

Principal Investigator: Jorge Crichigno

CYBERSECURITY APPLICATIONS ON
P4 PROGRAMMABLE DATA PLANES

Book Version: 04-20-2023

Cybersecurity Applications on P4 Programmable Data Planes

Contents

Lab 1: Introduction to Mininet
Lab 2: Introduction to P4 and BMv2
Lab 3: P4 Program Building Blocks
Lab 4: Parser Implementation
Lab 5: Introduction to Match-action Tables
Lab 6: Implementing a Stateful Packet Filter for the ICMP protocol
Lab 7: Implementing a Stateful Packet Filter for the TCP protocol
Lab 8: Detecting and Mitigating the DNS Amplification Attack
Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)
Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets
Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 1: Introduction to Mininet

Document Version: 01-25-2022

Lab 1: Introduction to Mininet

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to Mininet .. 3

2 Invoke Mininet using the CLI .. 5

2.1 Invoke Mininet using the default topology .. 5

2.2 Test connectivity .. 9

3 Build and emulate a network in Mininet using the GUI ... 10

3.1 Build the network topology ... 10

3.2 Test connectivity .. 13

3.3 Automatic assignment of IP addresses .. 16

3.4 Save and load a Mininet topology ... 18

References .. 19

Lab 1: Introduction to Mininet

 Page 3

Overview

This lab provides an introduction to Mininet, a virtual testbed used for testing network
tools and protocols. It demonstrates how to invoke Mininet from the command-line
interface (CLI) utility and how to build and emulate topologies using a graphical user
interface (GUI) application.

Objectives

By the end of this lab, you should be able to:

1. Understand what Mininet is and why it is useful for testing network topologies.
2. Invoke Mininet from the CLI.
3. Construct network topologies using the GUI.
4. Save/load Mininet topologies using the GUI.

Lab settings

The information in Table 1 provides the credentials of the Client machine.

Table 1. Credentials to access the Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Mininet.
2. Section 2: Invoke Mininet using the CLI.
3. Section 3: Build and emulate a network in Mininet using the GUI.

1 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools and
protocols. With a single command, Mininet can create a realistic virtual network on any
type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides
an inexpensive solution and streamlined development running in line with production
networks1. Mininet offers the following features:

• Fast prototyping for new networking protocols.

Lab 1: Introduction to Mininet

 Page 4

• Simplified testing for complex topologies without the need of buying expensive
hardware.

• Realistic execution as it runs real code on the Unix and Linux kernels.

• Open-source environment backed by a large community contributing extensive
documentation.

Figure 1. Hardware network vs. Mininet emulated network.

Mininet is useful for development, teaching, and research as it is easy to customize and
interact with it through the CLI or the GUI. Mininet was originally designed to experiment
with OpenFlow2 and Software-Defined Networking (SDN)3. This lab, however, only focuses
on emulating a simple network environment without SDN-based devices.

Mininet’s logical nodes can be connected into networks. These nodes are sometimes
called containers, or more accurately, network namespaces. Containers consume
sufficiently fewer resources that networks of over a thousand nodes have created,
running on a single laptop. A Mininet container is a process (or group of processes) that
no longer has access to all the host system’s native network interfaces. Containers are
then assigned virtual Ethernet interfaces, which are connected to other containers
through a virtual switch4. Mininet connects a host and a switch using a virtual Ethernet
(veth) link. The veth link is analogous to a wire connecting two virtual interfaces, as
illustrated below.

Figure 2. Network namespaces and virtual Ethernet links.

Each container is an independent network namespace, a lightweight virtualization feature
that provides individual processes with separate network interfaces, routing tables, and
Address Resolution Protocol (ARP) tables.

h1 s1 h2s2

s3

Hardware NetworkMininet Emulated Network

Lab 1: Introduction to Mininet

 Page 5

Mininet provides network emulation opposed to simulation, allowing all network
software at any layer to be simply run as is; i.e. nodes run the native network software of
the physical machine. On the other hand, in a simulated environment applications and
protocol implementations need to be ported to run within the simulator before they can
be used.

