UNIVERSITY OF

SOUTH CAROLINA

CYBERSECURITY APPLICATIONS ON
P4 PROGRAMMABLE DATA PLANES

Book Version: 04-20-2023

Principal Investigator: Jorge Crichigno

Cybersecurity Applications on P4 Programmable Data Planes

Contents

Lab 1: Introduction to Mininet

Lab 2: Introduction to P4 and BMv2

Lab 3: P4 Program Building Blocks

Lab 4: Parser Implementation

Lab 5: Introduction to Match-action Tables

Lab 6: Implementing a Stateful Packet Filter for the ICMP protocol
Lab 7: Implementing a Stateful Packet Filter for the TCP protocol
Lab 8: Detecting and Mitigating the DNS Amplification Attack

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)
Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets
Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

A

UNIVERSITY OF

SOUTH CAROLINA

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 1: Introduction to Mininet

Document Version: 01-25-2022

Lab 1: Introduction to Mininet

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [o= o T PP UPPPRUPPPPR 3
1 INtroduction tO MININETeeiiiiiiiee e s e e s s eaea e e e 3
2 Invoke Mininet USING the CLI ..ccoueiiiiiiiiiee e e e 5
2.1 Invoke Mininet using the default topology.......cccveeiiiiiiiiiiiieee e 5
2.2 TeSt CONNECEIVITY oo 9
3 Build and emulate a network in Mininet using the GUIccccceviiieiiiiiieee s, 10
3.1 Build the Nnetwork tOPOIOZYeveviiiiiiiiieiiee e 10
3.2 TeSt CONNECEIVITY oo 13
3.3 Automatic assignment Of IP addressesccveeevivereeriiiee e 16
3.4 Save and load a Mininet tOPOIOZYeeveveiiieeiiiiiiee e 18
20 =T =Y g Tl PRSP 19

Page 2

Lab 1: Introduction to Mininet

Overview

This lab provides an introduction to Mininet, a virtual testbed used for testing network
tools and protocols. It demonstrates how to invoke Mininet from the command-line
interface (CLI) utility and how to build and emulate topologies using a graphical user
interface (GUI) application.

Objectives

By the end of this lab, you should be able to:

Understand what Mininet is and why it is useful for testing network topologies.
Invoke Mininet from the CLI.

Construct network topologies using the GUI.
Save/load Mininet topologies using the GUI.

PwnNPE

Lab settings
The information in Table 1 provides the credentials of the Client machine.

Table 1. Credentials to access the Client machine.

Device Account Password

Client admin password

Lab roadmap
This lab is organized as follows:

1. Section 1: Introduction to Mininet.
2. Section 2: Invoke Mininet using the CLI.
3. Section 3: Build and emulate a network in Mininet using the GUI.

1 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools and
protocols. With a single command, Mininet can create a realistic virtual network on any
type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides
an inexpensive solution and streamlined development running in line with production
networks®. Mininet offers the following features:

e Fast prototyping for new networking protocols.
Page 3

Lab 1: Introduction to Mininet

e Simplified testing for complex topologies without the need of buying expensive
hardware.

e Realistic execution as it runs real code on the Unix and Linux kernels.

e Open-source environment backed by a large community contributing extensive
documentation.

Mininet Emulated Network Hardware Network
Figure 1. Hardware network vs. Mininet emulated network.

Mininet is useful for development, teaching, and research as it is easy to customize and
interact with it through the CLI or the GUI. Mininet was originally designed to experiment
with OpenFlow? and Software-Defined Networking (SDN)3. This lab, however, only focuses
on emulating a simple network environment without SDN-based devices.

Mininet’s logical nodes can be connected into networks. These nodes are sometimes
called containers, or more accurately, network namespaces. Containers consume
sufficiently fewer resources that networks of over a thousand nodes have created,
running on a single laptop. A Mininet container is a process (or group of processes) that
no longer has access to all the host system’s native network interfaces. Containers are
then assigned virtual Ethernet interfaces, which are connected to other containers
through a virtual switch®. Mininet connects a host and a switch using a virtual Ethernet
(veth) link. The veth link is analogous to a wire connecting two virtual interfaces, as
illustrated below.

Network namespace 1 Network namespace 2
Host 1 Host 2
| eth0 I | ethO I
| vethl | | veth2 |
Software switch

Root namespace

Figure 2. Network namespaces and virtual Ethernet links.
Each containeris an independent network namespace, a lightweight virtualization feature
that provides individual processes with separate network interfaces, routing tables, and

Address Resolution Protocol (ARP) tables.

Page 4

Lab 1: Introduction to Mininet

Mininet provides network emulation opposed to simulation, allowing all network
software at any layer to be simply run as is; i.e. nodes run the native network software of
the physical machine. On the other hand, in a simulated environment applications and
protocol implementations need to be ported to run within the simulator before they can
be used.

2 Invoke Mininet using the CLI

In following subsections, you will start Mininet using the Linux CLI.

2.1 Invoke Mininet using the default topology

Step 1. Launch a Linux terminal by clicking on the Linux terminal icon in the task bar.

Figure 3. Linux terminal icon.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. To start a minimal topology, enter the command shown below. When prompted
for a password, type and hit enter. Note that the password will not be visible
as you type it.

sudo mn

Page 5

Lab 1: Introduction to Mininet

admin@lubuntu-vm: ~

File Actions Edit View Help
admin@lubuntu-vm: ~

admin@lubuntu-vm:~$ |sudo mn

[sudo] password for admin:

Jusr/local/lib/python3.8/dist-packages/mininet-3.0-py3.8.egg/mininet/cli.py:15

Jusr/local/lib/python3.8/dist-packages/mininet-3.0-py3.8.egg/mininet/cli.py:45
ny o,

fusr/local/lib/python3.8/dist-packages/mininet-3.0-py3.8.egg/mininet/cli.py:15

fusr/local/lib/python3.8/dist-packages/mininet-3.0-py3.8.egg/mininet/cli.py:45

*** Creating network

***% Adding controller
***% Adding hosts:

hi h2

***% Adding switches:

**% Confiqur

hl h2

**% Starting controller
cO

**%* Starting 1 switches
= .

**% Starting CLI:
containernet> [J

Figure 4. Starting Mininet using the CLI.

The above command starts Mininet with a minimal topology, which consists of a switch
connected to two hosts as shown below.

hl sl h2
N ~ N
S > S
° h1-ethO sl-ethl sl-eth2 h2-eth0| e
X X
10.0.0.1 10.0.0.0/8 10.0.0.2

Figure 5. Mininet’s default minimal topology.

When issuing the command, Mininet initializes the topology and launches its
command line interface which looks like this:

containernet>

Step 3. To display the list of Mininet CLI commands and examples on their usage, type the
following command:

help

Page 6

Lab 1: Introduction to Mininet

admin@lubuntu-vm: ~
File Actions Edit View Help

admin@lubuntu-vm: ~

gterm 1ipe 10d pingpair py

help i noecho pingpairfull quit
dump 1intfs Tlinks pingall ports sh
exit iperf net pingallfull px source

You may also send a mand to a node using:
<node> command {arg
ple:

mininet> h1 ifconfig

The interpreter automatically substitutes IP addr
for node names when a node is the first arg, so commands
like
mininet> h2 ping h3
should work.

Some character-oriented interactive commands require
noecho:
mininet> noecho h2 vi foo.py
However, starting up an xterm/gterm is generally better:
mininet> xterm h2

containernet> JJ

Figure 6. Mininet’s command.

Step 4. To display the available nodes, type the following command:

nodes

admin@lubuntu-vm: ~
File Actions Edit View Help
admin@lubuntu-vm: ~
containernet=|nodes
available nodes are:

c® hi sl
containernets |

Figure 7. Mininet’s command.

The output of the command shows that there is a controller (c0), two hosts (host
h1 and host h2), and a switch (s1).

Step 5. It is useful sometimes to display the links between the devices in Mininet to
understand the topology. Issue the command shown below to see the available links.

net

Page 7

Lab 1: Introduction to Mininet

$_ admin@lubuntu-vm: ~

File Actions Edit View Help

admin@lubuntu-vm: ~

1-eth® sil-eth2:h2-eth®

Lo

containernet> i

Figure 8. Mininet’s command.
The output of the command shows that:

1. Host hlis connected using its network interface h1-eth0O to the switch on
interface s1-ethl.
2. Host h2 is connected using its network interface h2-eth0 to the switch on
interface s1-eth2.
3. Switch sl:
a. Has aloopback interface lo.
b. Connects to hl-eth0O through interface s1-ethl.
c. Connects to h2-eth0 through interface s1-eth2.
4. Controller c0 does not have any connection.

Mininet allows you to execute commands on a specific device. To issue a command for a
specific node, you must specify the device first, followed by the command.

Step 6. To proceed, issue the command:

hl ifconfig

admin@lubuntu-vm: ~

File Actions Edit View Help
admin@lubuntu-vm: ~

containernet>|h1 ifconfig
hi-eth®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 0.0.0.0
ether 3a:63:b8:06:23:9c txqueuelen 1000 (Ethernet)
RX packets 30 bytes 3449 (3.4 KB)
RX errors © dropped O overruns 0 frame 0
TX packets 3 bytes 270 (270.0 B)
TX errors © dropped 0 overruns ® carrier ® collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns @ frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors O dropped 0 overruns 0 carrier @ collisions ©

containernet> [

Figure 9. Output of h1 ifconfig]command.

Page 8

Lab 1: Introduction to Mininet

This command 1 ifconfigl executes the Linux command on host hl. The

command shows host h1’s interfaces. The display indicates that host h1 has an interface
h1-ethO configured with IP address 10.0.0.1, and another interface lo configured with IP
address 127.0.0.1 (loopback interface).

2.2 Test connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1
and host h2 respectively. To test connectivity between them, you can use the command
ping. The ping command operates by sending Internet Control Message Protocol (ICMP)
Echo Request messages to the remote computer and waiting for a response or reply.
Information available includes how many responses are returned and how long it takes
for them to return.

Step 1. On the CLI, type the command shown below. The command h1 ping 10.0.0.2|
tests the connectivity between host h1 and host h2. To stop the test, press [ctrl+d. The
figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets to
host h2 (10.0.0.2) and successfully received the expected responses.

hl ping 10.0.0.2

-] admin@lubuntu-vm: ~
File Actions Edit View Help
admin@lubuntu-vm: ~ [

containernet>/hl ping 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from .0.0.2: icmp_seq=1 ttl=64 time=29.4 ms

bytes from .0.0.2: icmp_seq=2 ttl=64 time=0.463 ms
64 bytes from .0.0.2: icmp_seq=3 ttl=64 time=0.080 ms

bytes from .0.0.2: icmp_seq=4 ttl=64 time=0.076 ms

- 10.0.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3049ms
rtt min/avg/max/mdev = 0.076/7.514/29.439/12.659 ms
containernet>

Figure 10. Connectivity test between host h1l and host h2.

Step 2. Stop the emulation by typing the following command:

exit

Page 9

Lab 1: Introduction to Mininet

$_ admin@lubuntu-vm: ~

File Actions Edit View Help
admin@lubuntu-vm: ~
ntainernet> |exit
Stopping controllers
cO
**% Stopping 2 links

**% Stopping 1 switches
sl

**%* Stopping 2 hosts

hli h2

**%* Done

completed in 619
admin@lubuntu-vm:

Figure 11. Stopping the emulation using [exit]

If Mininet were to crash for any reason, the command can be utilized to
clean a previous instance. However, the command is often used within the
Linux terminal and not the Mininet CLI.

Step 3. After stopping the emulation, close the Linux terminal by clicking the [x] in the
upper-right corner.

admin@lubuntu-vm: ~

Help

@lubuntu-vm: ~

Figure 12. Closing the Linux CLI.

3 Build and emulate a network in Mininet using the GUI

In this section, you will use the application MinikEdit to deploy the topology illustrated
below. MiniEdit is a simple GUI network editor for Mininet.

hl sl h2
. R& .
S~ & S~
:7 h1-ethO sl-ethl sl-eth2 h2-eth0 tﬁ
NS NS
10.0.0.1 10.0.0.0/8 10.0.0.2

Figure 13. Lab topology.

3.1 Build the network topology

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|.
MiniEdit will start, as illustrated below.

Page 10

Lab 1: Introduction to Mininet

Computer

MiniEdit

Terminal

Figure 14. MiniEdit Desktop shortcut.

MiniEdit will start, as illustrated below.

File Edit Run Help

(1) Select

A

(2) Host

im

(3) P4 switch (Docker)

4
A

J

(4) OpenFlow switch

(5) Legacy switch

(6) Legacy router

(7) Link

(8) Controller

(9) Run

(10) Stop

Figure 15. MiniEdit Graphical User Interface (GUI).

Page 11

Lab 1: Introduction to Mininet

The main buttons are:

1. Select: allows selection/movement of the devices. Pressing Del on the keyboard
after selecting the device removes it from the topology.

2. Host: allows addition of a new host to the topology. After clicking this button, click
anywhere in the blank canvas to insert a new host.

3. P4 switch (Docker): allows the addition of P4 switch. After clicking this button, click
anywhere in the blank canvas to insert the P4 switch.

4. OpenFlow switch: allows the addition of a new OpenFlow-enabled switch. After
clicking this button, click anywhere in the blank canvas to insert the switch.

5. Legacy switch: allows the addition of a new Ethernet switch to the topology. After
clicking this button, click anywhere in the blank canvas to insert the switch.

6. Legacy router: allows the addition of a new legacy router to the topology. After
clicking this button, click anywhere in the blank canvas to insert the router.

7. Link: connects devices in the topology (mainly switches and hosts). After clicking
this button, click on a device and drag to the second device to which the link is to
be established.

8. Controller: allows the addition of a new OpenFlow controller.

9. Run: starts the emulation. After designing and configuring the topology, click the
run button.

10. Stop: stops the emulation.

Step 2. To build the topology illustrated in Figure 13, two hosts and one switch must be
deployed. Deploy these devices in MiniEdit, as shown below.

- MiniEdit

File Edit Run Help

h2

=r
=

#F?E'i“:‘ / f: m‘() E‘ N -

Figure 16. MiniEdit’s topology.

Use the buttons described in the previous step to add and connect devices. The
configuration of IP addresses is described in Step 3.

Page 12

Lab 1: Introduction to Mininet

Step 3. Configure the IP addresses of host hl and host h2. Host h1l’s IP address is
10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the
right click and selecting properties on the device. For example, host h2 is assigned the IP
address 10.0.0.2/8 in the figure below. Click OK for the settings to be applied.

? Properties | VLAN Interfaces] External Interfaces[Private Directories |
Hostname: h2

IP Address:[10.0.0.2/¢] | |
Default Route:

_ Host Options Amount CPU: host —
h1 o

Start Command:
Stop Command:

“ OK] I Cancel

Figure 17. Configuration of a host’s properties.

3.2 Test connectivity

Before testing the connection between host hl and host h2, the emulation must be
started.

Step 1. Click the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Stop |’*~.17
Figure 18. Starting the emulation.

Step 2. Open a terminal by right-clicking on host hl and select Terminal. This opens a
terminal on host hl and allows the execution of commands on the host hl. Repeat the
procedure on host h2.

Page 13

Lab 1: Introduction to Mininet

- .

Host Options h2

Terminal

Figure 19. Opening a terminal on host h1.

The network and terminals at host h1l and host h2 will be available for testing.

File Edit Run Help

"Host: h2"

root@lubuntu-vm: /home/admin# D root@lubuntu-vm:/home/admin# I

Figure 20. Terminals at host h1 and host h2.
Step 3. On host hl’s terminal, type the command shown below to display its assigned IP

addresses. The interface h1-ethO at host hl should be configured with the IP address
10.0.0.1 and subnet mask 255.0.0.0.

ifconfig

Page 14

Lab 1: Introduction to Mininet

"Host: h1"

root@lubuntu-vm: /home/admin#|ifconfig

hl-etho: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 0.0.0.0
ether 22:6b:8e:fc:b9:0c txqueuelen 1000 (Ethernet)
RX packets 28 bytes 3272 (3.2 KB)
RX errors © dropped © overruns © frame ©
TX packets 3 bytes 270 (270.0 B)

TX errors @ dropped © overruns © carrier © collisions

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6é ::1 prefixlen 128 scopeid 0x1lO<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns @ frame ©
TX packets © bytes 0 (0.0 B)

TX errors @ dropped © overruns © carrier © collisions 0

root@lubuntu-vm: /home/admin# I

Figure 21. Output of [i fEconfig] command on host h1.

Repeat Step 3 on host h2. Its interface h2-ethO should be configured with IP address

10.0.0.2 and subnet mask 255.0.0.0.

Step 4. On host hl’s terminal, type the command shown below. This command tests the
connectivity between host hl and host h2. To stop the test, press [Ctrl+d. The figure
below shows a successful connectivity test. Host h1 (10.0.0.1) sent six packets to host h2

(10.0.0.2) and successfully received the expected responses.
ping 10.0.0.2

"Host: h1l"

from
from
from

s from

time 3049ms

Figure 22. Connectivity test using command.

Step 5. Stop the emulation by clicking on the Stop button.

Run

Figure 23. Stopping the emulation.

Page 15

Lab 1: Introduction to Mininet

3.3

Automatic assignment of IP addresses

In the previous section, you manually assigned IP addresses to host h1l and host h2. An
alternative is to rely on Mininet for an automatic assignment of IP addresses (by default,
Mininet uses automatic assignment), which is described in this section.

Step 1. Remove the manually assigned IP address from host h1. Right-click on host h1 and
select Properties. Delete the IP address, leaving it unassigned, and press the OK button as
shown below. Repeat the procedure on host h2.

Run Help
- MiniEdit - 0 X
Properties VLAN Interfaces External Interfaces\ Private Directories|
== Hostname: |h1
s1 IP Address: | |
< Default Route:
\ Amount CPU: host —
‘ Cores:
- ‘ ‘i Start Command:
Host Options h2 Stop Command:
|Propemes

I OK

” Cancel

Figure 24. Host h1 properties.

Step 2. In the MiniEdit application, navigate to Edit > Preferences. The default IP base is
10.0.0.0/8. Modify this value to 15.0.0.0/8, and then press the OK button.

File Run Help

Cut

=

S uowE;

iPBase: [15.0.0.0/g] |

Default Terminal: xterm —

Start CLI:

Default Switch: Open vSwitch Kernel Mode — |

Open vSwitch

Preferences

=N

-sFlow Profile for Open vSwitch—————————
Target:

Sampling: 400
Header: 128
Polling: 30

OpenFlow 1.0: ¥
OpenFlow 1.1:
OpenFlow 1.2:
OpenFlow 1.3: I

OpenFlow 1.4: [

dpctl port:

-NetFlow Profile for Open vSwitch——————

Target:)

Active Timeout: 166()
Add ID to Interface: I~

Cancel ‘

Figure 25. Modification of the IP Base (network address and prefix length).

Page 16

Lab 1: Introduction to Mininet

Step 3. Run the emulation again by clicking on the Run button. The emulation will start
and the buttons of the MiniEdit panel will be disabled.

Stop |’.q7
Figure 26. Starting the emulation.

Step 4. Open a terminal by right-clicking on host h1 and select Terminal.

- MiniEdit
File Edit Run Help

&

Host Options h2

Figure 27. Opening a terminal on host h1.
Step 5. Type the command shown below to display the IP addresses assigned to host h1l.

The interface hl-ethO at host hl now has the IP address 15.0.0.1 and subnet mask
255.0.0.0.

ifconfig

Page 17

Lab 1: Introduction to Mininet

"Host: h1"

root@lubuntu-vm: /home/admin#|ifconfig
hl-eth®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 15.0.0.1 netmask 255.0.0.0 broadcast 0.0.0.0
ether e6:3a:02:05:ba:05 txqueuelen 1000 (Ethernet)
RX packets 16 bytes 2076 (2.0 KB)
RX errors © dropped © overruns @ frame ©
TX packets 4 bytes 360 (360.0 B)
TX errors © dropped © overruns @ carrier @ collisions ©

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid O0x1lO<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns @ frame ©
TX packets 0 bytes 0 (0.0 B)
TX errors © dropped © overruns @ carrier © collisions ©

root@lubuntu-vm: /home/admin# I

Figure 28. Output of [i fconfig] command on host h1.

You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host
h2’s terminal. The corresponding interface h2-ethO at host h2 has now the IP address
15.0.0.2 and subnet mask 255.0.0.0.

Step 6. Stop the emulation by clicking on Stop button.

Run |

I Stop I ik"“

Figure 29. Stopping the emulation.

3.4 Save and load a Mininet topology

In this section you will save and load a Mininet topology. It is often useful to save the
network topology, particularly when its complexity increases. MiniEdit enables you to
save the topology to a file.

Step 1. In the MiniEdit application, save the current topology by clicking File. Provide a

name for the topology and notice myTopology as the topology name. Ensure you are in
the lab1 folder and click Save.

Page 18

Lab 1: Introduction to Mininet

- MiniEdit
Edit Run Help
New
Open E
- x
- Save the topology as N
Export Level 2 Script El Directory: I!home!admin,fP4_Lab5!Iabl| — ‘ EB
s
\ [l labl.mn
h2
i [I
File name: ImyTopoIogyI I
Files of type: Mininet Topology (*.mn) — | Cancel |

Figure 30. Saving the topology.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the /ab1 folder and search for the topology file called /labl.mn and click on
Open. A new topology will be loaded to MiniEdit.

- MiniEdit

Edit Rum Help

o o == =5

Save == Directory: I Ihome!admin!Pil_Labs,‘lablI = ‘ [
Export Level 2 Script —
sl El

Qui] myTopology.mn

L] L £l I

e

6
A

— hl h2
File name: |labl.mn |gpen|

Files of type: Mininet Topology (*.mn) 4| Cancel ‘

/

Figure 31. Opening a topology.

This concludes lab 1. Stop the emulation and then exit out of MinikEdit and the Linux
terminal.

References

1. Mininet walkthrough. [Online]. Available: http://Mininet.org.
2. Mckeown N., Anderson T., Balakrishnan H., Parulkar G., Peterson L., Rexford J.,
Shenker S., Turner J.,, “OpenFlow,” ACM SIGCOMM Computer Communication

Review, vol. 38, no. 2, p. 69, 2008.

Page 19

Lab 1: Introduction to Mininet

3. Esch J., “Prolog to, software-defined networking: a comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 10-13, 2015.

4. Dordal P., “An Introduction to computer networks,”. [Online]. Available:
https://intronetworks.cs.luc.edu/.

5. Llantz B., Gee G. “MiniEdit: a simple network editor for Mininet.” 2013. [Online].
Available: https://github.com/Mininet/Mininet/blob/master/examples.

Page 20

A

UNIVERSITY OF

SOUTH CAROLINA

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 2: Introduction to P4 and BMv?2

Document Version: 01-25-2022

Lab 2: Introduction to P4 and BMv2

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [o= o T PP UPPPRUPPPPR 3
R 101 1 o Yo U Tt d o T o IO PP PUPPPUPTPPR 3
1.1 WOorkflow Of @ P4 Programc.c..eeeieciieeiiiiiieeesciiee e ssieee e sivee e svee e s s e e s svaae s 4
1.2 Workflow used in this 1ab SEriescc.uiiiviiiiieiiiiie e 5
P IF- | o I o] o Yo Lo} -1V 20U PP PUPPPRTPPR 6
2.1 Verifying connectivity between host hl and host h2ccccceeiiiiiiiiiiiiencee, 7
3 Loading the P4 Program.....c..cciiiicuiieeieiiieeeceiiee st e e siee e e s sae e e s s ssae e e s sabaeessssnaeesenns 8
3.1 Loading the programming enviroNmMeNt........cccoecvieeiiiiieee e 9
3.2 Compiling and loading the P4 program to switch slccccoccvviviiiieiiniieeeeeee, 11
3.3 Verifying the configurationccooooiiiiiieiee e 13
4 ConfigUring SWILCN SL.....uviiiiiiiiiee e e e s e e e e e eaeees 14
4.1 Mapping P4 Program’s POItS.....ccucuueeeiiiiieeeeriiieeeeriieeeessireeeessreeeessssseeeesssaeeeas 14
4.2 Loading the rules to the SWIitCh.......cooviiiiiii e, 16
REFEIENCES ...ttt e e sttt e e s st e e s s abt e e e e saraeeesenreeesanns 17

Page 2

Lab 2: Introduction to P4 and BMv2

Overview

This lab introduces programmable data plane switches and their role in the Software-
defined Networking (SDN) paradigm. The lab introduces the Programming Protocol-
independent Packet Processors (P4), the de facto programming language used to describe
the behavior of the data planes of programmable switches. The focus of this lab is to
provide a high-level overview of the general lifecycle of programming, compiling, and
running a P4 program on a software switch.

Objectives
By the end of this lab, students should be able to:

Define the need for SDN and data plane programmability.
Understand the structure of a P4 program.

Compile a simple P4 program and deploy it to a software switch.
Start the switch daemon and allocate virtual interfaces to the switch.
Perform a connectivity test to verify the correctness of the program.

uhwWwN e

Lab settings
Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Loading the P4 program.
4. Section 4: Configuring switch s1.
1 Introduction

Since the emergence of the world wide web and the explosive growth of the Internet in
the 1990s, the networking industry has been dominated by closed and proprietary

Page 3

Lab 2: Introduction to P4 and BMv2

hardware and software. The progressive reduction in the flexibility of protocol design
caused by standardized requirements, which cannot be easily removed to enable protocol
changes, has perpetuated the status quo. This protocol ossification® 2 has been
characterized by a slow innovation pace at the hand of few network vendors. As an
example, after being initially conceived by Cisco and VMware3, the Application Specific
Integrated Circuit (ASIC) implementation of the Virtual Extensible LAN (VXLAN)?, a simple
frame encapsulation protocol, took several years, a process that could have been reduced
to weeks by software implementations. The design cycle of switch ASICs has been
characterized by a lengthy, closed, and proprietary process that usually takes years. Such
process contrasts with the agility of the software industry.

The programmable forwarding can be viewed as a natural evolution of Software-Defined
Networking (SDN), where the software that describes the behavior of how packets are
processed, can be conceived, tested, and deployed in a much shorter time span by
operators, engineers, researchers, and practitioners in general. The de-facto standard for
defining the forwarding behavior is the P4 language®, which stands for Programming
Protocol-independent Packet Processors. Essentially, P4 programmable switches have
removed the entry barrier to network design, previously reserved to network vendors.

1.1 Workflow of a P4 program

Programming a P4 switch, whether a hardware or a software target, requires a software
development environment that includes a compiler. Consider Figure 1. The compiler
maps the target-independent P4 source code (P4 program) to the specific platform. The
compiler, the architecture model, and the target device are vendor specific and are
provided by the vendor. The P4 source code on the other hand is supplied by the user.

The compiler generates two artifacts after compiling the P4 program. First, it generates a
data plane configuration (Data plane runtime) that implements the forwarding logic
specified in the P4 input program. This configuration includes the instructions and
resource mappings for the target. Second, it generates runtime APIs that are used by the
control plane / user to interact with the data plane. Examples include adding/removing
entries from match-action tables and reading/writing the state of extern objects (e.g.,
counters, meters, registers). The APIs contain the information needed by the control
plane to manipulate tables and objects in the data plane, such as the identifiers of the
tables, fields used for matches, keys, action parameters, and others.

Page 4

Lab 2: Introduction to P4 and BMv2

P4 program

Architecture

Compiler %Q—» API Load
.".‘

Target switch

Control plane

A
N API Control signals
Data plane Load ¢ ¢ M
runtime T Ext Data ol
. xtern ata plane
|| User supplied Tables objects

|:| Vendor supplied

Figure 1. Generic workflow design. The compiler, the architecture model, and the target switch
are provided by the vendor of the device. The P4 source code is customized by the user. The
compiler generates a data plane runtime to be loaded into the target, and the APIs used by the
control plane to communicate with the data plane at runtime.

1.2 Workflow used in this lab series

This section demonstrates the P4 workflow that will be used in this lab series. Consider
Figure 2. We will use the Visual Studio Code (VS Code) as the editor to modify the basic.p4
program. Then, we will use the p4c compiler with the V1Model architecture to compile
the user supplied P4 program (basic.p4). The compiler will generate a JSON output (i.e.,
basic.json) which will be used as the data plane program by the switch daemon (i.e.,
simple_switch). Finally, we will use the [simple switch CLI|at runtime to populate and
manipulate table entries in our P4 program. The target switch (vendor supplied) used in
this lab series for testing and debugging P4 programs is the behavioral model version 2
(BMv2)®.

Page 5

Lab 2: Introduction to P4 and BMv2

basic.p4 Controller
Architecture Runtime CLI
(ViModel) (simple_switch_CLI)

Compiler : Table
(p4c) 4 ; .
p » manipulation

Control Plane

Data Plane
> basic.json Load > \-
|:| User supplied Software switch
|:| Vendor supplied (BMv2)

Figure 2. Workflow used in this lab series.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

h1 sl h2
S
h1-eth0 sl-etho & sl-ethl h2-etho|
X
10.0.0.1 10.0.0.2

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|.

Computen

MiniEdit

Terminal

Figure 4. MiniEdit shortcut.

Page 6

Lab 2: Introduction to P4 and BMv2

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab2, select the file lab2.mn, and click on
Open.

MiniEdit

Edit Run Help

New

Save m

ST Tl S s Directory: /homejadmin/P4_Labs/lab2 — | @|

& 2]

File name: (lab2.mn |gpen|

Files of type: Mininet Topology (*.mn) 4| Cancel |

Figure 5. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Stop I‘“*-J—

Figure 6. Running the emulation.

2.1 Verifying connectivity between host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Page 7

Lab 2: Introduction to P4 and BMv2

File Edit Rum Help

R

F
(] == N |
_I‘ Host Options sl i

Terminal

Figure 7. Opening a terminal on host h1l.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

"Host: h1"
root@lubuntu-vm: /home/admin#|ping 10.0.0.2 -c 4

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

2. Ding statistics ---
4 packets transmitted, © received, 100% packet 1

root@lubuntu-vm: /home/admin# I
Figure 8. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host hl and host h2 because there is
no program loaded into the switch.

3 Loading the P4 program

This section shows the steps required to implement a P4 program. It describes the editor
that will be used to modify the P4 program and the P4 compiler that will produce a data
plane program for the software switch.

VS Code will be used as the editor to modify P4 programs. It highlights the syntax of P4
and provides an integrated terminal where the P4 compiler will be invoked. The P4
compiler that will be used is p4c, the reference compiler for the P4 programming language.
p4c supports both P414 and P446, but in this lab series we will only focus on P44¢ since it is

Page 8

Lab 2: Introduction to P4 and BMv2

the newer version and is currently being supported by major programming ASIC
manufacturers’.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on
the desktop.

Computer

MiniEdt

Terminal

Figure 9. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4 Labs/lab2

admin@lubuntu-vm: ~

File Actions Edit View Help
admin@lubuntu-vm: ~ (%]

admin@Llubuntu-vm: ~¢

Figure 10. Launching the editor and opening the lab2 directory.

Step 3. Once the previous command is executed, VS Code will start. Click on basic.p4 in
the file explorer panel on the left hand side to open the P4 program in the editor.

Page 9

Lab 2: Introduction to P4 and BMv2

basic.p4 - lab2 - Visual Studio Code

File Edit Selection View Go Run Terminal

= basic.p4

lab2.mn

> OUTLINE

Help

basic.p4 X

bas pa

1 /% -*- P4 .16 -*- */

2 #include <core.p4>

3 #include <vlmodel.p4>

4

5 const bit<16> TYPE_IPV4 = 0x800;

6

TR R AR R R R R
8 kR KR kearik HEAD E R § #hkkksssihhsinss k8
9 * FEEEE R * * ok * % * LA R RS R R R R R R R R R R R R R R R + .
10

11 typedef bit<9> egressSpec t;

12 typedef bit<48> macAddr_t;

13 typedef bit<32> ip4Addr t;

14

15 header ethernet t {

16 macAddr t dstAddr;

17 macAddr t srcAddr;

18 bit<16> etherType;

19 1}
20

N

)
)

header ipv4 t {

hla .a. i il

OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab2$ []

Figure 11. Opening the programming environment in VS Code.

Step 4. Identify the components of VS Code highlighted in the grey boxes.

Page 10

Lab 2: Introduction to P4 and BMv2

basic.p4 - lab2 - Visual Studio Code

File Edit Selection View Go

Run Terminal Help

EXPLORER
v LAB2 [’1 ﬁ (SN
= basic.p4

lab2.mn

(2) File explorer

> OUTLINE

11 typedef bit<9> egressSpec t;
12 typedef bit<48> macAddr t;
13 typedef bit<32> ip4Addr t;

14
15 header ethernet t {

16 macAddr t dstAddr;
17 macAddr t srcAddr;
18 bit<16> etherType;
19 1}

21 header ipv4 t {

basic.p4 X (1) Editor

1 /¥ -%- P4 16 -*- */

2 #include <core.p4>

3 #include <vlmodel.p4>

4

5 const bit<16> TYPE_IPV4 = 0x800;

6

7 [R * o x o o o o o R o o R o o o o o o o ok R R o ok o R ok R R R R * %k
8 PP, wxrssk HEADE RS #hkkkxss IR ek kKR KRR
9 ok R KR o K KKK A Ko - FA KRR AR R R AR KR
10

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

(3) Terminal

admin@lubuntu-vm:~/P4_Labs/lab2$ []

Figure 12. VS Code graphical interface components.

The VS Code interface consists of three main panels:

1. Editor: the editor panel will display the content of the file selected in the file

explorer. In the figure above, the basic.p4 program is shown in the Editor.

2. File explorer: this panel contains all the files in the current directory. You will see
the basic.p4 file which contains the P4 program that will be used in this lab, and
the topology file for the current lab (i.e., lab2.mn).

3. Terminal: this is a regular Linux terminal integrated in the VS Code. This is where
the compiler (p4c) is invoked to compile the P4 program and generate the output
for the switch.

3.2 Compiling and loading the P4 program to switch s1

Step 1. In this lab, we will not modify the P4 code. Instead, we will just compile it and
download it to the switch s1. To compile the P4 program, issue the following command
in the terminal panel inside the VS Code.

p4c basic.p4

Page 11

Lab 2: Introduction to P4 and BMv2

basic.p4 - lab2 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

RER basic.p4 X

v LAB2 m E; ISRE=] 4
1 /* -*- P4 16 -*- */
basic.p4 2 #include <core.p4>
#include <vlmodel.p4>

basic.p4i

lab2.mn

5 const bit<16> TYPE IPV4 = 0x800;

11 typedef bit<9> egressSpec t;
12 typedef bit<48> macAddr t;
13 typedef bit<32> ip4Addr t;

15 header ethernet t {

16 macAddr t dstAddr;
17 macAddr t srcAddr;
18 bit<16> etherType;
19 }
TERMINAL DEB NSOLE

admin@lubuntu-vm:~/P4_Labs/lab2$

admin@lubuntu-vm:~/P4_Labs/lab2$

Figure 13. Compiling the P4 program using the VS Code terminal.

The command above invokes the p4c compiler to compile the basic.p4 program. After
executing the command, if there are no messages displayed in the terminal, then the P4
program was compiled successfully. You will see in the file explorer that two files were
generated in the current directory:

e basic.json: this file is generated by the p4c compiler if the compilation is successful.
This file will be used by the software switch to describe the behavior of the data
plane. You can think of this file as the binary or the executable to run on the switch
data plane. The file type here is JSON because we are using the software switch.
However, in hardware targets, most probably this file will be a binary file.

e basic.p4i: the output from running the preprocessor of the compiler on your P4
program.

At this point, we will only be focusing on the basic.json file.

Now that we have compiled our P4 program and generated the JSON file, we can
download the program to the switch and start the switch daemon.

Step 2. Type the command below in the terminal panel to download the basic.json file to

the switch s1. The script accepts as input the JSON output of the p4c compiler, and the
target switch name (e.g., s1). If asked for a password, type the password password|.

push to switch basic.json sl

Page 12

Lab 2: Introduction to P4 and BMv2

basic.p4 - lab2 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER
v LAB2
basic.json
basic.p4
basic.p4i
lab2.mn

> OUTLINE

basic.p4 X

basic.p4

1 /¥ -%- P4_16 -*- ¥/

2 #include <core.p4>

3 #include <vlmodel.p4>

4

5 const bit<16> TYPE IPV4 = 0x800;

6

7 /.6\-0!-0.#«0.'v..&-..'t.vvt.-ﬁ'ﬁ*ﬁ«xﬁ«xib.#0..-.1.."-»*.V»x.'ﬂ'.#ﬁ..&x&v..&.ﬁ?v.'.f:-.tiu‘t.xt-k..tﬁb.mt.-v..tv.t.x.'.
8 o e o o ok o e o R ko o R R R ke H E A D E R S Rk kR Rk kR kR kR kR kR kR ke k kR ko kR kX
9 ﬂ.#ltx.’-ﬂt4.,&-1&.@,&.',1,.-,‘-vo,tntx&..v,iv.,v.b,-..q..:*.'.0..0)..0&0.*’.#&0!0*t*lixtt.’,&xtx*mi0.-.0..-.4.&*..1.,‘/
10

11 typedef bit<9> egressSpec t;
12 typedef bit<48> macAddr_t;
13 typedef bit<32> ip4Addr_t;

14

15 header ethernet t {

16 | macAddr t dstAddr;
17 macAddr_t srcAddr;
18 | bit<16> etherType;
19 §

20

21 header ipv4 t {

SOLE

PROBLEMS OUTPUT TERMINAL DEBUG CO

admin@lubuntu-vm:~/P4_Labs/lab2$ p4c basic.p4

admin@lubuntu-vm:~/P4_Labs/lab2$ [push to switch basic.json slj
[sudo] password for admin:
admin@lubuntu-vm:~/P4_Labs/lab2$ [

Figure 14. Downloading the compiled program to switch s1.

3.3 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

> OUTLINE
®0A0

g 8 -

PROBLEMS OUTPUT TERMINAL DEBUG

admin@lubuntu-vm:~/P4_Labs/1lab2$ p4c basic.p4
admin@lubuntu-vim:~/P4_Labs/lab2$ push_to switch basic.json sl
[sudo] password for admin:

admin@Lubuntu-vm:~/P4_Labs/lab2$ I

= gterminal - 2 windows M MiniEdit "Host: h1" basic.p4 -

...Studio Code

Figure 15. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Page 13

Lab 2: Introduction to P4 and BMv2

- MiniEdit

File Edit Run Help

\%

=

hl | .
Docker Options ‘

ITerminaI | ‘

R
@—E’—E}

Figure 16. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 3. Issue the following command to list the files in the current directory.

1s

root@sl: /behavioral-model

Figure 17. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

4 Configuring switch s1

4.1 Mapping P4 program’s ports

Step 1. Issue the following command to display the interfaces in switch s1.

ifconfig

Page 14

Lab 2: Introduction to P4 and BMv2

root@sl: /behavioral-model

1: /behavioral-model#|ifconfig
Link encap:Ethernet HWaddr 02:42:ac:11:00:02
inet addr:172.17.0.2 Bcast:172.17.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:31 errors:0 dropped:0® overruns:0 frame:0
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen:o
RX bytes:3619 (3.6 KB) TX bytes:0 (0.6 B)

Link encap:Local Loopback
inet addr:127.0.0.1 Mask:

UP LOOPBACK RUNNING MTU 536

RX packets:22 errors:0 dropped:© overruns:0 frame:0
TX packets:22 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen:1000

RX bytes:12136 (12.1 KB) TX bytes:12136 (12.1 KB)

Link encap:Ethernet HWwaddr 62:33:6a:a4:6f:fb

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:8 errors:0 dropped:® overruns:0 frame:0
ets:4 errors:0 dropped:® overruns:0 carrier:0

collisions:0© queuelen: 16000

RX bytes:636 (636.0 B) TX bytes:280 (280.0 B)

Link encap:Ethernet HWaddr fe:4d:6e:ba:d8:c7

UP BROADCAST RUNNING MULTICAS MTU:1500 Metric:1
RX packets:7 errors:0 dropped:® overruns:© frame:©
TX packets:4 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen: 0

RX bytes:550 (550.0 B) TX bytes:280 (280.06 B)

root@sl:/behavioral-model# |j

Figure 18. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-ethO and s1-ethl. The interface s1-ethO
on the switch s1 connects to the host h1l. The interface s1-ethl on the switch s1 connects
to the host h2.

Step 2. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple switch -i 0@sl-eth0 -i 1@sl-ethl basic.json &

root@s1l: /behavioral-model - 0 X

root@sl:/behavioral-model#|simple switch -i 0@sl-eth® -i 1@sl-ethl basic.json &
[1] 34
root@sl:/behavioral-model# Calling target program-options parser

éAddlng interface sl-eth® as port
JAdding interface sl-ethl as port 1

Figure 19. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Page 15

Lab 2: Introduction to P4 and BMv2

| sl-eth0 |0 X 1| sl-ethl |

Figure 20. Ports 0 and 1 are mapped to the interfaces s1-ethO and s1-eth1 of switch s1.

4.2 Loading the rules to the switch

Step 1. In switch sl terminal, press Enter to return the CLI.

root@s1l: /behavioral-model - O X

root@sl:/behavioral-model# simple switch -i 0@sl-eth® -i 1@sl-ethl basic.json

root@sl:/behavioral-model# Calling target program-options parser
Adding inte ce sl-etho as port ©
Adding interface sl-ethl as port 1

1:/behavioral-model# [

Figure 21. Returning to switch s1 CLI.

Step 2. Populate the table with forwarding rules by typing the following command.
simple switch CLI < ~/lab2/rules.cmd

root@sl: /behavioral-model

root@sl:/behavioral-model#|simple switch CLI < ~/1ab2/rules.cmd
Obtaining JSON from switch...
Done
Control utility for runtime P4 table manipulation
RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
EXACT-00:00
MyIngress.forward
ru data 00:01
Entry has been added with handle ©
RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:01
action: MyIngress.forward
runtime data: 00:00
as been added with handle 1
intimeCmd:
@s1:/behavioral-model# |j

Figure 22. Loading table entries to switch s1.

The figure above shows the table entries described in the file rules.cmd.

Step 3. Go back to host h1 terminal to test the connectivity between host h1 and host h2
by issuing the following command.

Page 16

Lab 2: Introduction to P4 and BMv2

ping 10.0.0.2 -c 4

“"Host: h1"

root@lubuntu-vm: /home/admin# ping 10.0.0.2 -c 4

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from .0.0.2: icmp seq=1 ttl=64 time=0.851
64 bytes from .0.0.2: icmp seq=2 ttl=64 time=0.062
64 bytes from .0.0.2: icmp seq=3 ttl=64 time=0.078

64 bytes from .0.0.2: icmp seq=4 ttl=64 time=0.085

- 10.0.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3055ms
rtt min/avg/max/mdev = 0.062/0.269/0.851/0.336 ms
root@lubuntu-vm: /home/admin# [}

Figure 23. Performing a connectivity test between host h1 and host h2.

Now that the switch has a program with tables properly populated, the hosts can ping
each other.

This concludes lab 2. Stop the emulation and then exit out of MiniEdit.

References

1. B. Trammell, M. Kuehlewind. “RFC 7663: Report from the IAB workshop on stack
evolution in a middlebox internet (SEMI).” 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7663.

2. G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom, K.-J. Grinnemo,

P. Hurtig, N. Khademi, M. Tiixen, M. Welzl, D. Damjanovic,
S. Mangiante. ““De-ossifying the internet transport layer: A survey and
future perspectives,” IEEE Communications. Surveys and Tutorials., 2017.

3. The Register. “VMware, Cisco stretch virtual LANs across
the heavens.” 2011. [Online]. Available: https://tinyurl.com/y6mxhqgzn.

4. M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright, “Virtual eXtensible Local Area Network (VXLAN): a framework for
overlaying virtualized layer 2 networks over layer 3 networks,” RFC7348.
[Online]. Available: http://www. rfc-editor.org/rfc/rfc7348.txt

5. P.Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, ““P4: Programming protocol-independent
packet processors,” ACM SIGCOMM Computer Communications. 2014.

6. Pdlang. “Behavioral model”. [Online]. Available:
https://github.com/p4lang/behavioral-model.

7. V. Gurevich, A. Fingerhut, “P46 for Intel Tofino™ using Intel P4 Studio™”. 2021
P4 Workshop, ONF. [Online]. Available: https://tinyurl.com/yckzkybf.

Page 17

A

UNIVERSITY OF

SOUTH CAROLINA

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 3: P4 Program Building Blocks

Document Version: 01-25-2022

Lab 3: P4 Program Building Blocks

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [o= o T PP UPPPRUPPPPR 3
1 The PISA arChit@CtUIE...cci et e s e e s s saaaeeeeaes 3
1.1 The PISA archit@CTUIe ..ot e 4
1.2 Programmable ParSerueei ittt aaae s 4
1.3 Programmable match-action pipelingcceviiiiiiniiiii e 5
1.4 Programmable deParser ...ttt 5
1.5 ThE VIMOUEN ..uiiiiiiiiiiieieiee ettt e s s ree e s st e e e s anaee s 5
1.6 P4 program mapping to the VIMOodelccooviiiiiiniiiiiieiiee e 6
P IF- | o I o] o Yo Lo -1V 2SR PSPRRRPR 6
2.1 Starting host h1 and hoSt h2oooiiiiiiii e 8
3 Navigating through the components of a basic P4 program.......ccccccceeeeecivveeeeeeeeennnn. 8
3.1 Loading the programming environNmMeNt........ccccecvieeiiiiieee e 9
3.2 Describing the components of the P4 program.......cccccceevvecciiiieeeeee e, 9
3.3 Programming the pipeling SEQUENCEeviveiieicceeee e 14
4 Loading the P4 Program........cccocccciiiiieeee ettt e e e e e e e e e e et ree e e e e e e e e s nnaeeees 15
4.1 Compiling and loading the P4 program to switch slcccccceiiiiiiiiiiiiieneeeiees 15
4.2 Verifying the configurationc..oeeieii i 17
5 Configuring SWItCh SL....ooiiiiiiiee et e e e enree s 18
5.1 Mapping the P4 program’s POItScceeeeeiiieeeeiiieeeeeciiee e eetee e e e e e e e e e 18
5.2 Loading the rulesto the switCh.......ccccumiiiiei i, 20
6 Testing and verifying the P4 programi........cccccceeeeieciiiiiieee e eecireree e e ee e 21
REFEIENCES ...ttt e e st e e s st e e e s bt ee e e sabaeeesenraeeeenns 23

Page 2

Lab 3: P4 Program Building Blocks

Overview

This lab describes the building blocks and the general structure of a P4 program. It maps
the program’s components to the Protocol-Independent Switching Architecture (PISA), a
programmable pipeline used by modern whitebox switching hardware. The lab also
demonstrates how to track an incoming packet as it traverses the pipeline of the switch.
Such capability is very useful to debug and troubleshoot a P4 program.

