow the start of each run to be as much as DURATION later
than their ideal scheduled time. If the environment variable PSCHEDULER_SLIP is
present, its value will be used as a default. Failing that, the default will be PT5M.
Notice that the slip value also applies to non-repeating tasks.

• --sliprand: Randomly choose a timeslot within the allowed slip instead of
choosing earliest available.

Step 1. In perfSONAR1 command line, follow the command format (1) and type:

pscheduler task --repeat PT20M --max-runs 10 rtt --dest 10.0.3.10

• pscheduler: is the command to interact with perfSONAR.

• task: is a pScheduler command to specify a measurement test.

• --repeat PT20M: is a pScheduler command that configures the task to be
repeated every 20 minutes.

• --max-runs 10: Allow the task to run up to 10 times.

• rtt: is the test type.

• --dest is the destination node, in this case it is perfSONAR3 node (10.0.3.10).

Figure 22. Repeating an RTT test between perfSONAR1 and perfSONAR3 every 20 minutes.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 23

Notice that the source node is not explicit, this means that the source node is perfSONAR1
(10.0.1.10), i.e., the node where the command is executed.

The figure above shows the first measurement of the round-trip time. Notice that the task
is going to be repeated 10 times in 20 minutes.

Step 2. To return to the CLI, press Ctrl+C. Notice that the task will keep running on the
background.

8 Exporting and importing tasks

During the usage of pScheduler, users have the capability to export a pScheduler task into
a Java Script Object Notation (JSON) file. This export feature allows users to save a task
specification in a structured and machine-readable format. The JSON representation of a
task can be generated and displayed on the standard output without scheduling the task
by utilizing the --export command.

Step 1. In perfSONAR1 command line, issue the following command to export a
pScheduler task.

pscheduler task --repeat PT10M –-export throughput -–source 10.0.2.10 --dest

10.0.3.10 > my_test_1

• pscheduler: is the command to interact with perfSONAR.

• task: is a pScheduler command to specify a measurement test.

• --repeat PT10M: is a pScheduler command that configures the task to be
repeated every 10 minutes.

• --export: is to indicate that the task will not be executed but stored.

• throughput: is the test type.

• --source: is to specify where the test should originate, in this case it is
perfSONAR2 node (10.0.2.10).

• --dest is the destination node, in this case it is perfSONAR3 node (10.0.3.10).

• > my_task_1: is to create a file where the task is going to be stored.

Figure 23. Exporting a throughput test through the file my_test_1.

Step 2. In order to visualize the file, type cat my_test_1. A JSON file will be displayed.
This file contents a pScheduler task, however this task is not running. Notice also that the
task might be invalid because tasks are not validated until they are submitted for
scheduling.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 24

Figure 24. Visualizing the content of the exported file.

Step 3. A JSON file that was previously exported or generated can be imported using the
--import command. In perfSONAR1 command line, issue the following command to
import the task called my_test_1.

pscheduler task –-import my_test_1

• pscheduler: is the command to interact with perfSONAR.

• task: is a pScheduler command to specify a measurement test.

• --import: specified the operation over the file.

• my_test_1: is the file that contains the task.

Figure 25. Importing a throughput test.

Step 4. To return to the CLI, press Ctrl+C. Notice that the task will keep running on the
background.

9 Displaying the schedule

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 25

In this section, the user will be introduced to two visualization tools: pScheduler Monitor
and pScheduler Schedule. These tools are designed to provide users with insights into the
scheduling and progress of tasks within the pScheduler framework. It is important to note
that the tests scheduled in the previous lab section are still ongoing.

9.1 pScheduler monitor

Step 1. In perfSONAR1 command line, issue the following command to monitor the tasks.

pscheduler monitor

Figure 26. Running the pScheduler monitor.

When viewing the scheduled tests using pScheduler commands and visualization tools,
participants will encounter various status values that indicate the state of each test. These
status values provide valuable information about the progress and outcome of the
scheduled tests. The possible status values and their meanings are as follows:

• Pending: This status indicates that the test run is scheduled to be executed in the
future but has not yet started.

• On Deck: When a test is in the "On Deck" status, it means that the execution of
the test is about to begin imminently.

• Running: The "Running" status indicates that the test is currently in progress and
actively being executed.

• Cleanup: After a test run is completed, it enters the "Cleanup" status. During this
phase, any necessary final operations or clean-up tasks associated with the test
are being performed.

• Finished: When a test run has been successfully executed and completed, it is
assigned the "Finished" status.

• Overdue: If a test run was scheduled to start at a specific time in the past but did
not commence, it is marked as "Overdue." The scheduler may still attempt to
execute the test if it falls within a certain threshold.

• Missed: The "Missed" status is assigned to a test run that was scheduled but did
not execute at its designated time. This can occur if the scheduler was not
operational during the scheduled time or if the task was paused.

• Failed: If a test run fails to complete for any reason, it is labeled as "Failed." This
status indicates that the test encountered an issue or encountered an error during
execution.

• Non-Starter: When a test run cannot be scheduled due to constraints or the
unavailability of suitable timeslots, it is categorized as "Non-Starter."

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 26

• Canceled: If a test is canceled before it is executed, it is assigned the "Canceled"
status. This status indicates that the test will not be run as intended.

Figure 27. Visualizing the scheduled tasks in perfSONAR1.

Step 2. To exit from pScheduler monitor, press Ctrl+C.

Step 3. In perfSONAR1, issue the following command to display the tasks in perfSONAR2.

pscheduler monitor --host=10.0.2.10

Figure 28. Running the pScheduler monitor.

Figure 29. Visualizing the scheduled tasks in perfSONAR2 from perfSONAR1.

Step 4. To exit from pScheduler monitor, press Ctrl+C.

9.2 pScheduler schedule

The pscheduler schedule command asks pScheduler to fetch scheduled task runs from
the past, present or future and display them as text.

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 27

Step 1. In perfSONAR1 command line, issue the following command to visualize the test
schedule.

pscheduler schedule

Figure 30. Visualizing the tests schedule in perfSONAR1.

Step 2. To exit from pScheduler schedule, press Ctrl+C.

10 Canceling tasks

So far there are two pScheduler tasks running. In this section, the user will cancel the
scheduled Round-Trip Time (RTT) and throughput tasks which are running.

Step 1. In perfSONAR1 command line, issue the following command to export a
pScheduler task.

pscheduler schedule –-filter-test rtt

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 28

Figure 31. Filtering out RTT tests.

The user will see the scheduled task for Round-Trip Time (RTT) measurement.

Step 2. In perfSONAR1 command line, issue the following command to cancel a task.

pscheduler cancel https://localhost/pscheduler/tasks/[url]

Replace [url] with the first three characters of the last task URL. In this example, the
first three characters of the task are 5c21, these characters may vary then, press Tab key
to autocomplete the following characters. Press Enter to execute the command.

Figure 32. Cancelling the RTT tasks.

Step 3. In perfSONAR1 command line, type the command pscheduler monitor to
visualize the schedule.

Figure 33. Verifying the tasks in perfSONAR1.

Lab 5 has been completed. You may now end your reservation.

References

1. Mininet walkthrough, [Online]. Available: http://Mininet.org.
2. perfSONAR Project, “perfSONAR Installation Options,” [Online]. Available:

https://docs.perfsonar.net/install_options.html

Lab 5: Configuring Regular Tests Using pScheduler CLI

 Page 29

3. perfSONAR Project. “What is perfSONAR?,” [Online]. Available:
https://docs.perfsonar.net/intro_about.html

4. Docker Inc, “What is a container,” [Online]. Available:
https://www.docker.com/resources/what-container/

5. Manuel Peuster, “Containernet,” [Online]. Available:
https://containernet.github.io/

6. Brian Linkletter, “How to use MiniEdit, Mininet’s graphical user
interface,”[Online]. Available: https://tinyurl.com/MiniEdit-PS

7. perfSONAR Project, “perfSONAR Global NodeDirectory”. Available:
https://stats.es.net/ServicesDirectory/.