2 Invoke Mininet using the CLI

In following subsections, you will start Mininet using the Linux CLI.

2.1 Invoke Mininet using the default topology

Step 1. Launch a Linux terminal by clicking on the Linux terminal icon in the task bar.

Figure 3. Linux terminal icon.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. To start a minimal topology, enter the command shown below. When prompted
for a password, type password and hit enter. Note that the password will not be visible
as you type it.

sudo mn

Lab 1: Introduction to Mininet

 Page 6

Figure 4. Starting Mininet using the CLI.

The above command starts Mininet with a minimal topology, which consists of a switch
connected to two hosts as shown below.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth1 s1-eth2 h2-eth0

s1

10.0.0.0/8

Figure 5. Mininet’s default minimal topology.

When issuing the sudo mn command, Mininet initializes the topology and launches its
command line interface which looks like this:

containernet>

Step 3. To display the list of Mininet CLI commands and examples on their usage, type the
following command:

help

Lab 1: Introduction to Mininet

 Page 7

Figure 6. Mininet’s help command.

Step 4. To display the available nodes, type the following command:

nodes

Figure 7. Mininet’s nodes command.

The output of the nodes command shows that there is a controller (c0), two hosts (host
h1 and host h2), and a switch (s1).

Step 5. It is useful sometimes to display the links between the devices in Mininet to
understand the topology. Issue the command shown below to see the available links.

net

Lab 1: Introduction to Mininet

 Page 8

Figure 8. Mininet’s net command.

The output of the net command shows that:

1. Host h1 is connected using its network interface h1-eth0 to the switch on
interface s1-eth1.

2. Host h2 is connected using its network interface h2-eth0 to the switch on
interface s1-eth2.

3. Switch s1:
a. Has a loopback interface lo.
b. Connects to h1-eth0 through interface s1-eth1.
c. Connects to h2-eth0 through interface s1-eth2.

4. Controller c0 does not have any connection.

Mininet allows you to execute commands on a specific device. To issue a command for a
specific node, you must specify the device first, followed by the command.

Step 6. To proceed, issue the command:

h1 ifconfig

Figure 9. Output of h1 ifconfig command.

Lab 1: Introduction to Mininet

 Page 9

This command h1 ifconfig executes the ifconfig Linux command on host h1. The
command shows host h1’s interfaces. The display indicates that host h1 has an interface
h1-eth0 configured with IP address 10.0.0.1, and another interface lo configured with IP
address 127.0.0.1 (loopback interface).

2.2 Test connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1
and host h2 respectively. To test connectivity between them, you can use the command
ping. The ping command operates by sending Internet Control Message Protocol (ICMP)
Echo Request messages to the remote computer and waiting for a response or reply.
Information available includes how many responses are returned and how long it takes
for them to return.

Step 1. On the CLI, type the command shown below. The command h1 ping 10.0.0.2
tests the connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The
figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets to
host h2 (10.0.0.2) and successfully received the expected responses.

h1 ping 10.0.0.2

Figure 10. Connectivity test between host h1 and host h2.

Step 2. Stop the emulation by typing the following command:

exit

Lab 1: Introduction to Mininet

 Page 10

Figure 11. Stopping the emulation using exit.

If Mininet were to crash for any reason, the sudo mn – c command can be utilized to
clean a previous instance. However, the sudo mn -c command is often used within the
Linux terminal and not the Mininet CLI.

Step 3. After stopping the emulation, close the Linux terminal by clicking the X in the
upper-right corner.

Figure 12. Closing the Linux CLI.

3 Build and emulate a network in Mininet using the GUI

In this section, you will use the application MiniEdit to deploy the topology illustrated
below. MiniEdit is a simple GUI network editor for Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth1 s1-eth2 h2-eth0

s1

10.0.0.0/8

Figure 13. Lab topology.

3.1 Build the network topology

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.
MiniEdit will start, as illustrated below.

Lab 1: Introduction to Mininet

 Page 11

Figure 14. MiniEdit Desktop shortcut.

MiniEdit will start, as illustrated below.