Objectives
By the end of this lab, students should be able to:

1. Understand the PISA architecture.

Understand on high-level the main building blocks of a P4 program.

3. Map the P4 program components to the components of the programmable
pipeline.

4. Trace the lifecycle of a packet as it traverses the pipeline.

N

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap
This lab is organized as follows:

Section 1: The PISA architecture.

Section 2: Lab topology.

Section 3: Navigating through the components of a basic P4 program.
Section 4: Loading the P4 program.

Section 5: Configuring switch s1.

Section 6: Testing and verifying the P4 program.

ok wWwNE

1 The PISA architecture

Page 3

Lab 3: P4 Program Building Blocks

1.1 The PISA architecture

The Protocol Independent Switch Architecture (PISA)! is a packet processing model that
includes the following elements: programmable parser, programmable match-action
pipeline, and programmable deparser, see Figure 1. The programmable parser permits
the programmer to define the headers (according to custom or standard protocols) and
to parse them. The parser can be represented as a state machine. The programmable
match-action pipeline executes the operations over the packet headers and intermediate
results. A single match-action stage has multiple memory blocks (e.g., tables, registers)
and Arithmetic Logic Units (ALUs), which allow for simultaneous lookups and actions.
Since some action results may be needed for further processing (e.g., data dependencies),
stages are arranged sequentially. The programmable deparser assembles the packet
headers back and serializes them for transmission. A PISA device is protocol independent.
The P4 program defines the format of the keys used for lookup operations. Keys can be
formed using packet header’s information. The control plane populates table entries with
keys and action data. Keys are used for matching packet information (e.g., destination IP
address) and action data is used for operations (e.g., output port).

Stage 1 Stage N
1D 1D 110
[|] O { A) [e O o [
Packets \—‘ D \—‘ D :D]] Packets
1D LD 110
Programmable Programmable match- Programmable
parser action pipeline deparser
O State [] Memory (e.g., table) D ALU

AEEEEER
Switch
ASIC

Figure 1. A PISA-based data plane.

Programmable switches do not introduce performance penalty. On the contrary, they
may produce better performance than fixed-function switches. When compared with
general purpose CPUs, ASICs remain faster at switching, and the gap is only increasing.

1.2 Programmable parser

The programmable parser permits the programmer to define the headers (according to
custom or standard protocols) and to describe how the switch should process those
headers. The parser de-encapsulates the headers, converting the original packet into a
parsed representation of the packet. The programmer declares the headers that must be
recognized and their order in the packet. The parser can be represented as a state
machine without cycles (direct acyclic graph), with one initial state (start) and two final
states (accept or reject).

Page 4

Lab 3: P4 Program Building Blocks

1.3 Programmable match-action pipeline

The match-action pipeline implements the processing occurring at a switch. The pipeline
consists of multiple identical stages (N stages are shown in Figure 1). Practical
implementations may have 10/15 stages on the ingress and egress pipelines. Each stage
contains multiple match-action units (4 units per stage in Figure 1). A match-action unit
has a match phase and an action phase. During the match phase, a table is used to match
a header field of the incoming packet against entries in the table (e.g., destination IP
address). Note that there are multiple tables in a stage (4 tables per stage in Figure 1),
which permit the switch to perform multiple matches in parallel over different header
fields. Once a match occurs, a corresponding action is performed by the ALU. Examples
of actions include: modify a header field, forward the packet to an egress port, drop the
packet, and others. The sequential arrangement of stages allows for the implementation
of serial dependencies. For example, if the result of an operation is needed prior to
perform a second operation, then the compiler would place the first operation at an
earlier stage than the second operation.

1.4 Programmable deparser

The deparser assembles back the packet and serializes it for transmission. The
programmer specifies the headers to be emitted by the deparser. When assembling the
packet, the deparser emits the specified headers followed by the original payload of the
packet.

1.5 The V1Model

Figure 2 depicts the V1Model? architecture components. The V1Model architecture
consists of a programmable parser, an ingress match-action pipeline, a traffic manager,
an egress match-action pipeline, and a programmable deparser. The traffic manager
schedules packets between input ports and output ports and performs packet replication
(e.g., replication of a packet for multicasting). The V1Model architecture is implemented
on top BMv2’s simple_switch target?.

Ingress match-action and checksum verification Egress match-action and checksum verification
L | L |
‘ Stage 1 Stage N ‘ ‘ Stage 1 Stage N ‘
[] R I b b | 11D
OO IR IR s "3 O [R O e e A
Packets |:| D |:| D Manager |:| D |:| D 11
b B D (LD | O
Programmable Programmable match- Configurable Programmable match- Programmable
parser action pipeline component action pipeline deparser

O State [|Memory (e.g., table) [ALU

Figure 2. The V1Model architecture.

Page 5

Lab 3: P4 Program Building Blocks

1.6 P4 program mapping to the V1Model

The P4 program used in this lab is separated into different files. Figure 3 shows the
V1Model and its associated P4 files. These files are as follows:

e headers.p4: this file contains the packet headers’ and the metadata’s definitions.

e parser.p4: this file contains the implementation of the programmable parser.

e ingress.p4: this file contains the ingress control block that includes match-action
tables.

e egress.p4: this file contains the egress control block.

e deparser.p4: this file contains the deparser logic that describes how headers are
emitted from the switch.

e checksum.p4: this file contains the code that verifies and computes checksums.

e basic.p4: this file contains the starting point of the program (main) and invokes
the other files. This file must be compiled.

Ingress match-action and checksum verification Egress match-action and checksum verification
L | L |
I 1 I 1
headers.p4 parser.p4 ingress.p4 egress.p4 deparser.p4
— —
Stage 1 Stage N Stage 1 Stage N
[| | D b | 11D
Do, N] R I Traffic C DL DL~
| » S [[N = > >
Packets |:| D |:| D Manager |:| D |:| D 1
= R [| D LD | O
Programmable Programmable match- Configurable Programmable match- Programmable
parser action pipeline component action pipeline deparser
-
checksum.p4 Non-programmable checksum.p4

O State [] Memory (e.g., table) [ALU

Figure 3. Mapping of P4 files to the V1Model’s components.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

h1 s1 h2
N R A
IS S =
° h1-ethO sl-etho & sl-ethl h2-eth0| o
S X
10.0.0.1 10.0.0.2

Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Page 6

Lab 3: P4 Program Building Blocks

Computer,

MiniEdit

Termimal
Figure 5. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab3 folder and search for the topology file called lab3.mn and click on
Open. A new topology will be loaded to MiniEdit.

MiniEdit

Edit Run Help

New

Save

Export Level 2 Script
Directory: /homejadmin/P4_Labs/lab3 _.‘ 4}

Quit
EE:m

IET ¥

File name: |lab3.mn {Qpen|

Files of type: Mininet Topology (*.mn) — ‘ Cancel ‘

Figure 6. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Stop W

Figure 7. Running the emulation.

Page 7

Lab 3: P4 Program Building Blocks

2.1 Starting host h1l and host h2

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host hl and
allows the execution of commands on that host.

- MiniEdit

File Edit Run Help

%

R
I~ — |
hz

b1 Host Options sl

Terminal

Figure 8. Opening a terminal on host h1l.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

"Host: h1"
dlubuntu-vm:/ e/admin#|ping

PING 10.0.0.2 (10.0.0.2) 56(84) bytes

10.0.0.2 ping statistics
4 packets transmitted, 0 received, 100% packet loss, time 3080ms

root@lubuntu-vm: /home/admin# [

Figure 9. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host hl and host h2 because there is
no program loaded on the switch.

3 Navigating through the components of a basic P4 program

Page 8

Lab 3: P4 Program Building Blocks

This section shows the steps required to compile the P4 program. It illustrates the editor
that will be used to modify the P4 program, and the P4 compiler that will produce a data
plane program for the software switch.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Computer

MiniEdit

Terminal

Figure 10. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4 Labs/lab3/

admin@lubuntu-vm: ~

File Actions Edit View Help
admin@lubuntu-vm: ~ [x]

admin@lubuntu-vm:~$ |code

Figure 11. Launching the editor and opening the lab3 directory.

3.2 Describing the components of the P4 program

Step 1. Once the previous command is executed, VS Code will start. Click on basic.p4 in
the file explorer panel on the left hand side to open the P4 program in the editor.

Page 9

Lab 3: P4 Program Building Blocks

basic.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

basic.p4 X
LAB3 basic.p4
basic.p4 1 /¥ -%*- P4 16 -*- */
s ; R y Sihclide <core: pe> } Language and architecture
de P 3 #include <vlmodel.p4>
4 #include "parser.p4”
¥ = 5 #include "checksum.p4"
o .p4 6 #include "ingress.p4’ User-defined
r pa (== 7 #include "egress.p4d
lab3.mn 8 #include “"deparser.p4"
pa f [==] 9
10
1 | /*Insert the blocks below this comment*/
12
13
14
15
16
17
8
19

Figure 12. The main P4 file and how it includes other user-defined files.

The basic.p4 file includes the starting point of the P4 program and other files that are
specific to the language (core.p4) and to the architecture (vimodel.p4). To make the P4
program easier to read and understand, we separated the whole program into different
files. Note how the files in the explorer panel correspond to the components of the
V1Model. To use those files, the main file (basic.p4) must include them first. For example,
to use the parser, we need to include the parser.p4 file (#include “parser.p4”).

We will navigate through the files in sequence as they appear in the architecture.

Step 2. Click on the headers.p4 file to display the content of the file.

Page 10

Lab 3: P4 Program Building Blocks

headers.p4 - lab3 - Visual Studio Code

File | Edit Selection View Go Run Terminal Help

@ X basic.p4 headers.p4 X

basic.pd 1 const bit<l6> TYPE_IPV4 = 0x800;

R 3 /RN A AR R AR AR AR e Ksessssnes $esssesEIIENEOOIEEES seses
" - e R e HEADERS #*tsssnsntbnnnin T
G essssssesEssANeREeRsRRtANRIRIRRRRRR RS NS00S0 0000000NT0E00000800080000)
6
7 typedef bit<9> egressSpec t;
lab3.mn 8 | typedef bit<48> macAddr t;
parser.p4 9 typedef bit<32> ip4Addr t;
10
11 header ethernet t {
12 macAddr t dstAddr;
13 macAddr t srcAddr;
14 bit<16> etherType;
15 |}
16
17 header ipv4 t {
18 bit<d> version;
19 bit<4> ihl;
20 bit<8> diffserv;
21 bit<16> totallLen;
22 bit<16> identification;
23 bit<3> flags;
24 bit<13> fragoffset;
25 bit<8> ttl;
26 bit<g> protocol;
27 bit<16> hdrChecksum;
3 ipd4Addr t srcAddr;
29 ipdAddr t dstAddr;
30 }
31
2 struct metadata {
33 /* empty *
34 }
35
36 ¥ struct headers {
37 ethernet t ethernet;
38 ipv4 t ipv4;
}

Figure 13. The defined headers.

The headers.p4 above shows the headers that will be used in our pipeline. We can see
that the ethernet and the IPv4 headers are defined. We can also see how they are
grouped into a structure (struct headers|). The headers|name will be used throughout
the program when referring to the headers. Furthermore, the file shows how we can use

typedef] to provide an alternative name to a type.

Step 3. Click on the parser.p4 file to display the content of the parser.

Page 11

Lab 3: P4 Program Building Blocks

parser.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

pa parserpd X

#include “headers.p4”

parser [MyParserj(packet_in packet,

out headers hdr,
inout metadata meta,
inout standard metadata t standard metadata) {

state start {
transition parse ethernet;
}

state parse ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4;
default: accept;

}

Figure 14. The parser implementation.

The figure above shows the content of the parser.p4 file. We can see that the parser is
already written with the name MyParser. This name will be used when defining the

pipeline sequence.

Step 4. Click on the ingress.p4 file to display the content of the file.

ingress.p4 - lab3 - Visual Studio Code

File Edit Selection

LAB3 f‘; L
basic.p4
basic.p4di
hecksum.pd
deparser.pd
egress.pd

headers.pd

View Go Run Terminal

Help

pa ingress.p4 X

JEAARAEAR R R AR FERR A AR AR AR AR R RN T T T T AR REA AR AR FEEE

CERARERAR R, INGRESS PROCESSING FraREanane S TTTILLL

control inout headers hdr,

inout metadata meta,
inout standard metadata t standard metadata) {
action drop() {
mark to drop(standard metadata);

}

action forward(egressSpec t port) {
standard metadata.egress spec = port;

}

table forwarding {
key = {
standard metadata.ingress port:exact;

}

actions = {
forward;
drop;
NoAction;

}

size = 1024;
default action = drop();

}

apply {
forwarding.apply();

}

}
Figure 15. The ingress component.

Page 12

Lab 3: P4 Program Building Blocks

The figure above shows the content of the ingress.p4 file. We can see that the ingress is
already written with the name Myingress. This name will be used when defining the

pipeline sequence.

Step 5. Click on the egress.p4 file to display the content of the file.

egress.pd - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

egress.p4

X

...

control|MyEgress|inout headers hdr,

inout metadata meta,
inout standard metadata t standard metadata) {

apply { }

Figure 16. The egress component.

...................

The figure above shows the content of the egress.p4 file. We can see that the egress is
already written with the name MyEgress. This name will be used when defining the

pipeline sequence.

Step 6. Click on the checksum.p4 file to display the content of the file.

checksum.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

28
29
30
31

32

> OUTLINE

c.pd checksum.p4 X

KESRARREEES CHECKSUM VERIFICATION *tstneess RPN
KBS RRAEES K KEBEEARREEREEEAAAREES EERRERREERATES FEER SRR AR R AR RS AR AR AR/
control|MyverifyChecksum|inout headers hdr, inout metadata meta) {
apply { }
/ ----- KX e rx R O e EXEEEAEEE R 2R FEEEX R EEESE =%
digisotioid, * CHECKSUM COMPUTATION *essanssss
...... L T T L L T Ty

control|MyComputeChecksum|inout headers hdr, inout metadata meta) {

apply

update checksum(
hdr.ipv4.isvalid(),

{ hdr.ipv4.
hdr.ipv4.ihl,
ipv4.
.totallLen,
ipv4.
ipv4.
ipv4.
.ipv4
hdr.
hdr.
hdr.

hdr.
hdr.
hdr.
hdr.
hdr.

hdr

ipva

ipv4

ipv4

version,
diffserv,
identification,

flags,
fragoffset,

Lt

.protocol,
ipv4.
.dstAddr },

srcAddr,

hdr.ipv4.hdrChecksum,
HashAlgorithm.csuml6) ;

}

1

Figure 17. The checksum component.

Page 13

Lab 3: P4 Program Building Blocks

The figure above shows the content of the checksum.p4 file. We can see that the
checksum is already written with two control blocks: MyvVerifyChecksum and
MyComputeChecksum. These names will be used when defining the pipeline sequence.
Note that MyverifyChecksun] is empty since no checksum verification is performed in
this lab.

Step 7. Click on the deparser.p4 file to display the content of the file.

deparser.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

deparser.p4 X

sy [B} =)

basic.p4 1

b ot 2 JEEeEessEsessEeEsEEeEEEAE seseenee KEEEREEIEE RS AR S ALY KRNI LRSS
3 EEeEeAEREREARSERAEIEY DEPARSER #*tstaseasnssssnss KEEELESEEERES

L5 ksurmn |
4 AEEEEEENEEEEEEIESEELES CrESSEEERES KESEEREEIEEESS EER SRR ES KRR SRS AEEES /

deparser.pd ;

egress.pd 6 control[MyDeparserfpacket out packet, in headers hdr) {

headers.p4 7 apply {

55, pd 3 packet.emit(hdr.ethernet);

9 packet.emit(hdr.ipv4);

11}

Figure 18. The deparser component.
The figure above shows the content of the deparser.p4 file. We can see that the deparser
is already written with two instructions that reassemble the packet.
3.3 Programming the pipeline sequence
Now it is time to write the pipeline sequence in the basic.p4 program.

Step 1. Click on the basic.p4 file to display the content of the file.

basic.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

LORER basic.p4 X ingress.p4
v LAB3 p4

/¥ -%- P4 16 -*- */

basic.p4i #include <core.p4>

checksum.p4 2
#include "parser.p4"

#include “checksum.p4"

de

arser.p4

1
2
3 #include <vlmodel.p4>
i
5

e 6 #include "ingress.p4"

headers.p4 7 #include "egress.p4"

ingress.p4 8 #include "deparser.p4"

lab3.mn 9

parser.p4 10
11 /*Insert the blocks below this comment*/
12

Figure 19. Selecting the basic.p4 file.

Step 2. Write the following block of code at the end of the file

Page 14

Lab 3: P4 Program Building Blocks

V1Switch (
MyParser (),
MyVerifyChecksum(),
MyIngress (),
MyEgress (),
MyComputeChecksum() ,
MyDeparser ()

) main;

) basic.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

JRER basic.p4 X ingress.p4
v LAB3 basic.p4
basic.p4 1 froag= PR A0 =N
bacicpdi 2 #include <core.p4>
3 #include <vlmodel.p4>
checksum.p4 N . VoS "
4 #include "parser.p4
5 #include "checksum.p4"
egress.p4 6 #include "ingress.p4"
headers.p4 7 #include "egress.p4"”
ingress.pd 8 #include "deparser.p4”

(o]

10

11 /*Insert the blocks below this comment*/
12 V1Switch(

13 | MyParser(),

14 | MyverifyChecksum(),
15 | MyIngress(),

16 | MyEgress(),

17 | MyComputeChecksum(),
18 | MyDeparser()

19 |) main;]

20

Figure 20. Writing the pipeline sequence in the basic.p4 program

We can see here that we are defining the pipeline sequence according to the V1Model
architecture. First, we start by the parser, then we verify the checksum. Afterwards, we
specify the ingress block and the egress block, and we recompute the checksum. Finally,
we specify the deparser.

Step 3. Save the changes by pressing [Ctr1+s|

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

Page 15

Lab 3: P4 Program Building Blocks

basic.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER basic.p4 X ingress.p4
v LAB3 basic.p4
basic.json I =P8 %= Wy
basic.pa 2 #include <core.p4>
basic.p4i 3 #}nclude <vlmodel.p4>
checksum.pd 4 #}nclude "parser.p4"

5 #include "checksum.p4"
deparser.p4 6 #include "ingress.p4"
egress.p4 7 #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 9
lab3.mn 10 :
Berser A 11 /*Insert the blocks below this comment*/

12 V1Switch(

13 MyParser(),

14 MyVerifyChecksum(),
15 MyIngress(),

16 MyEgress(),

17 MyComputeChecksum(),
18 MyDeparser()

19) main;

20

PROBLEMS OuUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab3$
admin@lubuntu-vm:~/P4_Labs/lab3$

Figure 21. Compiling a P4 program.
Step 2. Type the command below in the terminal panel to download the basic.json file to

the switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password passwozrd].

push to switch basic.json sl

Page 16

Lab 3: P4 Program Building Blocks

basic.p4 - lab3 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER basic.p4 X ingress.p4
~ LAB3 basic.p4

basic.json 1 f¥ =%¥= P4 16 =% ¥/
basic.p4 2 #include <core.p4=
basic.p4i 3 #?nclude <v1lmodel.pd=

4 #include "parser.p4"
checksum.pa 5 #include "checksum.p4"
CEpSISErEl 6 #include "ingress.p4"
egress.p4 7 #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 9
lab3.mn 1o)
] 11 /*Insert the blocks below this comment#*/

' 12 V1Switch(

13 MyParser(),

14 MyVerifyChecksum(),

15 MyIngress(),

16 MyEgress(),

17 MyComputeChecksum(),

18 MyDeparser()

19) main;

20

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab3% p4c basic.p4
admin@lubuntu-vm:~/P4_Labs/lab3$[push to switch basic.json sl

[sudo] password for admin:

admin@lubuntu-vm:~/P4_Labs/lab3$]
Figure 22. Downloading the P4 program to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

B MiniEdit

Figure 23. Maximizing the MiniEdit window.

Step 2. In MiniEdit, right-click on the P4 switch icon and start the Terminal.

File Edit Run Help

v
= (-
Docker Options

Terminal

Figure 24. Starting the terminal on the switch.

Page 17

Lab 3: P4 Program Building Blocks
Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command [1s] on the terminal of the switch s1 that was opened in the
previous step.

1s

root@sl: /behavioral-model

‘behavioral-model#|1ls

Figure 25. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded to switch s1
after compiling the P4 program.

5 Configuring switch s1

5.1 Mapping the P4 program’s ports
Step 1. Issue the following command to display the interfaces on the switch s1.

ifconfig

Page 18

Lab 3: P4 Program Building Blocks

root@sl: /behavioral-model

root@sl:/behavioral-model#|ifconfig
Link encap:Ethernet HWaddr 02:42:ac:11:00:02
inet addr:172.17.0.2 Bcast:172.17.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:31 errors:0 dropped:® overruns:0 frame:0
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen:©
RX bytes:3619 (3.6 KB) TX bytes:0 (0.0 B)

Link encap:Local Loopback
inet addr:127.0.0.1 :
UP LOOPBACK RUNNING MTU: 36 Metric:1

RX packets:22 errors:0 dropped:© overruns:0 frame:0
TX packets:22 errors:0 dropped:® overruns:0 carrier:0
collisions:0® txqueuelen:1000

RX bytes:12136 (12.1 KB) TX bytes:12136 (12.1 KB)

Link encap:Ethernet HWaddr 62:33:6a:a4:6f:fb
UP BROADCAST RUNNING MULTICAST MTU:1500
RX packets:8

collisions:® txqueuelen:1000
RX bytes: 6 (636 TX bytes:280 (280.0 B)

Link encap:Ethernet Nad fe:4d:6e:ba:d8:c

UP BROADCAST RUNNING MULTICAST MTU:1500

RX packets:7 errors:0 dropped:0 o

TX packets:4 errors:0 dropped:® overruns:® carrier:
collisions:® txqueuelen:16000

RX bytes:550 (550.0 B) TX bytes:280 (280.0 B)

root@sl:/behavioral-model# l

Figure 26. Displaying switch s1 interfaces.
We can see that the switch has the interfaces s1-ethO and s1-ethl. The interface s1-ethO

on the switch s1 connects host hl. The interface s1-ethl on the switch s1 connects host
h2.

Step 2. Start the switch daemon by typing the following command.

simple switch -i 0@sl-ethO -i 1@sl-ethl --nanolog ipc:///tmp/bm-log.ipc
basic.json &

root@sl: /behavioral-model

L E' =
ing interface sl-ethl as

Figure 27. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The option is used to instruct the switch daemon that we want to see the
logs of the switch.

Page 19

Lab 3: P4 Program Building Blocks

sl-ethO | O X 1| sl-ethl

Figure 28. Mapping of the logical interface numbers (0, 1) to the Linux interfaces (s1-eth0O, s1-
ethl).

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

root@s1: /behavioral-model - 2 X

root@sl:/behavioral-model# simple switch -i 0@sl-eth® -i 1@sl-ethl basic.json

havioral-model# Calling target program-options parser
g interf eth® as port ©
Adding interface sl-ethl as port 1

root@s1:/behavioral-model# [}

Figure 29. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab3/rules.cmd

root@sl: /behavioral-model

root@sl:/behavioral-model#|simple switch CLI < ~/lab3/rules.cmd
Obtaining JSON from switch...

Done

Control utility for runtime P4 table manipulation

RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:00

action: MyIngress.forward

runtime data: 00:01

Entry has been added with handle ©

RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:01

action: MyIngress.forward

runtime data: 00:00

Entry has been added with handle 1

RuntimeCmd:

root@sl:/behavioral-model# l

Figure 30. Loading the forwarding table entries into switch s1.

Now the forwarding table in the switch is populated.

Page 20

Lab 3: P4 Program Building Blocks

6 Testing and verifying the P4 program

Step 1. Type the following command to initiate the client that will display the
switch logs.

nanomsg client.py

root@sl: /behavioral-model

‘behavioral-mode
not provi using ipc:///tmp/bm-log.ipc (obtained from switch)

LECh:.ss

Figure 31. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command below so that the host starts listening
for incoming packets.

./recv.py

"Host: h2"

root@Lubuntu-vm: /home/admin# |./recv.py

sniffing on h2-ethe

Figure 32. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command to send a packet to host h2.

./send.py 10.0.0.2 HelloWorld

Page 21

Lab 3: P4 Program Building Blocks

"Host: h1"

root@Llubuntu-vm: /home/admin# |. /send.py 10.0.0.2 Helloworld
sending on interface hl-etho to 10.0.0.2
###[Ethernet ###
dst = ff:ff:ff:ff:ff:ff
Src 00:00:00:00:00:01
type = IPv4
IP
version =4
ihl)

tos
len 50

id 1
flags
frag 0
e & o2 ¢ 64
proto tcp
chksum Ox66C3
sSrc 10.0.0.1
dst 10.0.0.2
\options
###] TCP 1###
sport
dport

Figure 33. Sending a test packet from host h1 to host h2.

Now that the switch has a program with tables properly populated, the hosts are able to

reach each other.
Step 4. Go back to switch s1 terminal and inspect the logs.

root@s1l: /behavioral-model

root@sl:/behavioral-model# nanomsg client.py

'--socket' not provided, using 1ipc:///tmp/bm-log.ipc (obtained from switch)

Obtaining JSON from switch...

Done
PACKET IN, port in: ©
PARSER START, parser id: 0 (parser)
PARSER EXTRACT, header id: 2 (ethernet)
PARSER EXTRACT, header id: 3 (ipv4)
PARSER DONE, parser id: © (parser)
PIPELINE START, pipeline id: © (ingress)

TABLE HIT, table id: © (MyIngress.forwarding), entry hdl:
ACTION EXECUTE, action id: 2 (MyIngress.forward)
PIPELINE DONE, pipeline id: © (ingress)

PIPELINE START, pipeline id: 1 (egress)

PIPELINE DONE, pipeline id: 1 (egress)

DEPARSER START, deparser id: 0 (deparser)
CHECKSUM UPDATE, cksum id: © (cksum)

DEPARSER EMIT, header id: 2 (ethernet)
DEPARSER EMIT, header id: 3 (ipv4)
DEPARSER DONE, deparser id: 0 (deparser)
PACKET OUT, port out: 1

Figure 34. Inspecting the logs in switch s1.

The figure above shows the processing logic as the packet enters switch s1. The packet
arrives on port O (port_in: 0]), then the parser starts extracting the headers. After the

Page 22

Lab 3: P4 Program Building Blocks

parsing is done, the packet is processed in the ingress and in the egress pipelines. Then,
the checksum update is executed and the deparser reassembles and emits the packet

using port 1 (Fart_out: 1).

Step 5. Verify that the packet was received on host h2.

This concludes lab 3. Stop the emulation and then exit out of MiniEdit.

References

1. C. Cascaval, D. Daly. "P4 Architectures." [Online]. Available:
https://tinyurl.com/3zk8vs6a.

2. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.

3. P4lang/behavioral-model github repository. “The BMv2 Simple Switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

Page 23

A

UNIVERSITY OF

SOUTH CAROLINA

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 4: Parser Implementation

Document Version: 01-25-2022

Lab 4: Parser Implementation

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [o= o T PP UPPPRUPPPPR 3
R 101 1 o Yo U Tt d o T o IO PP PUPPPUPTPPR 3
1.1 Program headers and definitions........cccoccuveiiiniiiiiiiniiiecec e 4
1.2 Programmable ParSerueei ittt aaae s 6
P IF- | o I o] o Yo Lo} -1V 20U PP PUPPPRTPPR 7
2.1 Starting host h1 and hoSt h2........ooiiiiiiiii e 9
3 Defining the program’s NEAAEIScovcuiiiiieiiiieece e 9
3.1 Loading the programming enviroNmMeNt........cccoecvieeiiiiieee e 9
3.2 Coding header’s definitions into the headers.p4 file........cccovvevviieeeincivenennne. 10
4 Parser IMplementation ... e e 14
5 Loading the P4 Programi.....cc..cecccciieeeceiieeeesieee e st e et e e s s s e e e snae e e s e staeeessnnaeeeas 17
5.1 Compiling and loading the P4 program to switch slccccocveiviiieeiiniieenecnee, 17
5.2 Verifying the configurationccooooiiiiiei e 19
6 Configuring SWItCh SL....coiiiiiieee e et e s aaee s 20
6.1 Mapping P4 Program’s POItS........ccccciieeeieiieeeeeiiieeeeeiiteeeeeeereeeessaeeesesssaeeeeennens 20
6.2 Loading the rulesto the switCh.......cccomiiiiei i, 22
7 Testing and verifying the P4 programi........cccccceeieiecciiiieeeeee e eecirereee e e cvenneeee e 22
8 Augmenting the P4 program to parse IPV6coooccviiiiieeiii e, 24
9 Testing and verifying the augmented P4 programccccceeeveccciviieeeeeececccrveeeeenn, 28
REFEIENCES ...ttt e e sttt e e s st e e e s abt e e e e sareeeeseneeeesanns 31

Page 2

Lab 4: Parser Implementation

Overview

This lab starts by describing how to define custom headers in a P4 program. It then
explains how to implement a simple parser that parses the defined headers. The lab
further shows how to track the parsing states of a packet inside the software switch.

Objectives
By the end of this lab, students should be able to:

1. Define custom headers in a P4 program.

2. Understand how the parser transitions between states and how it extracts the
headers from the packets.

Implement a simple parser in P4.

4. Trace the parsed states when a packet enters to the switch.

w

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap
This lab is organized as follows:

Section 1: Introduction.

Section 2: Lab topology.

Section 3: Defining the headers.

Section 4: Parser implementation.

Section 5: Loading the P4 program.

Section 6: Configuring switch s1.

Section 7: Testing and verifying the P4 program.

Section 8: Augmenting the P4 program to parse IPv6.
Section 9: Testing and verifying the augmented P4 program.

LN A WNR

1 Introduction

Page 3

Lab 4: Parser Implementation

1.1 Program headers and definitions

For several decades, the networking industry operated in a bottom-up approach. At the
bottom of the system are the fixed-function Application Specific Integrated Circuits
(ASICs), which enforce protocols, features, and processes available in the switch.
Programmers and operators are limited to these capabilities when building their
systems. Consequently, systems have features defined by ASIC vendors that are rigid
and may not fit the network operators’ needs. Programmable switches and P4 represent
a disruption of the networking industry by enabling a top-down approach for the design
of network applications. With this approach, the programmer or network operator can
precisely describe features and how packets are processed in the ASIC, using a high-level
language, P4.

With the Protocol Independent Switch Architecture (PISA)?, the programmer defines the
headers and corresponding parser as well as actions executed in the match-action
pipeline and the deparser. The programmer has the flexibility of defining custom
headers (i.e., a header not standardized). Such capability is not available in non-
programmable devices.

‘ 48 bits 48 bits . 16 bits

Destination Address Source Address Ether Type

Figure 1. Ethernet header.

Bit 0] 1[2[3]4[5[6]7[8[9]10]11]12[13]14]15[16[17]18]19]20[21[22[23]24[25]26]27/28]29[30[31
0 Version IHL DSCP ECN Total Length

32 Identifier Flags Fragment Offset

64 Time To Live Protocol Header Checksum

96 Source IP Address

128 Destination IP Address

160 Options (if IHL > 5)

Figure 2. IPv4 header.

Bit 0] 1] 2]3[4 [5]6] 7] 8] 9]10[11[12[13]14]15]16]/17]18[19]2021]22]23[24]25]26]27]28]29[30[31

0 Version Traffic Class Flow Label
32 Payload Length Next Header Hop Limit
64

Source IP Address

192

Destination IP Address

Figure 3. IPv6 header.

Page 4

Lab 4: Parser Implementation

Figure 4 shows an excerpt of a P4 program where the headers are defined. This is
typically written at the top of the program before the parsing starts. We can see that
the programmer defined a header corresponding to Ethernet (lines 11-15). The Ethernet
header fields are shown in Figure 1.

The programmer also defined an IPv4 header (lines 26-40). The IPv4 header format is
shown in Figure 2 and the IPv6 header is shown in Figure 3.

#include <core.p4d>
#include <vlmodel.p4>
const bit<16> TYPE_IPV4 = 0x800;

[/ FF sk ko sk skok sk skok sk ok ko ko oR ok E AD RS S sk sk skt sk skskok sk stk sk kol sk skskok sk ok ok ok /
typedef bit<9> egressSpec_t;

typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;

W oONOUVTDE WNPR

o
[Y]

header ethernet_t{
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;
}

R R R R R R
NoubhwN

struct metadata {
/* empty */
}

NN BFP P
= ® O 0

struct headers{
ethernet_t ethernet;
ipvd_t ipv4;

}

NN DNDNDN
AUV hs wWwN

header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<6> DSCP;
bit<2> ECN;
bit<16> totallLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr_t dstAddr;

P W wWwwwwwwwwwiNnNN~N
® VO NAU D WNRO® OO

Figure 4. Program headers and definitions.

The code starts by including the core.p4 file (line 1) which defines some common types

and variables used in all P4 programs. For instance, the and [packet out

extern types which represent incoming and outgoing packets, respectively, are declared
in core.p4?. Next, the vimodel.p4® file is included (line 2) to define the ViModel
architecture* and all its externs used when writing P4 programs. Line 3 creates a 16-bit

Page 5

Lab 4: Parser Implementation

constant with the value 0x800. This means that can be used later

in the P4 program to reference the value 0x800. The typedef declarations (lines 7 - 9)
are used to assign alternative names to types. Subsequently, the headers and the
metadata structs that will be used in the program are defined. These headers are
customized depending on how the programmer wants the packets to be parsed. The
program in Figure 4 defines the Ethernet header (lines 11-15) and the IPv4 header (lines
26-40). The declarations inside each header are usually written after referring to the
standard specifications of the protocol. Note in the header the
is used rather than using a 48-bit field. Lines 17 - 19 show how to declare user-defined
metadata, which are passed from one block to another as the packet propagates
through the architecture. For simplicity, this program does not require any user
metadata.

1.2 Programmable parser

The programmable parser permits the programmer to describe how the switch will
process the packet. The parser de-encapsulates the headers, converting the original
packet into a parsed representation of the packet. The parser can be represented as a
state machine without cycles (direct acyclic graph), with one initial state (start) and two
final states (accept or reject).

parse_ethernet

etherType == TYPE_|Pv4

etherType # TYPE_IPv4

(a)

Page 6

Lab 4: Parser Implementation

/E‘Q"% 3k 3k 3k >k sk k ok sk ok sk >k ksk >k kok k IQHEADERSQ k >k 3k 3k >k 3k sk k3k 3k sk ok sk kok ok sk ok sk kok sk /
parser MyParser(packet_in packet, out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata){
state start {
transition parse_ethernet;

}

state parse_ethernet {
packet.extract(hdr.ethernet);

cONOUVT A WNBR

transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4;
default: reject;
¥
}
state parse_ipvd {
packet.extract(hdr.ipvd);
transition accept;

(b)

Figure 5. Example of a parser. (a) Graphical representation of the parser. (b) In P4, the parser
always starts with the initial state called . First, we transition unconditionally to
parse ethernet| Then, we can create some conditions to direct the parser. Finally, when we
transition to the state, the packet is moved to the ingress block of the pipeline. A

packet that reaches the state will be dropped.

Figure 5a shows the graphical representation of the parser and Figure 5b its
corresponding P4 code. Note that packet is an instance of the extern
(specific to V1Model) and is passed as a parameter to the parser. The method
associated with the packet extracts N bits, where N is the total number of bits defined in
the corresponding header (for example, 112 bits for Ethernet). Afterwards, the
field of the Ethernet header is examined using the select statement, and the
program branches to the state if the field corresponds to IPv4.
The state transitions to the if it is not an IPv4 header, as shown in the figure
above (Line 12). In the state, the IPv4 header is extracted, and the program
unconditionally transitions to the state.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit.

hl sl h2
[
S > S
o h1l-ethO sl-etho \F sl-ethl h2-etho| o
X X
10.0.0.1 10.0.0.2
aaaa:l bbbb::1

Figure 6. Lab topology.

Page 7

Lab 4: Parser Implementation

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Computen

MiniEdit

Terminal
Figure 7. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab4 folder and search for the topology file called lab4.mn and click on
Open. A new topology will be loaded to MiniEdit.

MiniEdit

File|] Edit Run Help

Export Level 2 Script
Directory: /home/admin/P4_Labs/lab4 —:l %’

- 8 0.0
(&5

N

KT} 2]

File name: lab4.mn

Files of type: Mininet Topology (*.mn) -:l Cancel |

18R

Figure 8. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Page 8

Lab 4: Parser Implementation

Stop |EJ_____

Figure 9. Running the emulation.

2.1 Starting host hl and host h2

Step 1. Right-click on host hl and select Terminal. This opens the terminal of host hl
and allows the execution of commands on that host.

File Edit Run Help

Eﬂmopm — @ =
|

Figure 10. Opening a terminal on host h1.
3 Defining the program’s headers
This section demonstrates how to define custom headers in a P4 program. It also shows

how to use constants and typedefs to make the program more readable.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Page 9

Lab 4: Parser Implementation

Computer

MiniEdt

Terminal

Figure 11. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the
keyboard and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4 Labs/lab4

admin@lubuntu-vm: ~
File Actions Edit View Help

admin@lubuntu-vm: ~]

Figure 12. Launching the editor and opening the lab4 directory.

3.2 Coding header’s definitions into the headers.p4 file

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file
explorer on the left-hand side of the screen to locate the file.

Page 10

Lab 4: Parser Implementation

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

RER headers.p4 X

v LAB4 REBRELS headers.p4

basic.json 1 /*Define the data type and constant definitions below*/
basic.p4 2
basic.pai 3 /*Define the Ethernet header below*/

4

checksur 4
JecKSIp 5 /*Define the IPv4 header below*/
deparser.p4
. 7 /*Define the IPv6 header below*/
= headers.p4 8
ingress.pd 9 /*Define the metadata struct below*/

lab4.mn 10
parser.p4 11 /*Define the headers struct below*/
parser.p

12

Figure 13. Inspecting the headers.p4 file.
We can see that the headers.p4 is empty and we have to fill it.

Step 2. We will start by defining some typedefs and constants. Write the following in the
headers.p4 file.

typedef bit<48> macAddr t;
typedef bit<32> ip4Addr t;
const bit<1l6> TYPE IPV4 = 0x800;

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 X parser.p4
+ LAB4 headers.p4
basic.json 1 /*Define the data type and constant definitions below*/
basic.p4 2 | typedef bit<48> macAddr t;
hasic oAl 3 | typedef bit<32> ip4Addr t;
' 4 | const bit<16> TYPE IPV4 = 0x800;
checksum.p4 . -
deparser.p4 6 /*Define the Ethernet header below*/
egress p»l 4
headers.p4 8 /*Define the IPv4 header below*/
ingress.p4 9
Iab4.min 10 /*Define the IPv6 header below*/
11
Di"‘.’n”"pd
12 /*Define the metadata struct below*/
13
14 /*Define the headers struct below*/
15 |

Figure 14. Data types and constant definitions.

In the figure above the typedef declarations used (lines 2 - 3) are used to assign
alternative names to types. Here we are saying that can be used instead of
bit<48>], and [ip4addr_t]instead of pit<32> We will use those typedefs when defining
the headers. Line 4 shows how to define a constant with the name [TYPE 1Pv4] and a
value of [0x800]. We will use this value in the parser implementation.

Step 3. Now we will define the Ethernet header. Add the following code to the
headers.p4 file.

Page 11

Lab 4: Parser Implementation

header ethernet t ({
macAddr t dstAddr;
macAddr t srcAddr;
bit<16> etherType;

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

and constant definitions below*/

EXPLORER headers.p4 X parser.p4
1] /*Define the data type
2 typedef bit<48> macAddr _t;
Fasicnal 3 typedef bit<32> ip4Addr_t;
) 4 const bit<16> TYPE IPV4 = 0x800;
checksum.p4 % =
>
deparser.p4 6 *Define the Ethernet header below*/
egress.p4 7 | header ethernet t {
headers.p4 8 macAddr t dstAddr;
ingress.p4 9 macAddr t srcAddr;
Bhaimin 10 bit<16> etherType;
11
parser.p4 12 }
13 /*Define the IPv4 header below*/
14
15 /*Define the IPv6 header below*/
16
17 /*Define the metadata struct below*/
19 /*Define the headers struct below*/
20

Figure 15. Adding the Ethernet header definition.

Note how we used the typedef which corresponds to when
defining the destination MAC address field (dstaddr]) and the source MAC address field

(Ezcadaz).

Step 4. Now we will define the IPv4 header. Add the following to the headers.p4 file.

header ipv4 t ({

bit<4> version;
bit<4> ihl;
bit<8> diffserv;

bit<l6> totallen;
bit<l6> identification;

bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;

bit<8> protocol;

bit<l6> hdrChecksum;
ip4Addr t srcAddr;
ip4Addr t dstAddr;

Page 12

Lab 4: Parser Implementation

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

deparser.p4
eg nd
headers.p4

ngress.p4
lab4.mn

parser.pd4

headers.p4 X parser.p4 basic.p

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

}

rs.pé

macAddr t srcAddr;
bit<16> etherType;

/*Define the IPv4 header below*/

header ipv4 t {

}

bit<4> version;
bit<4> ihl;

bit<8> diffserv;
bit<16> totallLen;
bit<16> identification;
bit<3> flags;
bit<13> fragoOffset;
bit<8> ttl;

bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr t dstAddr;

/*Define the IPv6 header below*/

Figure 16. Adding the IPv4 header definition.

Consider the figure above. Note how we used the typedef which

corresponds to when defining the source IP address field (jsrcaddr]) and the
destination IP address field ([dstAddr]). Also, note how we are mapping the fields to

those defined in the standard IPv4 header (see Figure 3).

Step 5. Now we will create a struct to represent our metadata. Metadata are passed
from one block to another as the packet propagates through the architecture. For
simplicity, this program does not require any user metadata, and hence we will define it
as empty with no fields. Add the following to the headers.p4 file.

struct metadata {
/* empty */
}

headers.p4
ngress.p4
lab4.mn

parser.p4

File Edit Selection View Go Run Terminal Help

headers.p4 X

} y

25
26
27
28
29
30
31
32
33
34
35
36
37

pa
ip4Addr t srcAddr;

ip4Addr t dstAddr;
}

headers.p4 - lab4 - Visual Studio Code

/*Define the IPv6 header below*/

/*Define the metadata struct below*/

struct metadata{
/*empty*/

}

/*Define the headers struct below*/

Figure 17. Adding the metadata structures.

Step 6. Now we will create a struct to contain our headers (Ethernet and IPv4). Append
the following code to the headers.p4 file.

Page 13

Lab 4: Parser Implementation

struct headers {
ethernet t
ipvd t

ethernet;

ipvé4;

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER

~ LAB4
basic.json
basic.p4
basic.p4i
checksum.p4
deparser.p4
egress.p4
headers.p4
ingress.pd4
lab4.mn

parser.p4

headers.p4 x

ip4Addr t srcAddr;
ip4Addr t dstAddr;

}

/*Define the IPv6 header below*®/

/*Define the metadata struct below*/

struct metadata{
/*empty*/

/*Define the headers struct below*/

struct headers{

ipva t ipv4;

ethernet t ethernet;

Figure 18. Appending the headers’ data structure to the headers.p4 file.

Step 7. Save the changes by pressing [ctr1+s|

4 Parser Implementation

Now it is time to define how the parser works.

Step 1. Click on the parser.p4 file to display the content of the file.

EXPLORER

v LAB4
basic.json
basic.p4
basic.p4i
checksum.p4
deparser.p4
egress.p4
headers.p4
ingress.p4

lab4.mn

arser.p4
P p

headers.p4 parser.pd X

parser.p4

1 |#include "headers.p4"|

2

3 parser MyParser(packet in packet,

4 out headers hdr,

5 inout metadata meta,

6 inout standard metadata t standard metadata) {
'/

8 /*Add the start state below*/

9
10 /*Add the parse ethernet state below*/
11
12 /*Add the parse ipv4 state below*/
13
14 /*Add the parse ipv6 state below*/
15
16
17

Figure 19. Inspecting the parse.p4 file.

parser.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Page 14

Lab 4: Parser Implementation

We can see that the headers.p4 file that we just filled is included here in the parser. The
file also includes a starter code which declares a parser named MyParser. Note how the
headers and the metadata structs that we defined previously are passed as parameters

to the parser.

Step 2. Add the state inside the parser by inserting the following code.

state start {

transition parse ethernet;

}

parser.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 X
v LAB4 parser.p4
basic.json 1 #include "headers.p4"
basic.p4 2
basic.pai 3 parser MyParser(packet in packet,
5 4 out headers hdr,
EDeERRL 5 inout metadata meta,
CEparEEnpa 6 inout standard metadata t standard metadata) {
egress.p4 7
headers.p4 8 /*Add the start state below*/
ingress.p4 9 state start {
jabamn 10 transition parse_ethernet;
: 11 }
parser.p4 12
13 /*Add the parse ethernet state below*/
14
15 /*Add the parse ipv4 state below*/
16
17 /*Add the parse ipv6 state below*/
18
19 }
20

Figure 20. Adding state to the parser.p4 file.

The state is the state where the parser begins parsing the packet. Here we are
transitioning unconditionally to the parse ethernet]|state.