P4-PERFSONAR LAB SERIES

Lab 6: Connecting perfSONAR to Grafana
 Dashboard

Document Version: 06-19-2023

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 2

Contents

Overview ... 3
Objectives.. 3
Lab settings ... 3
Lab roadmap ... 3
1 Introduction .. 3

1.1 Lab scenario .. 4
2 Loading and running the lab topology .. 4

2.1 Setting IPv4 addresses, static routes, and link conditions 6
3 Running regular tests with pScheduler ... 6

3.1 Accessing perfSONAR1 CLI .. 6
3.2 Running RTT, throughput and trace tests ... 8

4 Configuring the communication between perfSONAR1 and Grafana 10
4.1 Running Grafana ... 10
4.2 Accessing Grafana ... 11
4.3 Configuring Grafana’s data source ... 12
4.4 Configuring an OpenSearch data source .. 14

5 Displaying the measurement results in a dashboard ... 20
5.1 Visualizing throughput results .. 20
5.2 Visualizing RTT results ... 25
5.3 Visualizing retransmissions ... 29

References .. 34

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 3

Overview

This lab explains how to integrate Grafana with perfSONAR to display measurement
results. Grafana is an open-source visualization platform for building dashboards. It
supports multiple data sources, including the OpenSearch database, which is the default
database implemented in perfSONAR. This lab shows how to configure a Grafana
dashboard to show the results produced by a perfSONAR node.

Objectives

By the end of this lab, the user will:

1. Store pScheduler measurements in a local OpenSearch database.
2. Configure Grafana to access OpenSearch database.
3. Construct a Grafana dashboard to visualize pScheduler measurements.
4. Select the metrics to display in the Grafana dashboard.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction
2. Section 2: Loading and running the lab topology.
3. Section 3: Running regular tests with pScheduler.
4. Section 4: Configuring the communication between perfSONAR1 and

Grafana.
5. Section 5: Displaying the measurement results in a dashboard.

1 Introduction

Grafana1 is an open-source visualization platform used to transform complex datasets
into visually organized and insightful dashboards. It serves as a solution that enables

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 4

professionals across various domains, from IT specialists to data analysts, to gain a
comprehensive understanding of their data. Through flexible integration with diverse
databases, Grafana proves suitable for a wide range of applications that require system
performance monitoring. Leveraging customizable visualization options, such as charts,
graphs, gauges, and heatmaps, users can creatively and effectively represent their data.
Additionally, Grafana's alerting and notification features ensure prompt responses to
critical events and anomalies.

Grafana integrates with perfSONAR2 by displaying the measurement results stored in a
node’s database. This database is implemented using OpenSearch3. OpenSearch is a
powerful open-source search and analytics engine, adept at indexing, searching, and
visualizing large volumes of data. Its versatile functionalities cater to various applications,
providing efficient data exploration, real-time monitoring, and alerting capabilities. With
seamless integration of diverse data sources, OpenSearch offers rapid data retrieval and
intuitive visualization.

1.1 Lab scenario

In this lab, the user will conduct regular tests on a perfSONAR node and store the results
in a local database. Subsequently, the user will establish communication between
Grafana, and the OpenSearch database hosted on a perfSONAR node. The final step
involves presenting throughput, Round-trip Time (RTT), and retransmission data in a
Grafana dashboard through multiple timing graphs.

2 Loading and running the lab topology

In this section, the user will load and run the lab topology using MiniEdit6, which is the
graphical tool used to create topologies in Mininet.

perfSONAR1

10.0.0.0/24

.10

r1

.1

perfSONAR2

.10.1

20.0.0.0/24

Figure 1. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 5

Figure 2. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the Lab6 folder and search for the topology file called lab6.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 3. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 6

Figure 4. Running the emulation.

Wait for 10 seconds to allow the perfSONAR nodes to initialize within the network
topology. Once the topology is fully operational, MiniEdit’s toolbar on the left-hand side
will become greyed out.

2.1 Setting IPv4 addresses, static routes, and link conditions

Step 1. Open a Linux terminal by clicking on the icon located on the taskbar.

Figure 5. Opening a Linux terminal.

Step 2. To set up the lab environment, execute the following command in the Linux
terminal. This script will configure the IPv4 addresses of the routers, define static routes,
and establish specific link conditions, such as bandwidth limitations and minimum delays.

sudo P4-perfSONAR_Labs/set_env.sh lab6

Figure 6. Setting IPv4 addresses, static routes, links’ bandwidths, and delays.

Keep the Linux CLI open, as it will be used in the upcoming sections.

3 Running regular tests with pScheduler

In this section, the user will run regular pScheduler tests from perfSONAR1 to perfSONAR2
and store the results in a local database.

3.1 Accessing perfSONAR1 CLI

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 7

Step 1. Go back to MiniEdit by clicking on the icon in the taskbar.

Figure 7. Opening MiniEdit.

Step 2. Hold the right click on perfSONAR1 and select Terminal. The perfSONAR1 CLI will
emerge.

Figure 8. Opening perfSONAR1 CLI.

Step 3. In perfSONAR1 terminal, type no and press Enter to enable the CLI.

Figure 9. Skipping initial configuration in perfSONAR1.

Step 4. Enlarge the terminal by clicking on the icon shown in the figure below.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 8

Figure 10. Enlarging perfSONAR1 CLI.

3.2 Running RTT, throughput and trace tests

Step 1. In perfSONAR1, issue the following command to run an RTT test every 20 seconds.
Note that the results will be stored in the archive file called local_archive.json.

pscheduler task --repeat PT20S --archive @local_archive.json rtt --dest

20.0.0.10

Figure 11. Running an RTT test every 20 seconds.

Step 2. Press Ctrl+C to return to the CLI. The test will keep running in the background.

Step 3. In perfSONAR1, issue the following command to run a throughput test every 30
seconds. Note that the results will be stored in the archive file called
local_archive.json.

pscheduler task --repeat PT30S --archive @local_archive.json throughput --dest

20.0.0.10

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 9

Figure 12. Running a throughput test every 30 seconds.

Step 4. Press Ctrl+C to return to the CLI. The test will keep running in the background.

Step 5. Similarly, issue the following command to run a trace test every 40 seconds. Note
that the results will be stored in the archive file called local_archive.json.

pscheduler task --repeat PT40S --archive @local_archive.json trace --dest

20.0.0.10

Figure 13. Running a trace test every 40 seconds.

Step 6. Press Ctrl+C to return to the CLI. The test will keep running in the background.

Step 7. Verify that the RTT, throughput, and trace tests are scheduled correctly by issuing
the following command.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 10

pscheduler monitor

Figure 14. Running pScheduler monitor.

Step 8. Inspect the schedule.

Figure 15. Visualizing the schedule.

Step 8. Press q to return the CLI.

Note that the tests will keep running and the results of the measurement tests will be
populated perfSONAR1’s database.

4 Configuring the communication between perfSONAR1 and Grafana

In this section, the user will follow the process of configuring Grafana to access the
measurement results stored in perfSONAR1. Grafana operates within a Docker container
and can be accessed via a web interface. To enable this connection, the user will need to
specify the data source, which, in this scenario, is the OpenSearch database hosting the
pScheduler measurements. It's essential to note that the configured database is located
in perfSONAR1.

4.1 Running Grafana

Step 1. Go back to the Linux terminal by clicking on the icon in the taskbar.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 11

Figure 16. Returning to the Linux Terminal.

Step 2. In the Linux Terminal, issue the following command to start the Docker container
that implements Grafana. If a password is required, type password.

sudo docker run -d -p 3000:3000 grafana/grafana-oss

Figure 17. Running Grafana.

4.2 Accessing Grafana

Step 1. Open the web browser by clicking on the icon located in the taskbar.

Figure 18. Opening the web browser.

Step 2. In the address bar type the following URL to access Grafana’s web interface. An
authentication webpage will be displayed.

localhost:3000

Figure 19. Accessing Grafana’s web interface.

Step 3. Type admin as the username and password as the password. Then, click on Log
In.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 12

Figure 20. Authenticating the admin user in Grafana’s web interface.

4.3 Configuring Grafana’s data source

Step 1. Click on the three-line icon next to Home and select Administration>Plugins as
shown in the figure below.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 13

Figure 21. Configuring Grafana’s data sources.

Step 2. In the search entry box, type opensearch. Then, click on the result as shown in the
figure below.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 14

Figure 22. Searching for the OpenSearch plugin.

Step 3. Click on Install to install the plugin.

Figure 23. Installing the OpenSearch plugin.

4.4 Configuring an OpenSearch data source

Step 1. Once the installation is complete, click on Create a OpenSearch data source.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 15

Figure 24. Creating an OpenSearch data source.

Step 2. Set the data source name as P4-perfSONAR lab measurements as shown in the
figure below.

Figure 25. Setting the data source name.

Step 3. Configure the following URL as shown in the figure below. This URL points towards
the database of perfSONAR1.

https://172.17.0.2/opensearch

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 16

Figure 26. Setting the data source URL.

Step 4. Scroll down and enable the Basic auth option as shown in the figure below.

Figure 27. Enabling basic authentication.

Step 5. In the Auth section, toggle on the Skip TLS Verify option.