(5) Legacy switch

(3) P4 switch (Docker)

(2) Host

(1) Select

(7) Link

(9) Run

(10) Stop

(4) OpenFlow switch

(8) Controller

(6) Legacy router

Figure 15. MiniEdit Graphical User Interface (GUI).

Lab 1: Introduction to Mininet

 Page 12

The main buttons are:

1. Select: allows selection/movement of the devices. Pressing Del on the keyboard
after selecting the device removes it from the topology.

2. Host: allows addition of a new host to the topology. After clicking this button, click
anywhere in the blank canvas to insert a new host.

3. P4 switch (Docker): allows the addition of P4 switch. After clicking this button, click
anywhere in the blank canvas to insert the P4 switch.

4. OpenFlow switch: allows the addition of a new OpenFlow-enabled switch. After
clicking this button, click anywhere in the blank canvas to insert the switch.

5. Legacy switch: allows the addition of a new Ethernet switch to the topology. After
clicking this button, click anywhere in the blank canvas to insert the switch.

6. Legacy router: allows the addition of a new legacy router to the topology. After
clicking this button, click anywhere in the blank canvas to insert the router.

7. Link: connects devices in the topology (mainly switches and hosts). After clicking
this button, click on a device and drag to the second device to which the link is to
be established.

8. Controller: allows the addition of a new OpenFlow controller.
9. Run: starts the emulation. After designing and configuring the topology, click the

run button.
10. Stop: stops the emulation.

Step 2. To build the topology illustrated in Figure 13, two hosts and one switch must be
deployed. Deploy these devices in MiniEdit, as shown below.

Figure 16. MiniEdit’s topology.

Use the buttons described in the previous step to add and connect devices. The
configuration of IP addresses is described in Step 3.

Lab 1: Introduction to Mininet

 Page 13

Step 3. Configure the IP addresses of host h1 and host h2. Host h1’s IP address is
10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the
right click and selecting properties on the device. For example, host h2 is assigned the IP
address 10.0.0.2/8 in the figure below. Click OK for the settings to be applied.

Figure 17. Configuration of a host’s properties.

3.2 Test connectivity

Before testing the connection between host h1 and host h2, the emulation must be
started.

Step 1. Click the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 18. Starting the emulation.

Step 2. Open a terminal by right-clicking on host h1 and select Terminal. This opens a
terminal on host h1 and allows the execution of commands on the host h1. Repeat the
procedure on host h2.

Lab 1: Introduction to Mininet

 Page 14

Figure 19. Opening a terminal on host h1.

The network and terminals at host h1 and host h2 will be available for testing.

Figure 20. Terminals at host h1 and host h2.

Step 3. On host h1’s terminal, type the command shown below to display its assigned IP
addresses. The interface h1-eth0 at host h1 should be configured with the IP address
10.0.0.1 and subnet mask 255.0.0.0.

ifconfig

Lab 1: Introduction to Mininet

 Page 15

Figure 21. Output of ifconfig command on host h1.

Repeat Step 3 on host h2. Its interface h2-eth0 should be configured with IP address
10.0.0.2 and subnet mask 255.0.0.0.

Step 4. On host h1’s terminal, type the command shown below. This command tests the
connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The figure
below shows a successful connectivity test. Host h1 (10.0.0.1) sent six packets to host h2
(10.0.0.2) and successfully received the expected responses.

ping 10.0.0.2

Figure 22. Connectivity test using ping command.

Step 5. Stop the emulation by clicking on the Stop button.

Figure 23. Stopping the emulation.

Lab 1: Introduction to Mininet

 Page 16

3.3 Automatic assignment of IP addresses

In the previous section, you manually assigned IP addresses to host h1 and host h2. An
alternative is to rely on Mininet for an automatic assignment of IP addresses (by default,
Mininet uses automatic assignment), which is described in this section.

Step 1. Remove the manually assigned IP address from host h1. Right-click on host h1 and
select Properties. Delete the IP address, leaving it unassigned, and press the OK button as
shown below. Repeat the procedure on host h2.

Figure 24. Host h1 properties.

Step 2. In the MiniEdit application, navigate to Edit > Preferences. The default IP base is
10.0.0.0/8. Modify this value to 15.0.0.0/8, and then press the OK button.