Step 3. Add the parse ethernet]state inside the parser by inserting the following code.

state parse ethernet {

packet.extract (hdr.ethernet) ;
transition select (hdr.ethernet.etherType) {
TYPE IPV4: parse ipvé4;

default: accept;

Page 15

Lab 4: Parser Implementation

parser.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 X
v LAB4 parser.p4
basic.json 3 parser MyParser(packet in packet,
basic.p4 4 | out headers hdr,
basic.p4i 5 inout metadata meta,
checksum.p4 6 inout standard metadata t standard metadata) {
deparser.p4 7
AGreeap 8 /*Add the start state below*/
9 state start {
headers:p4 10 transition parse ethernet;
ingress.p4 11 }
lab4.mn 12
parser.p4 13 /*Add the parse ethernet state below*/
14 state parse ethernet {
15 packet.extract(hdr.ethernet);
16 transition select(hdr.ethernet.etherType) {
17 TYPE IPV4: parse ipvé4;
18 default: accept;
19 }
20 }
21
22 /*Add the parse ipv4 state below*/

Figure 21. Adding [parse ethernet]|state to the parser.p4 file.

The parse ethernet]state extracts the Ethernet header and checks for the value of the
header field etherType]. Note how we reference a header field by specifying the header
to which that field belongs (i.e., hdr.ethernet.etherTypé]). If the value of
is (which corresponds to 0x800 as defined previously), the parser transitions
to the state. Otherwise, the execution of the parser terminates.

Step 4. Add the state inside the parser by inserting the following code.

state parse ipv4d {
packet.extract (hdr.ipv4) ;
transition accept;

Page 16

Lab 4: Parser Implementation

parser.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER

v LAB4
basic.json
basic.p4
basic.p4i
checksum.p4
deparser.p4
egress.p4
headers.p4
ingress.p4
lab4.mn

parser.p4

headers.p4

parser

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

X

p4

parser.p4 X

LIUIOL LAVl PUl DL LuIIL v L,

}

/*Add the parse_ethernet state below*/
state parse ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse ipvé4;
default: accept;

}

/*Add the parse ipv4 state below*/

state parse ipv4 {
packet.extract(hdr.ipv4);
transition accept;

}

/*Add the parse ipv6 state below*/

Figure 22. Adding state to the parser.p4 file.

The state extracts the IPv4 header and terminates the execution of the

parser.

Step 5. Save the changes to the file by pressing[ctrl + s

5 Loading the P4 program

5.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the Visual Studio Code

to compile the program.

p4c basic.p4

Page 17

Lab 4: Parser Implementation

basic.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 basic.p4 X
v LAB4 basic.p4

basic.json 1 ¥ =¥z P16 - X
2 #include <core.p4>
hasic.pai 3 #}nclude <vlimodel.p4>
; 4 #include "parser.p4"
e 5 #include "checksum.p4"
deparser.p4 6 #include "ingress.p4"
egress.p4 7 #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 9
lab4.mn 10 .
PHieer 11 V1Switch(

12 MyParser(),

13 MyVerifyChecksum(),

14 MyIngress(),

15 MyEgress(),

16 MyComputeChecksum(),

17 MyDeparser()

18 |} main;

19

PROBLEMS OUTPUT TERMINAL DEBUG C

admin@lubuntu-vm:~/P4_Labs/lab4$|p4c basic.p4

admin@lubuntu-vm:~/P4_Labs/lab4$

Figure 23. Compiling the code.

Step 2. Type the command below in the terminal panel to download the basic.json file
to the switch s1’s filesystem. The script accepts as input the JSON output of the p4c
compiler, and the target switch name. If asked for a password, type the password

password|.

push to switch basic.json sl

Page 18

Lab 4: Parser Implementation

basic.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 basic.p4 X
~ LAB4 basic.p4
basic.json 1 /* %= P4 16 =% ¥/
basic.p4 2 #include <core.p4>
basic.p4i 3 #?nclude <vlmodel.p4=
. 4 #include "parser.p4"
CIERkUT 5 #include "checksum.p4"
Heparsernd 6 #include "ingress.p4"
egress.pd 7 #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 9
lab4.mn 1o i
et 11 Viswitch(
' 12 MyParser(),

13 MyVerifyChecksum(),

14 MyIngress(},

15 MyEgress(),

16 MyComputeChecksum(),

17 MyDeparser()

18) main;

19

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab4% p4c basic.p4

admin@lubuntu-vm:~/P4_Labs/lab4$|push to switch basic.json sl
[sudo] password for admin:
admin@lubuntu-vm:~/P4 Labs/lab4s |

Figure 24. Pushing the P4 program to switch s1.

5.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

*= gterminal - 2 windows B MiniEdit .p4 - ...Studio Code

Figure 25. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Page 19

Lab 4: Parser Implementation

File Edit Run Help

h2

= | R |
&
Docker Options ‘

Terminal

Figure 26. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command on the terminal of the switch s1 that was opened in the
previous step.

1s

root@sl: /behavioral-model

Figure 27. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

6 Configuring switch s1

6.1 Mapping P4 program’s ports
Step 1. Issue the following command on switch s1 terminal to display the interfaces.

ifconfig

Page 20

Lab 4: Parser Implementation

root@sl: /behavioral-model

root@sl:/behavioral-model#|ifconfig
Link encap:Ethernet HWaddr 02:42:ac:11:00:02
inet addr:172.17.0.2 Bcast:172.17.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:31 errors:0 dropped:® overruns:0 frame:0
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen:©
RX bytes:3619 (3.6 KB) TX bytes:0 (0.0 B)

Link encap:Local Loopback
inet addr:127.0.0.1 :
UP LOOPBACK RUNNING MTU: 36 Metric:1

RX packets:22 errors:0 dropped:© overruns:0 frame:0
TX packets:22 errors:0 dropped:® overruns:0 carrier:0
collisions:0® txqueuelen:1000

RX bytes:12136 (12.1 KB) TX bytes:12136 (12.1 KB)

Link encap:Ethernet HWaddr 62:33:6a:a4:6f:fb
UP BROADCAST RUNNING MULTICAST MTU:1500
RX packets:8

collisions:® txqueuelen:1000
RX bytes: 6 (636 TX bytes:280 (280.0 B)

Link encap:Ethernet Nad fe:4d:6e:ba:d8:c

UP BROADCAST RUNNING MULTICAST MTU:1500

RX packets:7 errors:0 dropped:0 o

TX packets:4 errors:0 dropped:® overruns:® carrier:
collisions:® txqueuelen:16000

RX bytes:550 (550.0 B) TX bytes:280 (280.0 B)

root@sl:/behavioral-model# l

Figure 28. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-ethO and s1-ethl. The interface s1-ethO
on the switch s1 connects host hl. The interface s1-ethl on the switch s1 connects host
h2.

Step 2. Start the switch daemon by typing the following command.

simple switch -i 0@sl-ethO -i 1@sl-ethl --nanolog ipc:///tmp/bm-log.ipc
basic.json &

root@sl: /behavioral-model

havioral-mode
n-log.ipc b

: havioral-mo + Calling target program-options parser
ding interface sl-eth® as rt @
ing interface sl-ethl as port 1

Figure 29. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The parameter is used to instruct the switch daemon that we want to see
the logs of the switch.

Page 21

Lab 4: Parser Implementation

6.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

root@s1l: /behavioral-model - O X

root@sl:/behavioral-model# simple switch -i 0@sl-eth® -i 1@sl-ethl basic.json

:/behavioral-model# Calling target program-options parser
ing face sl-ethe as port ©
Adding interface sl-ethl as port 1

1:/behavioral-model# [

Figure 30. Returning to switch s1 CLI.
Step 2. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab4/rules.cmd

root@sl: /behavioral-model

root@sl havioral-model#|simple switch CLI < ~/lab4/rules.cmd
Obtaining JSON from switch...
Done
Control utility for runtime P4 table manipulation
RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:00

MyIngress.forward

runtime data: 00:01

Entry has been added with handle ©

RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:01

Clas I F MyIngress.forward

runtime data: 00:00

Entry has been added with handle 1

RuntimeCmd:

root@sl:/behavioral-model# [j

Figure 31. Populating the forwarding table into switch s1.

7 Testing and verifying the P4 program

Step 1. Type the following command to initiate the client that will display the
switch logs.

nanomsg client.py

Page 22

Lab 4: Parser Implementation

root@sl: /behavioral-model

‘behavioral-model# |nanomsg client.py
not provi , using 1p //tm -log.ipc (obtained from switch)

g JSON from switch..

Figure 32. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command below so that the host starts listening
for packets.

./recv.py

"Host: h2"

buntu-vm: /home/admin# |./recv.
sniffing on h2-ethe

Figure 33. Listening for incoming packets in host h2.

Step 3. On host hl’s terminal, type the following command to send a packet to host h2.

./send.py 10.0.0.2 HelloWorld

"Host: h1"

root@Llubuntu-vm: /home/admin# |. /send.py 10.0.0.2 Helloworld
sending on interface hl-eth® to 10.0.0.2
###[Ethernet |###
dst A S B i o e
Src = 00:00:00:00:00:01
type IPv4
###[IP ###
version
ihl
tos
len
id
flags
frag =0
ttl 64
proto tcp
chksum 0x66¢C3
src = 10.0.0.1
dst = 10.0.0.2
\options \

Figure 34. Sending a test packet from host h1 to host h2.

Step 4. Inspect the logs on switch s1 terminal.

Page 23

Lab 4: Parser Implementation

root@s1: /behavioral-model

0g.ipc (obtained from switch)

PIPELINE

TABLE HIT,
ACTION EXECUTE
PIPELINE
PIPELINE €
PIPELINE

DEPA

Figure 35. Inspecting the logs in switch s1.

The figure above shows that the Ethernet and IPv4 header are extracted.

8 Augmenting the P4 program to parse IPv6

Now we will augment the program to parse IPv6 packets. Figure 4 shows the IPv6
header fields.

Step 1. Go back to the headers.p4 file and add the following constant definition.

const bit<l6> TYPE IPV6 = 0x86dd;

) headers.p4 - lab4 - Visual Studio Code

‘File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 X parser.p4 basic.p4

1 /*Define the data type and constant definitions below*/
2 typedef bit<48> macAddr t;
3 typedef bit<32> ip4Addr t;
4 const bit<l6> TYPE IPV4 = 0x800;
5 86dd;|

|const bit<16> TYPE IPV6 = Ox

Figure 36. Adding the IPv6 type definition.

Step 2. Add the IPv6 header definition as shown below.

header ipv6 t{
bit<4> version;
bit<8> trafficClass;
bit<20> flowLabel;
bit<16> payloadLen;
bit<8> nextHdr;
bit<8> hopLimit;

Page 24

Lab 4: Parser Implementation

bit<128> srcAddr;
bit<128> dstAddr;

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.pd4 X parser.p4 basic.p4
~ LAB4 headers.p4
basic.json 22 bit<13> fragOffset;
basic.p4 23 Eit<8> ttl; .
: : 24 it=8> protocol;
basic.pai 25 bit<16>phdrchecksum;
checksum.p4 26 ipaAddr t srcaddr;
deparser.pd 27 ip4Addr_t dstAddr;
egress.pd 28 }
headers.p4 29
ingress.p4 30 /*Define the IPv6 header below*/
labd.mn 31 |header ipv6_t {
32 bit<4= version;
PRI 33 bit<8= trafficClass;
34 bit<28> flowLabel;
35 bit<16> payloadlLen;
36 bit<8> nextHdr;
37 bit<8> hopLimit; [
38 bit<128> srcAddr;
39 bit<128> dstAddr;
40 |}
41

Figure 37. Adding the IPv6 header definition.

Step 3. Append the IPv6 header to the header’s data structure.

ipvé6 t ipvé6;

headers.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 X parser.p4 basic.p4
v LAB4 headers.p4
basic.json 33 bit<8> trafficClass;
basic.p4 34 bit<20> flowLabel;
basic.p4i 35 bit<16> payloadLen;
checksum.p4 36 b?‘t<8> neXtHdr;
denarser e 37 bit<8> hopLimit;
) 38 bit<128> srcAddr;
egresspd 39 bit<128> dstAddr;
headers.p4 40 }
ingress.p4 41
lab4.mn 42 /*Define the metadata struct below*/
parser.p4 43 struct metadata{
44 | /*empty*/
45
46

47 /*Define the headers struct below*/
48 struct headers{

49 ethernet t ethernet;
50 ipv4 t ipv4;

5
52}

53

Figure 38. Adding IPv6 type to the header data structure.

Step 4. Go to the parser.p4 file and add the following line to the parse ethernet]state.

Page 25

Lab 4: Parser Implementation

TYPE IPV6: parse ipv6;

parser.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal
EXPLORER headers.p4
v LAB4 REULS parser.p4
basic.json 13
basic.p4 14
basic.p4i 15
checksum.p4 16
deparser.p4 w
: 18
egress.p4 19
headers.p4 20
ingress.p4 21
lab4.mn 22
parser.p4 23
24
25
26
27
28

Figure 39. Including the IPv6 state transition into the parse ethernet]state.

Step 5. Add the state inside the parser by inserting the following code.

state parse ipvé6 {
packet.extract (hdr.ipv6)
transition accept;

Help

parser.pd X basic.p4

/*Add the parse ethernet state below*/
state parse ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE IPV4: parse ipv4;
|TYPE IPV6: parse ipv6; |
default: accept;

}

/*Add the parse ipv4 state below*/

state parse ipv4 {
packet.extract(hdr.ipv4);
transition accept;

}

’

parser.p4 - lab4 - Visual Studio Code

Help

parser.pd X basic.p4

/*Add the parse ethernet state below+*/
state parse ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE _IPV4: parse ipvé4;
TYPE IPV6: parse ipv6;
default: accept;

}

/*Add the parse ipv4 state below*/

state parse ipvé4 {
packet.extract{hdr.ipv4);
transition accept;

}

/*Add the parse ipvé state below*/

File Edit Selection View Go Run Terminal
EXPLORER e headers.p4
~ LAB4 LELA parser.pd
basic.json 13
basic.pa 14
basic.p4i 15
checksum.p4 16
deparser.p4 i;
egress.p4 19
headers.p4 20
ingress.p4 21
lab4d.mn 22
23
parser.pd 9
25
26
27
28
29
30
31
32
33

state parse ipvée {
packet.extract(hdr.ipv6);
transition accept;

}

Figure 40. Adding

state to the parser.p4 file.

Step 6. Save the changes by pressing[Ctrl+s|.

Page 26

Lab 4: Parser Implementation

Step 7. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

basic.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 basic.p4 X
v LAB4 basic.pa
basic.json | ¥ % P A6 - K
2 #include <core.p4>

basic.pai 3 #}nclude <vlmodel.p4>
; 4 #include "parser.p4"
checksum 5 #include "checksum.p4"
fepatserns 6 #include "ingress.p4"
egress.p4 7 #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 9
lab4.mn 10 .
parserpa 11 V1Switch(

12 MyParser(),

13 MyVerifyChecksum(),

14 MyIngress(),

15 MyEgress(),

16 MyComputeChecksum(),

17 MyDeparser()

18) main;

19

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab4$|p4c basic.p4

admin@lubuntu-vm:~/P4_Labs/lab4$

Figure 41. Compiling the P4 program.
Step 8. Type the command below in the terminal panel to push the basic.json file to the

switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password [password].

push to switch basic.json sl

Page 27

Lab 4: Parser Implementation

basic.p4 - lab4 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 basic.p4 X
+ LAB4 basic.p4
basic.json 1 Ptz PE 16 % iKY
basic.p4 2 #include <core.p4=
basic.p4i 3 #include <v1lmodel.pd=
4 #include "parser.p4"
Sl 5 #include "checksum.p4"
U PEEERR 6 #include "ingress.p4"

egress.p4 7 #include "egress.p4"

headers.p4 8 #include "deparser.p4"
ingress.p4 9
lab4.mn 10 .
et 1 V1switch(
1 MyParser(),
13 MyVerifyChecksum(),
14 MyIngress(),
15 MyEgress(),
16 MyComputeChecksum(),
17 MyDeparser()
18) main;
PROBLEMS ~ OUTPUT TERMINAL DE SOLE
admin@lubuntu-vm:~/P4_Labs/lab4% pdc basic.p4
admin@lubuntu-vm:~/P4_Labs/labd$|push to switch basic.json sl
[sudo] password for admin:
admin@lubuntu-vm:~/P4 Labs/lab4s |
Figure 42. Pushing the P4 program to switch s1.
9 Testing and verifying the augmented P4 program

Step 1. In switch s1 terminal, press to return to the CLI. The figure below
shows the output after executing the command

root@s1l: /behavioral-model

Obtaining JSON from switch...

e: PACKET IN, port in: ©

type: PARSER START, parser 1id:

type: PARSER EXTRACT, header id: 2 (ethernet)

type: PARSER EXTRACT, header id: 3 (ipv4)

type: PARSER DONE, parser p

type: PIPELINE START, pipeli -

type: TABLE MISS, table id: © (MyIngre

type: ACTION EXECUTE, ion id: 1 ngress.drop)

type: PIPELINE DONE, 1

“CTraceback (most

File "/usr/local/ . , in <module>
malin(

omsg client.py ine 528, 1n main
client)

/nanomsg client.py”, line 468, 1 recv msgs

ite-packages/nnpy/socket.py”, line 60, in r

buf, NN MSG, flags)

Figure 43. Returning to the CLI.

Page 28

Lab 4: Parser Implementation

Step 2. Type the command below in the terminal of switch sl to stop the running
daemon.

pkill simple switch

root@sl: /behavioral-model

Flpkill simple_switch

Figure 44. Ending switch s1 P4 process.

Step 3. Type the command below in the terminal of the switch s1 to start the daemon
with the new P4 program.

simple switch -i 0@sl-ethO -i 1@sl-ethl --nanolog ipc:///tmp/bm-log.ipc
basic.json &

root@sl: /behavioral-model

havioral-mode
m-1log.ipc basic.json &

Calling target program-options parser

Figure 45. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.
Step 4. In switch s1 terminal, press Enter to return the CLI.

root@sl: /behavioral-model - O X

root@sl:/behavioral-model# simple switch -1 0@sl-eth® -1 1@sl-et --nanolog
ipc:///tmp/bm-1log.ipc basic.json &

[1] 33

root@sl:/behavioral-model# Calling target program-options parser

Adding interface sl-eth® as port ©

Adding interface sl-ethl as port 1

root@sl:/behavioral-model# I

Figure 46. Returning to switch s1 CLI.

Step 5. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab4/rules.cmd

Page 29

Lab 4: Parser Implementation

root@sl: /behavioral-model

root@sl: havioral-model#|simple switch CLI < ~/lab4/rules.cmd
Obtaining JSON from switch...

Done

Control utility for runtime P4 table manipulation

RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:00

action: MyIngress.forward

runtime data: 00:01

Entry has been added with handle ©

RuntimeCmd: Adding entry to exact match table MyIngress.forwarding
match key: EXACT-00:01

action: MyIngress.forward

runtime data: 00:00

Entry has been added with handle 1

RuntimeCmd:

root@sl:/behavioral -model I

Figure 47. Populating the forwarding table into switch s1.

Step 6. Type the following command to display the switch logs.

nanomsg client.py

root@sl: /behavioral-model
havioral-model# |nano
cket' not provid using 1ipc:/; 1 m-log.ipc (obtained from s
aining JSON from switch..
Done

Figure 48. Inspecting the logs in switch s1.

Step 7. On host h1’s terminal, type the following command to send an IPv6 packet to
host h2. Note that is IPv6 address of host h2.

./send ipvé6.py bbbb::1 HelloWorld

"Host: h1"

root@lubuntu-vm:/home/admin# |. /send ipv6.py bbbb::1 HelloWorld
bbbb::1
sending on interface hl-eth® to bbbb::1
###| Ethernet 1##
dst = TRttt et T8 1T
Src = 00:00:00:00:00:01
type = IPv6
###[IPv6 |###
version = 6
tc ¢}
fl ¢}
plen = 20
nh = TCP
hlim = 64
Src aaaa::1
dst bbbb::1
###[TCP |###
sport 57137
dport 1234

Figure 49. Sending an IPv6 test packet from host h1 to host h2.

Page 30

Lab 4: Parser Implementation

Step 8. Go back to switch s1 a

Entry has been added with
RuntimeCmd:

root@sl:/behavioral
'--socket’
Obtaining
Done
type:

JSON fron
PACKET

PARSER

PARSER

PARSER EXTRACT,
PARSER DONE, pa
PIPELINE START,
TABLE HIT, table id:
ACTION EXECUTE,
PIPELINE DONE,
PIPELINE START,
PIPELINE DONE,
DEPARSER START,
CHECKSUM UPDATE,
DEPARSER EMIT,
DEPARSER DONE,
PACKET OUT, port

model# nanomsg
not provided, u

pipeline id: ©

action
pipelin
pipeline id: 1
pipeline id: 1
deparsel
cksum id: ©
heade
depar
out: 1

nd inspect the logs.

root@sl: /behavioral-model
handle 1

client.py

sing ipc:///tmp/bm-log.ipc

switch...

(1ngress)
® (MyIngress rding),
1d:

id: ©

(ingress)
(egress)

(egress)
(deparser)
(cksum)

(ethernet)

1d: ©

r-ia: 2

ser id: 0 (deparser)

(obtained from switch)

entry hdl: ©

yrward)

Figure 50. Inspecting the logs in switch s1.

The figure above shows that the Ethernet and IPv6 header are extracted.

This concludes lab 4. Stop the emulation and then exit out of MiniEdit.

References

=

https://tinyurl.com/3z

k8vs6a.

2. “p4c core.pd”. [Online]. Available:
https://github.com/p4lang/p4c/blob/main/p4include/core.p4.
3. “p4cvlimodel.p4”. [Online]. Available:
https://github.com/p4lang/p4c/blob/main/p4include/vimodel.p4.

C. Cascaval, D. Daly. "P4 Architectures." [Online]. Available:

P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.

Page 31

A

UNIVERSITY OF

SOUTH CAROLINA

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 5: Introduction to Match-action Tables

Document Version: 03-30-2023

Lab 5: Introduction to Match-action Tables

Contents
OVEIVIBW ...ttt ettt ettt e e e et et e e e e et e e e e e e et e e e e e e e e eeeeeees 3
(0] o 1101 4 V7= PUPPP 3
(1Y Y=Y T =P PP P UPPPRUPPPPR 3
(1Y o o - o [g - T T PP UPPRRUPRRPR 3
1 Introduction to coONtrol BIOCKSccoiviiiiiiiiiiiiic e 3
00 R I o 1= PRSP 4
0 |V -1 ol o I 1Y/ o1 RPN 4
1.3 EXACE MATCR it s 4
1.4 Longest prefix match (LPM)ooo it 6
P2 - o B o o To] Uo Y =AY 2P PPRPR 7
2.1 Starting @NA NOSES .oeveiii e 9
3 Defining a table with exact match l0OKUPcceeeivieeeiiiieiiee e, 10
3.1 Loadingthe programming environmMent........cccccviiiiieeiiiiecicireee e, 11
3.2 Programming the exact table in the ingress blocK..........cccecvviiieiieiiiiccciiieeen, 11
4 Defining a table with LPM mMatching.......cooocciiiiiieiie e 17
4.1 Programming the ingress BIOCK........cuevii it 17
SR WoY-To [T o T= 0 d o [T o oY oY= {1 o F U 19
5.1 Compiling and loading the P4 program to switch s1ccccovvvvvieeiieiicciiiieennnn. 19
5.2 Verifying the configurationccoooociiiiie e 21
6 Configuring SWItCh SL....coiiiiiiiee e et aaee s 22
6.1 Mapping P4 Program’s POItS........ccccciieeeeeiiiieeeeiiieeeeeeieeeeeereeeeseraeeesessaeeeeennes 22
6.2 Loading the rules to the SWitCh.......cccuvviiiiiiiiic e, 24
7 Testing and verifying the P4 program........ccccccuveeiieiiiieieiieee e eeieee e e e e 25
RETEIENCES ...ttt st e s e s i e s bt e e s bt e e sneeesanee 28

Page 2

Lab 5: Introduction to Match-action Tables

Overview

This lab describes match-action tables and how to define them in a P4 program. It then
explains the different types of matching that can be performed on keys. The lab further
shows how to track the misses/hits of a table key while a packet is received on the switch.

Objectives

By the end of this lab, students should be able to:
Understand what match-action tables are used for.
Describe the basic syntax of a match-action table.

Implement a simple table in a P4.
Trace a table’s misses/hits when a packet enters to the switch.

PwnNPE

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap
This lab is organized as follows:

Section 1: Introduction.

Section 2: Lab topology.

Section 3: Defining a table with exact match lookup.
Section 4: Defining a table with LPM matching
Section 5: Loading the P4 program.

Section 6: Configuring switch s1.

Section 7: Testing and verifying the P4 program.

Nouhs~wnNeR

1 Introduction to control blocks

Page 3

Lab 5: Introduction to Match-action Tables

Control blocks are essential for processing a packet. For example, a control block for layer-
3 forwarding may require a forwarding table that is indexed by the destination IP address.
The control block may include actions to forward a packet when a hit occurs, and to drop
the packet otherwise. To forward a packet, a switch must perform routing lookup on the
destination IP address. Figure 1 shows the basic structure of a control block.

1.1

Control Control Control L,
block block block
Match Action Match Action

Figure 1. Control blocks.

Tables

Tables are essential components that define the processing behavior of a packet inside
the switch. A table is specified in the P4 program and has one or more entries (rows)
which are populated by the control plane. An entry contains a key, an action, and action

data.

1.2

Key: it is used for lookup operations. The switch builds a key for the incoming
packet using one or more header fields (e.g., destination IP address) and then
lookups for that value in the table.

Action: once a match occurs, the action specified in the entry is performed by the
arithmetic logic unit. Actions are simple operations such as modify a header field,
forward the packet to an egress port, and drop the packet. The P4 program
contains the possible actions.

Action data: it can be considered as parameter/s used along with the action. For
example, the action data may represent the port number the switch must use to
forward the packet. Action data is populated by the control plane.

Match types

There are three types of matching: exact match, Longest Prefix match (LPM), and ternary
match. They are defined in the standard library (core.p4'). Note that architectures may
define and implement additional match types. For example, the V1Model? also has
matching based on ranges and selectors. In this lab we will discuss exact match.

1.3

Exact match

Page 4

Lab 5: Introduction to Match-action Tables

Assume that the exact match lookup is used to search for a specific value of an entry in a
table. Assume that Table 2 matches on the destination IP address. If an incoming packet
has 10.0.0.2 as the destination IP address, then it will match against the second entry and
the P4 program will forward the packet using port 2 as the egress port.

Table 2. Exact match table.

Key Action Action data
10.0.0.1 forward port 1
10.0.0.2 forward port 2
default drop

Figure 2 shows the ingress control block portion of a P4 program. Two actions are defined,
[drop| and [forward. The [drop] action (lines 5 - 7) invokes the mark to drop| primitive,
causing the packet to be dropped at the end of the ingress processing. The action
(lines 8 - 10) accepts as input (i.e., action data) the destination port. This parameter is
inserted by the control plane and updated in the packet during the ingress processing. In
line 9, the P4 program assigns the egress port defined by the control plane to the
[standard metadatal egress specification field (i.e., the field that the traffic manager
looks at to determine which port the packet will be sent to). Lines 11-21 implement a
table named [ipv4 exact]. The match is against the destination IP address using the exact
lookup method. The actions associated with the table are forward and drop. The default
action which is invoked when there is a miss is drop. The maximum number of entries a
table can support is configured manually by the programmer (i.e., 1024 entries, see line
19). Note, however, that the number of entries is limited by the amount of memory in the
switch.

The control block starts executing from the apply statement (see lines 22-26) which
contains the control logic. In this program, the table is enabled when the
incoming packet has a valid IPv4 header.

Page 5

Lab 5: Introduction to Match-action Tables

/-ii%il%b%bb%bbbbb#b##bQQINGRESS PROCESSINGi-iE%i%%b%bb%66666060060/
control MyIngress(inout headers hdr,

inout metadata meta,

inout standard_metadata_t standard_metadata){

action drop(){
mark_to_drop(standard_metadata);
}
action forward(egressSpec_t port) {
standard_metadata.egressSpec = port;
¥
table ipv4_exact {
key = {
hdr.ipv4.dstAddr:exact;
b
actions = {
forward;
drop;
b
size = 1024;
default_action = drop();
}
apply {
if (hdr.ipv4.isvalid()){
ipv4_exact.apply();

0NV WNBR

Figure 2. Ingress control block portion of a P4 program. The code implements a match-action table
with exact match lookup.

1.4 Longest prefix match (LPM)

Table 2 is an example of a match-action table that uses LPM. Assume that the key is
formed with the destination IP address. If an incoming packet has the destination IP
address 172.168.3.5, two entries match. The first entry matches because the first 29 bits
in the entry are the same as the first 29 bits of the destination IP. The second entry also
matches because the first 16 bits in the entry are the same as the first 16 bits of the
destination IP. The LPM algorithm will select 172.168.3.0/29 because of the longest prefix
preference.

Table 2. Match-action table using LPM as the lookup algorithm.

Key Action Action data
172.168.3.0/29 forward port 1,
macAddr=00:00:00:00:00:01
172.168.0.0/16 forward port 2,
macAddr=00:00:00:00:00:02
default drop

Figure 3 shows the ingress control block portion of a P4 program. Two actions are defined,
[drop| and [forward|. The [drop] action (lines 5 - 7) invokes the mark to drop| primitive,
causing the packet to be dropped at the end of the ingress processing. The action
(lines 8 - 11) accepts as input (action data) the port and the destination MAC address.
These parameters are inserted by the control plane and updated in the packet during the
ingress processing.

Page 6

Lab 5: Introduction to Match-action Tables

In line 9, the P4 program assigns the new egress port to the standard metadatal egress

port field (i.e., the field that the traffic manager looks at to determine which port the
packet must be sent to). Line 10 assigns the destination MAC address passed as parameter

to the packet's new destination address.

Lines 12-22 implement a table named [ipv4 1pn. The table is matching against the
destination IP address using the LPM type. The actions associated with the table are
[forward and [drop| The default action is invoked when there is a miss. The maximum

number of entries is defined by the programmer (i.e., 1024 entries, see line 20).

The control block starts executing from the apply statement (see lines 23-27) which
contains the control logic. In this program, the table is activated in case the

incoming packet has a valid IPv4 header.

action drop(){
mark_to_drop(standard_metadata);

}

C0ONOUVT A WNBRE

standard_metadata.egressSpec = port;
hdr.ethernet.dstAddr = dstAddr;
¥
table ipv4_1pm {
key = {
hdr.ipv4.dstAddr:1pm;
¥
actions = {
forward;
drop;
b
size = 1024;
default_action = drop();
b
apply {
if (hdr.ipv4.isValid()){
ipv4_lpm.apply();

/J >k 3k k >k 3k >k ok >k ok >k ok 5k 3k skook ok kok 3k OINGRESS PROCESSING k 3k >k >k Kk >k >k ok >k ok 5k skok ok 5k kok sk sksk /
control MyIngress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata){

action forward(egressSpec_t port, macAddr_t dstAddr) {

Figure 3. Ingress control block portion of a P4 program. The code implements a match-action table

with LPM lookup.

2 Lab topology

Let’s get started by opening a simple Mininet topology using MiniEdit. The topology

comprises three end hosts and one P4 programmable switch.

Page 7

Lab 5: Introduction to Match-action Tables

hl sl h3

S
h1-eth0 s1-eth0 1& sl-eth2 h3-eth0
sl-ethl

s (-1

10.0.0.1 .0.0.1

h2-eth0

a4

20.0.0.1
Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Computern

MiniEdit

Terminal

Figure 5. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab5 folder and search for the topology file called /lab5.mn and click on
Open. A new topology will be loaded to MiniEdit.

Page 8

Lab 5: Introduction to Match-action Tables

- MiniEdit
Edit Run Help

New

IOpen |

Save
Export Level 2 Script

c d Directory: /home/admin/P4_Labs/lab5 _.‘ Bk
= ==
=<
(ET]
File name: lab5.mn Open
Files of type: Mininet Topology (*.mn) =1 Cancel

Figure 6. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Stop l.,__Ji

Figure 7. Running the emulation.

2.1 Starting end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Page 9

Lab 5: Introduction to Match-action Tables

File Edit Run Help

R

(]

h1 Host Options

>
Ey_ =
St h3

Terminal

% =

Figure 8. Opening a terminal on host h1l.

Step 2. Verify the interfaces’ configuration by issuing the following command.
ifconfig

“"Host: h1"

root@lubuntu-vm: /home/admin# |ifconfig
hl-ethe®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 10.0.0.1 netmask 255.0.0.0 broadcast

ether 00:00:00:00:00:01 txqueuelen 1000 (Ethernet)

RX packets © bytes 0 (0.0 B)

© dropped © overruns © frame 0
bytes 270 (270.0 B)
dropped © overruns @ carrier @ collisions ©

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns © frame ©
TX packets © bytes 0 (0.0 B)
TX errors © dropped 0 overruns @ carrier @ collisions ©

root@lubuntu-vm: /home/admin# I

Figure 9. Verifying the configuration host h1 interfaces.

3 Defining a table with exact match lookup
This section demonstrates how to implement a simple table in P4 that uses exact

matching on the destination IP address of the packet. When there is a match, the switch
forwards the packet from a certain port. Otherwise, the switch drops the packet.

Page 10

Lab 5: Introduction to Match-action Tables

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Computer

MiniEdit

Terminal

Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI).

Step 2. In the terminal, type the command below. This command launches the Visual

Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4 Labs/lab5

admin@lubuntu-vm: ~

File Actions Edit View Help

admin@lubuntu-vm: ~ [X]
admin@lubuntu-vm:~$ |code

Figure 11. Launching the editor and opening the lab5 directory.
3.2 Programming the exact table in the ingress block

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Page 11

Lab 5: Introduction to Match-action Tables

! ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X

inout metadata meta,

4

5 control MyIngress(inout headers hdr,

o

7 inout standard metadata t standard metadata) {

1 j

Figure 12. Opening the ingress processing block.

We can see that the ingress.p4 declares a control block named Myingress. Note that the
body of the control block is empty. Our objective is to define a P4 table, its actions, and
then invoke them inside the block.

Step 2. We will start by defining the possible actions that a table will call. In this simple
forwarding program, we have two actions:

e [forward]: This action defines a set of basic operations on a packet header. Such
operations are defined as follows: 1) Updating the egress port so the packet is
forwarded to its destination through the correct port. 2) Updating the source MAC
address with the packet’s previous destination MAC address. 3) Changing the
destination MAC address of the packet with the one corresponding to the next
hop. 4) Decrementing the time-to-live (TTL) field in the IPv4 header.

e [drop|: this action will be used to drop the packet.

Step 3. The following code fragment describes the behavior of the action. Insert
the code below inside the MyIngress control block.

action forward(macAddr t dstAddr, egressSpec t port) {
standard metadata.egress spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipvéd.ttl = hdr.ipvéd.ttl - 1;

Page 12

Lab 5: Introduction to Match-action Tables

ingress.p4 - lab5 - Visual Studio Code
File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4d X
~ LABS ngress.pd
bas‘_:.p 4 1 Jf.k.v..#..v..#..k B T
c-1e:ksun‘ p4 2 EE R e R e I N G R E S S P R O c E S S I N G e e e e e o o o e o o o o o e e
)) 3 EE R R R R R R SRR RS II{
deparser.p4 4
egress.pd 5 control MyIngress(inout headers hdr,
headers.p4 6 inout metadata meta,
ingress.p4 7 inout standard metadata t standard metadata) {
lab5.mn 8
parser.p4 9 action forward(macAddr t dstAddr, egressSpec t port){
10 standard_metadata.egress_spec = port;
11 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
12 hdr.ethernet.dstAddr = dstAddr;
13 | hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
14 ¥

Figure 13. Defining the action.

The action accepts as parameters the next hop’s MAC address (i.e.,
[dstAddr]) and the port number (i.e., egressspec_t port]) to be used by the switch to

forward the packet. Note thatfegressspec t]is just a typedef that corresponds to

and is a typedef that corresponds topit<48>] These types are defined in the
headers.p4 file.

The[standard metadatalis aninstance of the [standard metadata t]struct provided by
the V1Model?. This struct contains intrinsic metadata used in packet processing and in
more advanced features. For example, to determine the port on which a packet arrives,
we can use the [ingress port] field in the [standard metadatal (i.e.,
[standard metadata.ingress_port]). Similarly, the egress portfegress_spedfield of the
[standard metadatadefines the egress port. Line 12 shows how to assign the egress port
to forward an incoming packet to its destination.

To modify header fields inside the packet, we refer to the field name based on where it
exists inside the headers. Recall that the names of the headers and the fields are defined
by the programmer. The file headers.p4 defines the program’s headers. Line 13 shows
how we are assigning the destination MAC address of the packet (i.e.,
lhdr.ethernet.dstAddr]) to be the new source MAC of the packet (i.e.,
lhdr.ethernet.srcAddr). Line 14 shows how we are assigning the destination MAC
address which is provided as a parameter (assigned later in the control plane) to be the
new destination MAC of the packet.

It is possible in P4 to perform basic arithmetic operations on header fields and other
variables. In line 15, we are decrementing the TTL value of the header field.

Step 4. Now we will define the drop action. Insert the code below inside the Mylingress
control block.

action drop() {
mark to drop(standard metadata);

}

Page 13

Lab 5: Introduction to Match-action Tables

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help
EXPLORER ingress.pd X
~ LABS ngress.p4
basic.p4 1 JEER R KRR KRR R AR R R R R R R KRR
checksum.p4 2 HRRkkkddsdkkstkt TNGRESS PROCESSING wekksbkokidkdhsdidik
) B 3 d--t-‘t'c-t-td--k-'-*-‘*-td--k-c*-'c-i-t#--k-c-t-'c-i-t*--k'c-t-'c-i-t#--k'c-t-'c-t-k#-k-'c-t-‘-t-ki-k-'c-t-‘-t-ki--t-'c-i-'--t-k#--k-'c-i-'--l-k#--t-'c/‘
deparser.p4 4
egress.pd 5 control MyIngress{inout headers hdr,
[zt 6 inout metadata meta,
ingress.pd 7 inout standard_metadata_t standard metadata) {
lab5.mn 8
parser.p4 9 action forward(macAddr t dstAddr, egressSpec t port){
10 standard metadata.egress spec = port;
11 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
12 hdr.ethernet.dstAddr = dstAddr;
13 hdr.ipvé4.ttl = hdr.ipv4.ttl - 1;
14 b
15
16 action drop() {
17 mark_to_drop(standard metadata);
18 }
19}

Figure 14. Defining the action.

The action invokes a primitive action mark to_drop ()] that modifies the

[standard metadata.egress sped to an implementation-specific special value that

causes the packet to be dropped.

Step 5. Now we will define the table named [ipv4_exact]. Write the following piece of
code inside the body of the Mylngress control block.

table ipvé4 exact {

}

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help
@ EXPLORER ingress.p4 X
~ LABS ngress.pd
basic_p4 1 Jf.k.-cA.-cA.k*..k.-cA.-cA.k*.k-cA.-cA.k#..k.‘A.‘A.k#..*.‘A.-u.t.i*.i.-cA.-cA.k*..k.-cA.-cA.k*..k.-cA-cAk*.k.-c.k.-c.k.k#..k.v.A.v.A.*d..*.xA
c'1ecksun".p4 2 e oo e e e o el e ol e I N G R E S S P R 0 c E s S I N G e e R R
5 - 3 i--k-‘A-‘A-ki--k-‘h&-‘h&-ki-k‘»t-wt-ki--k-'--k-'--#‘-k#--k-‘--{-‘h&-ki-k-‘cA-‘cA-ki--k-‘A-‘A-ki--k-‘A‘Aki-k-hk.-s.k.k:i..k.v..«.v..«.kd..k.-g}/
deparser.p4 4
egress.pd 5 control MyIngress{inout headers hdr,
headers.p4 6 inout metadata meta,
ingress.p4 7 inout standard metadata t standard metadata) {
lab5.mn 8
parserp4 9 action forward(macAddr_t dstAddr, egressSpec_ t port){
10 standard metadata.egress spec = port;
11 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
12 hdr.ethernet.dstAddr = dstAddr;
13 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
14 H
15
16 action drop() {
17 mark_to drop(standard metadata);
18 }
19
20 table ipv4 exact {
21
22 +
23}

Figure 15. Declaring the table.

Tables require keys and actions. In the next step we will define a key.

Page 14

Lab 5: Introduction to Match-action Tables

Step 6. Add the following code inside the forwarding table.

key = {
hdr.ipv4.dstAddr: exact;

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.pd X
~ LABS ngress.p4
basic.p4 ‘;
checksum.p4 5 control MyIngress({inout headers hdr,
deparser.p4 6 inout metadata meta,
egress.p4 7 inout standard metadata t standard metadata) {
headers.p4 8)
P — 9 action forward(macAddr t dstAddr, egressSpec t port){
10 standard metadata.egress spec = port;
lab5.mn 11 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
parser.p4 12 hdr.ethernet.dstAddr = dstAddr;
13 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
14 }
15
16 action drop() {
17 mark_to_drop(standard metadata);
18 }
19
20 table ipv4 exact {
21 key = {
22 | hdr.ipv4.dstAddr: exact;
23 b
24 }
25}
26

Figure 16. Specifying the key and the match type.

The inserted code specifies that the destination IPv4 address of a packet
(hdr.ipv4.dstaddr]) will be used as a key in the table. Also, the match type is [exact],
denoting that the value of the destination IP address will be matched as is against a value
specified later in the control plane.

Step 7. Add the following code inside the forwarding table to list the possible actions that
will be used in this table.

actions = {
forward;
drop;

}

Page 15

Lab 5: Introduction to Match-action Tables

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4 X
~ LABS ngress.p4
basic.pd 7 inout standard metadata t standard metadata) {
checksum.p4 8
deparser.pa 9 action forward(macAddr t dstAddr, egressSpec t port){
o ey 10 standard metadata.egress_spec = port;
11 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
headersp4 12 hdr.ethernet.dstAddr = dstAddr;
(] EES 2 13 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
lab5.mn 14 }
parser.p4 15
16 action drop() {
17 mark_to drop(standard metadata);
18 }
19
20 table ipv4 exact {
21 key = 4
22 | hdr.ipv4.dstAddr: exact;
23 i
24 actions = {
25 forward;
26 drop;
27 }
28 }
29}

Figure 17. Adding the actions to the table.

The code above defines the possible actions.

Step 8. Add the following code inside the forwarding table. The keyword specifies
the maximum number of entries that can be inserted into this table from the control plane.
The [default action| keyword specifies which default action to be invoked whenever
there is a miss.

size = 1024;
default action = drop();

Page 16

Lab 5: Introduction to Match-action Tables

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.pd X
~ LABS ngress.p4
basic.p4 10 standard_metadata.egress_spec = port;
checksum.p4 11 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
deparser.p4 12 hdr.ethernet.dstAddr = dstAddr;
13 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
egress.pd)
headers.p4 i; ¥
ingress.p4 16 action drop() {
lab5.mn 17 mark_to drop(standard metadata);
parser.p4 18 }
19
20 table ipv4 exact {
21 key = {
22 hdr.ipv4.dstAddr: exact;
23 }
24 actions = {
25 forward;
26 drop;
27 }
28 size = 1024;
29 default action = drop();
30 b

Figure 18. Specifying the size and default action of the table.

The code above denotes that a maximum of 1024 rules can be inserted into the table, and
the default action to take whenever we have a miss is the [drop ()] action.

4 Defining a table with LPM matching

This section demonstrates how to implement a simple table in P4 that uses LPM matching
on the packet’s destination IP address. When there is a match, the switch forwards the
packet from a certain port. Otherwise, the switch drops the packet.

4.1 Programming the ingress block

Step 1. Now we will define a table that performs a LPM on the destination IP address of
the packet. The table will be invoking the forward and the drop actions, and hence, those
actions will be listed inside the table definition.

table ipv4 lpm {
key = {
hdr.ipv4.dstAddr: lpm;
}
actions = {
forward;
drop;
}
size = 1024;
default action = drop():;

Page 17

Lab 5: Introduction to Match-action Tables

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4 X
~ LABS ngress.pd

basic.p4 25 forward;

checksum.p4 26 drop;

deparser.pd 27 +

egress.pd 28 size = 1024;

e 29 default action = drop();

ingress.pd g? ¥

lab5.mn 32 table ipv4 lpm {]

parser.p4 33 key = {
34 |hdr.ipv4.dstAddr: Llpm;|
35 }
36 actions = {
37 forward;
38 drop;
39 }
40 size = 1024;
41 default action = drop();
42 b
43
44}

Figure 19. Defining the table implementing LPM lookup.

The code above shows that the match type is [Lpm|. The possible actions are and
[dropl. A maximum of 1024 rules can be inserted into the table, and the default action to
take whenever we have a miss is the action.

Step 2. Add the following code at the end of the Mylngress block. The block defines
the sequential flow of packet processing. It is required in every control block, otherwise
the program will not compile. It describes the sequence of tables to be invoked, in
addition to other packet processing instructions.

apply {
if (hdr.ipv4.isvalid()) {
if (ipv4 exact.apply () .miss) {
ipv4_lpm.apply () ;
}

Page 18

Lab 5: Introduction to Match-action Tables

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4 X

~ LABS ngress.pd
. T R S I

basic.p4 33 key = E

checksum.p4 34 hdr.ipv4.dstAddr: 1lpm;
deparser.p4 35 }
egress.pd 36 actions = {
headers.p4 37 forward;
38 drop;
39 }
a6 size = 1024;
parserp4 41 default_action = drop()
42 H
43
44 apply {
45 if(hdr.ipv4.isvalid()){
46 if(ipv4 exact.apply().miss){
47 ipva_1pm.apply();
48 }
49 }
50 bl
51
52}
53

Figure 20. Defining the block.

ingress.p4
lab5.mn

The logic of the code above is as follows: if the packet has an IPv4 header, apply the
table which performs an exact match lookup on the destination IP address.
If there is no hit (i.e., the table does not contain a rule that corresponds to this IPv4
address, denoted by the miss keyword), apply the table, which matches the
destination IP address of the packet against a network address.