Figure 28. Skipping TLS verification.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 17

Step 6. Navigate to perfSONAR1 terminal and type the command below to display the
Opensearch’s authentication credentials.

cat /etc/perfsonar/opensearch/opensearch_login

Figure 29. Displaying Opensearch’s authentication credentials.

The figure above shows the credentials to access OpenSearch. The username is admin
and the password is 1NBIAomOxvbVq9hiutdY.

Step 7. In Grafana, input the credentials retrieved in the previous step as the username
and password.

• User: admin

• Password: 1NBIAomOxvbVq9hiutdY

Note that you can copy and paste this password from the file called
OpenSearch_password.txt located on the Desktop.

Figure 30. Authenticating into the OpenSearch database.

Step 8. Navigate to perfSONAR1 terminal and type the command below to retrieve the
index used by Logstash to store the data in OpenSearch.

cat /usr/lib/perfsonar/logstash/pipeline/99-outputs.conf

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 18

Figure 31. Displaying the index name.

The index is the field used by OpenSearch to categorize the stored data. Querying the
OpenSearch database requires specifying the index of the data.

 The figure above shows that the index depends on the type of tests being performed and
on the date the test is performed where index = “pscheduler_%{[test][type]}-
%{+YYYY.MM.dd}”. Note that the index always starts with the keyword pscheduler.

Step 9. In Grafana, scroll down to the OpenSearch details section and type pscheduler*
for the index name field. pscheduler* character implies that any index that starts with
the keyword pscheduler should be considered.

Figure 32. Setting the index name.

Step 10. Type the following entry as the Time field name.

pscheduler.start_time

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 19

Figure 33. Setting the time field name.

Step 11. Click on Get Version and Save to test the connection with the OpenSearch
database. The output will indicate the current version.

Figure 34. Getting the database version.

Step 12. Scroll down and click on Save & test to save the configured data source.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 20

Figure 35. Saving the configuration.

5 Displaying the measurement results in a dashboard

In this section, the user will create a dashboard and retrieve measurements such as
throughput, Round-trip Time (RTT), and retransmissions. The graphs will visually present
these metrics over time, offering valuable insights into network performance trends. It's
important to understand that the configuration provided here outlines the fundamental
steps to display these results effectively. However, Grafana's flexibility allows for
extensive customization, empowering users to tailor the views according to their specific
needs and even set up alerts to monitor thresholds and trigger notifications if certain
conditions are surpassed.

5.1 Visualizing throughput results

Step 1. Click on the + icon in the upper right of the screen and select New dashboard.

Figure 36. Creating a new dashboard.

Step 2. Click on + Add visualization.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 21

Figure 37. Adding a graph.

Step 3. On the right panel, in the Panel options, add a Title and a Description. This graph
will display the throughput tests.

Figure 38. Setting the graph title and the description.

Step 4. In the Querry panel, change the metric from Count to Max, as shown in the figure
below.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 22

Figure 39. Displaying the maximum values.

Step 5. In the adjacent box, select result.throughput from the list.

Figure 40. Selecting the throughput results.

Step 6. Change the time range by clicking on the icon located on the upper part and
selecting the Last 5 minutes option.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 23

Figure 41. Adjusting the time range to 5 minutes.

Step 7. In the panel on the right, scroll down to reach the Standard options section. Select
Data /bits(SI) option for the Unit field to change the unit to Gigabits (Gb).

Figure 42. Adjusting unit to Gigabits.

Step 8. Click on Apply to save the changes.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 24

Figure 43. Applying the changes to the dashboard.

The throughput graph will appear on the Grafana dashboard.

Step 9. Save the dashboard by clicking on the icon on the upper part. A new panel will
emerge on the right side.

Figure 44. Saving the changes in the dashboard.

Step 10. Provide a name to the dashboard, then, click on Save.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 25

Figure 45. Saving the changes in the dashboard.

5.2 Visualizing RTT results

Step 1. Click on the Add icon located on the upper part and select Visualization as shown
in the figure below.

Figure 46. Adding a graph.

Step 2. On the right panel, in the Panel options, add a Title and a Description. This graph
will display the RTT tests.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 26

Figure 47. Setting the graph title and the description.

Step 3. In the Querry panel, change the metric from Count to Max, as shown in the figure
below.

Figure 48. Displaying the maximum values.

Step 4. In the adjacent box, select result.rtt.meant from the list.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 27

Figure 49. Selecting the RTT means values.

Step 5. Click on the icon located on the upper part to refresh the graph.

Figure 50. Refreshing the dashboard.

Step 6. In the panel on the right, scroll down to reach the Standard options section. Select
Time / second (s) option for the Unit field to change the unit to seconds.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 28

Figure 51. Adjusting unit to seconds.

Step 7. Click on Apply to save the changes.

Figure 52. Applying the changes.

The RTT graph will appear on the Grafana dashboard.

Step 8. Save the changes by clicking on the icon on the upper part. A new panel will
emerge on the right side.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 29

Figure 53. Saving the changes in the dashboard.

Step 9. Click on Save to save the changes.

Figure 54. Saving the changes in the dashboard.

At this point, there are two graphs in the dashboard.

5.3 Visualizing retransmissions

Step 1. Click on the Add icon located on the upper part and select Visualization as shown
in the figure below.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 30

Figure 55. Adding a graph.

Step 2. On the right panel, in the Panel options, add a Title and a Description. This graph
will display the throughput tests.

Figure 56. Setting the title and the description.

Step 3. In the Querry panel, change the metric from Count to Max, as shown in the figure
below.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 31

Figure 57. Displaying the maximum values.

Step 4. In the adjacent box, select result.retransmits from the list.

Figure 58. Selecting the number of retransmissions.

Step 5. Click on the icon located on the upper part to refresh the graph.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 32

Figure 59. Refreshing the graph.

Step 6. Click on Apply to save the changes.

Figure 60. Applying the changes.

The Retransmissions graph will appear on the Grafana dashboard, with the throughput
and RTT graphs.

Step 7. Drag the RTT graph next to the retransmissions graph as shown in the figure below.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 33

Figure 61. Relocating the graph in the dashboard.

Step 8. Save the changes by clicking on the icon on the upper part. A new panel will
emerge on the right side.

Figure 62. Saving the changes in the dashboard.

Step 9. Click on Save to save the changes.

Figure 63. Saving the changes in the dashboard.

Lab 6: Connecting perfSONAR to Grafana Dashboard

 Page 34

Lab 6 has been completed. You may now end your reservation.

References

1. Grafana Labs. “Grafana documentation,” [Online]. Available:
https://grafana.com/docs/grafana/latest/

2. perfSONAR Project. “Grafana perfSONAR Dashboard Cookbook,” [Online].
Available: https://tinyurl.com/2nch38j8

3. OpenSearch contributors. “OpenSearch,” [Online]. Available:
https://opensearch.org/

4. perfSONAR Project. “pScheduler limits,” [Online]. Available:
https://tinyurl.com/pS-limits

5. Mininet walkthrough, [Online]. Available: http://Mininet.org.
6. perfSONAR Project, “perfSONAR Installation Options,” [Online]. Available:

https://docs.perfsonar.net/install_options.html
7. perfSONAR Project. “What is perfSONAR?,” [Online]. Available:

https://docs.perfsonar.net/intro_about.html
8. Docker Inc, “What is a container,” [Online]. Available:

https://www.docker.com/resources/what-container/
9. Manuel Peuster, “Containernet,” [Online]. Available:

https://containernet.github.io/
10. Brian Linkletter, “How to use MiniEdit, Mininet’s graphical user

interface,”[Online]. Available: https://tinyurl.com/MiniEdit-PS
11. perfSONAR Project, “perfSONAR Global NodeDirectory”. Available:

https://stats.es.net/ServicesDirectory/.

P4-PERFSONAR LAB SERIES

Lab 7: Retrieving per-flow Statistics from the Data
Plane

Document Version: 06-06-2024

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 2

Contents

Overview ... 3
Objectives.. 3
Lab settings ... 3
Lab roadmap ... 3
1 Introduction to packet digests .. 3

1.1 Lab scenario .. 4
2 Lab topology.. 4

2.1 Starting the end hosts ... 6
3 Calculating per-flow number of bytes in P4 ... 7

3.1 Loading the programming environment... 7
3.2 Populate the metadata ... 8
3.3 Collecting per-flow number of bytes .. 9

4 Creating packet digests in P4 .. 13
5 Creating the controller application ... 17
6 Loading the P4 program .. 23

6.1 Compiling and loading the P4 program to switch s1 .. 23
6.2 Verifying the configuration ... 25

7 Configuring switch s1 .. 26
8 Testing and verifying the P4 program ... 26

8.1 Starting the controller application .. 26
8.2 Starting data transfer between h1 and h2 ... 27
8.3 Inspecting the measurements retrieved by the control plane 28

References .. 29

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 3

Overview

This lab demonstrates how to detect new flows in P4 and report flows’ information using
digests to the control plane. A digest is a communication mechanism used by the data
plane to send values to the control plane. The control plane then processes these values
to implement applications. After that, the user will utilize the flow information received
from the digest to query the flow’s statistics from the data plane.