Figure 25. Modification of the IP Base (network address and prefix length).

Lab 1: Introduction to Mininet

 Page 17

Step 3. Run the emulation again by clicking on the Run button. The emulation will start
and the buttons of the MiniEdit panel will be disabled.

Figure 26. Starting the emulation.

Step 4. Open a terminal by right-clicking on host h1 and select Terminal.

Figure 27. Opening a terminal on host h1.

Step 5. Type the command shown below to display the IP addresses assigned to host h1.
The interface h1-eth0 at host h1 now has the IP address 15.0.0.1 and subnet mask
255.0.0.0.

ifconfig

Lab 1: Introduction to Mininet

 Page 18

Figure 28. Output of ifconfig command on host h1.

You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host
h2’s terminal. The corresponding interface h2-eth0 at host h2 has now the IP address
15.0.0.2 and subnet mask 255.0.0.0.

Step 6. Stop the emulation by clicking on Stop button.

Figure 29. Stopping the emulation.

3.4 Save and load a Mininet topology

In this section you will save and load a Mininet topology. It is often useful to save the
network topology, particularly when its complexity increases. MiniEdit enables you to
save the topology to a file.

Step 1. In the MiniEdit application, save the current topology by clicking File. Provide a
name for the topology and notice myTopology as the topology name. Ensure you are in
the lab1 folder and click Save.

Lab 1: Introduction to Mininet

 Page 19

Figure 30. Saving the topology.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab1 folder and search for the topology file called lab1.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 31. Opening a topology.

This concludes lab 1. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. Mininet walkthrough. [Online]. Available: http://Mininet.org.
2. Mckeown N., Anderson T., Balakrishnan H., Parulkar G., Peterson L., Rexford J.,

Shenker S., Turner J., “OpenFlow,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

Lab 1: Introduction to Mininet

 Page 20

3. Esch J., “Prolog to, software-defined networking: a comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 10–13, 2015.

4. Dordal P., “An Introduction to computer networks,”. [Online]. Available:
https://intronetworks.cs.luc.edu/.

5. Lantz B., Gee G. “MiniEdit: a simple network editor for Mininet.” 2013. [Online].
Available: https://github.com/Mininet/Mininet/blob/master/examples.

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 2: Introduction to P4 and BMv2

Document Version: 01-25-2022

Lab 2: Introduction to P4 and BMv2

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Workflow of a P4 program ... 4

1.2 Workflow used in this lab series .. 5

2 Lab topology.. 6

2.1 Verifying connectivity between host h1 and host h2 .. 7

3 Loading the P4 program .. 8

3.1 Loading the programming environment .. 9

3.2 Compiling and loading the P4 program to switch s1 ... 11

3.3 Verifying the configuration .. 13

4 Configuring switch s1 .. 14

4.1 Mapping P4 program’s ports.. 14

4.2 Loading the rules to the switch .. 16

References .. 17

Lab 2: Introduction to P4 and BMv2

 Page 3

Overview

This lab introduces programmable data plane switches and their role in the Software-
defined Networking (SDN) paradigm. The lab introduces the Programming Protocol-
independent Packet Processors (P4), the de facto programming language used to describe
the behavior of the data planes of programmable switches. The focus of this lab is to
provide a high-level overview of the general lifecycle of programming, compiling, and
running a P4 program on a software switch.

Objectives

By the end of this lab, students should be able to:

1. Define the need for SDN and data plane programmability.
2. Understand the structure of a P4 program.
3. Compile a simple P4 program and deploy it to a software switch.
4. Start the switch daemon and allocate virtual interfaces to the switch.
5. Perform a connectivity test to verify the correctness of the program.

Lab settings

Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Loading the P4 program.
4. Section 4: Configuring switch s1.