Step 3. Save the changes to the file by pressing[ctrl + s|.

5 Loading the P4 program

5.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

Page 19

Lab 5: Introduction to Match-action Tables

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.pd4 X
~ LABS ngress.pd
basic.json ;; wu‘;e;"; 'ELP“' t
et 34 hdr.ipv4.dstAddr: lpm;
basic.pdi 35 }
checksum.p4 36 actions = {
deparser.pd 37 forward;
egress.p4 32 , drop;
headers.pd 40 size = 1024;
ingress.p4 a1 default action = drop();
lab5.mn 42 }
parser.p4 43
a4 apply {
45 if(hdr.ipv4.isvalid(}){
46 if(ipv4 exact.apply().miss){
47 | ipv4_lpm.apply();
48 }
49 }
50 }
51
52 }
53

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab5$
admin@lubuntu-vm:~/P4_Labs/lab5%

Figure 21. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the pdc compiler,
and the target switch name. If asked for a password, type the password [password].

push to switch basic.json sl

Page 20

Lab 5: Introduction to Match-action Tables

ingress.p4 - lab5 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.pd X
~ LAB5 ngress.p4
basic.json ;_;, w“;e;”;‘zwm t
b=EEE 34 hdr.ipv4.dstAddr: lpm;
basic.p4i 35 }
checksum.p4 36 actions = {
deparser.pd 37 forward;
egress.pd gg } drop;
headers.p4 40 size = 1024:
ingress.p4 41 default_action = drop();
lab5.mn 42 }
parser.p4 43
44 apply {
45 if(hdr.ipv4.isvalid()){
46 if(ipv4 exact.apply().miss){
47 | ipv4 lpm.apply();
48 }
49 }
50 }
51
52}
53

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4_Labs/lab5% p4c basic.p4

admin@lubuntu-vm:~/P4_Labs/lab5%|push to switch basic.json sl
[sudo] password for admin:
admin@lubuntu-vm:~/P4_ Labs/lab5$ |

Figure 22. Pushing the basic.json file to switch s1.

5.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

*= gterminal - 2 windows B MiniEdit basic.p4 - ...Studio Code

Figure 23. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Page 21

Lab 5: Introduction to Match-action Tables

File Edit Run Help

p 1
L
h1 ! Docker Options h3
|

h2

Figure 24. Opening switch s1 terminal.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the following command on switch s1 terminal to inspect the content of the
current folder.

1s

root@s1l: /behavioral-model

iavioral-model

Figure 25. Displaying the content of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

6 Configuring switch s1

6.1 Mapping P4 program’s ports
Step 1. Issue the following command on switch s1.

ifconfig

Page 22

Lab 5: Introduction to Match-action Tables

root@s1: /behavioral-model

root@sl:/behavioral-model#|ifconfig

ethe Link encap:Ethernet HWaddr 02:42:ac:11:00:02
inet addr:172.17.0.2 Bcast:172.17.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:27 errors:0 dropped:0 overruns:® frame:©
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
collisions:® txqueuelen:0O
RX bytes:3265 (3.2 KB) TX bytes:0 (0.0 B)

Link encap:Local Loopback

inet addr:127.0.0.1 q - 0.0

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:0 errors:0 dropped:® overruns:® frame:0
packets:0 errors:0 dropped:® overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWwaddr 0e:7e:48:32:53:a3

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:® overruns:0 frame:0
TX packets:0 errors:0 dropped:© overruns:0 carr
collisions:0® txqueuelen:1000

RX bytes:356 (356.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr 9e:¢5:42:78:07:16

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3 errors:0 dropped:® overruns:® frame:0
TX packets:0 errors:0 dropped:® overruns:0 carrier:0
co sion ueuelen:1000

RX bytes:270 (270.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr 26:15:f3:b2:bl:d4

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:® txqueuelen:1000

RX bytes:270 (270.0 B) TX bytes:0 (0.0 B)

Figure 26. Displaying switch s1 interfaces.

The output displays switch s1 interfaces (i.e., s1-eth0, s1-eth1 and s1-eth2). The interface
s1-ethO on the switch s1 connects to the host hl. The interface s1-ethl on the switch sl
connects to the host h2 and s2-eth2 is connected to host h3.

Step 2. Start the switch daemon and map the logical interfaces (i.e., ports) to the switch’s
interfaces by issuing the following command. The parameter is used to
instruct the switch daemon to provide the switch’s logs.

simple switch -i O@sl-eth0O -i 1@sl-ethl -i 2@sl-eth2 --nanolog ipc:///tmp/bm-
log.ipc Dbasic.json &

root@s1: /behavioral-model

root@sl:/behavioral-model#|simple switch -i 0@sl-eth® -i 1@sl-ethl -i 2@sl-eth2 --nanolog
ipc:///tmp/bm-Llog.1pc basic.json &
[1] 39

root@sl:/behavioral-model# Calling target program-options parser
Adding interface sl-eth® as port ©
Adding interface sl-ethl as port 1
Adding interface sl-eth2 as port 2

Page 23

Lab 5: Introduction to Match-action Tables

Figure 27. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

6.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

root@sl: /behavioral-model

root@sl:/behavioral-model# simple switch -i 0@sl-eth® -i

h2 --nanolog ipc:///tmp/bm-log.ipc basic.json&

[1] 34

root@sl:/behavioral-model# Calling target program-options parser

Adding interface sl-eth® as port ©
Adding interface sl-ethl as port 1
Adding interface sl-eth2 as port 2

root@sl:/behavioral-model# |J

Figure 28. Returning to switch s1 CLI.
Step 2. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab6/rules.cmd

root@sl: /behavioral-model

avioral-model#|simple switch CLI <= ~/lab5/rules.cmd
from switch...

entry to 1

match key: LPM-14:

action: MyIn

Figure 29. Populating the forwarding table into switch s1.

The script above pushes the rules to the switch daemon. We can see that we added three
entries to the [ipv4 exact]and[ipv4 lpn]tables.

e The key of the first entry is 10.0.0.0/8 (which translates to 0a:00:00:00 in
hexadecimal as shown in the figure above, next to match key) and its action is
forward. This entry is added to the table. The action parameters or

Page 24

Lab 5: Introduction to Match-action Tables

7

runtime data are 00:00:00:00:00:01 for the destination MAC (i.e., host h1’s MAC
address) and 0 for the output port (i.e., the port facing host h1).

The key of the second entry is 20.0.0.0/8 (which translates to 14:00:00:00 in
hexadecimal as shown in the figure above, next to match key) and its action is
forward. This entry is added to the table. The action parameter or
runtime data are 00:00:00:00:00:02 for the destination MAC (i.e., host h2’s MAC
address) and 1 for the output port (i.e., the port facing host h2).

The key of the third entry is 30.0.0.1 (which translates to 1e:00:00:01 in
hexadecimal as shown in the figure above, next to match key) and its action is
forward. This entry is added to the table. The action values are
00:00:00:00:00:03 for the destination MAC (i.e., host h3’s MAC address) and 2 for
the output port (i.e., the port facing host h3).

Testing and verifying the P4 program

Step 1. Type the following command to display the switch logs.

nanomsg_client.py

root@s1l: /behavioral-model

root@sl:/behavioral-model# |nanomsg client.py
'--socket' not provided, using 1ipc:///tmp/bm-log.ipc (obtained from switch)

Obtaining JSON from switch...

Done

Figure 30. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command the command below so that the host
starts listening for packets.

./recv.py

"Host: h2"

root@lubuntu-vm: /home/admin# |. /recv.py

sniffing on h2-e

Figure 31. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command to send a message to host h3.

./send.py 30.0.0.1 HelloWorld

Page 25

Lab 5: Introduction to Match-action Tables

root@lubuntu-vm: /home/admin#

"Host: h1"
./send.py 30.0.0.1 Helloworld

sending on interface hl-etho to 30.0.0.1

4
FEF

Ethernet
IP
version
ihl

tos

len

id

flags
frag

ttl
proto
chksum
Src

dst
\options
###| TCP |###
sport
dport

HHH
| #44

B B I B B e s
00:00:00:00:00:01
IPv4

4
=5

50
1

Figure 32. Sending a test packet from host hl to host h3.

Step 4. Verify that the packet was received on host h2. Notice that the TTL was

decremented.

frag
ttl
proto

"Host: h2"

T

e I o I =

@ U e

"HellowWorld'

Figure 33. Sending a test packet from host h1 to host h3.

Step 5. Inspect the logs on switch s1 terminal.

Page 26

Lab 5: Introduction to Match-action Tables

root@s1l: /behavioral-model

type: DEPARSER DONE, deparser id: © (deparser)
type: PACKET OUT, port out: 1

type: PACKET IN, port in: ©

type: PARSER START, parser id: 0 (parser)

type: PARSER EXTRACT, header id: 2 (ethernet)

type: PARSER EXTRACT, he - id: 3 (ipv4)

type: PARSER DONE, par 0 (parser)

type: [PIPELINE START, D e 1d: ess)

type: |CONDITION EVAL, condition id: © (node 2), result:

type: |TABLE HIT, table id: © (MyIngress.ipv4 exact), entry hdl:

type: |ACTION EXECUTE, action id: © (MyIngress.forward)
type: |PIPELINE DONE, pipeline id: © (ir
type: PIPECINE START, pipeline 1d: I (eg
type: PIPELINE DONE, pipeline id: 1 (egress)
type: DEPARSER START, deparser id: © (deparser)
CHECKSUM UPDATE, cksum id: 0 (c
DEPARSER EMIT, header id: 2 (ethernet)
DEPARSER EMIT, header id: 3 (ipv4)
DEPARSER DONE, deparser id: © (deparser)
PACKET OUT, port out: 2

Figure 34. Inspecting the logs in switch s1.

The figure above shows that there is a hit in the table. Then, the packet is

forwarded through port 2, which is connected to host h3.

Step 6. On host hl’s terminal, type the following command to send a message to host h2.
The output will show the Ethernet, IP and TCP header fields and their values. The payload

isHellowWorld.

./send.py 20.0.0.1 HelloWorld

"Host: h1"

ubuntu-vm:/home/admin# |. /send.py 20.0.0.1 Helloworld

ending on interface hl-etho to 20.0.0.1

[Ethernet]###
i B B N TS R B A 6
= 00:00:00:00:00:01
/pe = IPv4

IP |###

version -

ihl)

tos

len 50

1d 1

flags

frag 0]

ttl 64

proto tcp

chksum = Ox5cc4

sSrc 10.0.0.1

dst = 20.0.0.1

\options
###| TCP 1###

sport 59046
dport = 1234

Q. %%
-~ n
N

0

3

Figure 35. Sending a test packet from host h1 to host h2.

Step 7. Inspect the logs on switch s1 terminal.

Page 27

Lab 5: Introduction to Match-action Tables

root@s1: /behavioral-model

Obtaining JSON from switch...

Done

: PACKET
: PARSER

PARSER
: PARSER

R

IN, port in: ©

START, parser id: @ (parser)

EXTRACT, header id: 2 (ethernet)

EXTRACT, header id: 3 (ipv4)
s r)

:]PIPEETNE START, pipeline id: © (ingress)

: |CONDITION EVAL, condition id: © (node 2), result: True
: ITABLE MISS, table id: © (MyIngress.ipvé4 exact)

: |JACTION EXECUTE, action id: 2 (MyIngress.drop)

|TABLE_HIT, table id: 1 (MyIngress.ipv4 lpm), entry hdl:

:tACTION EXECUTE, action id: 1 (Mylngyes§.forward)

: PIPELIN

- DONE, pipeline id: © (ingress)

: PIPELINE START, pipeline id: 1 (egress)

: PIPELINE DONE, pipeline id: 1 (egress)

: DEPARSER START, deparser id: © (deparser)
: CHECKSUM UPDATE, cksum id: © (cksum)

: DEPARSER EMIT, header id: 2 (ethernet)

: DEPARSER EMIT, header id: 3 (ipv4)

: DEPARSER deparser id: 0 (deparser)

T

Figure 36. Inspecting the logs in switch s1.

Results show that there is a miss in the table, but there is a hit on the
[ipv4 lpntable. Then, the packet is forwarded through port 1, which is connected to host
h2. This behavior corresponds to the logic described by the block in the ingress

processing.

This concludes lab 5. Stop the emulation and then exit out of MiniEdit.

References

1. “p4c core.pd”. [Online]. Available:

https://github.com/p4lang/p4c/blob/main/p4include/core.p4.
2. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.
Mininet walkthrough. [Online]. Available: http://Mininet.org.
4. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

w

platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

5. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:

https://tinyurl.com/rruscv3.
6. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

Page 28

A

UNIVERSITY OF

SOUTH CAROLINA

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 6: Implementing a Stateful Packet Filter for
the ICMP Protocol

Document Version: 04-17-2023

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Contents
OVEIVIBW ...ttt ettt ettt e e e et et e e e e et e e e e e e et e e e e e e e e eeeeeees 3
(0] o 1101 4 V7= PUPPP 3
(1Y Y=Y T =P PP P UPPPRUPPPPR 3
(1Y o o - o [g T- T o IO PP UPPPRUPPRPR 3
R 101 1 o Yo [0t d o T o IO PP PUPPPRUPTPPR 3
O R o O 4= <11y o= TR UR R UROUORORTTRRRRRN 4
O A o T o TIPSR PP 5
1.3 LA SCONAIIO. ittt e e s 5
P2 - o B o o To] Uo Y =AY 2SS PPPPRR 6
2.1 Starting @NA NOSES .oveeiiii e 8
3 Creating a P4 program that performs stateful packet filtering..........ccccecovveveennnenn. 11
3.1 Loadingthe programming environNmMeNnt........ccccccviiiiieeiiiiciicireee e, 11
3.2 Defining the ICMP hEAdErSuviiiieiieee e e 12
3.3 Implementing a stateful packet filter for ICMPcccceiieiiiieiecieee e, 14
4 Loading the P4 Program.. ... et e e e e e e e e e e e rerree e e e e e e e e s nnaeeees 24
4.1 Compiling and loading the P4 program to switch slcccccceiiiiiciiiiiieeeeeeiees 24
4.2 Verifying the configurationc..eeeieii i 26
4.3 Mapping P4 program’s POIES.....ccccciieeieiiiieeeeciieee e cetee e e esree e e e erarae e e e esaaeeeeeaaneeas 27
5 Testing and verifying the P4 programi........cccccceeeeieccciiieeeeee e secrreree e e eeecvnreeeee e 27
5.1 Configuring the POliCY FUIESceiei e 27
5.2 Testing the P4 Program ...t e et e e e e e e e nnraen e e e e 29
20 =T =Y g Tl PRSP 31

Page 2

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Overview

This lab is an introduction to stateful packet filter in P4, a technique by which a network
administrator can implement network-based access control. In particular, the lab uses P4
registers to store the state of a connection. The lab further implements a stateful packet
filter for Internet Control Message Protocol (ICMP) via a policy defined by the network
administrator.

Objectives

By the end of this lab, students should be able to:
Understand stateful packet filters.
Understand what registers are used for.

Implement stateful packet filters in P4 using registers.
Test the defined policy for the stateful packet filter.

PwnNPE

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Creating a P4 program that performs stateful packet filtering.
4. Section 4: Loading the P4 program.
5. Section 5: Testing and verifying the P4 program.
1 Introduction

Packet filters control and manage the data flow across a network by filtering and analyzing
outgoing and incoming packets®. They are commonly implemented in firewalls or routers

Page 3

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

to protect networks from unauthorized access and malicious activities. Packet filters can
be broadly classified into two categories: stateless and stateful.

Stateless packet filters operate on a per-packet basis, examining each packet individually
without considering any previous packets?. Stateless filters use predefined rules based on
packet header information, such as source and destination IP addresses, port numbers,
and protocols. Based on these rules, the filter decides whether to allow or deny the packet.
Stateless filters are relatively simple and fast, as they do not maintain any information
about ongoing connections or packet history. However, their simplicity can also be a
disadvantage, as they are unable to recognize the context of a network connection and
may be less effective in detecting complex attacks or handling certain protocols.

Stateful packet filters, on the other hand, maintain a state table that tracks the status of
ongoing network connections?. By keeping track of connection states, stateful filters can
make more informed decisions about whether to allow or deny a packet. When a new
packet arrives, the stateful filter examines both the packet header and the current state
of the connection in its state table. If the packet is part of an existing, legitimate
connection, it is allowed through; otherwise, it may be denied based on the filter's rules.
Stateful packet filters provide a higher level of security compared to stateless filters, as
they can better handle connection-oriented protocols and detect malicious activities that
span multiple packets. However, they can be more resource-intensive and slower due to
the additional overhead of maintaining and updating the state table.

1.1 P4 registers

P4 targets implement registers to save arbitrary data. Multiple packets can access the
data stored in the registers. Registers in P4 are organized into named arrays of cells.
Registers can be read and written by both the control and the data plane. In P4, registers
are global memory resources meaning that any match-action tables can reference them.

The syntax below shows how to declare a register array in P4. The register array R1
contains M values of [N bits.

register<bit<N>> (M) R1;

Figure 1 depicts a graphical representation of the register R1]. The functions and
are used to store and retrieve values from a specific position, where an index
specifies the position3. For example, the programmer invokes the following function to
store the value in position 0 in the register array R1.

Rl.write(0,val)

Similarly, the user invokes the function shown below to read a value stored in position 3.
Note that the retrieved value is stored in the variable [res|.

Rl.read(res, 3)

Page 4

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Register R1
Index Value

0 «———— R1l.write(0,val)
1

2

3 —— > Rl.read(res,3)
4

5

6

7

N

Figure 1. Register array R1. The register array contains N entries of M bits. The index indicates
the position of the value. Using the functions [read| and [write], programmers can retrieve and
modify values in the register array.

1.2 Hashes in P4

P4 targets implement hash functions to map arbitrary data to a hash value. For example,
the V1Model implements hash functions as externs®. The following code shows how to
call a hash function in P4.

hash (hash val, algo, min val, {val 1, val 2, ..., val N}, (n bits, max val))
The parameters of the hash function are as follows:

e fhash vall: variable used to store the hash value.

e [algd] indicates the hashing algorithm. For example, the V1Model supports
crcl6, crc32, universal hashing (i.e., random), xor32, and others.

e [min vall: establishes the minimum hash value.

e [{val 1,val 2,.,val N}|: valuesto be hashed.

[n_bit]: number of bits of the output (i.e., width).

jax_vall: maximum hash value.

1.3 Lab scenario

This lab demonstrates how to implement a stateful packet filter for the ICMP protocol
using registers. Hashes are used to identify a flow, and registers are used to store the
flow’s state. The stateful packet filter will only allow hosts in the internal network to
originate ping tests towards hosts in the external network. ICMP flows that are not
originating from the internal network are dropped.

Page 5

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

The P4 program presented in this lab performs the following:

1- If the packet is an ICMP REQUEST, the state of the flow (i.e., the ICMP identifier)
is stored in a register.

2- If the packet is an ICMP reply, the ICMP identifier of the flow is extracted from the
register. If the extracted ICMP identifier matches the one in the ICMP REPLY
headers, the packet is accepted.

2 Lab topology

Let us get started by opening a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch. Host h1l is in the internal
network, host h2 is in the DMZ network, and host h3 is in the external network.

h1 sl h3
N R N
S > S
b h1-ethO sl-etho & s1-eth2 h3-eth0 |-

NS sl-ethl NS
192.168.0.10 216.0.0.10
Internal network External network
h2-etho| h2

172.16.0.10
DMZ

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Page 6

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Computern

MiniEdit

Terminal
Figure 3. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the /ab6 folder and search for the topology file called lab6.mn and click on
Open. A new topology will be loaded to MiniEdit.

MiniEdit

Edit Run Help

New
Open
Save
Export Level 2 Script o Open - 0 X

f

Directory: /home/admin/P4_Labs/lab6 4‘ 2%

8 206 |

(4 ¥

File name: |Iab6.mn I gpenl

Files of type: Mininet Topology (*.mn) AI Cancel ‘

2 |@RC *

Figure 4. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Page 7

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Stop l.,__Ji

Figure 5. Running the emulation.

2.1 Verifying the configuration of the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1l and
allows the execution of commands on that host.

File Edit Run Help

[]

P
| NE—

h1 Host Options h3

Figure 6. Opening a terminal on host h1.

Step 2. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Page 8

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

“"Host: h1"

root@lubuntu-vm: /home/admin# |ifconfig
hl-ethe: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.0.10 netmask 255.255.255.0 broadcast 0.0.0.0
ether 00:00:00:00:00:01 txqueuelen 1000 (Ethernet)
RX packets © bytes 0 (0.0 B)
RX errc @ dropped © overruns 0 frame ©
TX pé 5 I s 180 (180.0 B)
1g © overruns © carrier @ collisions ©

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop (queuelen 1000 (Local Loopback)
RX pacl 5 © bytes 0 (0.0 B)
: dropped © overruns © frame ©
TX packets © bytes 0 (0.0 B)
TX errors © dropped 0 overruns @ carrier 0

root@lubuntu-vm: /home/admin# [

Figure 7. Verifying the configuration host h1 interfaces.

Step 3. Hold the right-click on host h2 and select Terminal. This opens the terminal of
host h2 and allows the execution of commands on that host.

File Edit Run Help

R
(] == (]
sl

hl h3

':::3" B
lw'!

— — Host Options

Terminal

Figure 8. Opening a terminal on host h2.
Step 4. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Page 9

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

"Host: h2"

root@lubuntu-vm: /home/admin# |ifconfig

h2-etho: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 172.16.0.10 netmask 255.255.255.0 broadcast 0.0.0.0
ether 00:00:00:00:00:02 txqueuelen 1000 (Ethernet)

RX
RX
TX
TX

packets 9 bytes 882 (882.0 B)
errors © dropped © overruns © frame ©

packets 22 bytes 2140 (2.1 KB)
s © dropped © overruns © carrier © collisions ©

error

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6é ::1 prefixlen 128 scopeid 0x1O<host>
loop txqueuelen 1000 (Local Loopback)

RX
RX
TX
X

packets © bytes 0 (0.0 B)

errors © dropped © overruns © frame ©

packets © bytes 0 (0.0 B)

errors © dropped O overruns © carrier © collisions ©

root@lubuntu-vm: /home/admin# I

Figure 9. Verifying the configuration host h2 interfaces.

Step 5. Hold the right-click on host h3 and select Terminal. This opens the terminal of
host h3 and allows the execution of commands on that host.

File Edit Run Help

E

3 |
F ? E]H ost Options

=

Figure 10. Opening a terminal on host h3.

Step 6. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Page 10

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

"Host: h3"

buntu-vm:/home/admin#|ifconfig

: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 216.0.0.10 netmask 255.255.255.0 broadcast 0.0.0.0
ether 00:00:00:00:00:03 txqueuelen 1000 (Ethernet)

RX packets 7 bytes 686 (686.0 B)

RX errors © dropped © overruns © frame ©

TX packets 19 bytes 1846 (1.8 KB)

TX errors © dropped © overruns © carrier © collisions ©

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x1lO<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes © (0.0 B)
RX errors © dropped © overruns © frame ©
TX packets © bytes (6.0 B)
TX errors © dropped © overruns © carrier © collisions ©

root@lubuntu-vm: /home/admin# [}

Figure 11. Verifying the configuration host h3 interfaces.

3 Creating a P4 program that performs stateful packet filtering

This section demonstrates how to implement a stateful packet filter in P4 using registers.
The stateful packet filter will be applied to ICMP. First, you will load the programming
environment. Then, you will define the headers to parse ICMP. Afterwards, you will create
the P4 tables that implement the filtering policies. You will also implement the registers
to store the state of the flow. The flow ID is produced by hashing the source and the
destination IPv4 addresses. This flow ID is used as an index for the register array.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.
Alternatively, click on the terminal icon in taskbar located in the lower left-hand side.

Page 11

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Computer

MiniEdt

Terminal

Figure 12. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4 Labs/lab6

admin@lubuntu-vm: ~

File Actions Edit View Help

admin@lubuntu-vm: ~

admin@lubuntu-vm

Figure 13. Launching the editor and opening the lab6 directory.

3.2 Defining the ICMP headers

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Page 12

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

File Edit Selection View Go

v LAB6 DEBELS

basic.p4

checksum.p4

deparser.p4
egress.p4

= headers.p4

ingress.p4

lab6.mn

parser.p4

Run Terminal

headers.p4 - lab6 - Visual Studio Code

Help

headers.p4 X

OLCOoONOOWLE WN =

[
(o]

11
12
13
14
15
16
17
18
19
20
21

pa

const bit<16> TYPE IPV4 = 0x0800;
const bit<8> TYPE ICMP = 0x01;
const bit<8> TYPE TCP = 0x06;

/0.

* R ok Kk

S ok e o ok S ok S o o o o o S ok s o o o SR ok S ok i o o o ok ok s o R R ok o S o o ok o ok o Rk R ok Rk R R

S ok e o o o ok o ok o ok o o R Rk R R R R R R

¥kxkxkkxrexsx*x* HEADERS

R O e L O e]

typedef bit<9> egressSpec t;
typedef bit<48> macAddr t;
typedef bit<32> ip4Addr t;

header ethernet t {
macAddr t dstAddr;
macAddr t srcAddr;

bit<16> etherType;
}
header ipv4 t {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;

Figure 14. Inspecting the headers.p4 file.

Step 2. Define the ICMP header by adding the code shown below.

header icmp t {
bit<8> type;
bit<8> code;

bit<16> hdrChecksum;

bit<16> identifier;

bit<16> seqgNum;

headers.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal

EXPLORER

~ LAB6
basic.p4
checksum.p4
deparser.p4
egress.p4
headers.p4
ingress.p4
lab6.mn

parser.p4

Help

headers.p4 x

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

3ders

p4

bit<4> dataOffset;
bit<3> res;

bit<3> ecn;

bit<6> ctrl;
bit<16> window;
bit<16> checksum;
bit<16> urgentPtr;

/* Define the ICMP header below */

header icmp_t {
bit<8> type;
bit<8> code;
bit<16> hdrChecksum;
bit<16> identifier;
bit<16> segNum;

&R
Figure 15. Defining the ICMP header type.

Page 13

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Step 3. Save the changes to the file by pressing[ctrl + 4.

3.3 Implementing an ICMP stateful packet filter

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 ingress.p4 X
viaee BB UL O
basic.p4 1/ FE R R R KRR R R R R KRR
checksum.p4 2 exsrkkaekkkk T NGRESS PROCESSING kexkekskkkks
3 A o o o R o ok o o o ok o o o ok ki o ok i ok o ol o o o i ke i o o o ok o o o o o o o o o ok o o R e ok R ke
deparser.p4
AP ee 4 4
egress.p :
9 ‘ 5 control MyIngress(inout headers hdr,
headers.p4 6 inout metadata meta,
7 inout standard metadata t standard metadata) {
lab6.mn 8

parser.p4 9 action forward(egressSpec t port) {
10 standard metadata.egress spec = port;
11 }
12
13 action drop() {
14 mark to drop(standard metadata);
15 }
16
17 table ipv4 _exact {
18 key = {
19 hdr.ipv4.dstAddr: exact;
20 }
21 actions = {

Figure 16. Inspecting the ingress.p4 file.

We can see that the ingress.p4 declares a control block named MyIngress| Inside this
block, a table is defined which matches on the destination IP address and
can invoke the action to forward the packet out of a port, or the action to
drop the packet.

Step 2. Now, we need to define a table that stores the rules for enforcing the ICMP policy.
The policy allows the administrator to specify the hosts that can send ICMP packets to
destination hosts. The following code implements a table that performs a Longest Prefix
Match (LPM) and ternary match on the source and destination IP addresses of the packet.
Insert the code below inside the Mylngress control block.

table icmp policy {
key = {
hdr.ipv4.srcAddr: lpm;
hdr.ipv4.dstAddr: ternary;
}

actions = {

}
size = 1024;

Page 14

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

® ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

[-—[\ EXPLORER headers.p4 ingress.pd @
1

v LAB6 gress.p4
basic.pa 18 key = {
) i 19 hdr.ipv4.dstAddr: exact;
checksum.p4 5 }
e 21 actions = {
SQTe&s:pd 22 forward;
headers.p4 23 drop;
ingress.p4 24 }
lab6.mn 25 size = 1024;
. 26 default action = drop();
parser.p4 -7 -
28
29 table icmp policy{
30 key = {
31 hdr.ipv4.srcAddr: Llpm;
32 hdr.ipv4.dstAddr: ternary;
33 }
34 actions = {
35
36 }
37 size = 1024;
38 |
39

Figure 17. Defining the table.

Consider the figure above. The ICMP policy can specify which source hosts are able to
ping (issue an ICMP request to) which destination hosts.

In order to make the ICMP policy flexible, the table implements and

ternary] matches on the source and destination IP addresses so that network
administrator can enforce the policy on subnets within a single rule. Note that BMv2
compiler (p4c) does not allow a table to have more than one LPM key field, thus, the
ternary matching is used®.

Step 3. The ICMP policy needs to allow ICMP replies corresponding to ICMP requests that
match the enforced policy. Since ICMP requests and their corresponding replies have the
same 16-bit identifier in their headers, this identifier will be stored in the switch. The
following code defines the register that will store the ICMP identifiers. The
register can store up to 65536 (0-65535) ICMP identifiers. Insert the code below inside
the Mylngress control block.

register<bit<16>>(65535) icmp ids;

Page 15

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

® ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 ®
v LAB6 ngress.p4

basic.p4 v i .

checksum.p4 21 actions = {
22 forward;

deparser.p4 23 drop;

egress.pd4 24 }

headers.p4 25 size = 1024;

ingress.p4 26 default action = drop();

lab6.mn 27)

parser.p4 3 . .
29 table icmp policy{
30 key = {
31 hdr.ipv4.srcAddr: lpm;
32 hdr.ipv4.dstAddr: ternary;
33 +
34 actions = {
35
36 }
37 size = 1024;
38 }
39
40 Iregister<bit<16>>(65535] icmp_ids;ll
41

Figure 18. Defining the register stateful element to store ICMP identifiers.

Step 4. Insert the code below to define a 16-bit variable to store the index
(flow id indx]) where the ICMP flow will be saved in the register.

bit<l6> flow id indx;

® ingress.p4 - labé - Visual Studio Code

File Edit Selection View Go Run Terminal Help

m EXPLORER headers.p4 ingress.p4 @
+ LAB6 gress.p4

LL Iviwaiu;

basic.p4 23 drop;

checksum.p4 24 }

deparser.p4 25 size = 1024;

egress.p4 26 default_action = drop();

headers.p4 27 }

ingress.p4 28 , .

lab6.mn 29 table icmp policy{
30 key = {

parser.p4 31 hdr.ipv4.srcAddr: lpm;
32 hdr.ipv4.dstAddr: ternary;
33 }
34 actions = {
35
36 }
37 size = 1024;
38 }
39
40 register<bit<l6>>(65535) icmp_ids;
41
42 [bit<16> flow id indx;]|
43

Figure 19. Defining the [flow id indx|variable.

Step 5. Add the following code inside the apply block of the Mylingress Control to check if
the packet is an ICMP packet. The apply block defines the sequential flow of packet

Page 16

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

processing. It is required in every control block, otherwise the program will not compile.
It describes the sequence of tables to be invoked, in addition to other packet processing
instructions.

if (hdr.icmp.isValid()) {

}

® ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

[-—[': EXPLORER headers.p4 ingress.p4 @
v LAB6 gress.p4
basic.pa -ZB
checksum.p4 29 table icmp policy{
deparser.p4 30 key = {
egress.pd 31 hdr.ipv4.srcAddr: lpm;
headers.p4 32 hdr.ipv4.dstAddr: ternary;
. 33 I
ngress.pd 34 actions = {
lab6.mn 35
parser.p4 36 }
37 size = 1024;
38 }
39
40 register<bit<16>>(65535) icmp_ids;
41
42 bit<16> flow_id indx;
43
44 apply {
45 if (hdr.icmp.isvalid()){
46 |
47 Iy
48

Figur.(; 20. Checking the validity of the header.
Step 6. Now, you need to check if the ICMP packet is of type REQUEST so that it can be
checked in the table. Insert the code below inside the [1f] statement which
checks the validity of the header.

if (hdr.icmp.type == 8) {

}

Page 17

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

® ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4
1

v LAB6

basic.p4 33

checksum.p4 34
35
36
37
38

ingress.p4 39

deparser.p4
egress.p4

headers.p4

lab6.mn 40
parser.p4 41
42
43
44
45
46
47
48
49
50
51
52
53

}

ingress.p4 @

}

actions = {

}

size = 1024;
register<bit<16>>(65535) icmp ids;
bit<16> flow id indx;
apply {

if (hdr.icmp.isvalid()){
if (hdr.icmp.type == 8) {

1

Figure 21. Checking if the ICMP packet is a request.

The header field hdr.icmp. type| defines the type of the ICMP packet. When it is equal to

8], the ICMP packet is of type REQUEST.

Step 7. Once an ICMP REQUEST packet arrives at the switch, the latter needs to check if
it matches an entry in the defined table. Insert the code below to check if

the ICMP REQUEST packet matches any rule in the table.

if (icmp_policy.apply () .hit)

}

Page 18

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

® ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

m EXPLORER headers.p4 ingress.p4 @
v LAB6 gress.p4
basic.p4 30 Key =1
31 hdr.ipv4.srcAddr: 1pm;
checksum.pd 32 hdr.ipv4.dstAddr: ternary;
deparser.p4 33 }
egress.pd 34 actions = {
headers.p4 35
ingress.p4 36 }
lab6.rmn 37 size = 1024;
parser.p4 iz '
40 register<bit<16>>(65535) icmp_ids;
41
42 bit<16> flow id indx;
43
44 apply {
45 if (hdr.icmp.isValid()){
46 if (hdr.icmp.type == 8) {
47 if (icmp policy.apply().hit){
48
49
50 }
51 }

Figure 22. Checking if the ICMP request packet matches any of the enforced rules within the

icmp policy]table.

The [icmp policy]table is applied using the [icmp policy.apply ()] and the if statement
which checks if the packet matches any of the installed rules within the table using the

icmp policy.apply () .hit]|

Step 8. Insert the code below to compute the flow identifier index that will be used to
store the ICMP identifier in the register.

hash(flow id indx, HashAlgorithm.crclé6, (bit<1>)O0,
{hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
(bit<32>) 65535) ;

Page 19

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

® ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

i\ EXPLORER headers.
1

. pd

~ LAB6 g
basic.p4 33
checksum.p4 34

e 35

deparser.p4
A 36

egress. p4

aresse 37
headers.p4 38
ingress.p4 39
lab6.mn 40
parser.p4 41
42
43
=4
45
46
47
48
49

50

53

R4

4

ingress.p4 e

}
actions = {

}

size = 1024;

register<bit<l16>>(65535) icmp_ids;
bit<16> flow id indx;

apply {
if (hdr.icmp.isValid()){
if (hdr.icmp.type == 8) {
if (icmp policy.apply().hit){
hash(flow id indx, HashAlgorithm.crcl6, (bit<l>)0,
{hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
(bit<32>)65535);

Figure 23. Using the HashAlgorithm.crcl6|to compute the index of the register where the

ICMP identifier will be stored.

The code in the figure above hashes flows based on their source and destination IP
addresses. The hash function produces a 16-bits output using the following parameters:

e [flow id indx The variable used to store the output.

e [HashAlgorithm.crclg]: the hash algorithm.

e [(bit<1I>)0]: the minimum (or base) value produced by the hash algorithm.
e |hdr.ipv4.srcAddrandfhdr.ipv4.dstAddr: the data to be hashed.

[]

[(bit<32>) 65535 the maximum value produced by the hash algorithm.

Step 9. Insert the code below to store the ICMP identifier of the packet in the register

[Fomp_1d3l

icmp ids.write((bit<32>)flow id indx, hdr.icmp.identifier);

Page 20

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

@ ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

[-—[\ EXPLORER headers.p4 ingress.p4 @
1

v LAB& gress.pd
basic.p4 34 actions = {

checksum.p4 36 }
deparser.p4 37 size = 1024;
egress.p4 38
headers.p4 39
ingress.p4 40 register<bit<l6>>(65535) icmp ids;
lab6.mn
) 42 bit<16> flow id indx;
parser.pd T

44 apply {

45 if (hdr.icmp.isvalid()){

46 if (hdr.icmp.type == 8) {

47 if (icmp policy.apply().hit){

48 hash(flow id indx, HashAlgorithm.crcl6, (bit<l>)o,

49 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},

50 (bit<32>)65535);

51 Jicmp ids.write((bit<32>)flow id indx, hdr.icmp.identifier);}

54 }
55

Figure 24. Storinghdr . icmp.idenitifier]in the register[icmp_ids|.

The function [icmp ids.write| stores the value of the fhdr.icmp.identifier] at the
index[flow_id indx of the register. The index of the register must be a 32-bit
value, thus, [flow id indx|is cast to a 32-bit value.

Step 10. Insert the code below to apply the table and forward the packet to
the destination host.

ipv4 exact.apply ()

® ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

[-—f} EXPLORER headers.p4 ingress.p4 @
v LAB6 ngress.p4

basic.p4 34 actions = {
35

checksum.p4 36 }

deparser.p4 37 size = 1024;

L‘quSE\.EJ 38 1

headers.p4 39

ingress.p4 40 register<bit<16>>(65535) icmp ids;

lab6.mn 41
42 bit<16> flow id indx;

parser.p4 — =
43
44 apply {
45 if (hdr.icmp.isvalid()){
46 if (hdr.icmp.type == 8) {
47 if (icmp_policy.apply().hit){
48 hash(flow id indx, HashAlgorithm.crcl6, (bit<l=)e,
49 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
50 (bit<32>)65535);
51 icmp ids.write((bit<32>)flow_id_indx, hdr.icmp.identifier);
52 Iipv4 exact.apply(];l
53 Iy
54 }
55

}
Figure 25. Applying table.
Step 11. Insert the code below to check if the ICMP packet is a REPLY.

else if (hdr.icmp.type == 0) {
Page 21

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

@® ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER headers.p4 ingress.p4 @
v LAB6 ngress.pd

basic.p4 37 size = 1024;

checksum.p4 38 }

deparser.p4 39

) 40 register<bit<16>>(65535) icmp ids;

egress.pd an

MR a2 bit<16> flow id indx;

ingress.p4 a3

lab6.mn 44 apply {

parser.p4 45 if (hdr.icmp.isvalid()){
46 if (hdr.icmp.type == 8) {
47 if (icmp_policy.apply().hit){
48 hash(flow id indx, HashAlgorithm.crcl6, (bit<l>)®,
49 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
50 (bit<32>)65535);
51 icmp_ids.write((bit<32>)flow id indx, hdr.icmp.identifier);
52 ipva exact.apply()
53 }
54 else if (hdr.icmp.type == 0) {
55
56 [
57 }

=a

1
Figure 26. Checking if the ICMP packet is a reply.

When the header field hdr. icmp. type|is equal to [0}, then the ICMP packet is a REPLY.

Step 12. Insert the code below to compute the flow identifier index that will be used to
retrieve the ICMP identifier from the register.

hash (flow id indx, HashAlgorithm.crcl6, (bit<1>)O0,
{hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
(bit<32>) 65535) ;

® ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
v LAB6 ngress.p4

basic.p4 40 register<bit<16>>(65535) icmp_ids;

basic.pdi 41

checksum.pa 42 bit<16> flow id indx;

deparser.p4 43

) 44 apply {

Efeassipa 45 if (hdr.icmp.isvalid()){

headers.p4 46 if (hdr.icmp.type == 8) {

ingress.p4 47 if (icmp policy.apply().hit){

lab6.mn 48 hash(flow_id indx, HashAlgorithm.crcl6, (bit<l>)e,

parser.p4 49 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
50 (bit<32>)65535);
51 icmp ids.write((bit<32>)flow id indx, hdr.icmp.identifier);
52 ipv4 exact.apply();
53 }
54 else if (hdr.icmp.type == 0) {
55 hash(flow id indx, HashAlgorithm.crcl6, (bit<l>)0,
56 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
57 (bit<32>)65535);
58 h;
59 }
60 }

Figure 27. Using the HashAlgorithm.crclé|to compute the index of the register where the
ICMP identifier will be retrieved.

Page 22

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

The code in the figure above hashes flows based on their destination and source IP
addresses. Note how the source and destination IP addresses are reversed in the hash
function so that the retrieved index matches as the one used in the associated ICMP
REQUEST.

Step 13. Insert the code below to retrieve the ICMP identifier from the register
and store it inside variable.

bit<l6> icmp id;
icmp ids.read(flow id, (bit<32>flow id indx);

® ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

headers.p4 ingress.p4 @
gress.pd
42 bit<16> flow id indx;
43
deparser.p4 44 apph.! { . . :
45 if (hdr.icmp.isvalid()){
egress.p4 46 if (hdr.icmp.type == 8) {
headers.p4 47 if (icmp_policy.apply().hit){
ingress.p4 48 hash(flow id indx, HashAlgorithm.crcl6, (bit<l>)0,
Iab6.mn 49 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
parser.p4 50 (bit<32>)65535);
51 icmp_ids.write((bit<32>)flow_id_indx, hdr.icmp.identifier);
52 ipv4 exact.apply();
53 1
54 else if (hdr.icmp.type == 0) {
55 hash(flow id indx, HashAlgorithm.crcl6, (bit<l>)@,
56 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
57 (bit<32>)65535);
58 bit<l6> icmp id;
59 icmp ids.read(icmp id, (bit<32>)flow id indx);
60 }
61 }
62 }
63

Figure 28. Retrieving the ICMP identifier (Licmp_1id) from the register [icmp_ids|.

The function [icmp ids.read retrieves the value at the index [flow id indx of the

register and stores it in the variable [Lcmp_id|.

Step 14. Insert the code below to check if the retrieved value from the register
is equal to the ICMP identifier of the ICMP REPLY packet (hdr.icmp.identifier]) and to

forward the packet by applying the table.

if (icmp id == hdr.icmp.identifier) ({
ipv4 exact.apply ()

Page 23

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

® ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
v LAB6 ng p4
basic.p4 45 if (hdr.icmp.isvalid()){
checksum.p4 46 if (hdr.icmp.type == 8) {
deparser.p4 47 if (icmp_policy.apply().hit){
egress.p4 48 hash(flow _id indx, HashAlgorithm.crcl6, (bit<l>)e,
2 49 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
headers.p4 2
50 (bit<32>)65535);
ingress:pd 51 icmp ids.write((bit<32>)flow id indx, hdr.icmp.identifier);
lab6.mn 52 ipv4 exact.apply();
parser.p4 53 }
54 else if (hdr.icmp.type == 0) {
55 hash(flow_id indx, HashAlgorithm.crc16, (bit<l>)e,
56 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
57 (bit<32>)65535);
58 bit<16> icmp id;
59 icmp ids.r i d indx);
60 if (icmp_id == hdr.icmp.identifier) {
61 ipv4 exact.apply();
62
63
64 }
65 }

Figure 29. Forwarding ICMP REPLY packets that match the ICMP requests packets conforming to
the enforced ICMP policy.

Step 15. Save the changes to the file by pressing[Ctrl + s
4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

Page 24

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 ingress.p4 X
v LAB6 ngre p4
basic.json 45 if (hdr.icmp.isvalid()){
basic.p4 46 if (hdr.icmp.type == 8) {
basic.p4i 47 if (icmp_policy.apply().hit){
checksum.p4 48 hash(flow_id indx, HashAlgorithm.crc16, (bit<1>)o0,
eparEr TS 49 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
50 (bit<32>)65535);
Sgress:pd 51 icmp ids.write((bit<32>)flow id indx, hdr.icmp.identifier);
headers.p4 52 ipv4 exact.apply();
ingress.p4 53 }
lab6.mn 54 else if (hdr.icmp.type == 0) {
parser.p4 55 hash(flow _id indx, HashAlgorithm.crcl16, (bit<l>)e,
56 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
57 (bit<32>)65535);
58 bit<16> icmp id;
59 icmp_ids.read(icmp_id, (bit<32>)flow id indx);
60 if (icmp_id == hdr.icmp.identifier) {
61 ipv4 exact.apply();
62 i3
63 }
64 }
65 }
G

PROBLEMS OUTPUT TERMINAL DEBL
® admin@lubuntu-vm:~/P4_Labs/1ab6$
admin@lubuntu-vm:~/P4_Labs/lab6$

Figure 30. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password passwozrd].

push to switch basic.json sl

ingress.p4 - lab6 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 ingress.p4 X
v LAB6 gress.p4
basic.json 45 if (hdr.icmp.isvalid()){
basic.p4 46 if (hdr.icmp.type == 8) {
basic.pai 47 if (icmp_policy.apply().hit){
checksum.p4 48 hash(flow_id indx, HashAlgorithm.crcl6, (bit<l>)e@,
et 49 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
deparser.p4 5
50 (bit<32>)65535);
Sgress pd 51 icmp ids.write((bit<32>)flow id indx, hdr.icmp.identifier);
headers.p4 52 ipv4 exact.apply();
ingress.p4 53 }
lab6.mn 54 else if (hdr.icmp.type == 0) {
parser.p4 55 hash(flow_id_indx, HashAlgorithm.crc16, (bit<1>)0,
56 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
57 (bit<32>)65535);
58 bit<16> icmp id;
59 icmp_ids.read(icmp id, (bit<32>)flow id indx);
60 if (icmp_id == hdr.icmp.identifier) {
61 ipv4 exact.apply();
62 }
63 }
64 }
65 }

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

® admin@lubuntu-vm:~/P4_Labs/lab6$] push to switch basic.json sl |
[sudo] password for admin:
admin@lubuntu-vm:~/P4_Labs/lab6$ i

Figure 31. Pushing the basic.json file to switch s1.

Page 25

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

® admin@Llubuntu-vm:~/P4_Labs/lab6% push_to_switch basic.json sl
[suda] password for admin:
admin@lubuntu-vm:~/P4 Labs/1lab6s [J

% OUTLINE
> TIMELINE
@0oMO0

| &) = *= gterminal - 2 windows I MiniEdit XTerm - 3 windows

Figure 32. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

File Edit Run Help

m_ S =

hl Docker Options ‘ h3

h2

Figure 33. Opening switch s1 terminal.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the following command on switch s1 terminal to inspect the content of the
current folder.