Objectives

By the end of this lab, students should be able to:

1. Understand how to create digests in a P4 program.
2. Write a control plane application to receive the digests sent from the data plane.
3. Parse the digest and install rules in a match-action table.
4. Implement a basic monitoring application on a P4 switch.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to packet digests.
2. Section 2: Lab topology.
3. Section 3: Calculating per-flow number of bytes in P4.
4. Section 4: Creating packet digests in P4.
5. Section 5: Loading the P4 program.
6. Section 6: Configuring switch s1.
7. Section 7: Testing and verifying the P4 program.

1 Introduction to packet digests

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 4

A digest consists of a mechanism to send a message from the data plane to the control
plane. Digests contain data plane values such as packet headers or metadata to be
processed by a program in the control plane (i.e., a controller). The controller can
implement applications in programming languages such as C/C++, Java, or Python.
Moreover, the controller can process multiple digests and communicate with the data
plane using runtime APIs1. The controller can use these APIs to add, delete, or modify an
entry in a match-action table, read registers, reset counters, change meter rates, etc.

1.1 Lab scenario

Figure 1 depicts an example of a controller application that implements a basic monitoring
procedure. The topology comprises two end hosts and a P4 switch. The user will
implement the logic to detect new flows by defining a new match-action table. The table
will be responsible for detecting if an arriving packet belongs to a new flow. Packets are
classified into flows by hashing the 5-tuple (source and destination IP addresses, source
and destination ports, and protocol). The user will also utilize a stateful register to
monitor the per-flow number of bytes.

 For each new flow, the P4 program will produce a digest with the flow ID. This digest is
sent to the control plane, where a controller (i.e., controller.py) uses flow ID to
periodically query the number of bytes register. The throughput is then calculated by the
control plane and presented to the user.

Processing

of BytesID
Flow Tracker

Add

Flow IDs

New
Data Plane

Control Plane

1 second

: Digest: Flow ID : Number of bytes : Throughput

Figure 1. Lab scenario. The data plane detects new flows and reports them to the control plane
using digests. After that, the data plane uses the flow ID to initialize a new register entry that
maintains the number of bytes for that flow. Control plane uses the flow ID received from the
digest to periodically query measurements from the data plane. The control plane calculates the
throughput values from the number of bytes .

2 Lab topology

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 5

Let’s get started by loading a simple Mininet topology using MiniEdit. The topology
comprises two end hosts and a P4 switch.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab7 folder and search for the topology file called lab7.mn and click on
Open. A new topology will be loaded to MiniEdit.

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 6

Figure 4. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 5. Running the emulation.

2.1 Starting the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 7

Figure 6. Opening a terminal on host h1.

Step 2. Test connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 7. Connectivity test using ping command.

The figure above shows unsuccessful connectivity between host h1 and host h2. This
result happens because there is no P4 program loaded on the switch.

3 Calculating per-flow number of bytes in P4

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 8

Figure 8. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code P4-perfSOANR_Labs/Lab7

Figure 9. Loading the development environment.

3.2 Populate the metadata

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 9

Figure 10. Inspecting the headers.p4 file.

Step 2. Define the flow_id metadata by adding the code below to the metadata struct.

bit<16> flow_id;

Figure 11. Adding the metadata.

Step 3. Save the changes to the file by pressing Ctrl + s.

3.3 Collecting per-flow number of bytes

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 10

Figure 12. Inspecting the ingress.p4 file.

Step 2. Define the action compute_flow_id by adding the following piece of code.

action compute_flow_id() {

 hash (

 meta.flow_id,

 HashAlgorithm.crc16,

 (bit<1>)0,

 {

 hdr.ipv4.srcAddr,

 hdr.ipv4.dstAddr,

 hdr.tcp.srcPort,

 hdr.tcp.dstPort,

 hdr.ipv4.protocol,

 },

 (bit<16>)65535);

}

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 11

Figure 13. Defining the action compute_flow_id.

The code in the figure above hashes flows based on their source and destination IP
addresses, their protocol, and their source and destination TCP ports. The hash function
hash produces a 16-bits output using the following parameters:

• meta.flow_id: The variable used to store the output.

• HashAlgorithm.crc16: the hash algorithm.

• bit<1>0: the minimum (or base) value produced by the hash algorithm.

• hdr.ipv4.srcAddr, hdr.ipv4.dstAddr, hdr.tcp.srcPort,
hdr.tcp.dstPort, hdr.ipv4.protocol: the data to be hashed.

• bit<16>65535: the maximum value produced by the hash algorithm.

Step 3. Add the following code to define a register array that will store per-flow number
of bytes.

register<bit<32>>(65535) number_of_bytes_register;

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 12

Figure 14. Defining a register array.

Step 4. Add the following code to define a register action.

action update_number_of_bytes(){

 bit<32> old_number_of_bytes;

 bit<32> new_number_of_bytes;

 number_of_bytes_register.read(old_number_of_bytes, (bit<32>)meta.flow_id);

 new_number_of_bytes = old_number_of_bytes + (bit<32>)hdr.ipv4.totalLen;

 number_of_bytes_register.write((bit<32>meta.flow_id, new_number_of_bytes);

}

Figure 15. Defining the action update_number_of_bytes.

In the code above, the update_number_of_bytes action performs the following steps:

• Reading the current number of bytes: It retrieves the current number of bytes
associated with the current flow from the number_of_bytes_register and
stores this value in the variable old_number_of_bytes.

• Calculating the updated number of bytes: The action then adds the number of
bytes from the current packet (obtained from hdr.ipv4.totalLen) to the value

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 13

stored in old_number_of_bytes. The result is stored in the variable
new_number_of_bytes.

• Writing back the updated value: Finally, the action writes the updated number of
bytes (new_number_of_bytes) back into the number_of_bytes_register,
ensuring to cast meta.flow_id into a 32-bit value because register indexes
require 32-bit values.

4 Creating packet digests in P4

Step 1. Define the table monitored_flows by adding the following code.

table monitored_flows() {

 key = {

 meta.flow_id : exact;

 }

 actions = {

 NoAction;

 }

 Size = 1024;

}

Figure 16. Defining the table monitored_flows.

The table in the figure above matches the flow_id and executes the action NoAction.
This table is responsible for detecting new flows by maintaining the flow IDs of previously
detected flows. All flows with IDs not maintained by the table are considered new flows.

Step 2. Define the table monitored_flows by adding the following code.

table monitored_flows() {

 key = {

 meta.flow_id : exact;

 }

 actions = {

 NoAction;

 }

 Size = 1024;

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 14

}

Figure 17. Defining the table monitored_flows.

The table in the figure above matches the flow_id and executes the action NoAction.
This table is responsible for detecting new flows by maintaining the flow IDs of previously
detected flows. All flows with IDs not maintained by the table are considered new flows.

Step 3. Add the following code inside the apply block to apply the forwarding.

forwarding.apply();

Figure 18. Applying forwarding table.

Step 4. Add the following code to check if the packets are TCP packets.

if(hdr.tcp.isValid()){

}

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 15

Figure 19. Checking the type of the packet.

Step 5. If a packet is a TCP packet, add the following code to compute the flow ID.

compute_flow_id();

Figure 20. Computing the flow ID.

Step 6. Add the following code to identify if the flow is new. A flow with an ID not
maintained by the table monitored_flows is a new flow.

if(monitored_flows.apply().miss){

}

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 16

Figure 21. Identifying new flows.

Step 7. Add the following code to send a digest to the control plane if the flow is new.

digest(1,meta.flow_id);

Figure 22. Notifying the control plane using a digest.

Step 8. Add the following code to update the flow’s number of bytes if it is not new.

else{

 update_number_of_bytes();

}

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 17

Figure 23. Updating the number of bytes.

Step 9. Press Ctrl+s to save the changes.

5 Creating the controller application

Step 1. Click on the controller.py file to display its content. Use the file explorer on the
left-hand side of the screen to locate the file.

Figure 24. Inspecting the controller.py file.

Step 2. Define the dictionary flows by adding the code below. The dictionary will
maintain the information of the flows.

flows = {}

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 18

Figure 25. Defining dictionary flows.

Step 3. Scroll down to the function listen_for_digests and define the controller logic
by adding the following lines.

while True:

 message = sub.recv()

 on_message_recv(message, controller)

Figure 26. Defining the controller logic in the function listen_for_digests.