1 Introduction

Since the emergence of the world wide web and the explosive growth of the Internet in
the 1990s, the networking industry has been dominated by closed and proprietary

Lab 2: Introduction to P4 and BMv2

 Page 4

hardware and software. The progressive reduction in the flexibility of protocol design
caused by standardized requirements, which cannot be easily removed to enable protocol
changes, has perpetuated the status quo. This protocol ossification1, 2 has been
characterized by a slow innovation pace at the hand of few network vendors. As an
example, after being initially conceived by Cisco and VMware3, the Application Specific
Integrated Circuit (ASIC) implementation of the Virtual Extensible LAN (VXLAN)4, a simple
frame encapsulation protocol, took several years, a process that could have been reduced
to weeks by software implementations. The design cycle of switch ASICs has been
characterized by a lengthy, closed, and proprietary process that usually takes years. Such
process contrasts with the agility of the software industry.

The programmable forwarding can be viewed as a natural evolution of Software-Defined
Networking (SDN), where the software that describes the behavior of how packets are
processed, can be conceived, tested, and deployed in a much shorter time span by
operators, engineers, researchers, and practitioners in general. The de-facto standard for
defining the forwarding behavior is the P4 language5, which stands for Programming
Protocol-independent Packet Processors. Essentially, P4 programmable switches have
removed the entry barrier to network design, previously reserved to network vendors.

1.1 Workflow of a P4 program

Programming a P4 switch, whether a hardware or a software target, requires a software
development environment that includes a compiler. Consider Figure 1. The compiler
maps the target-independent P4 source code (P4 program) to the specific platform. The
compiler, the architecture model, and the target device are vendor specific and are
provided by the vendor. The P4 source code on the other hand is supplied by the user.

The compiler generates two artifacts after compiling the P4 program. First, it generates a
data plane configuration (Data plane runtime) that implements the forwarding logic
specified in the P4 input program. This configuration includes the instructions and
resource mappings for the target. Second, it generates runtime APIs that are used by the
control plane / user to interact with the data plane. Examples include adding/removing
entries from match-action tables and reading/writing the state of extern objects (e.g.,
counters, meters, registers). The APIs contain the information needed by the control
plane to manipulate tables and objects in the data plane, such as the identifiers of the
tables, fields used for matches, keys, action parameters, and others.

Lab 2: Introduction to P4 and BMv2

 Page 5

P4 program

Architecture

Data plane
runtime

Tables
Extern
objects

User supplied

Vendor supplied

Target switch
Compiler

Load

Data plane

Control plane

API

Control signalsAPI

Load

Figure 1. Generic workflow design. The compiler, the architecture model, and the target switch
are provided by the vendor of the device. The P4 source code is customized by the user. The
compiler generates a data plane runtime to be loaded into the target, and the APIs used by the
control plane to communicate with the data plane at runtime.

1.2 Workflow used in this lab series

This section demonstrates the P4 workflow that will be used in this lab series. Consider
Figure 2. We will use the Visual Studio Code (VS Code) as the editor to modify the basic.p4
program. Then, we will use the p4c compiler with the V1Model architecture to compile
the user supplied P4 program (basic.p4). The compiler will generate a JSON output (i.e.,
basic.json) which will be used as the data plane program by the switch daemon (i.e.,
simple_switch). Finally, we will use the simple_switch_CLI at runtime to populate and
manipulate table entries in our P4 program. The target switch (vendor supplied) used in
this lab series for testing and debugging P4 programs is the behavioral model version 2
(BMv2)6.

Lab 2: Introduction to P4 and BMv2

 Page 6

basic.p4

Architecture
(V1Model)

Runtime CLI
(simple_switch_CLI)

basic.json

Software switch
(BMv2)

Compiler
(p4c)

Load

Data Plane

Control Plane

Table
manipulation

User supplied

Vendor supplied

Controller

Figure 2. Workflow used in this lab series.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Lab 2: Introduction to P4 and BMv2

 Page 7

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab2, select the file lab2.mn, and click on
Open.

Figure 5. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 6. Running the emulation.

2.1 Verifying connectivity between host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Lab 2: Introduction to P4 and BMv2

 Page 8

Figure 7. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 8. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded into the switch.

3 Loading the P4 program

This section shows the steps required to implement a P4 program. It describes the editor
that will be used to modify the P4 program and the P4 compiler that will produce a data
plane program for the software switch.

