Princeton P4 Campus:

Building and Running Novel Network Applications on Campus https://p4campus.cs.princeton.edu

> Hyojoon (Joon) Kim Princeton University

Programmable Switches Workshop February 23, 2022

P4 Campus

An initiative to create and deploy experimental but useful network applications on a production campus network

We primarily use programmable data planes and P4

Why?

How?

Bad idea

Research

The "Gap"

Production Network

Outdated tools & practices

Positive Feedback Loop Missing

Network Research Pipeline

Network Research Pipeline

Network Research Pipeline

Without the last two stages, new ideas barely see light outside of a lab

UNIVERSITY

Real Traces & Deployment is Hard

• Disruptive

Personally Identifiable Information

• User privacy (PII in production traffic)

Lack of collaboration and communication

Alternatives: Dedicated Testbed

Real network, WAN-scale Limited access to production traffic

Campus Network as Lab

Open and Dynamic Enterprise vs Cloud

Variety of traffic

Science Data center Residential Business Open to public Many visitors & events BYOD devices Closer to user Still has value as an access network

Enterprise solutions are applicable to cloud networks

10

Campus Network as Lab

Research-friendly

Existing mechanisms

e IRB R	eview	r Proces	S		
Where are the IRB	forms?				+
What are the com	oonents of	a new study subm	ission?		.+
PRINCETON	UNIVERS	SITY 8			Login f G+
The Off	Ce of	Instituti Survey Data	Onal Resear	Ch Make a Request	AAUDE Institutional Li
Request Analysis		Reques	t Data for	Researcl	h
Conduct a Survey					
Request Data fo Research	r	Institutiona	l Review Panel fr	or the use of	Administrativo
		IJJUUUUUUU			Runninsuarve
PADR FAQs		Data in Rese	earch (PADR)		Aummisciative

Jumping The Research Chasm

1. Sharing Our Experience

Less Disruptive	Preserve Privacy	More Collaboration with OIT

2. Successful Deployments

PINOT active traffic experiment

Becoming Less Disruptive

Working with Mirrored Traffic

- Low risk
 - Little or no disruption

- High return
 - Real-time traffic analysis is a nice "gateway drug"

Some Tips on Mirrored Traffic

Test Access

Switch Port ANalyzer

- TAP is better than port mirroring (SPAN)
 - \circ $\,$ SPAN burns a port and resources on a switch
 - Modern packet broker systems can
 - Apply filtering policies
 - Remove/mask payload
 - Remove duplicate packets

Preserving User Privacy

Less Disruptive	Preserve Privacy	More Collaboration with OIT
 Work w/ mirrored traffic Passive monitoring as a "gateway drug" 	IRBData anonymization	

Navigating Campus Traffic Data Access

Institutional Review Board (IRB)

Institutional Review Panel for the use of Administrative Data in Research (PADR)

Rights, Privacy, Welfare of Human Subjects

Feasibility, Value, Risk, and Compliance

Prepping IRB Applications

State that you will remove/anonymize PII

- MAC and <Your Institute> IP addresses will be anonymized
- Payload will be removed
- If not, operator will run scripts/programs and provide aggregated results

Show you will take good care of the data

• Data will be stored and processed at machines managed by IT staff

Offline Data Anonymization

- CAIDA's best practices and offline tools
 - o <u>https://www.caida.org/projects/predict/anonymization/</u>

Hyojoon Kim et. al., "ONTAS: Flexible and Scalable Online Network Traffic Anonymization System." 2019 SIGCOMM Workshop on Network Meets AI & ML

- Online (not offline)
- Line-rate

Customizable (e.g., select IPs, preserve prefix, etc)

25

Collaboration With The IT Group

Less Disruptive

- Work w/ mirrored traffic
- Passive monitoring as a "gateway drug"

Preserve Privacy

• IRB

Data anonymization

More Collaboration with OIT

- Tackle problems that matter
- Joint positions

Collaboration with OIT

Find problems that matter

Joint position (CS & OIT)

- Operator is tired of anonymizing traffic for researchers. Harder for live traffic.
 ONTAS: traffic anonymization
 - Occasional packet drops at switch, but
 - don't know why.
 - ConQuest: Queue monitoring
- Having latency problems. Where is the bottleneck?
 - P4-RTT: Measure RTT at different vantage points

Research projects

Access to campus network

Successful Deployments

Real-time OS fingerprinting Continuous RTT monitoring

P40f: OS Fingerprinting with P4

- Fingerprint OS type in the data plane
- Higher abstraction than IP addresses

Write policies based on OS type

- "Block all traffic from Windows XPs"
- "Rate-limit traffic to/from Echo Dot"
- "Monitor OS distribution in real time"

The *p0f* Tool

- Each OS uses a unique combination of IP/TCP header values
- *p0f* signature
 IPv4/IPv6 : TTL : IP option length : MSS : (window size,scale) : TCP option layout : quirks : pclass
- Example: Linux v3.11 or higher