The code in the figure above implements a loop that listens for incoming digests (see line
43) and calls the function on_message_recv (see line 44). Note that function sub.recv
will halt the execution until it receives a digest.

Step 4. Scroll down to the function on_msg_recv and define the following variables.

msg = msg[32:]

offset = 2

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 19

Figure 27. Defining variables in the function on_message_recv.

The variables in the figure above correspond to the digest and the offset. Note that the
first 32 bytes are skipped because they store some metadata related to the digest and the
switch. The offset value indicates the number of bytes corresponding to the flow ID (i.e.,
16 bits).

Step 5. Define the receiving logic by adding the following code.

for m in range(num):

 flow_id, = struct.unpack(“!H”, msg[0:offset])

 print(“New flow with ID: ”, flow_id,” is detected.”)

 flows[flow_id] = {“number_of_bytes”:0}

 controller.do_table_add(“monitored_flows NoAction ” + str(flow_id) + “ => ”)

 msg = msg[offset:]

Figure 28. Defining receiving logic.

The code in the figure above is explained as follows:

• Line 68: Unpacks from the digest the flow ID.

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 20

• Line 69: Prints the received flow ID.

• Line 70: Define a new entry for the received flow in the flows dictionary. The flow
ID (i.e., flow_id) is used as the key.

• Line 71: Adds an entry to the table monitored_flows that matches the flow ID
and executes the action NoAction. By adding this entry, we inform the data plane
that consequent packets with this flow ID do not belong to a new flow.

• Line 72: Points to the next 8 bytes in msg to avoid reading the same digest in case
there are two or more messages sent to the control plane simultaneously (see
Figure 22).

 Step 6. Scroll up and call the function listen_for_digests from the main function by
adding the line below.

listen_for_digests(runtime_api)

Figure 29. Calling the function listen_for_digests.

Step 7. Scroll down and add the following code under the function
retrieve_measurements. pre_time will store the current timestamp.

pre_time = datetime.now().timestamp()

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 21

Figure 30. Defining the function retrieve_measurements.

Step 8. Add the code below to iterate over the monitored flows and retrieve the
corresponding number of bytes.

for flow_id in flows.copy():

 old_number_of_bytes = flows[flow_id][‘number_of_bytes’]

 total_number_of_bytes = register_read(flow_id)

 new_number_of_bytes = total_number_of_bytes – old_number_of_bytes

 flows[flow_id][‘number_of_bytes’] = total_number_of_bytes

Figure 31. Retrieving per-flow number of bytes.

Step 9. Add the code below to calculate and print the throughput. The if statement only
prints the throughput if it is larger than 10 Mb/s.

thoughput = new_number_of_bytes*8/1000000

if(throughput > 10):

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 22

 print(“The throughput of flow: “,flow_id, “ is ”, throughput, “Mb/s”)

Figure 32. Calculating and printing the throughput.

Step 10. Add the code below to retrieve the number of bytes once per second.

post_time = datetime.now().timestamp()

tmie.sleep(1 + pre_time – post_time)

Figure 33. Setting the querying period to 1 second.

Step 11. Scroll up to the main function then define and start a new thread to call the
function retrieve_measurements.

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 23

report_measurements_th = threading.Thread(targer=retrieve_measurements)

report_measurements_th.start()

Figure 34. Calling the function report_measurements.

Step 12. Press Ctrl+s to save the changes.

6 Loading the P4 program

In this section, you will compile and load the P4 binary and the controller program in
switch s1. You will also verify that the files reside in switch filesystem.

6.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside VS Code to compile the
program.

p4c basic.p4

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 24

Figure 35. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Figure 36. Pushing the basic.json file to switch s1.

Step 3. Type the command below in the terminal panel to push the controller.py file to
the switch s1’s filesystem.

push_to_switch controller.py s1

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 25

Figure 37. Pushing the controller.py file to switch s1.

6.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 38. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Figure 39. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 40. Displaying the contents of the current directory in the switch s1.

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 26

The figure above shows that the switch contains the basic.json and controller.py files that
were pushed after compiling the P4 program and creating the controller application.

7 Configuring switch s1

In this section, you will map switch s1 interfaces to the ports in the P4 program and start
the switch daemon. Then, you will load the rules to populate the match action tables.

Step 1. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 basic.json &

Figure 41. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Step 2. In switch s1 terminal, press Enter to return the CLI.

Figure 42. Returning to switch s1 CLI.

8 Testing and verifying the P4 program

This section shows the steps to run a controller and observe the pre-flow throughput
monitored by the application.

8.1 Starting the controller application

Step 1. In switch s1 terminal, start the controller by running the following command.

python controller.py

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 27

Figure 43. Starting the controller in switch s1.

8.2 Starting data transfer between h1 and h2

Step 1. Right-click on host h2 and select Terminal. This opens the terminal of host h2 and
allows the execution of commands on that host.

Figure 44. Opening a terminal on host h2.

Step 2. On host h2’s terminal, type the following command to start Iperf3 server. iperf3
tool is used to perform network throughput tests. -s option specifies that h2 will be
acting as the server.

iperf3 -s

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 28

Figure 45. Starting Iperf3 server on h2.

Step 3. On host h1’s terminal, type the following command to start data transfer with
h2. -c option specifies that h1 will be acting as the client.

iperf3 -c 10.0.0.2

Figure 46. Sending data between h1 and h2.

8.3 Inspecting the measurements retrieved by the control plane

Step 1. Navigate back to switch s1 terminal and inspect the output.

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 29

Figure 47. Inspecting the controller’s log in switch s1.

The figure above shows that the 4 new flows are detected. This occurs because the
packets from h1 to h2 are considered one flow and the packets from h2 to h1 are
considered another flow. Moreover, the Iperf3 tool has two channels per connection, one
data channel, and one control channel7. Thus, we have a total of 4 flows.

This concludes lab 7. Stop the emulation and then exit out of MiniEdit.

References

1. The P4 language Consortium. “Behavioral model: The runtime CLI application.”
[Online]. Available: https://tinyurl.com/28fptt6z

2. The P4 Architecture Working Group. “P416 Portable Switch Architecture (PSA).”
[Online]. Available: https://tinyurl.com/2wnkc6d2

3. Mininet walkthrough. [Online]. Available: http://Mininet.org.
4. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

Lab 7: Retrieving Per-flow Statistics from the Data Plane

 Page 30

5. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

6. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

7. Bruce A. Mah. “The Iperf3 Protocol and State Machine.” [Online]. Available:
https://tinyurl.com/54b6mbeu.

https://tinyurl.com/vrasamm

P4-PERFSONAR LAB SERIES

Lab 8: Collecting P4 measurements using
perfSONAR’s archiver

Document Version: 07-14-2024

Award 2118311
“CyberTraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 2

Contents

Overview ... 3
Objectives.. 3
Lab settings ... 3
Lab roadmap ... 3
1 Introduction to perfSONAR’s archiving layer .. 4

1.1 Lab scenario .. 4
2 Lab topology.. 5

2.1 Starting the end hosts ... 7
3 Configuring new pipeline in Logstash ... 8

3.1 Inspecting pScheduler pipeline ... 8
3.2 Creating P4 pipeline .. 11
3.3 Configuring P4 pipeline ... 12

4 Configuring the control plane of the switch ... 15
4.1 Loading the environment.. 16
4.2 Inspecting the controller ... 17
4.3 Configuring the connection with Logstash ... 18
4.4 Configuring the data retrieving and reporting process 20

5 Loading the P4 program .. 24
5.1 Compiling and loading the P4 program to switch s1 .. 24
5.2 Verifying the configuration ... 25
5.3 Configuring switch s1 .. 26

6 Connecting Grafana to OpenSearch ... 27
6.1 Running Grafana ... 27
6.2 Accessing Grafana ... 28
6.3 Configuring Grafana’s data source ... 29
6.4 Configuring an OpenSearch data source .. 31

7 Testing and verifying the application .. 35
7.1 Starting the controller application .. 35
7.2 Starting data transfer between h1 and h2 ... 36
7.3 Displaying the measurement results in a dashboard 37

References .. 43

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 3

Overview

This lab demonstrates how to collect the measurements calculated by P4 using a
perfSONAR archiver. The user will start by defining a new pipeline in Logstash to ingest
and process the measurements received from the switch. Logstash is a data processing
pipeline that accepts data from multiple sources, provides flexible data processing, and
forwards the processed data to the final destination. The user will then configure the
control plane of the switch to connect and send the measurements to Logstash. After that,
the user will configure Grafana to display the measurements.