VS Code will be used as the editor to modify P4 programs. It highlights the syntax of P4
and provides an integrated terminal where the P4 compiler will be invoked. The P4
compiler that will be used is p4c, the reference compiler for the P4 programming language.
p4c supports both P414 and P416, but in this lab series we will only focus on P416 since it is

Lab 2: Introduction to P4 and BMv2

 Page 9

the newer version and is currently being supported by major programming ASIC
manufacturers7.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on
the desktop.

Figure 9. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4_Labs/lab2

Figure 10. Launching the editor and opening the lab2 directory.

Step 3. Once the previous command is executed, VS Code will start. Click on basic.p4 in
the file explorer panel on the left hand side to open the P4 program in the editor.

Lab 2: Introduction to P4 and BMv2

 Page 10

Figure 11. Opening the programming environment in VS Code.

Step 4. Identify the components of VS Code highlighted in the grey boxes.

Lab 2: Introduction to P4 and BMv2

 Page 11

(2) File explorer

(1) Editor

(3) Terminal

Figure 12. VS Code graphical interface components.

The VS Code interface consists of three main panels:

1. Editor: the editor panel will display the content of the file selected in the file
explorer. In the figure above, the basic.p4 program is shown in the Editor.

2. File explorer: this panel contains all the files in the current directory. You will see
the basic.p4 file which contains the P4 program that will be used in this lab, and
the topology file for the current lab (i.e., lab2.mn).

3. Terminal: this is a regular Linux terminal integrated in the VS Code. This is where
the compiler (p4c) is invoked to compile the P4 program and generate the output
for the switch.

3.2 Compiling and loading the P4 program to switch s1

Step 1. In this lab, we will not modify the P4 code. Instead, we will just compile it and
download it to the switch s1. To compile the P4 program, issue the following command
in the terminal panel inside the VS Code.

p4c basic.p4

Lab 2: Introduction to P4 and BMv2

 Page 12

Figure 13. Compiling the P4 program using the VS Code terminal.

The command above invokes the p4c compiler to compile the basic.p4 program. After
executing the command, if there are no messages displayed in the terminal, then the P4
program was compiled successfully. You will see in the file explorer that two files were
generated in the current directory:

• basic.json: this file is generated by the p4c compiler if the compilation is successful.
This file will be used by the software switch to describe the behavior of the data
plane. You can think of this file as the binary or the executable to run on the switch
data plane. The file type here is JSON because we are using the software switch.
However, in hardware targets, most probably this file will be a binary file.

• basic.p4i: the output from running the preprocessor of the compiler on your P4
program.

At this point, we will only be focusing on the basic.json file.

Now that we have compiled our P4 program and generated the JSON file, we can
download the program to the switch and start the switch daemon.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1. The script accepts as input the JSON output of the p4c compiler, and the
target switch name (e.g., s1). If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 2: Introduction to P4 and BMv2

 Page 13

Figure 14. Downloading the compiled program to switch s1.

3.3 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 15. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Lab 2: Introduction to P4 and BMv2

 Page 14

Figure 16. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 3. Issue the following command to list the files in the current directory.

ls

Figure 17. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

4 Configuring switch s1

4.1 Mapping P4 program’s ports

Step 1. Issue the following command to display the interfaces in switch s1.

ifconfig

Lab 2: Introduction to P4 and BMv2

 Page 15

Figure 18. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-eth0 and s1-eth1. The interface s1-eth0
on the switch s1 connects to the host h1. The interface s1-eth1 on the switch s1 connects
to the host h2.

Step 2. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 basic.json &

Figure 19. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Lab 2: Introduction to P4 and BMv2

 Page 16

s1-eth0 0 s1-eth11

Figure 20. Ports 0 and 1 are mapped to the interfaces s1-eth0 and s1-eth1 of switch s1.

4.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 21. Returning to switch s1 CLI.

Step 2. Populate the table with forwarding rules by typing the following command.

simple_switch_CLI < ~/lab2/rules.cmd

Figure 22. Loading table entries to switch s1.

The figure above shows the table entries described in the file rules.cmd.