1s

Page 26

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

root@sl: /behavioral-model

: /behavioral-
n

: /beha

Figure 34. Displaying the content of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

4.3 Mapping P4 program’s ports

Step 1. Start the switch daemon and map the logical interfaces (i.e., ports) to the switch’s
interfaces by issuing the following command.

simple switch -i O@sl-eth0 -i 1@sl-ethl -i 2@sl-eth2 basic.json &

root@s1l: /behavioral-model

root@sl:/behavioral-model# simple switch -i 0@sl-eth® -i 1@sl-ethl
h2 basic.json &

[1] 41

root@sl:/behavioral-model# Calling target program-options parser
Adding interface sl-eth® as port ©

Adding interface sl-ethl as port

Adding interface sl-eth2 as port

Figure 35. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

5 Testing and verifying the P4 program

51 Configuring the policy rules

Step 1. In switch s1 terminal, press Enter to return the CLI.

root@s1l: /behavioral-model

root@sl:/behavioral-model# simple switch -i 0@sl-eth® -i 1@sl-ethl
h2 basic.json &
[1] 41

root@sl:/behavioral-model# Calling target program-options parser

Adding interface sl-eth® as port
Adding interface sl-ethl as port
Adding interface sl-eth2 :

root@sl:/behavioral-model# I

Figure 36. Returning to switch s1 CLI.

Page 27

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Step 2. Type the command below to inspect the content of the file. The file
contains the rules which will be inserted to the switch at runtime. utility prints the
content into the standard output.

cat ~/lab6/rules.cmd

root@sl: /behavioral-model

Figure 37. Inspecting the rules.

In the figure above, the first rule populates the table. keyword is

used when we do not want to execute any specific action upon matching.
[192.168.0.10/24] is the LPM key which matches packets coming from the internal
network.[0.0.0.0s&&&0.0.0.0]is the ternary key which matches on any packet (similar to
0.0.0.0/0). Thus, the table will hit on any packet originated from the
internal network regardless of its destination IP address. Note that any ICMP packet
originated from the external network, or the DMZ will not match the policy, and
consequently, will be dropped.

The last three rules populate the [ipv4 exact]table with the forwarding rules.

Step 3. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab6/rules.cmd

Page 28

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

root@s1l: /behavioral-model

1:/behavioral-model#| simple switch CLI < ~/lab6/rules.cmd
ning JSON from switch...

Control utility for runtime P4 table manipulation

RuntimeCmd: Adding entry to ternary match table MyIngress.icmp policy

match key: LPM-c0:a8:00:00/24 TERNARY-00:00:00:00 &&& 00:00:00:00
action: NoAction

runtime data:

Entry has been added with handle ©

RuntimeCmd: Adding entry to exact match table MyIngress.ipv4 exact
match key: EXACT-c0:a8:00:0a

action: MyIngress.forward

runtime data: 00:00
Entry has been added with handle ©
RuntimeCmd: Adding entry to exact match table MyIngress.ipv4 exact
match key: EXACT-ac:10:00:0a
laction: MyIngress.forward
runtime data: 00:01
Entry has been added with handle 1
RuntimeCmd: Adding entry to exact match table MyIngress.ipv4 exact
match key: EXACT-d8:00:00:0a
action: MyIngress.forward
runtime data: 00:02
Entry has been added with handle 2
JRuntimeCmd:
root@sl:/behavioral -model#
Figure 38. Pushing the table entries to the switch.

5.2 Testing the P4 program

Step 1. On h1 terminal, type the command below to send four ICMP requests to h2.

ping 172.16.0.10 -c 4

"Host: h1"

root@lubuntu-vm: /home/admin# |ping 172.16.0.10 -c 4

PING 172.16.0.10 (172.16.0.10) 56(84) bytes of data.
64 bytes from 172.16.0.10: icmp seq=1 ttl=64 time=1.
64 bytes from 172.16.0.10: icmp seq=2 ttl=64 time=1l.
64 bytes from 172.16.0.10: icmp seq=3 ttl=64 time=1l.
64 bytes from 172.16.0.10: icmp seq=4 ttl=64 time=1l.

: tted, 4 iv
rtt min/avg/max/mdev = 1.342/1.412
root@lubuntu-vm: /home/admin# [}

Figure 39. Pinging h2 (DMZ) from h1 (internal network).
The figure above shows that the four ICMP packets were received successfully.

Step 2. On h1 terminal, type the command below to send four ICMP requests to h3.

ping 216.0.0.10 -c 4

Page 29

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

"Host: h1"

oh WD
W

h
=

from |
from 216.0.0. 1t i eq ttl=64 ti

e

from 2 D =4 ttl=64 time=1.

[=3]

o

Figure 40. Pinging h3 (external network) from h1 (internal network).
The figure above shows that the four ICMP packets were received successfully.

Step 3. On h2 terminal, type the command below to send four ICMP requests to h1l.

ping 192.168.0.10 -c 4

"Host: h2"

root@lubuntu-vm: /home/admin#|ping 192.168.0.10 -c 4
PING 192.168.0.10 (192.168.0.10) 56(84) bytes of data.

I 192.168.0.10 ping statistics
4 packets transmitted, 0 rec

root@lubuntu-vm: /home/admin# [

Figure 41. Pinging h1 (internal network) from h2 (DMZ).

The figure above shows that the four ICMP packets were lost. The switch dropped the
packets because they did not originate from the internal network.

Step 4. On h2 terminal, type the command below send four ICMP requests to h3.

ping 216.0.0.10 -c 4

"Host: h2"
root@lubuntu-vm: /home/admin#|ping 216.0.0.10
PING 216.0.0.10 (216.0.0.10) 56(84) bytes of data.

216.0.0.10 ping statistics
4 packets transmitted, © received, 100% packet

root@lubuntu-vm: /home/admin# I

Figure 42. Pinging h3 (external network) from h2 (DMZ).

The figure above shows that the four ICMP packets were lost. The switch dropped the
packets because they did not originate from the internal network.

Page 30

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Step 5. On h3 terminal, type the command below to send four ICMP requests to h1.

ping 192.168.0.10 -c 4

"Host: h3"

168.0.10 -c
PING 192. .0.10 (192 ©.10) 56(84) bytes of data.

192.168.0.10 ping statistics ---
4 packets transmitted, © received, 100% packet loss, time 3061ms

root@lubuntu-vm: /home/admin# I

Figure 43. Pinging h1 (internal network) from h3 (external network).

The figure above shows that the four ICMP packets were lost. The switch dropped the
packets because they did not originate from the internal network.

Step 6. On h3 terminal, type the command below to send four ICMP requests to h2.

ping 172.16.0.10 -c 4

"Host: h3"
root@lubuntu-vm: /home/admin# |ping 172.16.0.10 -c 4
PING 172.16.0.10 (172.16.0.10) 56(84) bytes of data.

- 172.16.0.10 ping statistics ---
4 packets transmitted, © received, 100% packet loss, time 3049ms

root@lubuntu-vm: /home/admin# I

Figure 44. Pinging h2 (DMZ) from h3 (external network).

The figure above shows that the four ICMP packets were lost. The switch dropped the
packets because they did not originate from the internal network.

This concludes lab 6. Stop the emulation and then exit out of MiniEdit.

References

=

M. Rouse, “Packet Filtering.” [Online]. Available: https://tinyurl.com/8z4a2yp6

2. Diyaroy, “Stateless vs Stateful Packet Filtering Firewalls” Online]. Available:
https://tinyurl.com/3s2twcdp

3. P4-guide github repository, “Demo Global Register P415.” [Online]. Available:
https://tinyurl.com/mrytj9ad

4. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.

5. P4lang/behavioral-model github repository, “The BMv2 simple switch target.”

[Online]. Available: https://tinyurl.com/vrasamm.

Page 31

A

UNIVERSITY OF

SOUTH CAROLINA

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 7: Implementing a Stateful Packet Filter for
the TCP Protocol

Document Version: 04-18-2023

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Contents
OVEIVIBW ...ttt ettt ettt e e e et et e e e e et e e e e e e et e e e e e e e e eeeeeees 3
(0] o 1101 4 V7= PUPPP 3
(1Y Y=Y T =P PP P UPPPRUPPPPR 3
(1Y o o - o [g - T T PP UPPRRUPRRPR 3
R 101 1 o Yo [0t d o T o IO PP PUPPPRUPTPPR 3
O R o O 4= <11y o= TR UR R UROUORORTTRRRRRN 4
O A o T o TIPSR PP 5
1.3 LA SCONAIIO. ittt e e s 5
P2 - o B o o To] Uo Y =AY 2SS PPPPRR 6
2.1 Verifying the configuration of the end hosts.........cccoeciiiiiiiiiie e 8
3 Creating a P4 program that performs stateful packet filtering..........ccccecovveveennnenn. 11
3.1 Loadingthe programming environNmMeNnt........ccccccviiiiieeiiiiciicireee e, 11
3.2 Implementing a TCP stateful packet filtercccceeeoiiiiieiiiiiee e, 12
4 Loading the P4 Program.. ...ttt e et e e e e e e e e et ree e e e e e e e e nnneeens 23
4.1 Compiling and loading the P4 program to switch slcccccceiiiiiciiiieeeneeeiees 24
4.2 Verifying the configuration ... 25
4.3 Mapping P4 program’s POIES......ccccuieeieiiiieeeeeiieee e eeitee e e esrre e e e enirae e e e earaeeeeenaneeas 26
5 Testing and verifying the P4 programi........cccccceeeeiecciiiiieeeee e eccireree e e e eescvnaeneee e 27
5.1 Configuring the POliCY FUIESceeeii e 27
5.2 Testing TCP connections destined to the DMZ.........ccoooiieiiciiiieieee e, 28
5.3 Testing TCP connections destined to the internal network........ccccoeecvviieneen.n. 30
5.4 Testing TCP connections destined to the external network.........ccccoccvvvveeeen.... 31
2] =T =Y g Tl PP 32

Page 2

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Overview

This lab is an introduction to stateful packet filter in P4, a technique by which a network
administrator can implement network-based access control. In particular, the lab uses P4
registers to store the state of a connection. The lab further implements a stateful packet
filter for Transmission Control Protocol (TCP) via a policy defined by the network
administrator.

Objectives

By the end of this lab, students should be able to:
Understand stateful packet filters.
Understand what registers are used for.

Implement stateful packet filters in P4 using registers.
Test the defined policy for the stateful packet filter.

PwnNPE

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Creating a P4 program that performs stateful packet filtering.
4. Section 4: Loading the P4 program.
5. Section 5: Testing and verifying the P4 program.
1 Introduction

Packet filters control and manage the flow of data across a network by filtering and
analyzing outgoing and incoming packets®. They are commonly implemented in firewalls

Page 3

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

or routers to protect networks from unauthorized access and malicious activities. Packet
filters can be broadly classified into two categories: stateless and stateful.

Stateless packet filters operate on a per-packet basis, examining each packet individually
without considering any previous packets?. Stateless filters use predefined rules based on
packet header information, such as source and destination IP addresses, port numbers,
and protocols. Based on these rules, the filter decides whether to allow or deny the packet.
Stateless filters are relatively simple and fast, as they do not maintain any information
about ongoing connections or packet history. However, their simplicity can also be a
disadvantage, as they are unable to recognize the context of a network connection and
may be less effective in detecting complex attacks or handling certain protocols.

Stateful packet filters, on the other hand, maintain a state table that tracks the status of
ongoing network connections?. By keeping track of connection states, stateful filters can
make more informed decisions about whether to allow or deny a packet. When a new
packet arrives, the stateful filter examines both the packet header and the current state
of the connection in its state table. If the packet is part of an existing, legitimate
connection, it is allowed through; otherwise, it may be denied based on the filter's rules.
Stateful packet filters provide a higher level of security compared to stateless filters, as
they can better handle connection-oriented protocols and detect malicious activities that
span multiple packets. However, they can be more resource-intensive and slower due to
the additional overhead of maintaining and updating the state table.

1.1 P4 registers

P4 targets implement registers to save arbitrary data. Multiple packets can access the
data stored in the registers. Registers in P4 are organized into named arrays of cells.
Registers can be read and written by both the control and the data plane. In P4, registers
are global memory resources meaning that any match-action tables can reference them.

The syntax below shows how to declare a register array in P4. The register array R1
contains M values of [N bits.

register<bit<N>> (M) R1;

Figure 1 depicts a graphical representation of the register R1]. The functions and
are used to store and retrieve values from a specific position, where an index
specifies the position3. For example, the programmer invokes the following function to
store the value in position 0 in the register array R1.

Rl.write(0,val)

Similarly, the user invokes the function shown below to read a value stored in position 3.
Note that the retrieved value is stored in the variable [res|.

Rl.read(res, 3)

Page 4

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Register R1
Index Value

0 «———— R1l.write(0,val)
1

2

3 —— > Rl.read(res,3)
4

5

6

7

N

Figure 1. Register array R1. The register array contains N entries of M bits. The index indicates
the position of the value. Using the functions [read| and [write], programmers can retrieve and
modify values in the register array.

1.2 Hashes in P4

P4 targets implement hash functions to map arbitrary data to a hash value. For example,
the V1Model implements hash functions as externs®. The following code shows how to
call a hash function in P4.

hash (hash val, algo, min val, {val 1, val 2, ..., val N}, (n bits, max val))
The parameters of the hash function are as follows:

e fhash vall: variable used to store the hash value.

e [algd] indicates the hashing algorithm. For example, the V1Model supports
crcl6, crc32, universal hashing (i.e., random), xor32, and others.

e [min vall: establishes the minimum hash value.

e [{val 1,val 2,.,val N}|: valuesto be hashed.

[n_bit]: number of bits of the output (i.e., width).

jax_vall: maximum hash value.

1.3 Lab scenario

This lab shows how to implement a stateful packet filter for the TCP protocol using
registers. Hashes are used to identify a flow, and registers are used to store the flow’s
state. The stateful packet filter will only allow hosts to initiate a TCP session to the DMZ
server, thus, TCP flows that are not destined to the DMZ server are dropped.

Page 5

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

The P4 program presented in this lab performs the following:

2

1- If the TCP header matches the assigned policy, the state of the flow (i.e., the TCP

2-

source and destination ports) is stored in a register.

If the TCP header does not match the assigned policy, the source and destination
ports of the flow are extracted from the registers. If the extracted source and
destination ports match the destination and source ports of the packet,
respectively, the packet is accepted.

Lab topology

Let’s get started by opening a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch. Host h1l is in the internal

network, host h2 is in the DMZ network, and host h3 is in the external network.

sl

~
&&

h1
\
> h1-ethO
X
192.168.0.10

Internal network

s1-ethO

h3

X

&

sl-eth2

sl-ethl

h3-eth0 | °
X

216.0.0.10
External network

h2-eth0

h2

172.16.0.10
DMz

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Page 6

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Computern

MiniEdit

Terminal

Figure 3. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the /ab7 folder and search for the topology file called lab7.mn and click on
Open. A new topology will be loaded to MiniEdit.

MiniEdit

Edit Run Help

New

Save
Export Level 2 Script

Directory: |/home/admin/P4_Labs/lab7 | — | @‘

8 -7

(K] I

File name: lab7.mn Igpenl

Files of type: Mininet Topology (*.mn) _.‘ Cancel ‘

Figure 4. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Page 7

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Stop l.,__Ji

Figure 5. Running the emulation.

2.1 Verifying the configuration of the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1l and
allows the execution of commands on that host.

File Edit Run Help

[]

P
| NE—

h1 Host Options h3

Figure 6. Opening a terminal on host h1.

Step 2. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Page 8

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

“"Host: h1"

root@lubuntu-vm: /home/admin# |ifconfig
hl-ethe: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.0.10 netmask 255.255.255.0 broadcast 0.0.0.0
ether 00:00:00:00:00:01 txqueuelen 1000 (Ethernet)
RX packets © bytes 0 (0.0 B)
RX errc @ dropped © overruns 0 frame ©
TX pé 5 I s 180 (180.0 B)
1g © overruns © carrier @ collisions ©

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop (queuelen 1000 (Local Loopback)
RX pacl 5 © bytes 0 (0.0 B)
: dropped © overruns © frame ©
TX packets © bytes 0 (0.0 B)
TX errors © dropped 0 overruns @ carrier 0

root@lubuntu-vm: /home/admin# [

Figure 7. Verifying the configuration host h1 interfaces.

Step 3. Hold the right-click on host h2 and select Terminal. This opens the terminal of host
h2 and allows the execution of commands on that host.

File Edit Run Help

R
(] == (]
sl

hl h3

':::3" B
lw'!

— — Host Options

Terminal

Figure 8. Opening a terminal on host h2.
Step 4. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Page 9

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

"Host: h2"

root@lubuntu-vm: /home/admin# |ifconfig

h2-etho: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 172.16.0.10 netmask 255.255.255.0 broadcast 0.0.0.0
ether 00:00:00:00:00:02 txqueuelen 1000 (Ethernet)

RX
RX
TX
TX

packets 9 bytes 882 (882.0 B)
errors © dropped © overruns © frame ©

packets 22 bytes 2140 (2.1 KB)
s © dropped © overruns © carrier © collisions ©

error

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6é ::1 prefixlen 128 scopeid 0x1O<host>
loop txqueuelen 1000 (Local Loopback)

RX
RX
TX
X

packets © bytes 0 (0.0 B)

errors © dropped © overruns © frame ©

packets © bytes 0 (0.0 B)

errors © dropped O overruns © carrier © collisions ©

root@lubuntu-vm: /home/admin# I

Figure 9. Verifying the configuration host h2 interfaces.

Step 5. Hold the right-click on host h3 and select Terminal. This opens the terminal of host
h3 and allows the execution of commands on that host.

File Edit Run Help

E

3 |
F ? E]H ost Options

=

Figure 10. Opening a terminal on host h3.

Step 6. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Page 10

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

"Host: h3"

buntu-vm:/home/admin#|ifconfig

: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 216.0.0.10 netmask 255.255.255.0 broadcast 0.0.0.0
ether 00:00:00:00:00:03 txqueuelen 1000 (Ethernet)

RX packets 7 bytes 686 (686.0 B)

RX errors © dropped © overruns © frame ©

TX packets 19 bytes 1846 (1.8 KB)

TX errors © dropped © overruns © carrier © collisions ©

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x1lO<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes © (0.0 B)
RX errors © dropped © overruns © frame ©
TX packets © bytes (6.0 B)
TX errors © dropped © overruns © carrier © collisions ©

root@lubuntu-vm: /home/admin# [}

Figure 11. Verifying the configuration host h3 interfaces.

3 Creating a P4 program that performs stateful packet filtering

This section demonstrates how to implement a stateful packet filter in P4 using registers.
The stateful packet filter will be applied on TCP. First, you will load the programming
environment. Then, you will define the headers to parse TCP. Following, you will create
P4 tables to apply the desired policies, as well as registers to store the state of the flow.
The flow ID is produced by a hashing algorithm that computes the source and destination
IPv4 addresses to produce an index. This index will be used to access the state of the flow
and decide whether to forward or block packet based on the policy.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.
Alternatively, click on the terminal icon in taskbar located in the lower left-hand side.

Page 11

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Computer

MiniEdt

Terminal

Figure 12. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4 Labs/lab7

admin@lubuntu-vm: ~

File Actions Edit View Help

admin@lubuntu-vm: ~

admin@lubuntu-vm:

Figure 13. Launching the editor and opening the lab7 directory.

3.2 Implementing a TCP stateful packet filter

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Page 12

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 ingress.p4 X
viaer B ER LS ress.pd
bBSle-l 1 /'-Q-'VVV-' + e R O O O O O T T O O
checksum.p4 2 pEERhrREsE TNGRESS PIRIDCES ST NG #ressssrrmrn
)) 3 e e o oo oS ok o o o s S kS SRS K S s SR SR R S Kk SRR Rk
deparser.p4 4
egress.p4 5 control MyIngress(inout headers hdr,
headers.p4 6 inout metadata meta,
7 inout standard metadata t standard metadata) {
lab7.mn 8
parser.p4 9 action forward(egressSpec t port) {
10 standard metadata.egress spec = port;
11 }
12
13 action drop() {
14 mark_to drop(standard metadata);
15 }
16
17 table ipv4 exact {
18 key = {
19 hdr.ipv4.dstAddr: exact;
20 }
21 actions = {
22 forward:

Figure 14. Inspecting the ingress.p4 file.

We can see that the ingress.p4 declares a control block named MyIngress| Inside this
block, a table is defined which matches on the destination IP address and
can invoke the action to forward the packet out of a port, or the action to
drop the packet.

Step 2. Add the code below under the ipv4_exact table to define table. The
table is responsible for checking incoming TCP packets against the access rules defined by
the policy.

table tcp policy {
key = {
hdr.ipv4.srcAddr: lpm;
hdr.ipv4.dstAddr: ternary;
}

actions = {

}
size = 1024;

Page 13

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

@ ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.pd @
v LAB7 gress.p4

R 19 1UT . LPVE.UDLAUUT i ©AdLL;
20 }

checksum.p4 21 actions = {

deparser.p4 29 forward;

egress.p4 23 drop;

headers.p4 24 }

T 25 size = 10245

b7 QE ‘ default_action = drop();

parser.p4 zjf
29 table tcp policy {
30 key = {
31 hdr.ipv4.srcAddr: 1lpm;
32 hdr.ipv4.dstAddr: ternary;
33 }
34 actions = {
35
36
37 size = 1024;
38
39
40 apply {

Figure 15. Defining the table.

In the code above, the table uses the IP source and destination addresses as
the table keys, i.e., the table checks if the incoming packets belong to a defined rule by
inspecting the source and destination IP addresses. The keys are populated and
configured by the control plane at runtime based on the policy in place. [1pm and [ternary]
matching types are used to allow the administrator to define a policy on a range of IP
addresses. Note that BMv2 compiler (p4c) does not allow a table that has more than one

LPM key field, thus, the ternary matching is used>.

Step 3. Define two registers [tcp srcPort|and [tcp dstPort| by typing the code below.
The registers are responsible for storing the source and destination ports of the allowed

TCP sessions, enabling stateful packet filter.

register<bit<16>>(65535) tcp srcPort;
register<bit<16>>(65535) tcp dstPort;

Page 14

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

@ ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
v LAB7 ngress.p4

£L Iviwaiu,

basic.pa 23 drop;

checksum.p4 24 }

deparser.p4 25 size = 1024;

egress.p4 26 default _action = drop();

headers.p4 27 }

ingress.p4 28 .

lab7.mn 29 table tcp policy {
30 key = {

parser.pd 31 hdr.ipv4.srcAddr: lpm;
32 hdr.ipv4.dstAddr: ternary;
33 }
34 actions = {
35
36 }
37 size = 1024;
38 }
39
40 register<bit<16>>(65335) tcp_srcPort;
41 register<bit<16>>(65535) tcp_dstPort;l
42
43 apply {

Figure 16. Defining the registers store TCP ports.

Step 4. Insert the code below to define a 16-bit variable to store the hash index of the
flow.

bit<l6> flow id indx;

® ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

P EXPLORER headers.p4 ingress.p4 @
1
v LAB7 ngress.p4
basic.p4 24)_
checksum.p4 25 size = 1024;
sestlully 26 default action = drop();

deparser.p4 27 \ -

egress.pd 28

headers.p4 29 table tcp policy {

ingress.p4 30 key = {

Iab7.mn 31 hdr.#pv4.5rcAddr: 1pm;

T 32 hdr.ipv4.dstAddr: ternary;
33 }
34 actions = {
35
36 }
37 size = 1024;
38 }
39
40 register<bit<16>>(65335) tcp srcPort;
41 register<bit<16>>(65535) tcp dstPort;
42
43 Ibit<16> flow_id_indx;”
44
45 apply {

Figure 17. Defining the variable [flow id indx]|.

Step 5. Insert the code below to define two 16-bit variables to store the TCP source

(srcport]) and destination (dstPort]) ports.

Page 15

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

bit<16> srcPort;
bit<16> dstPort;

® ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

i\ EXPLORER headers.
1

5. pd

v LAB7 g
basic.p4 <0
checksum.p4 g;
deparser.p4 29
egress.p4 30
headers.p4 31
ingress.p4 32
lab7.mn 33
parser.p4 34

35
36
37
38
39
40
41
42
43
44
45
46
47

pd

ingress.p4 @

deTault action = dropl);

table tcp_policy {

key = {

hdr.ipv4.srcAddr: lpm;
hdr.ipv4.dstAddr: ternary;

}
actions = {
}
size = 1024;

register<bit<l6>>(65335) tcp srcPort;
register<bit<16>>(65535) tcp dstPort;

bit<16> flow id

bit<16> srcPort;

bit<l6> dstPort;

apply {

ndx;

Figure 18. Defining the variables [srcPort|and |dstPort]

Step 6. Add the following code inside the apply block of the Myingress control to check if
the packet is an TCP packet. The apply block defines the sequential flow of packet
processing. It is required in every control block, otherwise the program will not compile.
It describes the sequence of tables to be invoked, in addition to other packet processing

instructions.

if (hdr.tcp.isvValid()) {

Page 16

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

@ ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
~ LAB7 gress.p4
basic.p4 32 hdr.ipv4.dstAddr: ternary;
checksum.p4 33 I
deparser.p4 34 actions = {
egress.pd4 35
36 }
headers.p4 37 size = 1024:
ingress.p4 38 1
lab7.mn 39
parser.p4 40 register<bit<16>>(65335) tcp srcPort;
41 register<bit<16>>(65535) tcp_dstPort;
42
43 bit<16> flow id indx;
44 bit<16> srcPort;
45 bit<l16> dstPort;
46
47 apply _{
48 if (hdr.tcp.isvValid()) {
49
50 i
51
52
53 1

Figure 19. Checking the validity of the header.

Step 7. Add the following code to check if the TCP packet matches one of the access rules

defined by the table.

if (tcp policy.apply() .hit) {

® ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
~ LAB7 ngress.p4

basic.p4 32 hdr.ipv4.dstAddr: ternary;

checksum.p4 33 }

deparser.p4 34 actions = {

egress.p4 35
36 }

headers.p4 37 size = 1024;

ingress.p4d 38 1

lab7.mn 39

parser.p4 40 register<bit<16>>(65335) tcp_srcPort;
41 register<bit<l16>>(65535) tcp dstPort;
42
43 bit<16> flow id indx;
44 bit<16> srcPort;
45 bit<16> dstPort;
46
47 apply {
48 if (hdr.tcp.isvalid()) {
49 | if (tcp policy.apply().hit) {
50
51 .
52 }

Figure 20. Checking if the packet matches the policy defined by table.

Note that a table hit occurs only if a packet matches against the table’s keys. In the code
above, the if statement applies to the table and checks if the source and

Page 17

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

destination IP addresses of the packet match the table’s keys, i.e., the packet matches the
policy. If the packet matches the policy, then its source and destinations ports should be
stored inside stateful registers. The registers should be indexed using the hash of the
source and destinations ports.

Step 8. Add the following code to calculate the hash of the source and destination ports
and store it inside [f1low_id indx]variable. The hash will be used to index

andftcp dstPort|registers.

hash(flow id indx, HashAlgorithm.crclé6, (bit<1>)O0,
{hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
(bit<32>) 65535) ;

® ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
. v LAB7 ess.pd

Raticng 32 nar.1pv4.dstAaddr: ternary;

I 33 }
34 actions = {
35
36 }
37 size = 1024;

ingress.p4 38 }

lab7.mn 39

Sarser i 40 register<bit<16>>(65335) tcp _srcPort;
41 register<bit<16>>(65535) tcp dstPort;
42
43 bit<16> flow id indx;
44 bit<16> srcPort;
45 bit<16> dstPort;
46
47 apply
48 if (hdr.tcp.isvalid()) {
49 if (tcp policy.apply().hit) {
50 hash(flow id indx, HashAlgorithm.crcl6, (bit<1>)0,
51 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
52 (bit<32>)65535) ;]|
53 ¥

Figure 21. Calculating the index of the registers where the source and destination ports will be
stored.

The code in the figure above hashes flows based on their source and destination IP
addresses. The hash function produces a 16-bits output using the following parameters:

e [flow id indx]: The variable used to store the output.

e [HashAlgorithm.crcl6| the hash algorithm.

e [(bit<I>)0]: the minimum (or base) value produced by the hash algorithm.
¢ |hdr.ipv4.srcAddr]andfhdr.ipv4.dstAddr]: the data to be hashed.

e [(bit<32>) 65535 the maximum value produced by the hash algorithm.

Step 9. Add the following code to store the source and destination ports inside the
[tcp_srcPort]and[tcp dstPort]registers, respectively.

tcp srcPort.write ((bit<32>)flow id indx, hdr.tcp.srcPort);
tcp dstPort.write((bit<32>)flow id indx, hdr.tcp.dstPort);

Page 18

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

® ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Lf\ EXPLORER headers.p4 ingress.p4 ®
. v LAB7 g p4

basic.p4 35

checksum.p4 36 } =
37 size = 1024;

deparser.p4 38 }

egress.p4 39

headers.p4 40 register<bit<16>>(65335) tcp srcPort;

ingress.p4 41 register<bit<16>>(65535) tcp_dstPort;

lab7.mn 42

A 43 bit<16> flow id indx;

parser.p4 f =
44 bit<16> srcPort;
45 bit<16> dstPort;
46
47 apply {
48 if (hdr.tcp.isvalid()) {
49 if (tcp policy.apply().hit) {
50 | hash(flow id indx, HashAlgorithm.crcl6, (bit<l>)0,
51 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
52 (bit<32>)65535);
53 | tcp srcPort.write((bit<32>)flow id indx, hdr.tcp.srcPort);
54 i tcp_dstPort.write((bit<32>)flow _id _indx, hdr.tcp.dstPort);
55 ¥
56 }

Figure 22. Storing source and destination ports inside the [tcp srcPort]| and [ccpdstPort
registers.

Step 10. Insert the code below to apply the table and forward the packet to
the destination host.

ipv4 exact.apply();

® ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
1
v LAB7 gress.p4
basic.p4

checksum.p4

37 size = 1024;

deparser.p4 38 }

egress.pd 3

headers.p4 40 register<bit<16>>(65335) tcp_srcPort;

ingress.p4 41 register<bit<16>>(65535) tcp dstPort;

lab7.mn 42

- 43 bit<16> flow id indx;

parser.p4 % e
44 bit<16> srcPort;
45 bit<16> dstPort;
46
47 apply {
48 if (hdr.tcp.isvalid()) {
49 if (tcp policy.apply().hit) {
50 hash(flow id indx, HashAlgorithm.crcl6, (bit<l>)0,
51 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
52 (bit<32>)65535);
53 tcp srcPort.write((bit<32>)flow id indx, hdr.tcp.srcPort);
54 tcp dstPort.write((bit<32>)flow id indx, hdr.tcp.dstPort);
55 lipv4 exact.apply();{
56

iy
Figure 23. Applying table.

At this stage, the source and destination ports of packets that match the policy are stored
inside two stateful registers thar are indexed by the hash of the source and destination
ports. The next step is to write a code to process the packets that do not match the policy.

Page 19

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Step 11. Add the following code to check if the TCP packet does not match one of the
access rules defined by the table.

else {

}

® ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
v LAB7 gress.pd

basic.p4 41 register<bit<16>>(65535) tcp_dstPort;

checksum.p4 42

deparser.p4 43 bit<16> flow id indx;

egress.pa 44 bit<16> srcPort;

) 45 bit<16> dstPort;

headers.p4 &
46

ingress.p4 47 apply {

lab7.mn 48 if (hdr.tcp.isvalid()) {

parser.p4 49 if (tcp_policy.apply().hit) {
50 hash(flow id indx, HashAlgorithm.crcl6, (bit<l>)o,
51 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
52 (bit<32>)65535);
53 tcp srcPort.write((bit<32>)flow id indx, hdr.tcp.srcPort);
54 tcp_dstPort.write((bit<32>)flow_id_indx, hdr.tcp.dstPort);
55 ipv4 exact.apply();
56 }
57 else {
58
59 [14
60 }
61

[1

Figure 24. Checking if the packet does not match the policy defined by table.

Step 12. Add the following code to calculate the hash of the source and destination ports
and store it inside [f1low_id_indx variable. The hash will be used to index
and registers.

hash(flow id indx, HashAlgorithm.crclé6, (bit<1>)O0,
{hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
(bit<32>) 65535) ;

Page 20

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

@® ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
~ LAB7 r 55.p4

basic.pa 41 reglster<blt<le>>(65535) tcp dstPort;
42

checksum.p4 43 bit<16> flow id indx;

EEEarEErpS 44 bit<16> srcPort;

egress.pd 45 bit<16> dstPort;

headers.p4 46

ingress.p4 47 apply {

lab7.mn 48 if (hdr.tep.isvalid()) {

e 49 if (tcp_policy.apply().hit) {
50 hash(flow id indx, HashAlgorithm.crcl6, (bit<l=>)@,
51 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
52 (bit<32>)65535);
53 tcp_srcPort.write((bit<32>)flow_id_indx, hdr.tcp.srcPort);
54 tcp dstPort.write((bit<32>)flow id indx, hdr.tcp.dstPort);
55 ipv4 exact.apply();
56 }
57 else {
58 hash(flow id indx, HashAlgorithm.crcl6é, (bit<l>)o,
59 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
60 (bit<32>)65535);
61 |
62 }

Figure 25. Calculating the index of the registers where the source and destination ports will be
retrieved from.

The code in the figure above hashes flows based on their destination and source IP
addresses. Notice how the source and destination IP addresses are inverted in the hash
function so that the retrieved index is the same as the one used in the associated TCP
session.

Step 13. Add the following code to retrieve the source and destination ports from the
[tcp_srcPort]and[tcp dstPort]registers.

tcp srcPort.read(srcPort, (bit<32>)flow id indx);
tcp_dstPort.read(dstPort, (bit<32>)flow_id indx);

@ ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

E\l EXPLORER headers.p4 ingress.p4 @
v LAB7 ngress.p4

basic.p4 e) o

S 43 bit<16> flow id indx;
44 bit<16> srcPort;

MR a5 bit<16> dstPort;

egress.p4 46

headers.p4 47 apply {

ingress.p4 48 if (hdr.tcp.isValid()) {

lab7.mn 49 if (tecp_policy.apply().hit) {

At 50 hash(flow_id indx, HashAlgorithm.crcl6, (bit<l=)e,
51 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
52 (bit<32>)65535);
53 tcp_srcPort.write((bit<32>)flow_id_indx, hdr.tcp.srcPort);
54 tcp dstPort.write((bit<32>)flow id indx, hdr.tcp.dstPort);
55 ipv4 exact.apply();
56 }
57 else {
58 hash(flow_id _indx, HashAlgorithm.crcl6, (bit<l>)®,
59 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
60 (bit<32>)65535);
61 tcp srcPort.read(srcPort, (bit<32>)flow id indx);
62 | tcp dstPort.read(dstPort, (bit<32>)flow id indx);
63 }

Figure 26. Retrieving the source and destination ports from the and
registers

Page 21

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Step 14. Add the following code to check if the retrieved source and destination ports
match the packet’s ports.

if (srcPort == hdr.tcp.dstPort && dstPort == hdr.tcp.srcPort) {

® ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
. v LAB7 ess.pd

basic.p4 45 bit<16> dstPort;

checksum.p4 46

deparser.p4 47 apply {

agress.pd 48 if (hdr.tcp.isvalid()) {

b daea 49 if (tcp_policy.apply().hit) {

eaders.p 50 hash(flow _id indx, HashAlgorithm.crcl6, (bit<1>)0,

ingress.p4 51 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},

lab7.mn 52 (bit<32>)65535);

parser.p4 53 tcp_srcPort.write((bit<32>)flow _id indx, hdr.tcp.srcPort);
54 tcp_dstPort.write((bit<32>)flow id indx, hdr.tcp.dstPort);
55 ipv4 exact.apply();
56 }
57 else {
58 hash(flow_id indx, HashAlgorithm.crcl6, (bit<l>)o,
59 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
60 (bit<32>)65535);
61 tcp srcPort.read(srcPort, (bit<32>)flow id indx);
62 Lcp dstPort.read (dstPort, (Dit<32>)flow id indx);
63 if (srcPort == hdr.tcp.dstPort & dstPort == hdr.tcp.srcPort) {
64
65 }
33 1

Figure 27. Checking if the packet belongs to an existing TCP session.

In the code above, the source and destination ports of the packets are compared against
the retrieved ports from the registers. The two pairs should match only if the packet
belongs to an existing TCP session, and consequently, the packet should be forwarded.
Otherwise, the packet should be dropped.

Step 15. Add the following code to forward the packet if it belongs to an existing TCP
session.

ipv4 exact.apply();

Page 22

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

® ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
. v LAB7 gress.p4

basic.pa 45 bit<16> dstPort;

checksum.p4 46

deparser.p4 47 apply {

) 48 if (hdr.tcp.isvalid()) {
egress.p4 2 % .
headars pé 49 2F (tcpfpollcy:ap;_)lw).hit) {))
. 50 hash(flow id indx, HashAlgorithm.crcl6, (bit<l>)o,

ingress.p4 51 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},

lab7.mn 52 (bit<32>)65535);

parser.p4 53 tcp srcPort.write((bit<32>)flow id indx, hdr.tcp.srcPort);
54 tcp dstPort.write((bit<32>)flow id indx, hdr.tcp.dstPort);
55 ipv4 exact.apply();
56 }
57 else {
58 hash(flow_id indx, HashAlgorithm.crcl6, (bit<l>)o,
59 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
60 (bit<32>)65535);
61 tcp_srcPort.read(srcPort, (bit<32>)flow id indx);
62 tcp _dstPort.read(dstPort, (bit<32>)flow id indx);
63 if (srcPort == hdr.tcp.dstPort & dstPort == hdr.tcp.srcPort) {
64 ipv4 exact.apply();

65 I
1

Figure 28. Forwarding TCP packets that belong to an existing session.

Step 16. Add the following code to drop the packet if it does not belong to an existing TCP
session.

else {
drop () ;

® ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
v LAB7 ngre ..|‘4
basic.p4 50 hash(flow_id_indx, HashAlgorithm.crcl6, (bit<l=)@,
checksum.pd 51 {hQr.ipv4.srcAdUr, hdr.ipv4.dstAddr},
v 52 {blt<32>16‘5535l;k o
53 tcp srcPort.write((bit<32>)flow id indx, hdr.tcp.srcPort);
e 54 tcp_dstPort.write((bit<32>)flow id indx, hdr.tcp.dstPort);
headers.p4 55 ipv4 exact.apply();
ingress.p4 56 }
lab7.mn 57 else {
T 58 hash(flow id indx, HashAlgorithm.crcl6, (bit<l>)@,
59 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
60 (bit<32>)65535);
61 tcp srcPort.read(srcPort, (bit<32>)flow id indx);
62 tcp dstPort.read(dstPort, (bit<32>)flow id indx);
63 if (srcPort == hdr.tcp.dstPort && dstPort == hdr.tcp.srcPort) {
64 ipv4_exact.apply();
65 }
66 else {
67 drop () ;|
68 l
69 }
70 }
71

Figure 29. Dropping TCP packets that do not belong to an existing session.

Step 17. Save the changes to the file by pressing[ctrl + s

4 Loading the P4 program

Page 23

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 ingress.p4 X
v LAB7 ngress.p4
basic.json 50 hash(flow_id indx, HashAlgorithm.crcl6, (bit<l>)o,
basic.pd 51 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},
basicipai 52 (b1t<32>)6§535:; , o
o 53 tcp srcPort.write((bit<32>)flow id indx, hdr.tcp.srcPort);
Sliecksin p 54 tcp_dstPort.write((bit<32>)flow_id_indx, hdr.tcp.dstPort);
deparser.p4 55 ipv4 exact.apply();
egress.p4 56 }
headers.p4 57 else {
ingress.p4 58 hash(flow_id_indx, HashAlgorithm.crc16, (bit<l>)o,
lab7.mn 59 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
60 (bit<32>)65535);
PRISEERS 61 tcp srcPort.read(srcPort, (bit<32>)flow id indx);
62 tcp dstPort.read(dstPort, (bit<32>)flow id indx);
63 if (srcPort == hdr.tcp.dstPort & dstPort == hdr.tcp.srcPort) {
64 ipv4 exact.apply();
65 }
66 else {
67 drop();
68 }
69 }
70 }
71
PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

® admin@lubuntu-vm: -/P4_Labs/1ab7$

admin@lubuntu-vm:~/P4_Labs/lab7$

Figure 30. Compiling the P4 program.
Step 2. Type the command below in the terminal panel to push the basic.json file to the

switch s1’s filesystem. The script accepts as input the JSON output of the pd4c compiler,
and the target switch name. If asked for a password, type the password [password].

push to switch basic.json sl

Page 24

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

ingress.p4 - lab7 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 ingress.pd X
~ LAB7 ngress.p4
basic.json 50 hash(flow_id_indx, HashAlgorithm.crcl6, (bit<l>)@,
basic.p4 51 {hc_!r.ipv4.srcAddr, hdr.ipv4.dstAddr},
Bl 52 {b1t<32>]6.55351 H) o
53 tep_srcPort.write((bit<32>)flow_id indx, hdr.tcp.srcPort);
checksum.p4 54 tep dstPort.write((bit<32>)flow id indx, hdr.tcp.dstPort);
deparser.p4 55 ipv4 exact.apply();
egress.p4 56 }
headers.p4 57 else {
ingress.pa 58 hash(flow_id_indx, HashAlgorithm.crcl6, (bit<l=)o,
b7 59 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},
60 (bit<32>)65535);
SR 61 tcp srcPort.read(srcPort, (bit<32>)flow id indx);
62 tcp_dstPort.read(dstPort, (bit<32>)flow id indx);
63 if (srcPort == hdr.tcp.dstPort && dstPort == hdr.tcp.srcPort) {
64 ipv4 exact.apply();
65 }
66 else {
67 drop();
68 }
69 }
70 }
71

PROBLEMS OuUTPUT TERMINAL DEBUG CONSOLE

® admin@lubuntu-vm:~/P4_Labs/lab7$|push to switch basic.json sif
[sudo] password for admin:
admin@lubuntu-vm:~/P4_Labs/1ab7s I

Figure 31. Pushing the basic.json file to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

PROBLEMS OUTPUT TERMINAL

NSOLE

® admin@lubuntu-vm:~/P4_Labs/1lab7$ push_to switch basic.json sl
[sudo] password for admin:
admin@lubuntu-vm:~/P4 Labs/lab73$ []

> OUTLINE
> TIMELINE

qterminal - 2 windows B MiniEdit "Host: h1"

Figure 32. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Page 25

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

File Edit Run Help

P
hl ‘ Docker Options h3
|

h2

Figure 33. Opening switch s1 terminal.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the following command on switch s1 terminal to inspect the content of the
current folder.

1s

root@s1l: /behavioral-model

ehavioral-model#| 1s

ehavioral-

Figure 34. Displaying the content of the current directory in the switch s1.
We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.
4.3 Mapping P4 program’s ports

Step 1. Start the switch daemon and map the logical interfaces (i.e., ports) to the switch’s
interfaces by issuing the following command.

simple_switch -i 0@sl-ethO -i 1@sl-ethl -i 2@sl-eth2 basic.json &

Page 26

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

root@s1l: /behavioral-model

root@sl:/behavioral-model# simple switch -i 0@sl-eth® -i 1@sl-ethl -i 2
h2 basic.json &

L4

root@sl:/behavioral-model# Calling target program-options parser

Adding interface sl-eth® as port ©

Adding interface sl-ethl as port

Adding interface sl-eth2 as port

Figure 35. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

5 Testing and verifying the P4 program

5.1 Configuring the policy rules

Step 1. In switch s1 terminal, press Enter to return the CLI.

root@s1l: /behavioral-model

root@sl:/behavioral-model# simple switch -i 0@sl-eth® -i 1@sl-ethl
h2 basic.json &
[1] 41
root@sl:/behavior
Adding interface
Adding interface
Adding interface

L-model# Calling target program-options parser
-eth® as port
-ethl as port
-eth2 as port

nw v

0w

root@sl:/behavioral-model# [}

Figure 36. Returning to switch s1 CLI.

Step 2. Type the command below to inspect the content of the file. The file
contains the rules which will be inserted to the switch at runtime. utility prints the
content into the standard output.

cat ~/lab7/rules.cmd

root@sl: /behavioral-model

Figure 37. Inspecting the rules.

In the figure above, the first rule populates the table. keyword is
used when a table does not include any actions in its definition. is the LPM

key which matches on any incoming packets. [172.16.0.10&&&255.255.255.255] is the

ternary key which matches on any packet destined to the DMZ. Thus, the
Page 27

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

table will hit on any packet destined to the DMZ regardless of its source IP address. Note
that any connection destined to the internal or external networks will not match the
policy, and consequently, will be dropped.

The last three rules populate the table with the forwarding rules.

Step 3. Push the table entries to the switch by typing the following command.

simple switch CLI < ~/lab7/rules.cmd

root@sl: /behavioral-model

tlsimple switch CLI = ~/lab7/rules.cmd

Pnntl"{md ”Lulnq

match : LPF

action: NoAcT

runtime date

Entry 1 d wlth handle ©
Runtime ' I
match

action:

runtime

ct
match
action:
runti
Entry | 1 C th
RuntimeCmd: Adding entry to
match : EXACT
action:
runti

Figure 38. Pushing the table entries to the switch.

5.2 Testing TCP connections destined to the DMZ

In this section, an HTTP server will be configured on the DMZ. GET requests will be
initiated from the internal and external networks. The requests should be successful
because the policy accepts any connection destined to the DMZ.

Step 1. On h2 terminal, type the command below to start an HTTP server using Python.
[-m is used to run a module as a script, allowing the execution of Python module directly
from the command line. [SimpleHTTPServer]is a Python 2 module that provides a basic
HTTP server capable of serving static files from the current directory. The server will be
listening on port [80] for incoming packets.

python -m SimpleHTTPServer 80

Page 28

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

"Host: h2"

hon -m SimpleHTTPServer 80

Figure 39. Starting HTTP server on h2 (DMZ).