Objectives

By the end of this lab, students should be able to:

1. Define the workflow of the archiving layer of perfSONAR.
2. Configure and append new pipelines to Logstash.
3. Connect the control plane to Logstash.
4. Connect Logstash to OpenSearch.
5. Visualizing the measurements collected by P4 in a Grafana dashboard.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to perfSONAR’s archiving layer.
2. Section 2: Lab topology.
3. Section 3: Configuring new pipeline in Logstash.
4. Section 4: Configuring the control plane of the switch.
5. Section 5: Loading the P4 program.
6. Section 6: Connecting Grafana to OpenSearch.
7. Section 7: Testing and verifying the application.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 4

1 Introduction to perfSONAR’s archiving layer

perfSONAR’s archiving layer is responsible for storing time-series data about the tests that
were performed. This layer adopts the plug-in architecture, where the user can choose
which software to use in this layer. The default archiver used by perfSONAR is the
combination of Logstash and OpenSearch1. Logstash is a data processing pipeline that
accepts data from multiple sources, provides flexible data processing, and forwards the
processed data to the final destination2. OpenSearch is a search and analytical suite that
supports data storage, real-time application monitoring, and log analytics3.

The APIs used by perfSONAR layers to communicate are REST-based. REST APIs
communicate via the HTTP protocol. When a test is performed in perfSONAR, the tools
layer forwards the measurements to the scheduling layer. The scheduling layer formats
the data in JavaScript Object Notation (JSON) and forwards it to Logstash. The input plugin
used to connect the scheduling layer and Logstash is the HTTP plugin. Because the tools
in perfSONAR produce different measurements, Logstash has a dedicated input-output
path for each tool. After receiving a report from the input plugin, Logstash processes it
using its filters such that each filter's output is the next filter's input. The processed report
is then forwarded to the OpenSearch output plugin. The plugin appends the metadata
required by OpenSearch to ingest and store the report.

1.1 Lab scenario

In this lab, the user will connect the P4 switch with Logstash to store the measurements.
As depicted in Figure 1, the user will utilize the TCP input plugin. The plugin requires
configuring the IP address and the port of the source application. The user will also
configure a new pipeline in Logstash responsible for processing and storing the
measurements received from the switch. The control plane will perform the necessary
processing on the retrieved measurements from the data plane, eliminating the need for
any new filters in Logstash. The measurements received from the P4 switch are directly
forwarded from the TCP input plugin to the OpenSearch output plugin. The output plugin
then adds the necessary metadata and stores the reports in OpenSearch. Finally, the user
will connect Grafana to OpenSearch and visualize the collected measurements.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 5

TCP input pluginHTTP input plugin

OpenSearch output plugin

Tools layer

Scheduling layer

Data plane

Control plane

: Raw measurements

Logstash

Filters

perfSONAR P4 switch

OpenSearch

Grafana

: Report_v1

: Report_v2

Figure 1. Lab scenario. The control plane formats the raw measurements extracted from the data
plane to create structured reports (Report_v1). Logstash receives the reports via the TCP input
plugin, adds the metadata required by the OpenSearch database, and forwards the new reports
(Report_v2) to OpenSearch.

2 Lab topology

Let’s get started by loading a simple Mininet topology using MiniEdit. The topology
comprises two end hosts a P4 switch, and a perfSONAR’s archiver. The control plane of
the switch uses interface eth0 to send the measurements to the archiver.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth1 s1-eth2 h2-eth0

s1

eth0

Archiver

eth0

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 6

Figure 3. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab8 folder and search for the topology file called lab8.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 4. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 7

Figure 5. Running the emulation.

2.1 Starting the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Test connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 8

Figure 7. Connectivity test using ping command.

The figure above shows unsuccessful connectivity between host h1 and host h2. This
result happens because there is no P4 program loaded on the switch.

3 Configuring new pipeline in Logstash

In this section, you will implement a new Logstash pipeline to process the measurements
arriving from the P4 switch. The user will first inspect the structure of the pipeline used
by the pScheduler layer. You will then configure a pipeline for P4.

3.1 Inspecting pScheduler pipeline

Step 1. Right-click on the archiver and select Terminal. This opens the terminal of the
archiver and allows the execution of commands on it.

Figure 8. Opening a terminal on the archiver.

Step 2. On the opened terminal, type no and press Enter.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 9

Figure 9. Skipping initial configuration in the archiver.

Step 3. Type the command below in the terminal. cat command prints the contents of
the file to the standard output. The file /etc/logstash/pipelines.yml maintains the
paths for the configuration files of Logstash’s pipelines.

cat /etc/logstash/pipelines.yml

Figure 10. Retrieving the path to the pipeline used by pScheduler.

The figure above shows that the configuration files of the pipeline with ID pscheduler are
located under the directory /usr/lib/perfsonar/logstash/pipeline/ and
have .conf extension.

Step 4. Type the command below to navigate to the configuration files of the pScheduler
pipeline.

cd /usr/lib/perfsonar/logstash/pipeline/

Figure 11. Navigating to the configuration files.

Step 5. Type the command below to list the configuration files.

ls

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 10

Figure 12. listing the configuration files.

The figure above shows that pscheduler pipeline has a total of 10 configuration files. The
file 01-inputs.conf defines the input plug-ins used to receive data by the pipeline. The
file 99-outpus.conf defines the list of output plug-ins used to send the data out of the
pipeline. The remaining files define the filters that process the data traversing the pipeline.

Step 6. Type the command below to inspect the contents of 01-inputs.conf.

cat 01-inputs.conf

Figure 13. Inspecting the contents of 01-inputs.conf.

The figure above shows that the pscheduler pipeline uses the http input plug-in and
operates on localhost, port 11283.

Step 7. Type the command below to inspect the contents of 99-outputs.conf.

cat 99-outputs.conf

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 11

Figure 14. Inspecting the contents of 99-outputs.conf.

The figure above shows that the pscheduler pipeline uses the opensearch output plug-in.
The index field specifies the index at which the data is to be stored in OpenSearch. It
index of the data is required to perform queries and is used while setting up the
connection between Grafana and OpenSearch.

3.2 Creating P4 pipeline

Step 1. Type the command below in the terminal to edit the pipelines.yml file. vi is a
text editor.

vi /etc/logstash/pipelines.yml

Figure 15. Opening pipelines.yml file.

Step 2. After opening pipelines.yml, press i to enable editing.

Step 3. Add the code below to define the path to a new pipeline.

- path.config: /usr/lib/perfsonar/logstash/P4/pipeline/*.conf

 pipeline.id: p4

Figure 16. Editing pipelines.yml file.

In this step, a new path is added that points to the configuration files of the P4 pipeline.
The ID of this pipeline is set to p4. Note that the directory
/usr/lib/perfsonar/logstash/P4/pipeline does not exist yet. We will be creating it
and adding the configuration files in the next steps.

Step 4. Press Esc, type :wq, then press Enter to save and exit the file.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 12

Figure 17. Saving and exiting pipelines.yml file.

Step 5. Type the command below to create the directory /usr/lib/perfsonar/
logstash/P4.

mkdir /usr/lib/perfsonar/logstash/P4

Figure 18. Creating directory /usr/lib/perfsonar/logstash/P4.

Step 6. Type the command below to create the directory /usr/lib/perfsonar/
logstash/P4/pipeline.

mkdir /usr/lib/perfsonar/logstash/P4/pipeline

Figure 19. Creating directory /usr/lib/perfsonar/logstash/P4/pipeline.

Step 7. Type the command below to navigate to the directory /usr/lib/perfsonar/
logstash/P4/pipeline.

cd /usr/lib/perfsonar/logstash/P4/pipeline

Figure 20. Navigating to the directory /usr/lib/perfsonar/logstash/P4/pipeline.

3.3 Configuring P4 pipeline

Step 1. Type the command below to create and open 01-inputs.conf file.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 13

vi 01-inputs.conf

Figure 21. Creating and opening 01-inputs.conf file.

Step 2. After opening 01-inputs.conf, press i to enable editing.

Step 3. Type the code below in 01-inputs.conf file.

input {

 tcp {

 port => “11183”

 }

}

Figure 22. Configuring TCP input plugin.

In the code above, we configure the P4 pipeline to use the TCP input plugin and listen on
port 11183. Any requests received on port 11183 will be processed by the P4 pipeline.
Note that any port not reserved by another process can be used.

Step 4. Press Esc, type :wq, then press Enter to save and exit the file.

Figure 23. Saving and exiting 01-inputs.conf file.

Step 5. Type the command below to create and open 02-process_message.conf file.

vi 02-process_message.conf

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 14

Figure 24. Creating and opening 02-process_message.conf file.