:64:0::(20,10):(mss,sok,ts,nop,ws):(df,id+):0

The p0f tool cannot run against live traffic with high data rate

P40f: Let's Do This in the Switch

Against 3-hour campus trace

Internal hosts

OS Label	p0f-v3.09b		P40f	
US Laber	Count	%	Count	%
Linux	11412	3.05	12769	3.40
2.2.x-3.x	9558	2.56	9978	2.66
3.11+	1406	0.38	2473	0.66
3.1-3.10	332	0.09	114	0.03
3.x	39	0.01	23	0.01
Android	21	0.01	2	0.00
2.4.x	20	0.01	20	0.01
2.2.x-3.x (barebone)	15	0.00	145	0.04
2.2.x-3.x (no timestamps)	11	0.00	11	0.00
2.6.x	5	0.00	2	0.00
2.4.x-2.6.x	5	0.00	1	0.00
Windows	11753	3.14	10874	2.90
NT kernel	10202	2.73	9546	2.54
NT kernel 5.x	920	0.25	798	0.21
7 or 8	560	0.15	499	0.13
XP	65	0.02	31	0.01
NT kernel 6.x	6	0.00	0	0.00
Mac	23917	6.39	23917	6.38
OS X	23634	6.32	23634	6.30
OS X 10.x	171	0.05	171	0.05
OS X 10.9+ (iPhone/iPad)	112	0.03	112	0.03
Other	47	0.01	47	0.01
FreeBSD	37	0.01	37	0.01
FreeBSD 9.x+	9	0.00	9	0.00
NMap SYN scan	1	0.00	1	0.00
Unclassified	326918	87.40	327513	87.31
Total	374047	100%	375120	100%

P40f p0f-v3.09b OS Label Count % Count % 14.28 13.56 Linux 1280209 1231089 2.2.x-3.x (barebone) 778527 8.68 681735 7.51 402081 4.48 424058 4.67 3.11 and newer 33986 0.73 2.2.x-3.x 0.38 66210 3.1-3.10 31730 0.35 26488 0.29 2.4.x 15277 0.17 14889 0.16 2.6.x 13272 0.15 12692 0.14 2.2.x-3.x (no timestamps) 3326 0.04 3370 0.04 2.4.x-2.6.x 1147 0.01 917 0.01 3.x 827 0.01 675 0.01 Android 28 0.00 23 0.00 2.0 8 0.00 32 0.00 Windows 563295 6.28 440887 4.86 7 or 8 466222 5.20 388341 4.28 XP 81245 0.91 42603 0.47 NT kernel 15086 0.17 9277 0.10 NT kernel 5.x 680 0.01 646 0.01 NT kernel 6.x 61 0.00 16 0.00 7 (Websense crawler) 0.00 4 0.00 0.02 Mac 1816 1816 0.02 OS X 1514 0.02 1514 0.02 295 0.00 295 0.00 OS X 10.x OS X 10.9+ (iPhone/iPad) 7 0.00 7 0.00 2.86 453532 5.00 Other 256666 NMap SYN scan 256326 2.86 453199 4.99 FreeBSD 9.x+ 221 0.00 220 0.00 FreeBSD 8.x 68 0.00 68 0.00 FreeBSD 50 0.00 44 0.00 OpenBSD 4.x-5.x 0.00 0.00 1 1 Unclassified 76.57 6864591 76.56 6951554 Total 8966577 9079010 100% 100%

External hosts

P4-RTT

Continuous round trip time monitoring beyond the TCP handshake

How P4-RTT Operates

Register as Hash Table

JOIN of *outgoing* and *incoming* packet streams in the data plane

Overcoming The Memory Limit

Many TCP packets don't receive a corresponding ACK

Multi-stage Hash Table (Registers)

Overcomes the memory limit per register PRINCETON OVERCOMES RTT sample loss due to hash collision 37 37

Per Application RTT

Impact of wired vs. wireless infrastructure on 90%ile RTT to YouTube

Summary

Jumping The Research Chasm

- Less disruptive
 - Passive traffic monitoring
- Preserve user privacy
 - IRB prep (and more)
 - Anonymization tools
- More collaboration
 - Joint position
 - problems that matter

Real Deployment Successes

• ONTAS

- anonymized data collection
- P40f
 - Real-time OS fingerprinting
- P4 RTT
 - Continuous RTT monitoring

Experience-Driven Research

Experience-Driven Research on Programmable Networks *Hyojoon Kim, Xiaoqi Chen, Jack Brassil, and Jennifer Rexford* ACM SIGCOMM Computer Communications Review. January 2021.

Github repo for our P4 projects:

https://github.com/Princeton-Cabernet/p4-projects

Please Join Our Effort!

More Campus Applications

Security

expert Network

analysts Network research

> Real-time machine

> > learning

_ _ _

Current P4 Applications

Measure microbu

Catch the microburst cult network.

	of back	Anonymized live network traffic
80000 12:00:00 16:00:00	Hosts	Preserve user privacy while sharing network data
Irsts prits in the	Find heavy hitters Find heavy hitters in the network.	Anonymize live traffic Anonymize live network traffic in line-rate

st 6 1e7

Host IP	OS type		
192.168.1.2	Linux 3.1-3.10		
172.17.2.30	Windows XP		
10.0.0.3	Mac OS X 10.9 or newer		
192.168.2.10	Windows NT kernel 5.x		

Fingerprint OS

More from you!

https://p4campus.cs.princeton.edu

Thank You!

P4 Campus Website:

https://p4campus.cs.princeton.edu

Reach me at: <u>hyojoonk@cs.princeton.edu</u>