Step 2. On h1l terminal, type the command below to issue an HTTP GET request. is
a utility for non-interactive download of files from the Web. is the IP
address of the HTTP server running on host h2. [-—delete-after option tells Wget to
delete every single file it downloads, after having done so.

wget 172.16.0.10 --delete-after

"Host: hl"
-delete-after
o
HTTP

Length:
‘index.html.1l.tmp’

index.html.1.tmp 100% [================ >1
(3.56 MB/s)

html.1.tmp.
Jadmin# I

Figure 40. Issuing HTTP GET requests from h1 (internal network).

The figure above shows that the request was successful.

Step 3. On h3 terminal, type the command below to issue an HTTP Get request.

wget 172.16.0.10 —--delete-after

"Host: h3"

t /html]
¢.html.1.tmp’

Removing index
ot@Llubuntu-v

Figure 41. Issuing HTTP GET requests from h3 (external network).

The figure above shows that the request was successful.

Page 29

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Step 4. On h2 terminal, press to stop the server.

5.3 Testing TCP connections destined to the internal network

In this section, an HTTP server will be configured on the internal network. GET requests
will be initiated from the external network and the DMZ. The requests should not be
successful because the policy drops any connection destined to the internal network.
Step 1. On hl terminal, type the command below to start an HTTP server using Python.

python -m SimpleHTTPServer 80

"Host: h1l"

buntu-vm: /home/admin#| python -m SimpleHTTPServe

HTTP on

Figure 42. Starting HTTP server on h1 (internal network).

Step 2. On h2 terminal, type the command below to issue an HTTP GET request.

wget 192.168.0.10

"Host: h2"

Figure 43. Issuing HTTP GET requests from h2 (DMZ).

The figure above shows that the request was not successful because the switch blocked
the connection.

Note that the connection will not be dropped by h2, as it will retry to connect multiple
times. You should manually terminate the connection.

Step 3. On host h2, press to terminate the HTTP GET request.

Step 4. On h3 terminal, type the command below to issue an HTTP Get request.

wget 192.168.0.10

"Host: h3"

Figure 44. Issuing HTTP GET requests from h3 (external network).

Page 30

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

The figure above shows that the request was not successful because the switch blocked
the connection.

Step 5. On host h3, press to terminate the HTTP GET request.

Step 6. On h1 terminal, press to stop the server.

5.4 Testing TCP connections destined to the external network

In this section, an HTTP server will be configured on the internal network. GET requests
will be initiated from the internal network and the DMZ. The requests should not be
successful because the policy drops any connection destined to the external network.
Step 1. On h3 terminal, type the command below to start an HTTP server using Python.

python -m SimpleHTTPServer 80

"Host: h3"

thon -m Simpl

Figure 45. Starting HTTP server on h3 (external network).
Step 2. On h2 terminal, type the command below to issue an HTTP Get request.

wget 216.0.0.10

"Host: h2"

ubuntu-vm:/

-10 11:¢
ting to 2

Figure 46. Issuing HTTP GET requests from h2 (DMZ).

The figure above shows that the request was not successful because the switch blocked
the connection.

Step 3. On h1 terminal, type the command below to issue an HTTP Get request.

wget 216.0.0.10

"Host: hl"

Figure 47. Issuing HTTP GET requests from h1 (internal network).

Page 31

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

The figure above shows that the request was not successful because the switch blocked
the connection.

This concludes lab 7. Stop the emulation and then exit out of MiniEdit.

References

1. M. Rouse. “Packet Filtering.” [Online]. Available: https://tinyurl.com/8z4a2yp6

2. Diyaroy. “Stateless vs Stateful Packet Filtering Firewalls” Online]. Available:
https://tinyurl.com/3s2twcdp

3. P4-guide github repository. “Demo Global Register P416.” [Online]. Available:
https://tinyurl.com/mrytj9ad

4. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.

5. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”

[Online]. Available: https://tinyurl.com/vrasamm.

Page 32

A

UNIVERSITY OF

SOUTH CAROLINA

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 8: Detecting and Mitigating the DNS
Amplification Attack

Document Version: 04-18-2023

Lab 8: Detecting and Mitigating the DNS Amplification Attack

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [o= o T PP UPPPRUPPPPR 3
R 101 1 o Yo U Tt d o T o IO PP PUPPPUPTPPR 3
0 R I o Yol =T o - [o T PP PPP 4
P IF- | o I o] o Yo Lo} -1V 20U SRR UPRPURTPPR 5
2.1 Verifying connectivity between host hl and host h2ccccceveiviiiiiiiiiiiieecee, 7
3 Loading the basic P4 Programcceoviiieiieiiiieeeiiieee st e e e e s vae e s s earae e s 8
4 Performing DNS amplification attackcccooviiieeiiiiiiii e 13
4.1 Starting and testing the DNS SEIrVer......ccuuiiiiiciiee it 13
4.2 Performing the attackccccueiiiiiiiiie e 14
5 Modifying the P4 program to mitigate DNS amplificationccccceeeeeeiiiiiciinennnn.n. 16
5.1 Modifying the headers filecccoviiieiiiee e 16
5.2 Modifying the parser file ... 18
5.3 Modifying the ingress file.........ceee e 19
5.4 Loading the modified P4 programcccccueeeeeiiiiee e 25
5.5 Performing the DNS amplification attackccccceeeviieiiiiiiiee i, 27
REFEIENCES ...ttt e e e sttt e e s st e e s s bt e e e e sareeeeseneeeesanns 29

Page 2

Lab 8: Detecting and Mitigating the DNS Amplification Attack

Overview

This lab introduces the DNS amplification attack and provides the steps to implement a
P4 program to mitigate the attack. In a DNS amplification attack, the attacker floods the
victim with DNS responses by utilizing a DNS resolver. To mitigate this attack, the user will
use P4’ registers to store the transaction ID of the DNS queries issued by the victim. Any
DNS response with transaction ID not stored by the switch will be dropped.

Objectives

By the end of this lab, students should be able to:

Define DNS amplification attack.

Understand the workflow of the DNS amplification attack.

Perform a DNS amplification attack.
Write a P4 program that mitigates the DNS amplification attack.

PwnNPE

Lab settings
Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap
This lab is organized as follows:

Section 1: Introduction.

Section 2: Lab topology.

Section 3: Loading a basic P4 program.

Section 4: Performing DNS amplification attack.

Section 5: Modifying the P4 program to mitigate DNS amplification.

auhwWwNE

1 Introduction
Domain Name System (DNS) is an essential component of the internet, responsible for
translating human-readable domain names (e.g., www.example.com) into IP addresses

(e.g., 192.0.2.1) that can be understood by devices connected to the internet!. Recursive

Page 3

Lab 8: Detecting and Mitigating the DNS Amplification Attack

DNS servers are responsible for resolving these domain names on behalf of clients and
caching the results for subsequent requests.

DNS Amplification is a type of Distributed Denial of Service (DDoS) attack that exploits the
DNS infrastructure to amplify the amount of traffic directed towards a target system,
overwhelming its resources, and causing it to become unresponsive?. In a DNS
amplification attack, the attacker sends a large number of spoofed DNS query packets to
vulnerable, open recursive DNS servers. These packets have a forged source IP address
set to the target's IP. As a result, when the DNS server responds to the query, it sends a
much larger response packet to the target, rather than the actual source of the query.

Attackers typically use small query packets with a high amplification factor, meaning that
the response packets are considerably larger in size than the query packets?. This
amplification effect allows attackers to generate a massive volume of traffic with
relatively minimal resources, amplifying the impact of the attack on the targeted system.
Mitigating DNS Amplification attacks requires a combination of strategies, including
securing open recursive DNS servers, implementing rate limiting on DNS queries, and
employing traffic filtering techniques to identify and block malicious traffic3.

1.1 Lab scenario

In this lab, a P4 programmable switch will mitigate the DNS amplification attack by
dropping the DNS responses that do not match DNS requests. The switch will use the hash
of the 5-tuple (source IP, destination IP, source port, destination port, and transport
protocol) to index flows in a register. The DNS transaction ID will be stored in the cell of
the register. The transaction ID is generated by the client sending a DNS request.

Figure 1 depicts a DNS amplification attack scenario. The attacker is performing DNS
amplification attack by using the IP of the victim as the source IP of the packets. The DNS
server responds to malicious requests and sends the replies to the victim. The victim is
flooded with DNS replies from the server.

DNS server responds to all requests

H H H H
— —

Victim [] [

DNS server

Attacker starts DNS
amplification attack

Attacker

Figure 1. DNS amplification attack.

Page 4

Lab 8: Detecting and Mitigating the DNS Amplification Attack

Figure 2 depicts the DNS amplification attack mitigation using P4 switch. The attacker is
performing DNS amplification attack by using the IP of the victim as the source IP of the
packets. The DNS server responds to the malicious requests and sends the replies to the
victim. The P4 switch drops all the replies as they do not associate with DNS requests
issued by the victim. After that, the victim sends a DNS query to the DNS server. The DNS
server responds to the legitimate request and the P4 switch forward the legitimate reply
to the victim. Note that the P4 switch forwarded the legitimate reply while dropping all
the replies resulting from the attack.

Victim sends a DNS query DNS server responds to all requests
_— _—
= A =

NS DNS server
) N
S

‘—
Victim

P4 switch forwards only the legitimate
DNS response

Attacker starts DNS
amplification attack

Attacker

Figure 2. DNS amplification attack mitigation using a P4 switch.

The P4 programmable switch identifies DNS requests by inspecting the dns_gr header of
DNS packets?. dns_gr = 0 means that the packet is a DNS request. dns_gr = 1 means that
the packet is a DNS response. For DNS requests, the switch stores their transaction IDs in
register cells. The hash of the 5-tuple of the request will be used as an index to the register.
The 5-tuple is hashed in the following order: source IP, destination IP, source port,
destination port, and transport protocol. For DNS responses, the switch hashes the 5-
tuple. The 5-tuple is hashed in the following order: destination IP, source IP, source port,
destination port, and transport protocol. The source IP and destination IP are reversed so
that the DNS response maps to the same cell as the DNS request. After retrieving the
transaction ID from the cell, the ID is compared to the transaction ID of the DNS response.
If the values match, the switch forwards the packet. Otherwise, the switch drops the
packet.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

hl sl h2
N R& ~ k
Victim | NS Attacker
° h1-ethO sl-etho & sl-ethl h2-etho | o
S N
10.0.0.1 10.0.0.2

Page 5

Lab 8: Detecting and Mitigating the DNS Amplification Attack

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Computer

MiniEdit

Terminal
Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab8, select the file lab8.mn, and click on
Open.

MiniEdit

Edit Run Help

Directory: /home/admin/P4_Labs/lab8 =
El IabSmn

Quit
T p— Open - O X
\ |

4 L}

File name: labg.mn Open

Files of type: Mininet Topology (*.mn) _'| Cancel |

Figure 5. Opening a topology in MiniEdit.

Page 6

Lab 8: Detecting and Mitigating the DNS Amplification Attack

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Stop

e E—

Figure 6. Running the emulation.

2.1 Verifying connectivity between host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

File Edit Rum Help

MiniEdit

%

1

Host Options

Terminal

P
—_—

sl

—"

Figure 7. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Page 7

Lab 8: Detecting and Mitigating the DNS Amplification Attack

Figure 8. Performing a connectivity test between host hl and host h2.
The figure above indicates no connectivity between host h1l and host h2 because there is
no program loaded into the switch.
3 Loading the basic P4 program
In this section, the user will compile and run a P4 program that implements the basic
forwarding functionality. The switch will then be configured by mapping the P4 program’s

ports and loading the rules to the switch.

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on
the desktop.

computer

MinFEdit

Terminal

Figure 9. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4 Labs/lab8

Page 8

Lab 8: Detecting and Mitigating the DNS Amplification Attack

admin@lubuntu-vm: ~

File Actions Edit View Help

admin@lubuntu-vm: ~

Figure 10. Launching the editor and opening the lab8 directory.

Step 3. To compile the P4 program, issue the following command in the terminal panel
inside the VS Code.

p4c basic.p4

basic.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER basic.p4 X

v LABS8 4
basic.json 1 /* -*- P4 16 -*- ¥/
basic.p4 2 #include <core.p4>
basic.pai 3 #include <vlmodel.p4>

‘ 4 #include "parser.p4"
e 5 #include "checksum.p4"
er.pd 6 #include "ingress.p4"
egress.p4 7 #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 9

10 V1Switch(

11 MyParser(),

12 MyVerifyChecksum(),
13 MyIngress(),

14 MyEgress(),

15 MyComputeChecksum(),
16 MyDeparser()

17) main;

lab8.mn

parser.p4

PROBLEM UTPUT TERMINAL

® admin@lubuntu-vm:~/P4_Labs/1ab8$
admin@lubuntu-vm:~/P4_Labs/1ab8$
Figure 11. Compiling the P4 program using the VS Code terminal.
Step 4. Type the command below in the terminal panel to download the basic.json file to

the switch s1. The script accepts as input the JSON output of the p4c compiler, and the
target switch name (e.g., s1). If asked for a password, type the password [password].

push to switch basic.json sl

Page 9

Lab 8: Detecting and Mitigating the DNS Amplification Attack

basic.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER basic.p4 X
v LABS basic.p4
basic.json 1 /¥ -%- P4 16 -*- */
basic.p4 2 #include <core.p4>
basic.pa4i 3 #}nclude <vlmodel.p4>
4 #include "parser.p4"
Grpae 5 #include "checksum.p4"
i 6 #include "ingress.p4"
egress.pd 7 #include "egress.p4"
headers.p4 8 #include "deparser.p4"
ingress.p4 -
lab8.mn 10 V1Switch(
parser.p4 11 MyParser(),
12 MyVerifyChecksum(),
13 MyIngress(),
14 MyEgress(),
15 MyComputeChecksum(),
16 MyDeparser()

17) main;

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

® admin@lubuntu-vm:~/P4_Labs/lab8$|push to switch basic.json slf
[sudo] password for admin:
admin@lubuntu-vm:~/P4_Labs/labs$ [|

Figure 12. Downloading the compiled program to switch s1.

Step 5. Click on the MinEdit tab in the start bar to maximize the window.

PROBLEMS OUTPUT TERMINAL DEB CONSOLE

® admin@lubuntu-vm:~/P4_Labs/lab8% push_to switch basic.json sl
[sudo] password for admin:
admin@lubuntu-vm:~/P4_Labs/labs$ |l

> OUTLINE
> TIMELINE
Ln g

qterminal - 3 windows I MiniEdit basic.p4 -

Figure 13. Maximizing the MiniEdit window.

Step 6. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Page 10

Lab 8: Detecting and Mitigating the DNS Amplification Attack

= MiniEdit

File Edit Run Help

hl

.
- Sy m

Docker Options ‘

|Terminal | ‘

Figure 14. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 7. Issue the following command to list the files in the current directory.

1s

root@sl: /behavioral-model

havioral-model#|ls

havioral-model# I

Figure 15. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

Step 8. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple switch -i O@sl-ethO -i 1@sl-ethl basic.json &

root@sl: /behavioral-model

havioral- 1#|simple switch -i 1-ethe -i 1-ethl basic.json

ram-options parser

Figure 16. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Page 11

Lab 8: Detecting and Mitigating the DNS Amplification Attack

i sl-eth0 | 0 X 1| sl-ethl

Figure 17. Ports 0 and 1 are mapped to the interfaces s1-ethO and s1-eth1 of switch s1.

Step 9. In switch s1 terminal, press Enter to return the CLI.

root@sl: /behavioral-model

havioral-model# simple switch -1 -ethe -1 1-ethl basic.json

¢ Calling target program-options parser
ort ©

root@sl: havioral-model# I
Figure 18. Returning to switch s1 CLI.

Step 10. Populate the table with forwarding rules by typing the following command.

simple switch CLI < ~/lab8/rules.cmd

root@sl: /behavioral-model

' switch CLI = ~/1 /rules.cmd
Obtaining JSON from switch.==
Done
Control utility for runtime P4 table manipulation
RuntimeCmd: Adding entry t t match table MyIngress.forwarding
match

Figure 19. Loading table entries to switch s1.

The figure above shows the table entries described in the file rules.cmd.

Step 11. Go back to host hl terminal to test the connectivity between host h1l and host
h2 by issuing the following command.

ping 10.0.0.2 -c 4

Page 12

Lab 8: Detecting and Mitigating the DNS Amplification Attack

"Host: h1"

from
from

[Ta]

[Ta]

from

[Ts]

Figure 20. Performing a connectivity test between host hl and host h2.

The figure above shows that there is connectivity between the two hosts.
4 Performing DNS amplification attack

4.1 Starting and testing the DNS server

Step 1. Hold the right-click on host h2 and select Terminal. This opens the terminal of
host h2 and allows the execution of commands on that host.

File Edit Run Help

R

P
N ____ =
hl 5

h: Host Options

Figure 21. Opening a terminal on host h2.

Step 2. Start a DNS server on h2 by issuing the command below. command starts
a lightweight DNS server.

dnsmasqg

Page 13

Lab 8: Detecting and Mitigating the DNS Amplification Attack

"Host: h2"

‘home/admin#| dnsmasg

puntu-vm: /home/admin# Jj

Figure 22. Starting the DNS server on h2.

Step 3. On h1l terminal, type the command below to validate that h2 operates as a DNS
server. (domain information groper) is a flexible tool for interrogating DNS name
servers. It performs DNS lookups and displays the answers that are returned from the
name server(s) that were queried. is the IP address of the DNS server which

is running on h2. is the target of the DNS query.

dig @10.0.0.2 localhost

"Host: h1"

root@lubuntu-vm: /home/admin#|dig @10.0.08.2 localhost

> DiG 9.16.1-Ubuntu < P.0.0.2 localhost

er found)

tions: +cmd

status: id: 45223

ncode :

QUERY,
ra;

udp:

;localhost.

;3 ANSWER
Llocalhost.

SECTION:

QUERY: 1,

NOERROR,

SWER: 1, AUTHORITY: ADDITIONAL:

4096

127.0.0.1

;3 Query time:

;| SERVER: 1 . 0.0.0.2)

;; WHEN: Mon Apr 2 EDT 20
MSG SIZE rcvd: 54

¥

root@lubuntu-vm: /home/admin# I
Figure 23. Issuing DNS query.

The figure above shows that 1 DNS server is detected. The IP address of the server is
10.0.0.2. The answer section contains the IP address of the localhost (127.0.0.1).

4.2 Performing the attack

In this section, the DNS server will flood h1 with DNS responses. The responses are stored
inside a PCAP file.

Step 1. On hl terminal, type the command below to display the current network usage.

is a console application that monitors network traffic and bandwidth usage in real
time.

Page 14

Lab 8: Detecting and Mitigating the DNS Amplification Attack

nload

"Host: h1"

@lubuntu-vm: /home/admin# nload|]

Figure 24. Staring nload on h1.

Step 2. On h2 terminal, type the command below to open the file amplification.pcap|
using Wireshark.

wireshark amplification.pcap

"Host: h2"

Lubuntu-vm: /hom 1in#|wireshark amplification.pc

Figure 25. Opening amplification.pcan file using Wireshark.

Step 3. Inspect the content of the amplification.pcap file. Close Wireshark by clicking on
the [icon at the top right corner.

£ amplification.pcap -0 X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
= e aE o WL ==
AR @EIIRE QexsEF IS = QAQQE
[MTapply a display filter trl-)> -]+
e Destination =
.0.8.2 E
2 0.877750 10.9.0.2 10.9.0.1 DNS 1128 Standard query response|@xc872 ANY google.com A
3 B.116868 106.0.0.2 16.6.6.1 DNS 513 Standard query response|@xa952 ANY youtube.com /
4 0.205087 i6.9.0.2 16.9.8.1 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=0, IDs
5 0.282026 10.9.9.2 10.8.8.1 DNS 775 Standard query response |@x13f5 ANY instagram.cor
6 @.322254 10.0.6.2 16.8.8.1 DNS 311 Standard query response|@xadab ANY googletagman:
7 0.420935 106.0.6.2 16.6.6.1 DNS 94 Standard query response|@8x7793 ANY s.w.org A 19
8 0.514051 16.9.0.2 16.9.8.1 DNS 104 Standard query response |@xc5el ANY linkedin.com
9 0.580614 10.9.9.2 10.8.8.1 DNS 214 Standard query response |@x8397 ANY gmpg.org SO0A
10 @.633033 10.0.6.2 16.8.8.1 DNS 134 Standard query response|@x33p6 ANY ajax.googleaj
11 0.721982 106.0.6.2 16.6.6.1 DNS 124 Standard query response|@x15b® ANY fonts.gstatic
12 0.794274 16.9.0.2 16.9.8.1 DNS 277 Standard query response |@x6dd9 ANY plus.google.c
13 0.837086 10.9.9.2 10.8.8.1 DNS 294 Standard query response |@x50d2 ANY maps.google.d
14 0.926681 10.9.0.2 10.9.0.1 DNS 582 Standard guery responsel@x33a9 ANY youtu.be A 17 x
4 »

Figure 26. Inspecting the content of amplification.pcap file.

The figure above shows that all the packets inside the file are DNS responses. The packets
of this file will be replayed to emulate a DNS amplification attack.

Step 4. On h2 terminal, type the command below to perform DNS amplification attack.

./perform DNS amplification.sh

"Host: h2"

#| . form DNS amplification.sh |Jj

Figure 27. Performing the DNS amplification attack.

Step 5. Inspect the network usage at h1l.

Page 15

Lab 8: Detecting and Mitigating the DNS Amplification Attack

"Host: h1"

Incoming:

Curr: 41.05 MBit/s
\ 17.76 MBit/s
0.00 Bit,

45.44 MB1t

337.19 MByte

OQutgoing:

1.15 kBit/s
1.34 kBi
0.00 Bit

8.27 kBit/s
104.48 kBytel

Figure 28. Inspecting resource usage at h1l.

The figure above shows the increase in network usage caused by the DNS amplification
attack.

5 Modifying the P4 program to mitigate DNS amplification

In this section, the P4 program will be modified to mitigate DNS amplification attacks. To
do this, the DNS header will be added to the header file. Then, the parser will be modified
to extract the DNS header from incoming packets. After that the ingress block will be
modified to drop all the DNS responses that do not belong to DNS requests initiated by
h1. Finally, the P4 program will be tested by performing the DNS amplification attack and
observing the network usage at h1.

5.1 Modifying the headers file

Step 1. Use VScode to access the header.p4 file. In the header.p4 file, add the following
constant.

const bit<1l6> TYPE DNS = 53;

Page 16

Lab 8: Detecting and Mitigating the DNS Amplification Attack

® headers.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 »
~ LABS headers.p4
basic.json 1 const bit<16= TYPE IPV4 = 0x0800;
basic.p4 2 const bit<8= TYPE UDP = @x11;
basic.pdi 3 |const bit<16> TYPE DNS = 53;|
checksum.p4 ; J T P P
deparser.pd 6 #okkdokdokkkkdokkkkkikdkkdkke H E A D E R § #kkdkikidkktiikkktdhidkrfhhkik
egress.pd 7 s s o oo e o o e o S e S o e o o S S o e o o R o e o R
8
ingress.p4 9 typedef bit<9> egressSpec t;
lab8.mn 10 typedef b%t<48> macAddr_t;
parser.pa 11 typedef bit<32> ipd4Addr t;
12
13 header ethernet_t {
14 macAddr_t dstAddr;
15 macAddr_t srcAddr;
16 bit<l6> etherType;
17}

Figure 29. Adding TYPE_DNS constant.

In the figure above, represents the port number used by DNS queries. All UDP
packets with source port or destination port of (i.e., 53) are DNS packets.

Step 2. In the header.p4 file, define the DNS header under the UDP header by adding the
following code.

header dns t{
bit <16> transaction id;
bit <1> gr flag;
bit <7> padding;

® headers.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 @
v LABS headers.p4
basic.json 5; ’
basic.p4 34 header udp t {
basic.pdi 35 bit<l6> srcPort;
checksum.pd 36 bit<1l6> dstPort;
deparser.p4 37 bit<l6> len;
38 bit<16= checksum;
egress.pd 39 }
heade|s.p4 40
g es=tEg 41 /* Define the DNS header below*/
lab8.mn 42 |header dns t {
parser.p4 43 bit<l6> transaction id;
44 bit<l= qr_flag;
45 bit<7= padding;
46 |
47
48 struct metadata {
49 /*empty*/
50}

Figure 30. Defining the DNS header.

Page 17

Lab 8: Detecting and Mitigating the DNS Amplification Attack

Note that in the code above, the padding field was added because headers in P4 should
be byte aligned (the length of headers in P4 should be a multiple of 8).

Step 3. Add the DNS header to the headers struct by typing the following code.

dns t dns;

® headers.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER headers.p4 @
~ LABSB headers.pd
basfc'ﬁm 41 /* Define the DNS header below*/
basic.p4 42 header dns t {
basic.p4i 43 bit<16> transaction_id;
checksum.p4 44 bit<l= qr flag;
deparser.p4 45 bit<7= padding;
egress.pd4 46 }
headers.p4 47
: 48 struct metadata {
ingress.p4 49 /rempty*/
lab8.mn 50 }
parser.pd 51
52 struct headers {
53 ethernet t ethernet;
54 ipvd t ipv4;
55 udp t udp;
56 | [dns t dns;]
57 |
58 [

Figure 31. Adding the DNS header to the headers struct.

Step 4. Save the changes to the file by pressing[ctrl + 5|

5.2 Modifying the parser file

Step 1. Use VScode to access the parser.p4 file. In the parser.p4 file, modify the state
parse_udp by adding the following code to extract the DNS header if either the source
port or the destination port of a UDP packet is TYPE_DNS (i.e., 53). The code must replace
theftransition accept;|statement.

transition select (hdr.udp.srcPort, hdr.udp.dstPort) {

(TYPE DNS,): parse dns;
(_,TYPE DNS): parse dns;
(_,_): accept;

Page 18

Lab 8: Detecting and Mitigating the DNS Amplification Attack

® parser.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 parserpd ®
~ LABS parser.pd
basic.json ;1 } !
basic.p4 22
basic.p4i 23 state parse ipv4 {
checksum.p4 24 packet.extract(hdr.ipv4);
deparser.pd 25 transition select(hdr.ipv4.protocol) {
egress.pd 26 TYPE_UDP: parse_udp;
headers.pa 27 default: accept;
. 28 }
ingress.p4 29 }
lab8.mn 30 state parse udp [
31 packet.extract (hdr.udp);
32 transition select(hdr.udp.srcPort, hdr.udp.dstPort) {
33 (TYPE_DNS,): parse_dns;
34 (_,TYPE_DNS): parse_dns;
35 (.): accept;
36 , }
37 b
38

Figure 32. Adding the transition from UDP to DNS.

Step 2. Add the state below the state by typing the following code.

state parse dns {
packet.extract (hdr.dns);
transition accept;

® parser.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 parser.pd ®
~ LABS parser.pd4
basic.json 23 state parse ipv4 {
basic.pa 24 packet.extract(hdr.ipv4);
basic.pai 25 transition select(hdr.ipv4.protocol) {
' 26 TYPE_UDP: parse udp;
checksum.p4 27 default: accept;
deparser.p4 28 }
egress.p4 29 }
headers.p4 30 state parse_udp {
ingress.p4 31 packet.extract(hdr.udp);
lab8.mn 32 transition select(hdr.udp.srcPort, hdr.udp.dstPort) {
33 (TYPE_DNS,): parse_dns;
parser.p4 34 (_,TYPE_DNS): parse dns;
35 (_,): accept;
36 }
37 }
38 state parse dns {
39 packet.extract(hdr.dns);
40 transition accept;
41
42

Figure 33. Adding the state.

Step 3. Save the changes to the file by pressing[ctrl + s|.

5.3 Modifying the ingress file

Page 19

Lab 8: Detecting and Mitigating the DNS Amplification Attack

Step 1. In VScode, access the parser.p4 file. In the ingress.p4 file, define the register
[transaction ids|to store the DNS transaction IDs and a variable to store the hash
of the 5-tuple.

register<bit<16>>(65535) transaction ids;
bit<1l6> idx;

® ingress.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

m EXPLORER headers.p4 parser.pd ingress.p4 @
~ LABS ngress.p4
basic.json 16 '
basic.p4 17 table forwarding {
basic.p4i 18 key = {
checksum.p4 19 standard_metadata.ingress port : exact;
deparser.p4 20 ¥ .
21 actions = {
egress.pd 22 forward;
headers.p4 23 drop;
24 NoAction;
lab8.mn 25 }
parser.p4 26 size = 1024;
27 default_action = drop();
28 }
29
30 register<bit<l6=>(65535) transaction ids;
31 bit<16> idx;|
32

Figure 34. Defining register to store transaction Ids.

The code above defines a register named [transaction ids| The register contains 65535
cells. Each cell will be indexed by a flow ID and will store the transaction ID of that flow.
The code also defines a 16-bit variable name [idx]. This variable will be used by the hashing
actions.

Step 2. Define the action [compute flow id| by typing the following code.

action compute flow id() {
hash (
idx,
HashAlgorithm.crcléb,
(bit<1>)0,
{
hdr.ipv4d.srcAddr,
hdr.ipv4.dstAddr,
hdr.udp.srcPort,
hdr.udp.dstPort,
hdr.ipvé4.protocol
by
(bit<16>) 65535
);

Page 20

Lab 8: Detecting and Mitigating the DNS Amplification Attack

® ingress.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER headers.p4 parser.p4 ingress.p4 @
~ LABB ngress.pd
basic.json 29
basic.p4 30 register<bit<l6>>(65535) transaction ids;
basic.pdi 31 bit<l6> idx;
32
checksum.p4 33 action compute flow id() {
deparser.p4 34 hash - -
egress.pd 35 idx,
headers.p4 36 HashAlgorithm.crclé,
ingress.p4 37 (bit<1=)0,
lab&.mn 38 { .
parser.p4 39 hdr.}pv4.srcAddr,
40 hdr.ipv4.dstAddr,
41 hdr.udp.srcPort,
42 hdr.udp.dstPort,
43 hdr.ipv4.protocol
44 I
45 (bit<16=) 65535
46)i
47 L
48

Figure 35. Defining [compute flow id|action.

The code in the figure above hashes flows based on their 5-tuple. The hash function
produces a 16-bits output using the following parameters:

e [idx: The variable used to store the output.
e [HashAlgorithm.crclg]: the hash algorithm.
e [(bit<1>)0]: the minimum (or base) value produced by the hash algorithm.
¢ |hdr.ipv4.srcAddr], hdr.ipv4.dstAddr], hdr.udp.srcPort],
lhdr .udp.dstPort], and hdr.ipv4.protocol| the data to be hashed.
e [(bit<32>) 65535 the maximum value produced by the hash algorithm.

Step 3. Define the action [compute reverse flow id that hashes the 5-tuple of DNS
packets.

action compute reverse flow_ id() {

hash (

idx,

HashAlgorithm.crclé,

(bit<1>)0,

{
hdr.ipv4.dstAddr,
hdr.ipv4.srcAddr,
hdr.udp.dstPort,
hdr.udp.srcPort,
hdr.ipv4.protocol

by

(bit<16>) 65535
)i

Page 21

Lab 8: Detecting and Mitigating the DNS Amplification Attack

® ingress.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER headers.p4 parser.p4 ingress.p4 @
~ LABS ngress.p4

basic.json 46 |H

basic.p4 47 1

basic.p4i 48 - -

checksum.pd 49 action compute_reverse flow id() {
50 hash(

deparser.p4 51 idx,

egress.pd 52 HashAlgorithm.crcl6,

headers.p4 53 (bit<l=)8,

ingress.p4 54 {

BhETT 55 hdr.ipv4.dstAddr,

parser.pa 56 hdr.ipv4.srcAddr,
57 hdr.udp.dstPort,
58 hdr.udp.srcPort,
59 hdr.ipv4.protocol
60 b,
61 (bit<l6>) 65535
62 |H
63 il
64

Figure 36. Defining [compute reverse flow id action

Note that the order of hashing the source and destination IP addresses and ports is
reversed in[compute reverse flow id compared to[compute flow id|so thatthe DNS
requests and responses will be processed as a single flow and their hash will map to the
same register cell.

Step 4. Override the apply block as follows.

apply {
if (hdr.dns.isValid()) {
if (hdr.dns.gr flag == 0) {
compute flow id();
transaction ids.write((bit<32>) idx, hdr.dns.transaction id);
forwarding.apply () ;
}
}

Page 22

Lab 8: Detecting and Mitigating the DNS Amplification Attack

@ ingress.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER headers.p4 parser.p4 ingress.p4 ®
1
~ LABB ngress.p4
basic.json 54 {
basic.p4 55 hdr.ipv4.dstAddr,
basic.p4i 56 hdr.ipv4.srcAddr,
checksum.p4 57 hdr.udp.dstPort,
- 58 hdr.udp.srcPort,
deparser.p4 .
59 hdr.ipv4.protocol
egress.pd 60 1
headers.p4 61 (bit<16>) 65535
ingress.p4 62 Vi
lab8.mn 63 }
parser.pd 64
65 apply_{
66 if (hdr.dns.isvalid()) {
67 if (hdr.dns.qr_flag == 0) {
68 compute_flow id();
69 transaction ids.write((bit<32=) idx, hdr.dns.transaction_id);
70 forwarding.apply();
71 by
72]|
73 }
74}

Figure 37. Implementing the apply block.

In the code above, [if (hdr.dns.isvalid())]checks the validity of the DNS header. For
DNS packets, [if (hdr.dns.qr flag == 0)]checks if the current packet is a DNS request
packet. If yes, the hash of the flow is calculated using [compute flow id action. The
transaction ID of the DNS packet is then stored inside the [transaction ids|register. The
hash of the flow is used to index the [transaction ids|register.

Step 5. Add the following code to the apply block to calculate the hash of the DNS
responses and retrieve the corresponding transaction id.

else if (hdr.dns.qr flag == 1) {
bit<l6> transaction_ id;
compute reverse flow id();
transaction ids.read(transaction id, (bit<32>) idx);

ingress.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.pd ingress.pd X
~ LABB ngress.p4
L o/ nar.uup.uswrore,

Ereelta s 58 hdr.udp.srcPort,

basic.p4 59 hdr.ipva.protocol

basic.p4i 60 1

checksum.p4 61 (bit<16>) 65535

deparser.p4 62 |H

egress.pd 63 }

headers.p4 64

ingress.p4 65 appl\f t N .
66 if (hdr.dns.isvalid()){

labg.mn 67 if (hdr.dns.qr_flag == 0){

parser.p4 68 compute_flow id();
69 transaction_ids.write((bit<32=) idx, hdr.dns.transaction_id);
70 forwarding.apply();
71 i
72 else if (hdr.dns.qr_flag == 1){
73 bit<16> transaction_id;
74 compute_reverse_flow id();
75 transaction_ids.read(transaction id, (bit<32>) idx);
76 }
77 }
78 }
79}
80

Figure 38. Implementing the apply block.

Page 23

Lab 8: Detecting and Mitigating the DNS Amplification Attack

In the code above, else if (hdr.dns.qgr flag == 1)]checks if the DNS packet is a
reply packet. The [compute reverse flow id| action calculates the hash of DNS reply
packet. The hash value is used to index the [transaction ids| register and retrieve the
corresponding transaction id. The retrieved ID is stored inside the [transaction id]
variable.

Step 6. Add the following code to forward the packet if the retrieved transaction ID (i.e.,
[transaction id)) is the same as the transaction ID extracted from the current packet
(i.e.,lhdr.dns.transaction id)). The packet will be dropped if the two ids do not match.

if (transaction id == hdr.dns.transaction_ id) {
forwarding.apply () ;

}

else {

drop () ;
}

® ingress.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

g EXPLORER headers.p4 parser.p4 ingress.p4 @
~ LABS ngress.p4
basic.json 64
basic.p4 65 apply {
basic.pdi 66 if Hl'.dr.dns‘is\.l'alid[]) {
e 67 if {hdr‘dns.qr_fl‘?lg_:: a8) {
68 compute flow id();
e 69 transaction ids.write((bit<32=) idx, hdr.dns.transaction_id);
egress.p4 70 forwarding.apply();
headers.p4 71 ¥
ingress.p4 72 else if (hdr.dns.qr_flag == 1) {
lab8.mn 73 bit<l6> transaction_id;
FAmEE] 74 compute_reverse flow id();
75 transaction ids.read(transaction id, (bit<32>) idx);
76 if (transaction_id == hdr.dns.transaction_id) {
77 forwarding.apply();
78 }
79 else {
80 | drop();
81 L
82 }
83 }
84 }

/&

1
Figure 39. Implementing the apply block.

Step 7. Add the following code to forward non-DNS packets.

else {
forwarding.apply () ;
}

Page 24

Lab 8: Detecting and Mitigating the DNS Amplification Attack

® ingress.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

[;qu EXPLORER headers.p4 parser.pd ingress.p4 @
~ LABS ngress.pd
o wu L1 AnuE sunocssvaLLuy L
b jem 67 if (hdr.dns.qr flag == 0) {
basic.p4 68 compute flow id();
basic.p4i 69 transaction ids.write((bit<32>) idx, hdr.dns.transaction_id);
checksum.p4 70 forwarding.apply();
deparser.p4 71 })
R 72 else :!.f {hdr.dns.qr_flag': 1) {
headers.p4 73 bit<16> transactlon_l{j; N
i 74 compute reverse flow id();
(MEMEEEES 75 transaction ids.read(transaction id, (bit<32>) idx);
lab&.mn 76 if (transaction id == hdr.dns.transaction id) {
parser.p4 77 forwarding.apply();
78 }
79 else {
80 drop();
81 }
82 h:
83 else {
84 | forwarding.apply();
85 i
86 ¥
87 }

Figure 40. Implementing the apply block.

Step 8. Save the changes to the file by pressing[ctrl + s

5.4 Loading the modified P4 program

Step 1. To compile the P4 program, issue the following command in the terminal panel in
VS Code.

pdc basic.p4

ingress.p4 - lab8 - Visual Studio Code

File Edit Selection VWiew Go Run Terminal Help

@ EXPLORER headers.p4 parser.p4 ingress.p4 X
~ LABS ngress.pd
uu AT ORI LU . LI VELLUY L
basic.json &7 if (hdr.dns.qr_flag == 0) {
basic.p4 68 compute_flow_id();
basic.p4i 69 transaction ids.write((bit<32>) idx, hdr.dns.transaction_id);
checksum.p4 70 forwarding.applyl();
deparser.p4 71 })
ST 72 else :!.f {hdr.dns.qr_flag'== 1) {
73 bit<l6> transaction_id;
headers.p4 I
) 74 compute_reverse flow id();
(MEJEAES 75 transaction ids.read(transaction id, (bit<32=) idx);
lab8.mn 76 if (transaction_id == hdr.dns.transaction_id) {
parser.pd 77 forwarding.apply();
78 }
79 else {
30 | drop();
81 }
82 }
83 else {
84 forwarding.apply();
85 }
86 }
87 }

PROBLEMS OUTPUT TERMINAL DEBU

® admin@lubuntu-vm:~/P4_Labhs/1lab8$
admin@lubuntu-vm:~/P4_Labs/lab8$

Figure 41. Compiling the P4 program using the VS Code terminal.

Page 25

Lab 8: Detecting and Mitigating the DNS Amplification Attack

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1. If asked for a password, type the password password]

push to switch basic.json sl

ingress.p4 - lab8 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER headers.p4 parser.p4 ingress.p4 X
~ LABB g 74
) uu L1t cunEersvumiiuy g L
basic.json 67 if (hdr.dns.qr_flag == 0) {
basic.pa 68 compute flow id();
basic.p4i 69 transaction ids.write((bit<32>) idx, hdr.dns.transaction_id);
checksum.p4 70 forwarding.apply();
deparser.pd 71 i
egress.pd 72 ¥ .
headers.pa 73 else if (hdr.dns.qr_flag == 1) {
= 74 bit<l6> transaction id;
(T[T EEE 75 compute reverse flow id();
labg.mn 76 transaction ids.read(transaction id, (bit<32>) idx);
parser.pd 77 if (transaction id == hdr.dns.transaction_id) {
78 forwarding.apply();
79 }
80 else {
81 drop();
82 ¥
83 i
84 else {
85 | forwarding.apply();
86 b
87 }

PROBLEMS OUTPUT TERMINAL DEBU

OLE

® admin@lubuntu-vm:~/P4_Labs/lab8$|push_to_switch basic.json sl
[sudo] password for admin:
admin@Llubuntu-vm:~/P4_Labs/labs$ I

Figure 42. Downloading the compiled program to switch s1.

Step 3. Type the command below to kill the simple switch daemon, so that the new P4
program can be loaded.

pkill switch

root@sl: /behavioral-model

Figure 43. Killing the simple switch daemon.

Step 4. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple switch -i O@sl-ethO -i 1@sl-ethl basic.json &

Page 26

Lab 8: Detecting and Mitigating the DNS Amplification Attack

root@sl: /behavioral-model

navioral-model# simple switch -i 8@sl-ethe

Terminated simple switch -i 8@sl-eth® -i 1@sl-ethl basic.j

:/behavioral-m Calling target program-options parser
ding inte e sl-eth@
ding interface sl-ethl as port 1

Figure 44. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.
Step 5. In switch s1 terminal, press Enter to return the CLI.

root@sl: /behavioral-model

Terminated

havioral-mo

Figure 45. Returning to switch s1 CLI.

Step 6. Populate the table with forwarding rules by typing the following command.

simple switch CLI < ~/lab8/rules.cmd

root@sl: /behavioral-model

Control utility for runtime P4 table manipulation
RuntimeCmd: Adding entry t t match table MyIngress.forwarding

match

action:

runtime :

Entry h n added with handle
Runtinm

root@sl

Figure 46. Loading table entries to switch s1.

The figure above shows the table entries described in the file rules.cmd.

5.5 Performing the DNS amplification attack

Page 27

Lab 8: Detecting and Mitigating the DNS Amplification Attack

Step 1. On h2 terminal, type the command below to perform DNS amplification attack.

./perform DNS amplification.sh

"Host: h2"

root@lubuntu-vm: /home/admin# |. /perform DNS amplification.sh I

Figure 47. Performing the DNS amplification attack.

Step 2. Inspect the network usage at hl. Press[ctrl + dJto exit nload after inspecting the
network usage.

"Host: h1"

Incoming:

Outgoing:

Figure 48. Inspecting resource usage at h1l.

The figure above shows that there is no network usage at hl. The switch was successful
in dropping all the packets.

Step 3. On h1 terminal, type the command below to validate that legitimate DNS queries
will be forwarded by the switch.

dig @10.0.0.2 localhost

Page 28

Lab 8: Detecting and Mitigating the DNS Amplification Attack

"Host: h1"
root@lubuntu-vm: fhome/admin#|dig @10.0.0.2 localhost

P.0.0.2 localhost

1-Ubuntu =<>
d)

gl L +cmd
Got an
opcode: QUERY, status: NOERROR, id: 45223
rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: ©, ADDITIOMNAL:

ion: © Lags:; udp: 4096
SECTION:

ANSWER,_SECTION:
127.0.0.1

Query time:
SERVER: 1

; WHEN: Mon
MSG SIZE

root@lubuntu-vm: /home/admin# I

Figure 49. Issuing DNS query.
The figure above shows that h1 received the DNS response.

This concludes lab 8. Stop the emulation and then exit out of MiniEdit.

References

1. Amazon, “What is DNS?” [Online]. Available: https://tinyurl.com/ynb9esn6

2. NOCTION, “DNS Amplification Attacks Detection with NetFlow or sFlow.”
[Online]. Available: https://tinyurl.com/yh9v6nba

3. PURPLESEC, “How To Prevent A Domain Name Server (DNS) Amplification
attack.” [Online]. Available: https://tinyurl.com/5evebess

4. Charles M. Kozierok, “The TCP/IP Guide.” [Online]. Available:
https://tinyurl.com/83rdbc5m

Page 29

A

UNIVERSITY OF

SOUTH CAROLINA

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 9: Identifying Heavy Hitters using Count-min
Sketches (CMS)

Document Version: 04-18-2023

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [o= o T PP UPPPRUPPPPR 3
R 101 1 o Yo U Tt d o T o IO PP PUPPPUPTPPR 3
0 R I o Yol =T o - [o T PP PPP 4
P IF- | o I o] o Yo Lo} -1V 20U SRR UPRPURTPPR 5
2.1 Verifying connectivity between host hl and host h2ccccceveiviiiiiiiiiiiieecee, 7
3 Implement Count-Min Sketch data structure in P4...........cooocmiieeeee e, 8
3.1 Loading the programming enviroNmMeNt........cccoecuiieeiiiiieeeeniiee e 8
3.2 Modify the header fil@....o i 9
3.3 Modify the iNgress file........uuui i 11
3.4 Loading the program and configuring the switch..........cccoeviiiiiiiiiiiniiiieee, 15
4 Testing the P4 Program.......ceiieiiiiiieeeciiee ettt e e s aee e st e e s s e e e s aaee e s ennees 20
2] =T =Y g Tl 24

Page 2

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

Overview

This lab introduces the concept of heavy hitters and demonstrates how to implement the
Count-Min Sketch data structure in a P4 program to detect heavy hitters. Heavy hitters
refer to network traffic flows with significantly higher data rates or packet counts than
average, often dominating network resources and potentially causing congestion or
service degradation. Count-Min Sketch is a probabilistic data structure that estimates the
frequency of elements in a stream of data. The user will implement the Count-Min Sketch
data structure using P4 registers to detect heavy hitters and then drop them.

Objectives

By the end of this lab, students should be able to:
1. Define heavy hitters.
2. Understand the workflow of the Count-Min Sketch data structure.
3. Leverage Count-Min Sketch to detect heavy flows in P4.

Lab settings

Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Implementing Count-Min Sketch data structure in P4.
4. Section 4: Testing the P4 program.
1 Introduction

Heavy hitter detection is an essential task in the analysis of large-scale data streams,
aiming to identify items with a frequency exceeding a specified threshold. These items,
known as heavy hitters, can reveal crucial insights in various applications, such as network

Page 3

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

traffic analysis, clickstream analysis, and natural language processing. Count-Min Sketch
(CM Sketch) is a probabilistic data structure that provides an efficient solution for
estimating item frequencies in high-dimensional and high-velocity data streams with
bounded error?.