This file will represent the only filter Logstash needs for processing the measurements
from the control plane. Logstash wraps all received measurements under a message
object and adds its own metadata (e.g., the time the measurement was received) as the
headers of this message. This filter is responsible for unpacking the measurement from
the message object. Note that we will be using the same script used by perfSONAR to
unpack its measurements.

Step 6. After opening 02- process_message.conf, press i to enable editing.

Step 7. Type the code below in 02- process_message.conf file.

filter {

 if [message] {

 ruby {

 path => “/usr/lib/perfsonar/logstash/ruby/psched uler_proxy_nomal

ize.rb”

 }

 }

}

Figure 25. Configuring message processing filter.

The filter checks if the arriving measurement has the message object (i.e., has the
message key). For the measurements that satisfy the condition, the filter applies the logic
described in the Ruby application located at /usr/lib/perfsonar/logstash/ruby/
pscheduler_proxy_normalize.rb.

Step 8. Press Esc, type :wq, then press Enter to save and exit the file.

Step 9. Type the command below to create and open 03-outputs.conf file.

vi 03-outputs.conf

Figure 26. Creating and opening 03-outputs.conf file.

Step 10. After opening 03-outputs.conf, press i to enable editing.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 15

Step 11. Type the code below in 03-outputs.conf file.

output {

 if [metric_name] {

 opensearch {

 hosts => [“${opensearch_output_host}”]

 ssl_certificate_verification => false

 user => admin

 password => 1NBIAomOxvbVq9hiutdY

 index => “p4_%{[metric_name]}-%{+YYYY.MM.dd}”

 }

}

Figure 27. Configuring OpenSearch output plugin.

In the code above, we are using the opensearch output plugin. host field specifies the
location of the OpenSearch service. Note that the variable ${opensearch_output_host}
is a Logstash environment variable defined in the file /etc/perfsonar/logstash/
logstash_sysconfig. usr and password fields specify the credentials that will be used
by Logstash to access OpenSearch. Their values are stored in /etc/perfsonar/
opensearch/opensearch_login. index field specifies the index where the
measurements are stored in OpenSearch. This index will be used by Grafana to point to
the measurements collected by OpenSearch from the P4 switch. Note that different
metrics collected by the P4 switch will have different index names because we are using
the metric_name field of reports coming from the P4 switch as part of the index. The
structure of the P4 report will be described in the next section.

Step 12. Press Esc, type :wq, then press Enter to save and exit the file.

Step 13. Type the command below to restart Logstash and load the P4 pipeline.

systemctl restart logstash.service

Figure 28. Restarting Logstash.

4 Configuring the control plane of the switch

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 16

In this section, you will configure the switch's control plane to retrieve the measurements
from the data plane, process the measurements to create a report that Logstash can
ingest, connect to Logstash, and periodically report the measurements to the archiver.
The P4 program is already compiled for you.

4.1 Loading the environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 29. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code P4-perfSOANR_Labs/Lab8

Figure 30. Loading the development environment.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 17

Step 3. Click on the controller.py file to display its content. Use the file explorer on the
left-hand side of the screen to locate the file. This file will run on the control plane of the
switch.

Figure 31. Accessing controller.py file.

4.2 Inspecting the controller

Step 1. Scroll down and inspect the function listen_for_digests.

Figure 32. Inspecting function listen_for_digests.

The function listen_for_digests continuously listens for digests from the data plane.
For each digest, the function calls on_message_recv. on_message_recv is responsible
for extracting the information from the digests.

Step 2. Scroll down and inspect the function on_message_recv.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 18

Figure 33. Inspecting function on_message_recv.

The code in the figure above is explained as follows:

• Line 66: Skip the first 32 bytes because they store some metadata related to the
digest and the switch.

• Line 67: The offset value indicates the number of bytes corresponding to the flow
ID (i.e., 16 bits).

• Line 69: Unpacks from the digest the flow ID.

• Line 70: Define a new entry for the received flow in the flows dictionary, a global
dictionary responsible for maintaining information about the flows detected by
the data plane. The flow ID (i.e., flow_id) is used as the key.

• Line 71: Adds an entry to the table monitored_flows that matches the flow ID
and executes the action NoAction. By adding this entry, we inform the data plane
that consequent packets with this flow ID do not belong to a new flow.

• Line 72: Points to the next 8 bytes in msg to avoid reading the same digest in case
there are two or more messages sent to the control plane simultaneously (see
Figure 22).

4.3 Configuring the connection with Logstash

 Step 1. Scroll down and inspect the function report_measurements. This function is
responsible for periodically extracting the measurements from the data plane and
reporting them to the archiver.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 19

Figure 34. Inspecting the function report_measurements.

The variable host and port in the code above are the IP address of the archiver and the
port number defined previously by Logstash in the P4 pipeline (i.e., 11183).

Step 2. Navigate to the archiver and issue the command below to get the IP addresses of
the interfaces.

ifconfig

Figure 35. Inspecting the function report_measurements.

The figure above shows two interfaces, archiver-eth0, and eth0 (there is also the
loopback interface, but it is not shown in the figure). Interface archiver-eth0 connects
the archiver with the data plane of the switch. Interface eth0 connects the archiver to
the control plane of the switch, and its IP address (i.e., 172.17.0.2) will be used by the
control plane of the switch to connect to Logstash.

Step 3. Navigate back to the controller and assign the value ”172.168.0.2” to the host
variable and 11183 to the port variable.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 20

Figure 36. Appending the IP address and the port number.

4.4 Configuring the data retrieving and reporting process

Step 1. Type the code below inside the while loop. pre_time will store the current
timestamp. It will be used to set the period of data retrieving from the data plane and
reporting to the archiver.

pre_time = datetime.now().timestamp()

Figure 37. Defining the variable pre_time.

Step 2. Add the code below to iterate over the monitored flows and retrieve the
corresponding number of bytes.

for flow_id in flows.copy():

 old_number_of_bytes = flows[flow_id][‘number_of_bytes’]

 total_number_of_bytes = register_read(flow_id)

 new_number_of_bytes = total_number_of_bytes – old_number_of_bytes

 flows[flow_id][‘number_of_bytes’] = total_number_of_bytes

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 21

Figure 38. Retrieving per-flow number of bytes.

Step 3. Add the code below to calculate the throughput.

throughput = new_number_of_bytes*8

Figure 39. Calculating the throughput.

In the code above, the throughput is measured in bits per second as the number of bytes
will be retrieved once per second from the data plane and then divided by 8.

Step 4. Add the code below to process the throughput measurement and create the
report.

if(throughput > 10000000):

 report={“flow_id”:flow_id,“metric_name”:”throughput”,”throughput”:

throughput\ ,”report_time”:datetime.now().strftime(“%Y-%m-%dT%H:%M:%S.%f%z)}

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 22

Figure 40. Creating the report from the throughput measurement.

The if condition checks if the throughput is larger than 10 Mbps, and consequently, the
control plane will only report the measurements of the flows with throughput larger than
10 Mbps.

The fields of the created report are utilized as follows:

• “flow_id”:flow_id: This key-value pair is used to specify the ID of the flow
that this report belongs to. It will be used by Grafana to group the measurements.

• “metric_name”:”throughput”: This key-value pair is used by the OpenSearch
output plugin to (1) validate that an arriving measurement is from the control
plane of P4 and (2) define the index inside the OpenSearch database.

• “throughput”:throughput: This key-value pair stores the value of the
throughput measurement.

• ”report_time”:datetime.now().strftime(“%Y-%m-%dT%H:%M:%S.%f%z)}:
This key-value pair is used by OpenSearch to sort the measurements by the time
they were retrieved from the data plane. Note that we are casting the
report_time to string format because we have to convert the report from a
Python object to JSON formatted string before sending it to Logstash.

Step 5. Add the code below to convert the report into JSON format and send it to the
archiver.

report = json.dumps(report)

report += “\n”

socket.sendall(report.encode())

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 23

Figure 41. Sending the report to the archiver.

Step 6. Add the code below to query the data plane once per second.

post_time = datetime.now().timestamp()

while(post_time – pre_time < 1):

 post_time = datetime.now().timestamp()

Figure 42. Setting the querying period to 1 second.

Step 7. Scroll up to the main function then define and start a new thread to call the
function report_measurements.

report_measurements_th = threading.Thread(targer=report_measurements)

report_measurements_th.start()

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 24

Figure 43. Calling the function report_measurements.

Step 8. Press Ctrl+s to save the changes.

5 Loading the P4 program

In this section, you will load the P4 binary and the controller program in switch s1. You
will also verify that the files reside in the switch filesystem.

5.1 Compiling and loading the P4 program to switch s1

Step 1. Type the command below in the terminal panel to push the basic.json file to switch
s1’s filesystem. The script accepts as input the JSON output of the p4c compiler, and the
target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 25

Figure 44. Pushing the basic.json file to switch s1.

Step 2. Type the command below in the terminal panel to push the controller.py file to
switch s1’s filesystem.

push_to_switch controller.py s1

Figure 45. Pushing the controller.py file to switch s1.

5.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 46. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 26

Figure 47. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 48. Displaying the contents of the current directory in the switch s1.

The figure above shows that the switch contains the basic.json and controller.py files that
were pushed after compiling the P4 program and creating the controller application.

5.3 Configuring switch s1

In this section, you will map switch s1 interfaces to the ports in the P4 program and start
the switch daemon. Then, you will load the rules to populate the match action tables.

Step 1. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 basic.json &

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 27

Figure 49. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Step 2. In switch s1 terminal, press Enter to return the CLI.

Figure 50. Returning to switch s1 CLI.

6 Connecting Grafana to OpenSearch

In this section, you will follow the process of configuring Grafana to access the
measurement results stored in the archiver. Grafana operates within a Docker container
and can be accessed via a web interface. To enable this connection, the user will need to
specify the data source, which, in this scenario, is the OpenSearch database hosting the
P4 measurements.

6.1 Running Grafana

Step 1. Go back to the Linux terminal by clicking on the icon in the taskbar.

Figure 51. Returning to the Linux Terminal.

Step 2. In the Linux Terminal, issue the following command to start the Docker container
that implements Grafana. If a password is required, type password.

sudo docker run -d -p 3000:3000 grafana/grafana-oss

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 28

Figure 52. Running Grafana.

6.2 Accessing Grafana

Step 1. Open the web browser by clicking on the icon located in the taskbar.

Figure 53. Opening the web browser.

Step 2. In the address bar type the following URL to access Grafana’s web interface. An
authentication webpage will be displayed.

localhost:3000

Figure 54. Accessing Grafana’s web interface.

Step 3. Type admin as the username and password as the password. Then, click on Log
In.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 29

Figure 55. Authenticating the admin user in Grafana’s web interface.

6.3 Configuring Grafana’s data source

Step 1. Click on the three-line icon next to Home and select Administration>Plugins as
shown in the figure below.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 30

Figure 56. Configuring Grafana’s data sources.

Step 2. In the search entry box, type opensearch. Then, click on the result as shown in the
figure below.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 31

Figure 57. Searching for the OpenSearch plugin.

Step 3. Click on Install to install the plugin.

Figure 58. Installing the OpenSearch plugin.

6.4 Configuring an OpenSearch data source

Step 1. Once the installation is complete, click on Create a OpenSearch data source.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 32

Figure 59. Creating an OpenSearch data source.

Step 2. Set the data source name as P4 measurements as shown in the figure below.

Figure 60. Setting the data source name.

Step 3. Configure the following URL as shown in the figure below. This URL points towards
the database of perfSONAR1.

https://172.17.0.2/opensearch

Figure 61. Setting the data source URL.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 33

Step 4. Scroll down and enable the Basic auth option as shown in the figure below.

Figure 62. Enabling basic authentication.

Step 5. In the Auth section, toggle on the Skip TLS Verify option.

Figure 63. Skipping TLS verification.

Step 6. In Grafana, input the credentials as the username and password.

• User: admin

• Password: 1NBIAomOxvbVq9hiutdY

Note that you can copy and paste this password from the file called
OpenSearch_password.txt located on the Desktop.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 34

Figure 64. Authenticating into the OpenSearch database.

Step 7. In Grafana, scroll down to the OpenSearch details section and type p4* for the

index name field. p4* character implies that any index that starts with the pattern p4
should be considered.

Figure 65. Setting the index name.

Step 8. Type the following entry as the Time field name.

report_time

Figure 66. Setting the time field name.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 35

Step 9. Click on Get Version and Save to test the connection with the OpenSearch
database. The output will indicate the current version.

Figure 67. Getting the database version.

Step 10. Scroll down and click on Save & test to save the configured data source.

Figure 68. Saving the configuration.

7 Testing and verifying the application

This section shows the steps to run a controller and observe the pre-flow throughput
monitored by the application.

7.1 Starting the controller application

Step 1. In switch s1 terminal, start the controller by running the following command.

python controller.py

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 36

Figure 69. Starting the controller in switch s1.

The figure above shows that the control play has successfully connected to Logstash
running on the archiver.

7.2 Starting data transfer between h1 and h2

Step 1. Right-click on host h2 and select Terminal. This opens the terminal of host h2 and
allows the execution of commands on that host.

Figure 70. Opening a terminal on host h2.

Step 2. On host h2’s terminal, type the following command to start Iperf3 server. iperf3
tool is used to perform network throughput tests. -s option specifies that h2 will be
acting as the server.

iperf3 -s

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 37

Figure 71. Starting Iperf3 server on h2.

Step 3. On host h1’s terminal, type the following command to start data transfer with
h2. -c option specifies that h1 will be acting as the client.

iperf3 -c 10.0.0.2

Figure 72. Sending data between h1 and h2.

7.3 Displaying the measurement results in a dashboard

Step 1. Navigate back to Grafana.

Step 2. Click on the + icon in the upper right of the screen and select New dashboard.

Figure 73. Creating a new dashboard.

Step 3. Click on + Add visualization.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 38

Figure 74. Adding a graph.

Step 4. On the right panel, in the Panel options, add a Title and a Description. This graph
will display the throughput tests.

Figure 75. Setting the graph title and the description.

Step 5. Change the time range by clicking on the icon located on the upper part and
selecting the Last 5 minutes option.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 39

Figure 76. Adjusting the time range to 5 minutes.

Step 6. Press the refresh button to see the changes.

Figure 77. Refreshing the Panel.

Step 7. In the Querry panel, change the metric from Count to Average, as shown in the
figure below.

Figure 78. Displaying the maximum values.

Step 8. In the adjacent box, select throughput from the list.

Figure 79. Selecting the throughput metric.

Step 9. Scroll down and click on the + next to the Group by row.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 40

Figure 80. Selecting the throughput results.

Step 10. In the newly added row, select flow_id to group the measurements into their
corresponding flows.

Figure 81. Selecting the throughput results.

Step 11. Click on the Top 10, Order by: Term Value, and set Min Doc Count to 1. Now
Grafana will only display the flows with at least one reported measurement in the last 5
minutes.

Figure 82. Setting Min Doc Count to 1.

Step 12. In the panel on the right, scroll down to reach the Standard options section.
Select Data rate/ bits/sec(IEC) option for the Unit field to change the unit bits/second.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 41

Figure 83. Adjusting unit to bits per second.

Step 13. In the panel on the right, Scroll up to reach the Graph syles section. Select Always
option for the Connect null values field so the throughput measurements will be displayed
as a graph and not as points.

Figure 84. Adjusting unit to bits per second.

Step 14. Click on Apply to save the changes.

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 42

Figure 85. Applying the changes to the dashboard.

Step 15. Click on the ^ sign at the top right corner and select 5s. Grafana will now refresh
the Panel every 5 seconds.

Figure 86. Setting auto-refresh interval.

Step 16. Extend the Panel to the maximum length possible.

Figure 87. Extending panel’s length.

Step 17. On the h1 terminal, type the command below to run an iperf3 test between h1
and h2. Use -t 100 to set the duration of the set to 100 seconds. Use -p 2 to set the
number of data transfers to two.

iperf3 -c 10.0.0.2 -t 100 -P 2

Lab 8: Collecting P4 measurements using perfSONAR’s archiver

 Page 43

Figure 88. Starting two data transfers between h1 and h2.

Step 18. Navigate back to Grafana and monitor the throughput of the two data transfers.

Figure 89. Monitoring the throughput of the iperf3 test.

This concludes lab 8. Stop the emulation and then exit out of MiniEdit.

References

1. perfSONAR Project . “Deploying a Central Measurement Archive.” [Online].
Available: https://docs.perfsonar.net/multi_ma_install.html

2. Logstash. [Online]. Available: https://www.elastic.co/logstash
3. OpenSearch. Available: https://opensearch.org/

	Cover
	Contents
	Lab 1 - Introduction to Mininet
	Lab 2 - P4 Program Building Blocks
	Lab 3 - Measuring Flow’s Throughput
	Lab 4 - Monitoring the RTT of TCP Flows with P4
	Lab 5 - Configuring Regular Tests Using pScheduler CLI
	lab 6 - Connecting perfSONAR to Grafana Dashboard
	lab 7 - Retrieving Per-flow Statistics from the Data Plane
	lab 8 - Collecting P4 Measurements using perfSONAR's Archiver