CM Sketch utilizes hashing and a compact 2D array to store and track frequency
information?. It allows for fast updates and queries while significantly reducing memory
requirements compared to exact counting methods. As a result, it is particularly suitable
for heavy hitter detection in situations where data streams are too large to fitin memory,
and a small degree of error is acceptable.

To detect heavy hitters using CM Sketch, the data stream is processed incrementally,
updating the sketch with each incoming packet3. When querying for potential heavy
hitters, the sketch returns estimated frequencies, which can be compared to the
predefined threshold to determine if an item qualifies as a heavy hitter.

While the nature of the CM Sketch introduces some estimation errors, it offers a tunable
trade-off between accuracy and memory usage by adjusting its parameters®. This trade-
off is crucial for applications where space efficiency is of paramount importance. Despite
its inherent limitations, the CM Sketch remains a popular choice for heavy hitter detection
due to its effectiveness, simplicity, and versatility in handling massive data streams.

Consider Figure 1. The CM Sketch data structure is constructed using d register arrays that
contain w cells each. Thus, the data structure can be seen as a matrix of size w * d. The
CM Sketch uses d pairwise-independent hash functions hj, ..., hd that are applied to the
5-tuple fields in the packet headers. The results of the hash functions correspond to the
indices of the counts in the d register arrays; these counts are incremented by one.
Calculating the minimum between these counts gives an approximation of the packet
counts per flow; note that this is an approximation and not the exact count because
collisions might occur, which leads to overestimating the counts.

—n e
5-tuple
man e L o I8

(3) c=min (R[F_ID])

Figure 1. Workflow of CM Sketch.

1.1 Lab scenario

Page 4

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

In this lab, the P4 switch will blacklist heavy flows. The P4 program will estimate the
number of packets per flow, where a flow is characterized by its 5-tuple (source IP,
destination IP, source port, destination port, and protocol). The CM Sketch data structure
will track the number of packets for each flow. When the number of packets exceeds a
predefined threshold, the data plane will classify the flow as a heavy hitter and blacklist
it. All subsequent packets of a blacklisted flow are dropped.

Consider Figure 2. The topology consists of an HTTP server, an iPerf3 server, an HTTP
client, and an iPerf3 client. The HTTP client performs GET requests from the HTTP server.
The requests will be successful as the number of packets per request will be less than the
heavy hitter detection threshold. The iPerf3 client and the iPerf3 server will be
transferring a large file. The number of packets of the iPerf3 flow will exceed the heavy
detection threshold, causing the flow to be blacklisted.

CM Sketch with threshold t

«— i<t: o E—
[Z]---[i]|| forwardall ||[Z]---[{]
packets

HTTP client HTTP server

Iperf3 client Iperf3 server
«— n>t: +—

.. .[¢]|[forward first t [

packets only

Figure 2. Lab scenario.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Page 5

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

hl h2

h1-ethO

10.0.0.1 s1-ethO sl-ethl 10.0.02

h4

sl-eth3 sl-eth4

h3-eth0 h4-ethO

10.0.0.3 10.0.0.4
Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|.

Computer

MiniEdit

Terminal
Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab9, select the file lab9.mn, and click on
Open.

Page 6

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

MiniEdit

Edit Run Help

New

|0pen |

Save

R m open -]
Directory: fhome/admin/P4_Labs/lab9 4‘ E®s
==

File name: |lab9.mn Igpenl

Files of type: Mininet Topology (*.mn) — | Cancel ‘

Figure 5. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Stop |E____

Figure 6. Running the emulation.

2.1 Verifying connectivity between host hl and host h2

Step 1. Hold the right-click on host hl and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Page 7

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

File Edit Run Help

%

El-{olt Options 0 / ?

==
@/ O
B -

Figure 7. Opening a terminal on host h1l.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

"Host: h1l"

packet loss, time 3@

root@lubuntu-vm: fhome/adming# I

Figure 8. Performing a connectivity test between host hl and host h2.
The figure above indicates no connectivity between host hl and host h2 because there is
no program loaded into the switch. Note that there will be no connection between any
two hosts in the topology before loading the P4 program.
3 Implement Count-Min Sketch data structure in P4
In this section, the user will implement the CM Sketch data structure. The data structure
will utilize three different hash functions.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on
the desktop.

Page 8

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

Computer

MiniEdt

Terminal

Figure 9. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4 Labs/lab9

admin@lubuntu-vm: ~

File Actions Edit View Help

admin@!ubuntu-vm: ~ (]
admin@lubuntu-vm: ¢

admin@lubuntu-vm:

Figure 10. Launching the editor and opening the lab9 directory.

3.2 Modify the header file

Step 1. In the header.p4 file, add the following two definitions.

#define SKETCH LENGTH 28
#define SKETCH WIDTH 32

Page 9

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

® headers.p4 - lab9 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 @
~ LAB9 headers.p4
basic.p4 1 const bit<l6> TYPE IPV4 = 0x0800;
checksum.p4 2 const hit<8> TYPE_TCP = 6;
deparser.p4 3 -
4 #define SKETCH LENGTH 28
egress.pd 5 |#define SKETCH WIDTH 32
headers.p4 6 =
ingress.pd 7 J,-"-t-"n-t-‘n.t.t#..k.-cA.-c.Lk:t..k.-n.t.-c.t.k:}..t-‘n.t.-c*.t#..k.-c.t.-n.t.t#..t.-;.t.t.t.t:}..t.-c.{..-c.t.t:t..k.-c.t.-n.t.t#..t.-c.t.-c.t.t:t..k.-c.ﬁ.-c.t
|a|)9.mn B FEERERE R EE R R R R R kR H E A D E R S o e o o o o o e o o o o e o e o o o e o e o
parser.p4 9 ¢ e e o ok o ok e ook ok o e o o e b e ok e o o i o e o e o e ol o e o ok o e ol o e o ok o e o o ol ok R ek e i kol ok kol e R ok R R R o R o
10
11 typedef bit<9= egressSpec t;
12 typedef bit<48> macAddr t;
13 typedef bit<32> ipdAddr t;
14
15 header ethernet t {
16 macAddr t dstAddr;
17 macAddr t srcAddr;
18 bit<l6> etherType;
19 }
20
Figure 11. Defining the length and width of the sketches.

In the code above, [SKETCH LENGTH| represents the number of cells in a sketch and

[SKETCH WIDTH represents the size of counters inside a sketch.

Step 2. Define the metadata by adding the following code inside the metadata struct.

bit<32> index sketchO;
bit<32> index sketchl;
bit<32> index sketch2;

bit<32> value sketchO;
bit<32> value sketchl;
bit<32> value sketch2;

® headers.p4 - lab9 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 »
~ LAB9 headers.p4

basic.p4 44 bit<6> ctrl;

checksum.p4 45 bit<16> window;

deparser.pd 46 bit<16> checksum;

egress.p4 47 bit<16> urgentPtr;

headers.p4 48 1}

ingress.p4 ;‘E

lab9.mn 51

[PEISE 52 struct metadata {
53 /* Define the metadata below*/
54 bit<32> index sketcho;
55 bit<32> index sketchl;
56 bit<32> index sketch2;
57
58 bit<32> value sketcho;
59 bit<32> value sketchl;
60 bit<32> value sketch2;
61
62

Figure 12. Defining the metadata.

Page 10

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

The code above defines an index variable and a value variable for each of the three
sketches (sketchO, sketch1, and sketch?2) that will build the CM Sketch.

Step 3. Save the changes to the file by pressing[cCtrl + 4.

3.3 Modify the ingress file

Step 1. Use VScode Explorer to access the ingress.p4 file. In the ingress.p4 file, add the
definition below. defines the maximum number of packets a flow can have
before being considered a heavy flow. The threshold is set to 20000 packets.

#define THRESHOLD 20000

® ingress.p4 - lab9 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER headers.p4 ingress.p4 @
. ~ LAB9 ngress.p4
basic.p4 1 R e e
C'1ecksun‘.p4 2 RS E SRS E S I N G R E S S P R 0 c E S S I N G EE S S ES S S R0 T 0]
B B 3 FhEkkEkkR kR kkkk kR Rk Rk Rk Rk kR kR Rk kR kR ke Rk Rk R kR R o R kR kR o
deparser.p4 =
4 |#define THRESHOLD 20000|
egress.pd 5
lireiased 6 control MyIngress(inout headers hdr,
7 inout metadata meta,
lab9.mn 8 inout standard metadata t standard metadata) {
parser.pd 9
10
11 action forward(macAddr t dstAddr, egressSpec t port) {
12 standard metadata.egress spec = port;
13 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
14 hdr.ethernet.dstAddr = dstAddr;
15 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
16 }
17

Figure 13. Defining the detection threshold.

Step 2. In the ingress.p4 file, add the following code.

#define SKETCH_REGISTER(num) reg’iSter<bit<SKETCH_WIDTH>> (SKETCH_LENGTH)
sketch##num

Page 11

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

@ ingress.p4 - lab9 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

I__D EXPLORER headers.p4 ingress.p4 ®
~ ~ LAB9 ngress.pd
basi:_pq_ 1 /‘t-s-i-s-ttd.t-s-i-httd.t-‘-0«-s-ttd.t-s-i-s-ttd..t-u{«-httd..t-s.o«-s-ttd..t-s.i-uttd..t-u{«-httd..t-s.{«-s-ttd..t-s.{«*-&td..t*-&
AT 2 Akskekdsrersik T NGRESS PROCEGSSTNDG Heeseksdssesdssrsss
~ ~ 3 d.t-s-i-s-ttd.t-hi-httd.t-s-i-s-ttd.t-s-i-httd..t-s.{«-s-ttd..t-s.{«-s-ttd..t-u{«-httd..t-s.o«-s-ttd..t-s.i*-ttd..tx.{«*-&td..t-s/
deparser.p4 .
4 #define THRESHOLD 200080
egress.pd -
headers.p4 6 |#define SKETCH REGISTER(num) register<bit<SKETCH WIDTH>>(SKETCH LENGTH) sketch##nun'“
ingress.p4 7
lab9.mn g8 control MyIngress(inout headers hdr,
parser.pd 9 inout metadata meta,
10 inout standard_metadata t standard metadata) {
11
12
13 action forward(macAddr_t dstAddr, egressSpec_t port) {
14 standard_metadata.egress_spec = port;
15 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
16 hdr.ethernet.dstAddr = dstAddr;
17 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
18 }
19

Figure 14. Defining [SKETCH_REGISTER|

In the definition above, the [## symbols indicate that the name of the register will depend
on the provided for [SKETCH REGISTER. When the user initiates a [SKETCH REGISTER
and provides a number as an argument (i.e., [SKETCH REGISTER (num)]), a register
with name will be initiated. For example, if the user defines
SKETCH_REGISTER(0) then the following register will be created:
[fegister<bit<32>>(28) sketch0] The register will have [SKETCH LENGTH| cells (i.e., 28
cells) where each cell stores [SKETCH wIDTH] bits (i.e., 32 bits).

Step 3. In the ingress.p4 file, add the following code.

#define SKETCH APPLY (num) hash (meta.index sketch##num, \
HashAlgorithm.crc32 custom, (bit<16>)0, \
{\
hdr.ipv4.srcAddr, \
hdr.ipv4.dstAddr, \
hdr.tcp.srcPort, \
hdr.tcp.dstPort, \
hdr.ipvéd.protocol \

P\

(bit<32>) SKETCH LENGTH) ; \
sketch##num.read (meta.value sketch##num, meta.index sketch##num); \
meta.value sketch##num = meta.value sketch##num + 1; \
sketch##num.write (meta.index sketch##num, meta.value sketch##num); \
if (minimum > meta.value sketch##num) { \

minimum = meta.value sketch##num; }

Page 12

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

® ingress.p4 - lab9 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER headers.p4 ingress.p4 @
~ LAB9 ngress.p4
basic.p4 z INGRESS PRUOUCESSING
3 EEE R e R R e R R R R R LR L R L -.F{
checksum.p4 .
4 #define THRESHOLD 20000
deparser.p4 5
egress.pd 6 #define SKETCH_REGISTER(num) register<bit<SKETCH WIDTH=>(SKETCH_LENGTH) sketch##num
headers.p4 7
ingress.p4 8 |#define SKETCH_APPLY(num) hash({meta.index_ sketch##num, \
labo.mn 9 HashAlgorithm.crc32 custom, (bit<l6>)0, \
reer 10 A
parserpd 11 hdr.ipv4.srcAddr, \
12 hdr.ipv4.dstAddr, \
13 hdr.tcp.srcPort, \
14 hdr.tcp.dstPort, \
15 hdr.ipv4.protocol \
16 A
17 (bit=32>) SKETCH_LENGTH); \
18 sketch##num. read(meta.value_sketch#num, meta.index_ sketch##num); \
19 meta.value_sketch##num = meta.value_sketch##num + 1; \
20 sketch##num.write(meta.index sketch##num, meta.value sketch##num); \
21 if(minimum > meta.value sketch##num) { \
22 | minimum = meta.value_sketch##num; }|
23

Figure 15. Defining [SKETCH APPLY|.

The code above defines [SKETCH APPLY| function that takes the number of the sketch as
input and performs the actions to be described next on that sketch. For simplicity, assume
that SKETCH_APPLY(0) is called. The hash of the 5-tuple (source IP, destination IP, source
port, destination port, protocol) is stored inside [meta.index sketch(] using
HashAlgorithm.crc32 custom hashing algorithm. The hashing algorithm uses different
offsets for each sketch to assure that the hash functions of different sketches produce
different hash values for the same 5-tuple. The offsets are populated by the control plane.

After calculating the index, the number of packets stored in register at that index
is retrieved and stored inside meta.value sketch0. [meta.value sketch(] is then
incremented by one to account for the current packet. Next, the updated number of
packets is stored inside the register atmeta.index sketch0|. The updated value
(i.e., meta.value sketch0)) is compared to the variable minimumn If the value is smaller
than minimun), minimunis updated to be meta.value sketchO]

Step 4. In the Mylingress control block, add the following code to initiate three sketch
registers.

SKETCH _REGISTER(O0) ;
SKETCH REGISTER(1);
SKETCH REGISTER(2) ;

Page 13

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

® ingress.p4 - lab9 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
~ LAB9 ngress.p4
basic.p4 13 hdr.tcp.srcPort, \
checksum.p4 14 hdr.tcp.dstPort,
deparser.p4 15 hdr.ipv4.protocol \
egress.pd 16 LN .
headers.pa 17 (bit<32>) SKETCH_LENGTH); \
s 18 sketch##num. read (meta.value sketch##num, meta.index sketch##num); \
ISR 19 meta.value sketch##num = meta.value sketch##num + 1; \
labg.mn 20 sketch##num.write(meta.index sketch##num, meta.value sketch##num); \
parser.p4 21 if(minimum > meta.value sketch##num) { \
22 minimum = meta.value sketch##num; }
23
24 control MyIngress(inout headers hdr,
25 inout metadata meta,
26 inout standard metadata t standard metadata) {
27
28 SKETCH REGISTER(@);
29 SKETCH REGISTER(1);
30 SKETCH REGISTER(2);
31

Figure 16. Initiating three sketch registers.

Step 5. In the Myingress control block, add the following code to declare a variable

minimum. The value of minimum is set to a large number so that the variable will be larger

than the meta.value sketchnun]and be override after calling [SKETCH APPLY (num)].

bit<32> minimum = 4294967295;

@ ingress.p4 - lab9 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
~ LAB9 ngress.p4

basic.p4 4£ } o -

checksum.p4 43

deparser.p4 44 table forwarding {

egress.pd 45 key = {

) 46 hdr.ipv4.dstAddr : exact;

headers.p4 a7 }

ingress.p4 a8 actions = {

labg.mn 49 forward;

parser.p4 50 drop;
51 }
52 size = 1024;
53 default action = drop();
54 }
55
56 Ibit<32> minimum = 429496?295;'
57
58 apply {
59 forwarding.apply();
60 }
61 |}

Figure 17. Declaring variable.

Step 6. Add the following code inside the apply block.

if (hdr.ipv4.isValid()) {
if (hdr.tcp.isvValid()) {

SKETCH APPLY (0)
SKETCH APPLY (1)

Page 14

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

SKETCH APPLY (2)

if (minimum > THRESHOLD) {
drop () ;

® ingress.p4 - lab9 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER headers.p4 ingress.p4 @
1
~ LAB9 ngress.p4
basic.p4 52 size = 1024;
53 default action = drop();

checksum.p4

54 }
deparser.p4 55
ST 56 bit<32> minimum = 4294967295;
headers.p4 57
ingress.p4 58 apply {
labg.mn 59 forwarding.apply();
parser.p4 60 if (hdr.ipwl.is\falid()]{_
61 if (hdr.tcp.isvalid()) {
62
63 SKETCH_APPLY(0)
64 SKETCH_APPLY (1)
65 SKETCH_APPLY(2)
66
67 if (minimum > THRESHOLD) {
68 drop();
69 }
70 }
71 i
72 }

Figure 18. Modifying the apply block.

In the code above, [if (hdr.ipv4.isvalid())] checks if the packet contains the IPv4
header.[if (hdr.tcp.isvalid())]|checks if the packet contains the TCP header. For a TCP
packet, [SKETCH APPLY|is called for the three sketch registers. If the minimum variable is
larger than (i.e., the flow has at least 20000 packets), the packet will be
dropped.

Step 7. Save the changes to the file by pressing[ctrl + s|.

3.4 Loading the program and configuring the switch

Step 1. To compile the P4 program, issue the following command in the terminal panel
inside the VS Code.

p4c basic.p4

Page 15

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

ingress.p4 - lab9 - Visual Studio Code

File Edit Selection View Go Run Terminal

EXPLORER headers.p4

~ LAB9 ngress.p4
basic.json 52
basic.p4 53
basic.pdi o4
55
checksum.p4 56
deparser.p4 57
egress.pd 58
headers.p4 59
ingress.p4 60
labg9.mn 61
62
parser.p4 63
64
65
66
67
68
69
70
71
72

73 1}
PROBLEMS

Help

siz

ingress.p4 x

e = 1024;

default action = drop();

}

bit<32> minimum = 4294967295;

apply {

forwarding.apply();

if

}
}
ouTPUT

(hdr.ipv4.isvalid()){
if (hdr.tcp.isvalid()) {

SKETCH APPLY (@)
SKETCH APPLY(1)
SKETCH_APPLY(2)

if (minimum = THRESHOLD) {
drop();

}

TERMIMNAL DEEUG C

® admin@lubuntu-vm:~/P4_Labs/l1ab3%$

admin@lubuntu-vm:~/P4_Labs/1ab9%

Figure 19. Compiling the P4 program using the VS Code terminal.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1. If asked for a password, type the password [password|.

push to switch basic.json sl

ingress.p4 - lab9 - Visual Studio Code

File Edit Selection View Go Run Terminal

Help

EXPLORER headers.p4 ingress.p4 X
~ LAB9 ngress.pd
basic.json 52 size = 1024;
basic.pa 53 default action = drop();
basic.pai >4 ¥
55
dizdammEd 56 bit<32> minimum = 4294967295;
deparser.pd 57
egress.p4 58 apply {
headers.p4 59 forwarding.apply();
ingress.pa 60 if thdr.ipv4.is\falid(}]{
61 if (hdr.tcp.isvalid()) {
lab9.mn P
parser.pd 63 SKETCH_APPLY(0)
64 SKETCH_APPLY(1)
65 SKETCH_APPLY(2)
66
67 if (minimum = THRESHOLD) f{
68 drop();
69 }
70 h;
71 1
72 1
73 }
PROBLEMS OUTPUT DEBUG C

TERMINAL

 admin@lubuntu-vm:~/P4_Labs/1lab9$| push_to_switch basic.json s1|

[sudo] password for admin:

admin@lubuntu-vm:~/P4_Labs/1ab9$ |
Figure 20. Downloading the compiled program to switch s1.

Page 16

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

Step 3. Click on the MinEdit tab in the start bar to maximize the window.

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

@ admin@lubuntu-vm:~/P4_Labs/lah9% push_to_switch basic.json sl
[sudo] password for admin:
admin@lubuntu-vm:~/P4_Labs/lab9s ||

5 OUTLINE
> TIMELINE
@OoMAD

S B O = *= gterminal - 2 windows | [l MiniEdit "Host: h1" ingress.p4...tudio Code

Figure 21. Maximizing the MiniEdit window.

Step 4. Right-click on the P4 switch icon in MiniEdit and select Terminal.

- MiniEdit

File Edit Run Help

hl \
h2
/

/ sl Docker Options
(.

h3

ha

Figure 22. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 5. Issue the following command to list the files in the current directory.

1s

root@sl: /behavioral-model

havioral-m

havioral-m

Figure 23. Displaying the contents of the current directory in the switch s1.

Page 17

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

Step 6. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple switch -i O@sl-eth0 -i 1@sl-ethl -i 2@sl-eth2 -i 3@sl-eth3 basic.json &

root@sl: /behavioral-model

¢t simple switch -1 ¢ -1

g target program-options parser

[V L)

Figure 24. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.
Step 7. In switch s1 terminal, press Enter to return the CLI.

root@sl: /behavioral-model

=1# Calling target program-options parser

¢}

[-

Figure 25. Returning to switch s1 CLI.

Step 8. Issue the following command to inspect the rules to be populated by the control
plane. command concatenates files and prints on the standard output.

cat ~/lab9/rules.cmd

Page 18

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

root@s1l: /behavioral-model

%able add MyIngress.forwarding MyIngress.forward 10.0.0.2 => 00:00:00:00:00:
|
2 1

hable add MyIngress.forwarding MyIngress.forward 10.0.0. 00:00:00:00:00:

B 2
%able add MyIngress.forwarding MyIngress.forward 10.0.0.4 => 00:00:00:00:00:

parameter G 0x11111111 oOxffffffff oxffffffff true true
iset crc32 parameter alc 0 0x22222222 Oxffffffff oxffffffff true true
‘ 32 5 OXFFIFfFffff oxffffffff true tru

Figure 26. Inspecting the contents of [rules. cmdfile.

The figure above displays the forwarding rules (first four rules in the file). The last three
rules define three different seeds for the three hash functions of the sketches (sketchO,
sketchl, and sketch2). By having different seeds, the three hash functions will output
three different hash values for the same input. Note that the hash functions use the same
hashing algorithm and that it is necessary to have different seeds for the functions to
output different hash values.

Step 9. Populate the table with forwarding rules by typing the following command.
simple switch CLI < ~/lab9/rules.cmd
root@sl: /behavioral-model

rioral-m #|simple switch CLI = ~/lab9/rules.cmd
)N from switch.=~

Done
Control

.forwarding
match
action

.forwarding

""" .forwarding

action:
runtim

gress.forwarding
match

0 0 : P4 00:03
Figure 27. Loading table entries to switch s1.

The figure above shows the table entries described in the file rules.cmd.

Page 19

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

Step 10. Go back to host h1 terminal to test the connectivity between host hl and host
h2 by issuing the following command.

ping 10.0.0.2 -c 4

"Host: h1"

Figure 28. Performing a connectivity test between host h1 and host h2.

The figure above shows that there is connectivity between the two hosts.

4 Testing the P4 program

Step 1. Hold the right-click on host h2 and select Terminal. This opens the terminal of host
h2 and allows the execution of commands on that host.

File Edit Run Help

- []
\ F _'/’—_h2 Host Options

/ 51 Terminal
] ~
- [

h4

Figure 29. Opening a terminal on host h2.

Step 2. On h2 terminal, type the command below to start an HTTP server using Python.
[-m is used to run a module as a script, allowing the execution of Python module directly

Page 20

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

from the command line. [SimpleHTTPServer]is a Python 2 module that provides a basic
HTTP server capable of serving static files from the current directory. The server will be
listening on port [80] for incoming packets.

python -m SimpleHTTPServer 80

"Host: h2"

hon -m SimpleHTTPServer 80

Figure 30. Starting HTTP server on h2.

Step 3. Hold the right-click on host h4 and select Terminal. This opens the terminal of host
h4 and allows the execution of commands on that host.

File Edit Run Help

x

L]

|:]/ i \E

ha

Host Options

Figure 31. Opening a terminal on host h4.

Step 4. On h4 terminal, type the command below to start as a server. is
a tool for performing network throughput measurements. option runs in
server mode.

iperf3 -s

"Host: h4"

Figure 32. Starting iperf3 server on h4.

Page 21

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

The figure above shows that the server is listening on port 5201.

Step 5. On h1l terminal, type the command below to continuously issue HTTP requests.
The script utilized to perform HTTP Get request every 1 second. is a utility for
non-interactive download of files from the Web. is the IP address of the HTTP
server. command causes the calling thread to sleep for 1 second.

while [1]; do wget 10.0.0.2; sleep 1; done

"Host: h1" -

b4

L‘
root@lubuntu-vm: /home/admin# while [1]; do wget 10.90.0.2; eep 1; don -:I

Figure 33. Issuing repetitive HTTP GET requests from h1.
Step 6. Inspect h1 terminal.

"Host: h1l"

do wget 10.

in @s

Figure 34. Inspecting h1 terminal.

The figure above shows that the client successfully downloaded the file index.html twice
from the HTTP server.

Step 7. Hold the right-click on host h3 and select Terminal. This opens the terminal of host
h3 and allows the execution of commands on that host.

Page 22

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

| MiniEdit

File Edit Run Help

hl\

[]
/h2

\\ h3 Host Options ha

Figure 35. Opening a terminal on host h3.

Step 8. On h3 terminal, type the command below to start as a client. [-c option
runs iperf3 in client mode. is the IP address of the iperf3 server.

iperf3 -c 10.0.0.4

"Host: h3"

1 dmin#|iperf3 10.0.0.4
Connecting to he) 4 ort 52
7] local 10.0. 4 connected to 10.0.0.4 port 52
ID] '3 s fe Bitrate etr C

71).00-1.00 Sec .04 N 25 42.2 Mbits/

Mbits,
Mbits,

3 Mbits,

Figure 36. Starting iperf3 test between h3 and h4.

Page 23

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

The figure above shows that the bitrate dropped to zero at second 6. This occurs because
the number of packets transferred by the test exceeded the defined threshold and the
switch blacklisted the flow.

Step 9. Inspect hl terminal.

"Host: h1"
2023-04-17 14:18:11 (6.07 MB/s) - “index.html.191’ saved [18

index.html. 192 - --.-KB/s in 0.0081s

2023-04-17 14:18:12 s) - ‘index.html.192’ saved [18]

Saving to

index.html. 193 g - --.-KB/s in 0.0081s

2023-04-17 14:18:13 (3.28 s) - ‘index.html.193" saved [18]

Figure 37. Inspecting h1 terminal.

The figure above shows that all the GET requests are successful. Note that the switch did
not drop the flows because the number of packets of an HTTP GET request is smaller than
the heavy hitter detection threshold.

This concludes lab 9. Stop the emulation and then exit out of MiniEdit.

References

1. Itamar Haber, “Count-Min Sketch: The Art and Science of Estimating Stuff.”
[Online]. Available: https://tinyurl.com/9f6ynpm?2

2. Yu, Minlan, Lavanya Jose, and Rui Miao. "Software Defined Traffic Measurement
with OpenSketch." NSDI. Vol. 13. 2013.

3. Brandon Fain, “Count Min-Sketch: The Heavy Hitters Problem.” [Online].
Available: https://tinyurl.com/mtswjdmf

4. Cormode, Graham. "Count-Min Sketch." (2009): 511-516.

Page 24

A

UNIVERSITY OF

SOUTH CAROLINA

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 10: Limiting the Impact of SYN Flood by
Probabilistically Dropping Packets

Document Version: 04-20-2023

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [o= o T PP UPPPRUPPPPR 3
R 101 1 o Yo U Tt d o T o IO PP PUPPPUPTPPR 3
0 R I o Yol =T o - [o T PP PPP 4
P IF- | o I o] o Yo Lo} -1V 20U SRR UPRPURTPPR 5
2.1 Verifying connectivity between host hl and host h2ccccccooviiiiiiiiniiicnnieee 6
3 Developing a P4 program to mitigate SYN flood attackcccceveeeiiiiiiiiiiiinnni, 7
3.1 Loading the envirONmMEeNt.......ccccuiiiiiiiiiee e e 7
3.2 Modifying the INGress fil ... 8
3.3 Loading the P4 Programcuucceeee ettt et e s e e s e e e 17
4 Testing the P4 code against SYN flood attack......ccccccuveeiiniieiiiniiieeeee 21
4.1 Configuring the mitigation parameterscccocvvieiieeeiccciee e 21
4.2 Performing SYN flood attackccceeeiviiieiiiiiiiie e 23
REFEIENCES ..ttt e e st e e s st e e s s bt ee e e saseeeesenreeesanns 26

Page 2

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

Overview

This lab introduces the TCP SYN flood attack and provides the steps to implement a P4
program that mitigates the attack. In TCP SYN flood, the attacker initiates many TCP
connections without completing the handshake process. To mitigate this attack, the user
will define a policy to drop a percentage of packets when the number of received SYN
packets per second exceeds a predefined threshold. The user will utilize P4 registers to
store the dropping percentage, so that the dropping percentage can be modified at
runtime.

Objectives

By the end of this lab, students should be able to:

Define the TCP SYN flood attack.

Understand the workflow of the TCP SYN flood attack.

Perform a TCP SYN flood attack.
Write a P4 program that mitigates the TCP SYN flood attack.

PwnNE

Lab settings
Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device Account Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Developing a P4 program to mitigate SYN flood attack.
4. Section 4: Testing the P4 code against SYN flood attack.
1 Introduction

Volumetric DoS attacks flood the target machine with traffic, depriving legitimate users
from downloading the target’s resources'. Today, most attackers launch Distributed DoS

Page 3

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

(DDoS) to amplify the attack’s volume. In DDoS, an attacker instructs hundreds or
thousands of machines to flood a target server with requests. DoS attacks typically spoof
the source IP address of the packets to hide the identity of the attacker.

DoS attacks can be performed at various levels of the protocol stack. For instance, an
attacker can launch a DoS attack by leveraging a transport layer protocol such as the
Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP). Examples of
transport layer flood attacks include TCP SYN flood?.

TCP SYN flood is an attack that initiates many TCP connections without completing the
TCP handshake®. The TCP handshake process includes three steps: 1) the client sends a
TCP SYN packet to the server; the server reserves resources that will be dedicated to the
TCP connection; 2) the server responds with a TCP SYN-ACK packet; and 3) the client sends
a TCP ACK packet. In SYN flood attack, the attacker does not complete the handshake (it
stops at step 2), leaving the server in a waiting state. When many SYN requests are sent,
all the resources of the server will be allocated, which prevents legitimate users from
accessing the server.

1.1 Lab scenario

In this lab, a P4 programmable switch will mitigate the SYN flood attack by performing
random packet drop when the number of received SYN packets exceeds a predefined
threshold. The programmable switch detects SYN flood by monitoring the number of SYN
packets. During an attack, the number of SYN packets will be larger than some threshold.
The switch counts and compares the number of SYN packets per second against that
threshold. If the number is larger, the switch considers that a SYN flood attack is being
performed. Consequently, the switch starts dropping subsequent SYN packets based on a
dropping percentage specified from the control plane. The switch exits from the
mitigation phase when the count of SYN packets per second drops below the threshold.

Consider Figure 1. Assume that the SYN packets threshold is 100, the dropping percentage
is 50 (i.e., 50 packets out of 100 will be dropped), and the attacker is sending 900 packets
per second to the victim. Because the number of the sent packets is larger than the
threshold, the switch will drop 50% of the packets above the threshold (i.e., out of the
900 packets, 100 will be normally forwarded, and the 50% dropping rate will be applied
to the remaining 800 packets per second). Thus, the switch will forward 500 packets per
second only.

(1 e (900 N
N
Victim Attacker
SYN packets threshold: 100 Dropping percentage: 50%

Figure 1. Lab scenario.

Page 4

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets
2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

h1 sl h2
RS
h1l-ethO sl-etho \ET sl-ethl h2-etho] o
X
10.0.0.1 10.0.0.2

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|.

Computern

Miniedit

Terminal
Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab10, select the file lab10.mn, and click on
Open.

Page 5

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

— MiniEdit
File| Edit Run Help
New
Open
Save
Directory: /home/admin/P4_Labs/lab10 4‘ ‘

=3

File name: lab10.mn

Files of type: Mininet Topology (*.mn) — | Cancel ‘

B Lk

Figure 4. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Stop ﬁ

Figure 5. Running the emulation.

2.1 Verifying connectivity between host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Page 6

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

File Edit Rum Help

R

R
==y [
h2

"

Host Options sl

Terminal

Figure 6. Opening a terminal on host h1l.

Step 2. Test the connectivity between host h1l and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

"Host: h1"
root@lubuntu-vm: /home/admin# |ping 10.0.0.2 -c 4

[PING 10.0.0.2 (10 2) 56(84) bytes of data.

i 10.0.0.2 ping statistics
4 packets transmitted, © received, 100% packet loss, time 3077ms

root@lubuntu-vm: /home/admin# I

Figure 7. Performing a connectivity test between host h1 and host h2.
The figure above indicates no connectivity between host hl and host h2 because there is
no program loaded into the switch.
3 Developing a P4 program to mitigate SYN flood attack
In this section, a basic P4 program will be modified to mitigate SYN flood attack. To do
this, stateful registers will be used to track the number of received SYN packets per second.
If the number of packets exceeds a predefined threshold, the switch will start dropping

packets. The percentage to be dropped is stored in a stateful register and can be
configured from the control plane.

3.1 Loading the environment

Page 7

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on
the desktop. Alternatively, you can click on the icon in the taskbar located in lower left-
hand side.

Computer

MiniEdit

Terminal

Figure 8. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4 Labs/1lablO

admin@lubuntu-vm: ~

File Actions Edit View Help

admin@lubuntu-vm: ~

admin@Llubuntu-vm:

Figure 9. Launching the editor and opening the /ab10 directory.

3.2 Modifying the ingress file

Step 1. In the ingress.p4 file, define the variable [TEHRESH|. [THRESH| represents the threshold
of received SYN packets per second after which the switch will start dropping packets.
The threshold is set to 100 packets.

#define THRESH 100

Page 8

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

® ingress.p4 - lab10 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

m EXPLORER ingress.p4 @
~ LAB10O ngress.pd
baSiC.p4 l Jl,r.iz.-cA.-c.t.k#..k.-c.t.-c.t.t#..t.-n.t.-c.t.k#..k.-c.t.-c*.t#..t.-c.t.-c.t.t#..t.-c.t.-a.t.k#..k.-c*.-c.t.ki..k.t.t.‘.t.t#..t.‘.t.‘.t.t#..k.-c.t..-c.ﬁ:
c‘1e{ksun‘.p4 2 weefekktrrtsd [NGRE S S PROCESSING D S
3 ~ 3 F o ok ook ok ok R ok o e o o e o e ko i e o e i o s o ok o o o i o e o o i o ook e o ok e o ke R ok ke o ke
deparser.p4 -
4 |#define THRESH 1e0|
egress.pd 5
headers.p4 6 control MyIngress{inout headers hdr,
7 inout metadata meta,
labl0.mn 8 inout standard metadata t standard metadata) {
parser.p4 9
10 action forward(egressSpec t port) {
11 standard metadata.egress spec = port;
12 }
13
14 action drop() {
15 mark_to_drop(standard_metadata);
16 }
17
18 table forwarding {
19 key = {
20 standard metadata.ingress port : exact;

Figure 10. Defining [THRESH]|.

Step 2. Define the register [drop percent reg|to maintain the percentage of packets to
be dropped after the number of received SYN packets increases above the threshold.

register<bit<7>>(1l) drop percent reg;

® ingress.p4 - lab10 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4 @
. ~ LAB10O ngress.pd
basic.p4 14 action drop() {
checksum.pa 15 mark_to_drop(standard metadata);
deparser.p4 16 }
17
B 18 table forwarding {
headers.p4 19 key = {
ingress.p4 20 standard metadata.ingress port : exact;
lab10.mn 21 }
parser.pd 22 actions = {
23 forward;
24 drop;
25 NoAction;
26 }
27 size = 1024;
28 default action = drop();
29 }
30
31 |register<bit<?>>[1‘: drop percent reg; |
32
33 apply {
34 if(hdr.ipv4.isvalid()) {
35 forwarding.apply();

Figure 11. Defining register to store the packet drop percentage.

The code above defines a register named [drop percent regl. The register contains a
single cell. The cell stores the percentage of packets to be dropped. This register can be
configured from the control plane at runtime to specify the dropping percentage. Because

Page 9

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

the maximum possible dropping percentage is 100, and 7 is the minimum number of bits
needed to represent 100 (since 27 = 128), the size of the register cell is set to 7 bits.

Step 3. Define the register syn _counts reg| to maintain the count of the received SYN
packets.

register<bit<32>>(1l) syn counts reg;

® ingress.p4 - lab10 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER ingress.p4 @
~ LAB10O ngress.p
basic.p4 14 action drop() A
e 15 j mark_to_drop(standard metadata);
deparser.p4 16 !
17
SIEES{ 18 table forwarding {
headers.p4 19 key = {
ingress.p4 20 standard metadata.ingress port : exact;
labl0.mn 21 }
parser.p4 22 actions = {
23 forward;
24 drop;
25 NoAction;
26 }
27 size = 1024;
28 default action = drop();
29 }
30
31 register<bit<7==(1) drop percent reg;
32 |register<bit<32>>(1) syn counts reg;|
33
34 apply {
35 if(hdr.ipv4.isvalid()) {

Figure 12. Defining register to store the number of received SYN packets.

The code above defines a register named [syn _counts reg|. The register contains a single
cell. The cell stores the number of received SYN packets. Later, we will be resetting the
value of this register to zero; thus, this cell will contain the number of received SYN
packets per second.

Step 4. Define the register percent iterator reg/tomaintainthe packet countiterator.

register<bit<7>>(1l) percent iterator reg;

Page 10

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

@ ingress.p4 - lab10 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

I-_E?_ EXPLORER ingress.p4 @
s LAB10 ngress.p4
F 14 dlLLOn arop)

basic.p4 15 mark to drop(standard metadata);

checksum.p4 16 } - = -

deparser.pd 17

egress.pd 18 table forwarding {

headers.p4 19 key = {

ingress.p4 20 standard_metadata.ingress_port : exact;

labl0.mn 21 } i

parser.pd 22 actions = {

i 23 forward;

24 drop;
25 NoAction;
26 b
27 size = 1024;
28 default action = drop();
29 }
30
31 register<bit<7>>(1) drop percent reg;
32 register<bit<32>=(1) syn counts reg;
33 |register<bit<7>>(1) percent iterator reg;|
34
35 apply {

Figure 13. Defining register to store the number dropped SYN packets.

The code above defines a register named [percent iterator reg| The register contains
a single cell. This cell is used to track how many packets to drop and to allow out of 100.

Step 5. Add the following code to the apply block to retrieve the dropping percentage
from the register.

if (hdr.tcp.isValid()) {
bit<7> drop percent;
drop percent reg.read(drop percent, (bit<32>)0);

Page 11

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

@ ingress.p4 - lab10 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4 @
~ LAB10O I‘QI'G'SE-.|.'4
basic.p4 25 MoAction;
checksum.p4 26 1
deparser.pd 27 size = 1024?
S 28 default action = drop();
headers.pd ;g !
ingress.p4 31 register<bit<7>=(1) drop percent reg;
lab10.mn 32 register<bit<32>>(1) syn counts reg;
parser.p4 33 register<bit<7>=(1) percent iterator reg;
34
35 apply {
36 if(hdr.ipv4.isvalid()) {
37 forwarding.apply();
38
39 if(hdr.tcp.isvalid()) {
Te] bit<7> drop percent;
41 drop percent reg.read(drop percent, (bit<32=)0);
42 ly
43 }
44 }
45 }

Figure 14. Retrieving the dropping percentage from the register.

In the code above, [i f (hdr.tcp.isvalid ())|checks if the packetis a TCP packet. For TCP
packets, the dropping percentage is retrieved from [drop percentage regland stored in
the[drop percent]variable. Note that the dropping percentage will be specified from the
control plane.

Step 6. Add the following code to check if the incoming packet is a SYN packet.

if (hdr.tcp.flags == 2) {
}

Page 12

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

® ingress.p4 - lab10 - Visual Studio Code

File | Edit Selection View Go BRun Terminal Help

@ EXPLORER ingress.p4 @
~ LAB10O ngress.pd
basic.p4 30
checksum.p4 31 register<bit<7>>(1) drop percent reg;
deparser.pa 32 register<bit<32==(1) syn counts reg;
33 register<bit<7==(1) percent iterator reg;
egress.pd 34 - -
headers.p4 35 apply {
ingress.p4 36 if(hdr.ipv4.isvalid()) {
labl0.mn 37 forwarding.apply();
parser.p4 38
39 if(hdr.tcp.isvalid()) {
40 bit<7= drop percent;
41 drop percent reg.read(drop percent, (bit<32=)0);
42
43 if(hdr.tcp.flags == 2) {
44
45 }
46 b
47 }
48 1
49 }

Figure 15. Checking the type of TCP packets.

Step 7. Add the following code to increment the count of SYN packets.

bit<32> syn counts = 0;

syn_counts reg.read(syn counts, (bit<32>)0);
syn counts = syn counts +1;
syn_counts reg.write((bit<32>)0, syn counts);

® ingress.p4 - lab10 - Visual Studio Code

File | Edit Selection VWiew Go Run Terminal Help

@ EXPLORER ingress.p4 @
~ LAB10 ngress.pd

basic.p4 32 register<plt<iZ»>(1) syn counts reg;
33 register<bit<7==(1) percent iterator reg;

checksum.pd 34 - -

deparser.pd 35 apply {

egress.pd 36 if(hdr.ipv4.isvalid()) {

headers.p4d 37 forwarding.apply();

ingress.p4 38

labl0.mn 39 if(hdr.tcp.isvValid()) {

parser,pa 40 bit<7= drop percent; ,
41 drop percent req.read(drop percent, (bit<32=)0);
42
43 if(hdr.tcp.flags == 2) {
44 bit<32> syn counts = 0;
45
46 syn_counts_reg.read(syn_counts, (bit<32>)0);
47 syn_counts = syn_counts + 1;
48 syn counts reg.write((bit<32=)0, syn counts);
49 }
50 1
51 }
52 }
53 1}

Figure 16. Incrementing the count of SYN packets.

Page 13

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

In the code above, the count of SYN packets is retrieved from the [syn counts regland
stored in the variable. The variable is incremented by one to account for the

current packet. After that, the updated variable is stored in the
[syn count reg|register.

Step 8. Add the following code to check if the number of SYN packets exceeded [THRESH|.

if (syn counts > THRESH) {

}

@ ingress.p4 - lab10 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER ingress.pd ®
viaelo [B2 O & ngress.pd

basic.p4 32 reglster<nplt<sZ==(1) syn _counts reg;
33 register<bit<7==(1) percent iterator reg;

checksum.p4 34 - -

deparser.p4 35 apply {

egress.pd 36 if(hdr.ipv4.isvalid()) {

headers.p4 37 forwarding.apply();

ingress.p4 38

labl0.mn 39 if (hdr.tcp.isvalid()) {

parser.p4 40 bit<7> drop percent;
41 drop percent reg.read(drop percent, (bit<32=)0);
42
43 if(hdr.tcp.flags == 2} {
44 bit<32> syn counts = 0;
45
46 syn_counts_reg.read(syn_counts, (bit<32=)0);
47 syn counts = syn counts + 1;
48 syn_counts_reg.write((bit<32>)0, syn_counts);
49
50 if(syn counts > THRESH) {
51
52 b

53 }
Figure 17. Checking the number of SYN packets against the threshold.

Step 9. Add the following code to retrieve the iterator from the percent iterator red]

bit<7> percent iterator;
percent iterator reg.read(percent iterator, (bit<32>)0);

Page 14

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

® ingress.p4 - lab10 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER ingress.p4 @
~ LAB10O ngress.pd

basic.p4 35 apply {

checksum.p4 36 if(hdr.ipv4.isvalid()) {

deparser.p4 37 forwarding.apply();
38

egress.pd 39 if(hdr.tep.isvalid()) {

featE=ng 40 bit<7> drop_percent;

TEEEE 41 drop percent reg.read(drop percent, (bit<32>)0);

labl0.mn 42

parser.p4 43 if(hdr.tcp.flags == 2) {
44 bit<32= syn _counts = 0;
45
46 syn_counts_reg.read(syn_counts, (bit<32=)0);
47 syn_counts = syn counts + 1;
48 syn_counts_reg.write((bit<32=)0, syn_counts);
49
50 if(syn counts > THRESH) {
51 bit<7> percent_iterator;
52 percent_iterator reg.read(percent iterator, (bit<32=)8);
53 I

Figure 18. Retrieving the number of dropped packets from the register.

In the code above, the iterator is retrieved from [percent iterator reg and stored
inside the percent iterator]|variable.

Step 10. Add the following code to check if the iterator is less than the dropping
percentage.

if (percent iterator < drop percent) {

}

® ingress.p4 - lab10 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4 ®
~ LAB10O ngress.pd

basic.pa 58 e S

checksum.p4 39 if(hdr.tep.isvalid()) {

deparser.p4 40 bit<7> drop percent;

egress.pd 41 drop_percent_reg.read(drop_percent, (bit<32=)0);

headers.p4 42 i)

P —— 43 1fl’hd|l’.tcp.ﬂags == 2) {
44 bit=32> syn counts = 0;

labl0.mn 45 -

[P 46 syn_counts_reg.read(syn_counts, (bit<32>)0);
47 syn_counts = syn_counts + 1;
48 syn_counts_reg.write((bit<32>)0, syn_counts);
49
50 if(syn_counts > THRESH) {
51 bit<7= percent_iterator;
52 percent iterator reg.read(percent iterator, (bit<32>)0);
53
54 if(percent iterator < drop percent) {
55 |
56 . 1
57 }
58 }

Figure 19. Checking if the number of dropped packets is less than the dropping percentage.

Step 11. Add the following code to drop the packet and increment the iterator if the
percent iterator]is less than the[drop percent]

Page 15

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

percent iterator = percent iterator + 1;
percent iterator reg.write((bit<32>)0, percent iterator);
drop () ;

® ingress.p4 - lab10 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.pd4 @
p i
~ LABLO ngress.p4
basic.p4 40 bit<7> drop_percent; .
checksum.pd 41 drop_percent_reg.read(drop_percent, (bit<32>)0);
- 42

(Spesseerd 43 if(hdr.tcp.flags == 2} {

egress.p4 44 bit<32> syn counts = 0;

headers.p4 45

ingress.p4 46 syn_counts_reg.read(syn_counts, (bit<32>)0);

lablo.mn 47 syn_counts = syn_counts + 1;

parser.pd 43 syn_counts_reg.write((bit<32>)@, syn_counts);
49
50 if(syn_counts > THRESH) {
51 bit<7> percent_iterator;
52 percent_iterator_reg.read(percent_iterator, (bit<32=)0);
53
54 if (percent_iterator < drop percent) ({
55 percent iterator = percent_lterator + 1;
56 percent_iterator reg.write((bit<32>)0, percent_iterator);
57 drop () ;|
58 b
59 }

Figure 20. Dropping SYN packets.

In the code above, the percent iterator]variable is incremented by one and stored in
the percent iterator reglregister. After that, the packet is dropped.

Step 12. Add the following code to increment the count of dropped packets by one
without dropping the packet if the number of dropped packet is less than 100.

else if (percent iterator < 100) {
percent iterator = percent iterator + 1;
percent iterator reg.write((bit<32>)0, percent iterator);

@ ingress.p4 - lab10 - Visual Studio Code

File Edit Selection View Goc Run Terminal Help

Q EXPLORER ingress.p4 @
v LAB10 ngress.pd

basic.p4 43 if(hdr.tcp.flags == 2) {

checksum.p4 44 bit<32> syn counts = 6;

deparser.p4 45

egress.pa 46 syn_counts_reg.read(syn_counts, (bit<32>)0);

headers.pa 47 syn_counts = syn_counts + 1;

) 48 syn counts reg.write((bit<32=)0, syn counts);

ingress.p4 49 - - -

lab10.mn 50 if(syn counts > THRESH) {

parser.p4 51 bit<7= percent iterator;
52 percent_iterator_reg.read(percent iterator, (bit<32>)8);
53
54 if(percent_iterator < drop percent) {
55 percent_iterator = percent iterator + 1;
56 percent_iterator_reg.write((bit<32>)0, percent_iterator);
57 dropl();
58
59 else if (percent_iterator < 100) {
60 percent_iterator = percent iterator + 1;
61 percent_iterator_reg.write((bit<32>)0, percent_iterator);
62 il

Figure 21. Incrementing the iterator.

Page 16

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

From each 100 packets, we are dropping the first [drop percent] packets (e.g., the first
50 packets if the [drop percent] is 50%). The remaining packets (i.e., 100 -
[drop percent]) are forwarded.

Step 13. Add the following code to reset jpercent iterator reg| register when
percent iteratorreaches 100.

else if (percent iterator == 100) {
percent iterator reg.write((bit<32>)0, 0);

@ ingress.p4 - lab10 - Visual Studio Code

File | Edit Selection View Go Run Terminal Help

LE\[EXPLORER ingress.p4 @
~ LAB10O ngress.pd
basic.p4 - .
46 syn _counts reg.read(syn counts, (bit<32=)0);
IR 47 syn_counts = syn_counts + 1;
deparser.p4 48 syn_counts_reg.write((bit<32>)@, syn_counts);
egress.p4 49
headers.p4 50 if(syn_counts > THRESH) {
ingress.p4 51 bit<7= pgrcent_iterator; . .
(siE :i percent_iterator_reg.read(percent_iterator, (bit<32=)g8);
parser.pd 54 if(percent iterator < drop percent) {
55 percent_iterator = percent_iterator + 1;
56 percent_iterator_reg.write((bit<32>)@, percent_iterator);
57 drop();
58 I
59 else if (percent_iterator < 100) {
60 percent iterator = percent iterator + 1;
61 percent iterator reg.write((bit<32>)8, percent iterator);
62 2
63 else if(percent_iterator == 100) {
64 | percent_iterator_reg.write((bit<32>)@, 0);
65 I
66 }

Figure 22. Resetting the [percent iterator regregister.

Step 14. Save the changes to the file by pressing[ctrl + 4.

3.3 Loading the P4 program

Step 1. To compile the P4 program, issue the following command in the terminal panel
inside the VS Code.

p4c basic.pd

Page 17

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

ingress.p4 - lab10 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.p4 X
~ LAB10 ngress.p4
basic.json 42 .
46 syn_counts_reg.read(syn_counts, (bit<32=)@);
i a7 syn_counts = syn_counts + 1;
basic.p4i 48 syn_counts_reg.write((bit<32=)6, syn_counts);
checksum.p4 49
deparser.p4 50 if(syn counts > THRESH) {
egress.p4 51 bit<7> pgrcent_iterator; . .
el :g percent_iterator_reg.read(percent_iterator, (bit<32>)8);
ingress.p4 54 if(percent_iterator < drop percent) {
lab10.mn 55 percent_iterator = percent_iterator + 1;
parser.p4 56 percent_iterator_reg.write((bit<32>)0, percent_iterator);
57 drop();
58
59 else if (percent iterator = 100) {
60 percent_iterator = percent iterator + 1;
61 percent_iterator_reg.write((bit<32=)0, percent_iterator);
62 }
63 else if(percent_iterator == 100) {
64 percent iterator reg.write((bit<32>)0, 8);
65 i
66 }

PROBLEMS QUTPUT TERMINAL DEBUC

® admin@lubuntu-vm:~/P4_Labs/lable$
admin@lubuntu-vm:~/P4 Labs/lable$

Figure 23. Compiling the P4 program using the VS Code terminal.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1. If asked for a password, type the password password]

push to switch basic.json sl

ingress.p4 - lab10 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER ingress.pd x
~ LAB10O ngress.pd
basic.json 42 :
. 46 syn_counts_reg.read(syn_counts, (bit<32>)0);
Das g 47 syn_counts = syn_counts + 1;
basic.pdi 48 syn_counts_reg.write((bit<32=)e, syn_counts);
checksum.p4 49
deparser.p4 50 if(syn_counts > THRESH) {
egress.pa 51 bit<7> pgrcent_iterator; . -
headers.pa :i percent_iterator reg.read(percent iterator, (bit<32=)0);
[EESE 54 if(percent iterator < drop percent) {
lab10.mn 55 percent iterator = percent iterator + 1;
parser.p4 56 percent_iterator reg.write((bit<32=>)0, percent_iterator);
57 drop();
58 }
59 else if (percent_iterator < 100) {
60 percent_iterator = percent_iterator + 1;
61 percent iterator_reg.write((bit<32=)0, percent_iterator);
62
63 else if(percent_iterator == 100} {
64 percent_iterator_reg.write((bit<32=)o, 8);
65 }
66 }

PROBLEMS OUTPUT TERMINAL DEBUG LE

® admin@lubuntu-vm:~/P4_Labs/1ab10$ pdc basic.p4

® admin@lubuntu-vm:~/P4_Labs,/labl10$ [push_tfo_switch basic.json si|
[sudo] password for admin:
admin@lubuntu-vm:~/P4_Labs/lab10s I

Figure 24. Downloading the compiled program to switch s1.

Step 3. Click on the MinEdit tab in the start bar to maximize the window.

Page 18

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

PROBLEMS JUTPUT TERMINAL DEBUC

admin@lubuntu-vm:~/P4_Labs/lab10$]

» OUTLINE

» TIMELINE

- qterminal -2 windows | I MiniEdit "Host: h1" basic.p4 - ...Studio Code

Figure 25. Maximizing the MiniEdit window.

Step 4. Right-click on the P4 switch icon in MiniEdit and select Terminal.

File Edit Run Help

ey |

h2

Docker Options

ITerminaI I

Figure 26. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 5. Issue the following command to list the files in the current directory.

1s

root@sl: /behavioral-model

Figure 27. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

Page 19

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

Step 6. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple switch -i 0@sl-eth0 -i 1@sl-ethl basic.json &

root@sl: /behavioral-model

i sl-eth0 |0 X 1] sl-ethl i

Figure 29. Ports 0 and 1 are mapped to the interfaces s1-ethO and s1-eth1 of switch s1.

Step 7. In switch s1 terminal, press Enter to return the CLI.

root@sl: /behavioral-model

0 -ethe
Adding interface sl-ethl as port 1

havioral-

Figure 30. Returning to switch s1 CLI.

Step 8. Populate the table with forwarding rules by typing the following command.

simple switch CLI < ~/labl0/rules.cmd

Page 20

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

root@sl: /behavioral-model
ehavioral-model#|simple switch CLI = ~/labl@/rules.cmd
SON from switch.==

{untrnl utility an runtlmw P4 table manipulation

t match table MyIng s . Torwarding

orward

table MyIngress.forwarding

Figure 31. Loading table entries to switch s1.
The figure above shows the table entries described in the file rules.cmd.

Step 9. Go back to host h1 terminal to test the connectivity between host h1 and host h2
by issuing the following command.

ping 10.0.0.2 -c 4
"Host: h1"
from 1¢

from
from 1¢

time 3

Figure 32. Performing a connectivity test between host h1 and host h2.

The figure above shows that there is connectivity between the two hosts.

4 Testing the P4 code against SYN flood attack

4.1 Configuring the mitigation parameters

Step 1. In switch sl terminal, access the [simple switch CLI] by typing the command
below.

simple switch CLI

Page 21

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

root@sl: /behavioral-model

simple switch CLI

utility for runtime P4 table manipulation
md: |

Figure 33. Accessing[simple switch CLI]

Step 2. Configure the dropping rate to be 0% by typing the command below.

register write MyIngress.drop percent reg 0 0

root@sl: /behavioral-model

+ simple switch CLI

or runtime P4 table manipulation
ster write MyIng Ldre ercent reg @ 0

Figure 34. Configuring the dropping rate.
By setting the dropping percentage to 0%, we are disabling the mitigation phase.

Note that the register value in P4 is 0 by default®. In the previous step, the value was set
to 0 to explicitly show the user that the dropping rate is 0% and that the mitigation phase
of the program is disabled.

Step 3. Start a second terminal on s1 by right-clicking on the P4 switch icon in MiniEdit
and select Terminal.

File Edit Run Help

.
R —

hl

i Docker Options ‘

ITerminaI I

Figure 35. Starting the terminal on switch s1.

Page 22

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets
Step 4. On the new terminal, type the command below to reset the number of counts

every second.

while [1]; do echo 'register write MyIngress.syn counts reg 0 0' |
simple switch CLI; sleep 1; done

root@sl: /behavioral-model

Figure 36. Resetting the dropping rate every 1 second
Note that the spaces in the previous command are mandatory. If you write while [1]
instead of while [1], the command will produce an error.
4.2 Performing SYN flood attack

Step 1. On h1l terminal, type the command below to display number of received SYN
packets per seconds.

bash get SYN packets per second.sh

"Host: h1"

ubuntu-vm: /h dmin#|bash get SYN packets pe

Figure 37. Displaying the number of received SYN packets per second.

Step 2. Hold the right-click on host h2 and select Terminal. This opens the terminal of host
h2 and allows the execution of commands on that host.

File Edit Run Help

R

[
.- o =
hl 1

h: Host Options

Terminal

Figure 38. Opening a terminal on host h2.

Page 23

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

Step 3. On h2 terminal, type the command below to perform SYN flood attack. is
a network tool able to send custom TCP/IP packets and to display target replies.
instructs hping3 to send 1000 packets per second. option sets SYN TCP flag for the
packets to be sent. is the destination IP of the packets generated by hping3.
direct the output of the command to the null device.

hping3 -i ul000 -S 10.0.0.1 > /dev/null

"Host: h2"

root@lubuntu-vm: /home/admin#|hping3 -i uleee -5 10.0.0.1 = fdev/null

Figure 39. Performing the SYN flood attack.
Step 4. Inspect the number of received SYN packets at h1l.

"Host: hl1"

per second.sh

The figure above shows that h1 is receiving around 920 SYN packets per second. Not that
no packets are dropped by the switch because the dropping percentage is set to zero.

Step 5. On sl1, use the terminal running the [simple switch CLI| to configure the
dropping rate to be 50% by typing the command below.

register write MylIngress.drop percent reg 0 50

root@sl: /behavioral-model

Control utility
RuntimeCmd:

Figure 41. Configuring the dropping rate.

Because the received number of SYN packets per second is around 900, and the threshold
is 100, the dropping threshold will be applied on 800 packets only (900 - 100). Note that
the switch does not apply the dropping mechanism on the first 100 SYN packets. By
setting the dropping percentage to 50%, we expect to receive 100 + 800/2 SYN packets,
which is around 500 packets.

Page 24

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

Step 6. Inspect the number of received SYN packets at h1.

"Host: h1"

packets in the last 5:Luna
Figure 42. Inspecting the number of received SYN packets at h1.

The figure above shows that h1 is receiving around 500 SYN packets per second.
Step 7. Configure the dropping rate to be 100% by typing the command below.
register write MylIngress.drop percent reg 0 100

root@s1l: /behavioral-model
el# simple switch CLI
aining JSON from switch...
Done

Control utility for runtime P4 table manipulation
RuntimeCmd: r ster write Myln s .drop cent reg 0 0
RuntimeCmd: r er write

RuntimeCmd: ister write MyIng

RuntimeCmd:

Figure 43. Configuring the dropping rate.
By setting the dropping threshold to 100%, the expected number of SYN packets to be
received per second is around 100 because all the packets above the threshold will be

dropped.

Step 8. Inspect the number of received SYN packets at h1.

"Host: h1l"

P ts in the last second
Figure 44. Inspecting the number of received SYN packets at h1.

The figure above shows that h1l is receiving around 100 SYN packets per second.

Page 25

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

This concludes lab 10. Stop the emulation and then exit out of MiniEdit.

References

1. NETSCOUT, “What is a Volumetric Attack?” [Online]. Available:
https://tinyurl.com/4fcehbrb

2. Cloudflare, “SYN Flood Attack.” [Online]. Available: https://tinyurl.com/bdeef2uv

3. GURU99, “What is TCP Three-Way HandShake?.” [Online]. Available:
https://tinyurl.com/bdhnd4xu

4. NETSCOUT, “What is a SYN flood attack and how do you to prevent it?” [Online].
Available: https://tinyurl.com/584ufywk

5. Pdlang, “[PSA] meter and register initial state.” [Online]. Available:
https://tinyurl.com/2s4zey2y

Page 26

A

UNIVERSITY OF

SOUTH CAROLINA

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 11: Blocking Application Layer Slow DDoS
Attack (Slowloris)

Document Version: 04-20-2023

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

Contents
OVEIVIBW ..ttt ettt et e e ettt e e e e e e s e bttt e e e e e e e s nnsreeeeeeeeesaannseeeeeeeeesesannnnraeeaaaeens 3
(0] o 1101 4 V7= PSPPI 3
(1Y Y=Y = PP PUPPRRUPPPPR 3
(=Y o o - o [o= o T PP UPPPRUPPPPR 3
R 101 1 o Yo U Tt d o T o IO PP PUPPPUPTPPR 3
0 R I o Yol =T o - [o T PP PPP 4
P IF- | o I o] o Yo Lo} -1V 20U SRR UPRPURTPPR 5
2.1 Verifying connectivity between host hl and host h2ccccceveiviiiiiiiiiiiieecee, 7
3 Loading the basic P4 Programcceoviiieiieiiiieeeiiieee st e e e e s vae e s s earae e s 8
4 Performing SIOWLOIIS @ttackceeeecuvieiiiiiiiiiiiiiiee e e 13
4.1 Starting the HTTP SEIVET .cciiiiiie ittt ettt e e st sbaeee s 13
4.2 Performing the attackccccueiiiiiiiiie e 14
5 Modifying the P4 program to mitigate SIOWLOIiS.......cccccveeiiriiieiiiiieee e, 16
5.1 Modifying the iNgress file........ccueiiiiiiiieee e 16
5.2 Loading the program and configuring the switch..........cccoeviiiiiiiiiiiiniiieee, 23
5.3 Testing the P4 Program ettt e et e e e e e e nnrae e e e 25
REFEIENCES ...ttt e e sttt e e s st e e s s abt e e e e saraeeesenreeesanns 26

Page 2

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

Overview

This lab introduces the slow DDoS Attack (SlowLoris) and provides the steps to implement
a P4 program to mitigate the attack. In SlowLoris, the attacker occupies the resources of
a web server by maintaining multiple simultaneous TCP connections, such that the
attacker just sends enough packets for each connection to prevent it from terminating
due to timeout. To mitigate this attack, the user will limit the number of TCP connections
per IP address. In the P4 program, the user will define a register to track the number of
TCP connections and will use the source IP address of the packets as the index of the
register. If the count of connections for a specific IP address exceeds a predefined

threshold, the switch will drop all new connections coming from that IP address.

Objectives

By the end of this lab, students should be able to:

PwnNE

Lab settings

Define the slow DDoS Attack.

Understand the workflow of the slow DDoS attack.
Perform a slow DDoS attack.

Write a P4 program that mitigates the slow DDoS attack.

Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client

admin

password

Lab roadmap

This lab is organized as follows:

uhwN e

1 Introduction

Section 1: Introduction.

Section 2: Lab topology.

Section 3: Loading a basic P4 program.
Section 4: Performing slow DDoS attack.
Section 5: Modifying the P4 program to mitigate slow DDoS attack.

Page 3

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

SlowLloris is a type of low-bandwidth, application-layer denial-of-service (DoS) attack that
targets web servers by exploiting their connections and resources!. The attack targets
servers using HTTP, making it highly effective against web servers that do not have proper
protection mechanisms in place.

The primary objective of the Slowloris attack is to exhaust the server's available
connections, rendering it unable to serve legitimate requests. Unlike conventional DoS
attacks that involve flooding the target with massive amounts of data, SlowLoris operates
discreetly by opening multiple connections to the target server and maintaining them for
an extended period. It does this by sending HTTP requests in a slow, fragmented manner,
using partial request headers, and deliberately prolonging the completion of these
requests.

The attacker keeps these connections alive by periodically sending additional headers or
whitespace, without ever completing the request. Since most web servers have a limit on
the number of concurrent connections they can handle, SlowLoris eventually causes the
server to reach its connection limit, preventing it from accepting new, legitimate
connections. Consequently, the server becomes unresponsive or significantly slowed
down, affecting its ability to serve content to users.

Due to its stealthy nature and low bandwidth consumption, SlowLoris can be difficult to
detect and mitigate. However, various countermeasures can help defend against this type
of attack, including limiting the number of connections from a single IP address, adjusting
server timeouts, employing reverse proxies, or using load balancers. Implementing these
defenses can help improve a web server's resilience against SlowLoris and other similar
attacks3.

1.1 Lab scenario

In this lab, a P4 programmable switch will mitigate the SlowLoris attack by forcing clients
to have a limited number of ongoing connections with the HTTP server. The switch tracks
the number of flows per client by using registers that store the count of ongoing flows per
IP address. The hash of the source IP is used as the index to the registers. The counters of
the registers are incremented when a new SYN packet is received and are decremented
when a FIN packet is received. If the register value exceeds a predefined threshold (i.e., a
client has the maximum allowed number of connections), no new connections from the
client will be allowed before terminating an existing one.

Consider Figure 1. The topology consists of a legitimate user, an attacker, a web server,
and a P4 switch. The attacker performs a Slowloris attack to occupy all the available
connections at the web server and consequently makes it unavailable. The P4 switch
mitigates the attack by dropping the connections initiated by the attacker when the
number of ongoing connections exceeds the predefined threshold. The legitimate user
will be able to communicate with the web server as the switch prevents the resources of
the web server from being occupied by the SlowLoris attack.

Page 4

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

Allowed connections threshold: t

n>t:Allow

the first t
!

connections

only

Attacker

Web server

i<t:allow Legitimate client

all the
EIR RN

connections
to pass

Figure 1. SlowLoris attack mitigation using P4 switch.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

h2

h2-eth0

h1 sl s1ethl

h1-ethO sl-ethO

(a/

10.0.0.1

h3-eth0

10.0.0.3
Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Page 5

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

Computen

MiniEdit

Tenminal

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab11, select the file lab11.mn, and click on
Open.

MiniEdit

|
Edit Run Help

— Open - 2 X

o Directory: /home/admin/P4_Labs/labl1 it '

= =

[4 J¥

File npame: labll.mn I gpenl

Files of type: Mininet Topology (*.mn) -—-| Cancel l

Figure 4. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Page 6

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

Stop I‘H-l—

Figure 5. Running the emulation.

2.1 Verifying connectivity between host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

File Edit Run Help

R

J
E / n2
‘ P
hl Host Options - ? \
(]

Terminal
h3

Figure 6. Opening a terminal on host h1l.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Page 7

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

Figure 7. Performing a connectivity test between host hl and host h2.

The figure above indicates no connectivity between host h1l and host h2 because there is
no program loaded into the switch. Note that there will be no connectivity between any
two hosts in the topology before loading a P4 program to the switch.

3 Loading the basic P4 program

In this section, the user will compile and run a P4 program that implements the basic
forwarding functionality. The switch will then be configured by mapping the P4 program’s
ports and loading the rules to the switch.

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on

the desktop. Alternatively, click on the Linux terminal icon located on the lower left-hand
side.

computer

MinFEdit

Terminal

Figure 8. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4 Labs/labll

Page 8

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

admin@lubuntu-vm: ~

File Actions Edit View Help

admin@lubuntu-vm: ~

admin@lubuntu-vm:~S$ [code P4 _Labs/1 ab11j]

Figure 9. Launching the editor and opening the lab11 directory.

Step 3. In this lab, we will not modify the P4 code. Instead, we will just compile it and
download it to the switch s1. To compile the P4 program, issue the following command
in the terminal panel inside the VS Code.

p4c basic.p4

basic.p4 - lab1l - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER basic.p4 x
~ LAB11 basic.p4
basic.p4 1 /¥ -%- P4 16 -*- */
checksum.p4 2 #include <core.pd=
deparser.pd 3 #:Ianlude <vlmodel.p4>
4 #include "parser.p4"

egress.pd 5 #include "checksum.p4"
headers.p4 6 #include "ingress.p4"
ingress.pd 7 #include "egress.p4"
labll.mn 8 #include "deparser.p4"”
parser.p4 9

10 V1switch(

11 MyParser(),

12 MyverifyChecksum(),

13 MyIngress(),

14 MyEgress(),

15 MyComputeChecksum(),

16 MyDeparser()

17) main;

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

admin@lubuntu-vm:~/P4 Labs/lab1l$ [|

Figure 10. Compiling the P4 program using the VS Code terminal.
Step 4. Type the command below in the terminal panel to download the basic.json file to

the switch s1. The script accepts as input the JSON output of the p4c compiler, and the
target switch name (e.g., s1). If asked for a password, type the password [password].

push to switch basic.json sl

Page 9

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

basic.p4 - lab11 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER basic.p4 X
“ LAB11 basic.p4
basic.json 1 /* -*- P4 16 -*- ¥/
basic.pd 2 #include =core.p4=
e e 3 #:}nclude <vlmodel.p4=
4 #include "parser.p4”
LT 5 #include "checksum.p4"
deparser.p4 6 #include "ingress.p4"
egress.p4 7 #include "egress.p4"
headers.p4 g #include "deparser.p4"
ingress.p4 9
labll.mn 10 V1Switch(
parserpd 11 MyParser(), _
12 MyVerifyChecksum(),
13 MyIngress(),
14 MyEgress(),
15 MyComputeChecksum(),
16 MyDeparser()
17) main;

PROBLEMS OUTPUT TERMINAL DEBUG C OLE

® admin@lubuntu-vm:~/P4_Labs/labl1$|push_to_switch basic.json sl|
[sudo] password for admin:
admin@lubuntu-vm:~/P4 Labs/lab11$]

Figure 11. Downloading the compiled program to switch s1.

Step 5. Click on the MinEdit tab in the start bar to maximize the window.

PROBLEMS ouTPUT TERMINAL DEBUG CONSOLE

® admin@lubuntu-vm:~/P4_Labs/labl1l$ push_to_switch basic.json sl
[sudo] password for admin:
admin@lubuntu-vm:~/P4_Labs/labl1$ [l

» OUTLINE
> TIMELINE
®0MA0 Ln 15, Col 21 Spaces: 4 UTF-8

g B - * gterminal-2 windows | I MiniEdit "Host: h1" basic.p4 - ...Studio Cod

Figure 12. Maximizing the MiniEdit window.

Step 6. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Page 10

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

File Edit Run Help

F
[

hl Docker Options

=1 | -l

Figure 13. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 7. Issue the following command to list the files in the current directory.

1s

root@sl: /behavioral-model

avioral-model#| 1s

pehavioral-model# JJ

Figure 14. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

Step 8. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple_switch -i 0@sl-ethO -i 1@sl-ethl -i 2@sl-eth2 basic.json &

root@sl: /behavioral-model - 00X

L# simple sw -1 l1-eth® -i 1l@sl-ethl -i 2@sl-et

Figure 15. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Step 9. In switch s1 terminal, press Enter to return the CLI.

Page 11

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

root@sl: /behavioral-model

model# simple

Calling target program-options parser

Figure 16. Returning to switch s1 CLI.

Step 10. Populate the table with forwarding rules by typing the following command.

simple switch CLI < ~/labll/rules.cmd

root@sl: /behavioral-model

ehavioral-m #|simple switch CLI < ~/labll/rules.cmd
SON from switch.™~
Done
Control utility for runtime P4 table manipulation
' nd: Adding entry to able .forwarding
EXACT-8
MyIn
runtin
Entr
e MyIngress.forwarding

100 :(
vith handle 1
entry to ex N h table MyIngress.forwarding
match EXACT
action \
runtim

roo

Figure 17. Loading table entries to switch s1.
The figure above shows the table entries described in the file rules.cmd.

Step 11. Go back to host h1l terminal to test the connectivity between host h1l and host
h2 by issuing the following command.

ping 10.0.0.2 -c 4

Page 12

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

"Host: h1"

"om
from

4 pa
rtt mir

Figure 18. Performing a connectivity test between host hl and host h2.
The figure above shows that there is connectivity between the two hosts. Note that at

this stage there should be connectivity between any two hosts in the topology.

4 Performing SlowLoris attack

4.1 Starting the HTTP server

Step 1. Start a DNS server on h1 by issuing the command below.

nginx -c /home/admin/nginx-conf.conf

"Host: h1"

ntu-vm:/ 1in#|nginx -c / dmin/nginx-cont.conf
dmin# |

Figure 19. Starting the HTTP server on h1.

is an HTTP server. [[c_/home/admin/nginx-conf.conf] specifies to use nginx-
conf.conf configuration file when starting the HTTP server.

Step 2. Hold the right-click on host h3 and select Terminal. This opens the terminal of host
h3 and allows the execution of commands on that host.

Page 13

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

|| MiniEdit

File Edit Run Help

Host Options

i Terminal

Figure 20. Opening a terminal on host h3.

Step 3. On h3 terminal, type the command below to validate that h1 operates as an HTTP

server. is a utility for non-interactive download of files from the Web.
option tells to delete every single file it downloads, after having done so.

is the IP address of the HTTP server.

wget --delete-after 10.0.0.1

"Host: h3"

ct/html]
html.1.tmp’

Figure 21. Issuing HTTP Get request.

The figure above shows that h3 downloaded a file from h1 using HTTP GET request.

4.2 Performing the attack

In this section, h3 will perform SlowLoris attack against the web server running on h1.

Page 14

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

Step 1. Hold the right-click on host h2 and select Terminal. This opens the terminal of host
h2 and allows the execution of commands on that host.

|| MiniEdit

File Edit Run Help

Host Options

- =
h \

=

Figure 22. Opening a terminal on host h2.

Step 2. On h2 terminal, type the command below to perform SlowLoris attack on the web
server running on hl. [slowhttptest| implements the most common low-bandwidth
application Layer DoS attacks. sets the number of connections to be initiated by the
attack. [-ul specifies the URL of the target server.

slowhttptest -c 10000 -u http://10.0.0.1

"Host: h2"

root@lubuntu-vm: /home/admin# |slowhttptest -c 10¢

Figure 23. Performing SlowLoris attack.

The attack needs around 1 minute to occupy all the available connection of the web
server. Wait for one minute before moving to the next step.

Step 3. On h3 terminal, type the command below to perform a legitimate HTTP GET
request.

wget --delete-after 10.0.0.1

Page 15

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

"Host: h3"

No data recel

Figure 24. Issuing HTTP Get request.

The figure above shows that h3 was not able to perform an HTTP request because all the
resources at the web server (i.e., h1) are occupied by the attack performed by h2.

5 Modifying the P4 program to mitigate SlowLoris

In this section, the P4 program will be modified to mitigate slow DDoS attacks. To do this,
a register array that stores the number of ongoing connections per host will be initiated.
The array is indexed by the hash of the source IP address of the incoming SYN packets.
The number of ongoing connections will be increased when a new SYN packet is received,
and the counter will be decremented when a new FIN packet is received.

5.1 Modifying the ingress file
Step 1. Use VScode to access the ingress.p4 file. In the ingress.p4 file, define the variable

[THRESH|. [THRESH represents the maximum number of allowed connections per IP address.
The maximum number of allowed connections is 50.

#define THRESH 50

® ingress.p4 - lab11 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

LL'\ EXPLORER ingress.p4 @
1
~ LAB11 ngress.p4
bE‘SiC.jBO'T 1 Jl.-’.t.'.{..-.f..t1..t.'.+..'.{..t:..t.'.#..'.{..t:..t.'.f..'.{..t’..t.'.f..'.{..t1..&.'.{..'.{..t1..&.'.{..'.#..t1..t.'.+..'.f..t1..t.'.+..'.f..t:..k.-.#..-.{..t:..t
basi-:_pq. 2 EEEEEE S % I N G R E S 5 P R 0 c E 5 S I N G e o e e o o e o e o o e o e
; . 3 e o e o e o e e o e o e o e e o o e o e o o o e o e e o o o e e o o e o e e e e o o e e o o o o o o e e o o o e o e o e e o e
basic.p4i -
4 #define THRESH 50
checksum.p4 5
CEpaiEERE 6 control MyIngress(inout headers hdr,
egress.pd 7 inout metadata meta,
headers.p4 8 inout standard metadata t standard metadata) {
:
lab11l.mn 10
arser.pd 11
IR 12 action forward(macAddr t dstAddr, egressSpec t port) {
13 standard metadata.egress spec = port;
14 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
15 hdr.ethernet.dstAddr = dstAddr;
16 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
17 }

Figure 25. Defining the number of allowed connections.

Page 16

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

Step 2. Define the register [connections count] to store the number of ongoing
connections per host.

register<bit<16>>(65536) connections_ count;

® ingress.p4 - lab11 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER ingress.p4 @
~ LAB1ll ng 5.p
baSiC.jSO'T 12 dLLLUll Uruvp s
) 20 mark to drop(standard metadata);
basic.p4 21 3 - -
basic.p4i 22
checksum.p4 23 table forwarding {
deparser.p4 24 key = {
egress.p4 25 hdr.ipv4.dstAddr : exact;
headers.p4 26 } .
- 27 actions = {
=S 28 forward;
labll.mn 29 drop;
parser.p4 30 1
31 size = 1024;
32 default action = drop();
33 }
34
35 |register<bit<16>>(65535) connections count;|
36
37 apply {

Figure 26. Defining register to store the number of connections.

The code above defines a register named [connections count]. The register contains
65536 cells. Each cell will be indexed by the hash of the source IP address and will store
the number of ongoing connections of that IP address.

Step 3. Define the variable which will be used to temporarily hold the
number of connections retrieved from the array.

bit<16> conn counts;

Page 17

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

® ingress.p4 - lab11 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4 @
~ LAB11 ngress.p4
basic.json 19 AL LLUN Urupy g L
) 20 mark to drop(standard metadata);
basic.p4 21 } - -
basic.p4i 22
checksum.p4 23 table forwarding {
deparser.p4 24 key = {
egress.p4 25 hdr.ipv4.dstAddr : exact;
headers.p4 26 })
- 27 actions = {
IJEES P 28 forward;
labl1l.mn 79 drop;
parser.p4 30 }
31 size = 1824;
32 default action = drop(});
33 }
34
35 register<bit<16=>(65535) connections count;
36 |bit<16> conn_counts;|
37
apply {

38
Figure 27. Declaring variable.
Step 4. Define the variable to store the hash of the source IP address.

bit<le> idx;

® ingress.p4 - lab11 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4 @
nh
~ LAB11 ngress.pd
basic_json 19 adLLLull Wrup) L
) 20 mark to drop(standard metadata);
basic.pd 51 } - -
basic.pdi 22
checksum.p4 23 table forwarding {
deparser.p4 24 key = {
egress.p4 25 hdr.ipv4.dstAddr : exact;
headers.p4 26 })
- 27 actions = {
ingress.pa 28 forward;
labll.mn 29 drop;
parser.p4 30 }
31 size = 1024;
32 default action = drop();
33 }
34
35 register<bit<l6==(65535) connections count;
36 bit<l6> conn counts;
57
38

Figure 28. Declaring variable.

Step 5. Define the action by typing the following code.

action compute idx () {
hash (
idx,
HashAlgorithm.crcle,
(bit<1>)0,
{
hdr.ipv4.srcAddr

Page 18

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

by
(bit<16>) 65535

)i

@ ingress.p4 - lab11 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER ingress.p4 ®
~ LAB11 ngress.pd
basic.json 30 }
basic.p4 31 size = 1824;
basic.p4i 32 default action = drop();
33 1

checksum.pd

34
deparser.p4 35 register<bit<16>>(65535) connections count;
egress.p4 36 bit<16> conn_counts;
headers.p4 37 bit<16> idx;
ingress.p4 38
labll.mn 39 action compute idx () [{
parser.p4 40 hashl{
41 idx,
42 HashAlgorithm.crcl6,
43 (bit<1>)0,
44 {
45 hdr.ipv4.srcAddr
46 I
47 (bit<16>)65535
43 K
49 b

50
Figure 29. Defining action.

The code in the figure above hashes flows based on their source IP address. The hash
function produces a 16-bits output using the following parameters:

e [idx]: The variable used to store the output.

® [HashAlgorithm.crcl6| the hash algorithm.

e [(bit<1>)0]: the minimum (or base) value produced by the hash algorithm.
e |hdr.ipv4.srcAddr]: the data to be hashed.

e [(bit<32>) 65535 the maximum value produced by the hash algorithm.

Step 6. Add the following code to the apply block to check if the packet is a SYN packet.

if (hdr.tcp.isValid()) {
if (hdr.tcp.flags == 2){

}

Page 19

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

® ingress.p4 - lab11 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.pd ®
~ LAB11 ngress.p4
basic.json 43 (bit<l=)0,
basic.p4 44 {)
basic.pdi :2) hdr.ipv4.srcAddr
checksum.p4 47 (bit<16>)65535
deparser.p4 48)
egress.p4 49 }
headers.p4 50
ingress.p4 51 apply {
labll.mn 52
53 if(hdr.ipv4.isvalid()) {
BEISEERS 54 forwarding.apply();
55
56 if(hdr.tcp.isvalid()){
57 if(hdr.tcp.flags == 2) {
58
59 }
60)i
61 }
62 }
63 1}

Figure 30. Checking the type of the SYN packet.

In the code above, [i f (hdr.tcp.isvalid())]checks if the packetis a TCP packet. For TCP
packets, [if (hdr.tcp.flags == 2)|checks if the TCP packet is a SYN packet by inspecting
the flags field.

Step 7. Add the following code to retrieve the number of connections originated from the
same IP address.

compute idx();
connections count.read(conn counts, (bit<32>)idx);

@ ingress.p4 - lab11l - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4 @
~ LAB11 ngress.pd

basic.json 4é . I

basic.pd 47 (bit<16>)65535

basic.p4i 48);

checksum.p4 49 }

deparser.p4 50

egress.pd :; apply {

headers.p4 53 if(hdr.ipv4.isvalid()) {

ingress.p4 54 forwarding.apply();

labll.mn 55

TR 56 if(hdr.tcp.isvalid()){
57 if(hdr.tcp.flags == 2} {
58 compute idx();
59 connections count.read(conn_counts, (bit<32=)idx);
60 }
61 I3
62 i
63 }
64 }

Figure 31. Implementing the apply block.

Page 20

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

In the code above, action calculates the hash of the incoming packet.
[connections count.read (conn counts, (bit<32>)idx)| retrieves the number of

connections stored at index and store it in the variable [conn_counts|.

Step 8. Add the following code to increment the count of connections and store the
incremented value in the register [connections count].

conn_counts = conn_ count + 1;
connections count.write ((bit<32>)idx, conn_ counts);

® ingress.p4 - lab11 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Q EXPLORER ingress.p4 @
~ LAB11 ngress.p4

basic.json 4-5 . T

basic.p4 47 (bit<16>)65535

basic.p4i 43)

checksum.p4 49 }

deparser.p4 50

egress.pd :; apply {

headers.p4 53 if (hdr.ipv4.isvalid()) {

ingress.p4 54 forwarding.apply();

labll.mn 55

parser.p4 56 if(hdr.tcp.isvalid()){
57 if(hdr.tcp.flags == 2) {
58 compute idx();
59 connections count.read(conn counts, (bit<32>)idx);
60 conn_counts = conn_counts + 1;
61 | connections_count.write((bit<32>)idx, conn_counts);
62 b
63 }
64 }
65 }
66 1}

Figure 32. Incrementing the number of connections.

Step 9. Add the following code to drop the current packet if is larger than
FFHRESH,

if (conn counts > THRESH) {
drop () ;
}

Page 21

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

@ ingress.p4 - lab11 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4 ®
~ LAB11 ngress.pd
basic.json 51 apply {
basic.p4 52
basic.pdi 53 if{hdr.ipvﬂf:is\!alid{]) {
checksum.pa :x; forwarding.apply();
LEpEI=ERES 56 if(hdr.tcp.isvalid()){
egress.p4 57 if(hdr.tcp.flags == 2} {
headers.p4 58 compute idx();
ingress.p4 59 connections count.read(conn_counts, (bit<32=)idx);
labl1l.mn 60 conn_counts = conn_counts + 1;
61 1 i t<32=)1idx, conn counts);
parser.p4 . -
62 if(conn_counts > THRESH) {
63 | drop();
64 I
65 }
66 }
67 }
68 }
69 }

Figure 33. Dropping SYN packet.

Step 10. Add the following code to decrease the number of connections when receiving
a FIN packet.

else if (hdr.tcp.flags == 1) {
compute idx();
connections count.read(conn counts, (bit<32>)idx);
conn_counts = conn counts - 1;
connections count.write((bit<32>)idx, conn counts);

@ ingress.p4 - lab11 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4 ®
~ LAB11 ngress.p4
L - Eay ey ey g oy e ey ey T —

e @ 54 forwarding.apply();

basic.p4 55

basic.pdi 56 if(hdr.tcp.isvalid()){

checksum.p4 57 if(hdr.tcp.flags == 2) {

deparser.p4 58 compute idx();

e 59 connections count.read(conn_counts, (bit<32=)idx);
60 conn_counts = conn counts + 1;

livzmitars. oY 61 conngctions_count.;rite{ (bit<32>)idx, conn_counts);

ingress.p4 62 if(conn _counts > THRESH) {

labll.mn 63 drop();

parser.p4 64 }
65 1
66 else if(hdr.tcp.flags == 1) {
67 compute idx();
68 connections count.read(conn_counts, (bit<32=)idx);
69 conn_counts = conn_counts - 1;
70 connections count.write((bit<32>)idx, conn_counts);
71 h
72 }
73 }
74 }

Figure 34. Decrementing the number of connections.

In the code above, [else if (hdr.tcp.flags == 1)|checks if the packet is a FIN packet.
For FIN packets, the corresponding index is calculated using function. The

Page 22

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

number of connections is retrieved from [connections count] register, decremented,
and then stored back in the register.

Step 11. Save the changes to the file by pressing[ctrl + s

5.2 Loading the program and configuring the switch

Step 1. To compile the P4 program, issue the following command in the terminal panel
inside the VS Code.

p4c basic.p4

ingress.p4 - lab11 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.pd4 X
~ LAB11 ngress.p4
o o e e e s ea L

Bl o 54 forwarding.apply();

basic.p4 55

basic.p4i 56 if(hdr.tcp.isvalid()){

checksum.p4 57 if(hdr.tcp.flags == 2) {

deparser.p4 58 compute idx();

s 59 connections_count.read(conn_counts, (bit<32>)idx);
60 conn_counts = conn_counts + 1;

(sl 61 connEctions_count.\;rite{ (bit<32=)idx, conn_counts);

ingress.p4 62 if(conn counts > THRESH) {

lab11l.mn 63 drop();

parser.p4 64 }
65 }
66 else if(hdr.tcp.flags == 1) {
67 compute idx();
68 connections count.read(conn counts, (bit<32>)idx);
69 conn_counts = conn_counts - 1;
70 connections count.write((bit<32=)idx, conn_counts);
71 }
72 }
73 }
74 }
PROBLEMS ~ OUTPUT TERMINAL DEBUG CONSOLE

@ admin@lubuntu-vm: -;’P4_Labs,a"labll$

admin@lubuntu-vm:~/P4 Labs/labll$
Figure 35. Compiling the P4 program using the VS Code terminal.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1. If asked for a password, type the password password]

push to switch basic.json sl

Page 23

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

ingress.p4 - lab11 - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER ingress.p4 X
~ LAB11 ngress.pd
N - VI
asic.json 54 forwarding.apply();
basic.p4 55
basic.p4di 56 if(hdr.tecp.isvalid()){
checksum.p4 57 if(hdr.tcp.flags == 2) {
deparser.p4 58 compute idx(); _
egress.p4 59 connections count.read(conn counts, (bit<32=)idx);
r; i Iﬂ.-) 60 conn_counts = conn_counts + 1;
i eaders.p4 61 connections_count.write((bit<32>)idx, conn_counts);
(TEEEE s 62 if(conn_counts > THRESH) {
labl1l.mn 63 drop();
parser.pd 64 }
65 }
66 else if(hdr.tcp.flags == 1) {
67 compute idx();
68 connections count.read(conn_counts, (bit<32>)idx);
69 conn_counts = conn_counts - 1;
70 connections count.write((bit<32>)idx, conn_counts);
71 }
72 I3
7 I
74
PROBLEMS ~ OUTPUT TERMINAL DEBUG CONSOLE

-admin@Lubuntu-vm:~fP4_Labs,flabll$|push to_switch basic.json 51|
[sudo] password for admin:
admin@lubuntu-vm:~/P4_Labs/lab11s$ [I

Figure 36. Downloading the compiled program to switch s1.

Step 3. In switch s1 terminal, type the command below to kill the simple switch daemon,
so that the new P4 program can be loaded.

pkill switch

root@sl: /behavioral-model

ds51:/behavioral-model#|pkill switc I'||

Figure 37. Killing the simple switch daemon.

Step 4. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple switch -i O@sl-eth0 -i 1@sl-ethl -i 2@sl-eth2 basic.json &

root@sl: /behavioral-model

switch -1

switch

target pr

Figure 38. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Page 24

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)
Step 5. In switch s1 terminal, press Enter to return the CLI.

root@sl: /behavioral-model

¢ simple switch -1 -ethe -i

simple switch -i

t program-options p:

Figure 39. Returning to switch s1 CLI.

Step 6. Populate the table with forwarding rules by typing the following command.

simple switch CLI < ~/labll/rules.cmd

root@sl: /behavioral-model

el# simple switch CLI = ~/labll/rules.cmd
ch.”~

s.forwarding

MyIngress.forwarding

MyIngress.forwarding

Entry
Runtim

Figure 40. Loading table entries to switch s1.

5.3 Testing the P4 program

Step 1. On h2 terminal, type the command below to perform SlowLoris attack on the web
server running on h1l.

slowhttptest -c 10000 -u http://10.0.0.1

"Host: h2"

root@lubuntu-vm: /home/admin# |slowhttptest -c 10008 -u http://10.8.08.1 I

Figure 41. Performing SlowLoris attack.

Page 25

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

The attack needs around 1 minute to occupy all the available connection of the web
server. Wait for one minute before moving to the next step.

Step 2. On h3 terminal, type the command below to perform a legitimate HTTP GET
request.

wget --delete-after 10.0.0.1

"Host: h3"

index.html.1l.tmp 100% [================ = 612 --.-KB/s in @s

-84-18 15:00:11 (5.01 MB/s) - ‘index.html.l.tmp’ saved [612/61:

Figure 42. Issuing HTTP Get request.

The figure above shows that h3 downloaded the file from the web server. The P4 switch
was able to stop the SlowlLoris attack.

This concludes lab 11. Stop the emulation and then exit out of MiniEdit.

References

1. NETSCOUT, “What is a Slowloris Attack?” [Online]. Available:
https://tinyurl.com/3awxn2ws

2. Cloudflare, “Slowloris DDoS attack?” [Online]. Available:
https://tinyurl.com/mrarw9ub

3. Zach Norton, “How to Mitigate a Slowloris DDoS Attack.” [Online]. Available:
https://tinyurl.com/5n6h8brm

Page 26

	Cover
	Contents
	Lab 1 - Introduction to Mininet
	Lab 2 - Introduction to P4 and BMv2
	Lab 3 - P4 Program Building Blocks
	Lab 4 - Parser Implementation
	Lab 5 - Introduction to Match-action Tables
	Lab 6 - Implementing a Stateful Packet Filter for the ICMP protocol
	Lab 7 - Implementing a Stateful Packet Filter for the TCP Protocol
	Lab 8 - Detecting and Mitigating the DNS Amplification Attack
	Lab 9 - Identifying Heavy Hitters using Count-min Sketches (CMS)
	Lab 10 - Limiting the Impact of SYN Flood by Probabilistically Dropping Packets
	Lab 11 - Blocking Application Layer Slow DDoS Attack (Slowloris)