Step 3. Go back to host h1 terminal to test the connectivity between host h1 and host h2
by issuing the following command.

Lab 2: Introduction to P4 and BMv2

 Page 17

ping 10.0.0.2 -c 4

Figure 23. Performing a connectivity test between host h1 and host h2.

Now that the switch has a program with tables properly populated, the hosts can ping
each other.

This concludes lab 2. Stop the emulation and then exit out of MiniEdit.

References

1. B. Trammell, M. Kuehlewind. “RFC 7663: Report from the IAB workshop on stack
evolution in a middlebox internet (SEMI).” 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7663.

2. G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom, K.-J. Grinnemo,
P. Hurtig, N. Khademi, M. Tüxen, M. Welzl, D. Damjanovic,
S. Mangiante. ‘‘De-ossifying the internet transport layer: A survey and
future perspectives,’’ IEEE Communications. Surveys and Tutorials., 2017.

3. The Register. “VMware, Cisco stretch virtual LANs across
the heavens.” 2011. [Online]. Available: https://tinyurl.com/y6mxhqzn.

4. M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright, “Virtual eXtensible Local Area Network (VXLAN): a framework for
overlaying virtualized layer 2 networks over layer 3 networks,” RFC7348.
[Online]. Available: http://www. rfc-editor.org/rfc/rfc7348.txt

5. P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, ‘‘P4: Programming protocol-independent
packet processors,’’ ACM SIGCOMM Computer Communications. 2014.

6. P4lang. “Behavioral model”. [Online]. Available:
https://github.com/p4lang/behavioral-model.

7. V. Gurevich, A. Fingerhut, “P416 for Intel TofinoTM using Intel P4 StudioTM”. 2021
P4 Workshop, ONF. [Online]. Available: https://tinyurl.com/yckzkybf.

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 3: P4 Program Building Blocks

Document Version: 01-25-2022

Lab 3: P4 Program Building Blocks

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 The PISA architecture .. 3

1.1 The PISA architecture ... 4

1.2 Programmable parser .. 4

1.3 Programmable match-action pipeline ... 5

1.4 Programmable deparser .. 5

1.5 The V1Model .. 5

1.6 P4 program mapping to the V1Model ... 6

2 Lab topology.. 6

2.1 Starting host h1 and host h2 .. 8

3 Navigating through the components of a basic P4 program 8

3.1 Loading the programming environment .. 9

3.2 Describing the components of the P4 program ... 9

3.3 Programming the pipeline sequence ... 14

4 Loading the P4 program .. 15

4.1 Compiling and loading the P4 program to switch s1 ... 15

4.2 Verifying the configuration .. 17

5 Configuring switch s1 .. 18

5.1 Mapping the P4 program’s ports ... 18

5.2 Loading the rules to the switch .. 20

6 Testing and verifying the P4 program ... 21

References .. 23

Lab 3: P4 Program Building Blocks

 Page 3

Overview

This lab describes the building blocks and the general structure of a P4 program. It maps
the program’s components to the Protocol-Independent Switching Architecture (PISA), a
programmable pipeline used by modern whitebox switching hardware. The lab also
demonstrates how to track an incoming packet as it traverses the pipeline of the switch.
Such capability is very useful to debug and troubleshoot a P4 program.

Objectives

By the end of this lab, students should be able to:

1. Understand the PISA architecture.
2. Understand on high-level the main building blocks of a P4 program.
3. Map the P4 program components to the components of the programmable

pipeline.
4. Trace the lifecycle of a packet as it traverses the pipeline.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: The PISA architecture.
2. Section 2: Lab topology.
3. Section 3: Navigating through the components of a basic P4 program.
4. Section 4: Loading the P4 program.
5. Section 5: Configuring switch s1.
6. Section 6: Testing and verifying the P4 program.

1 The PISA architecture

Lab 3: P4 Program Building Blocks

 Page 4

1.1 The PISA architecture

The Protocol Independent Switch Architecture (PISA)1 is a packet processing model that
includes the following elements: programmable parser, programmable match-action
pipeline, and programmable deparser, see Figure 1. The programmable parser permits
the programmer to define the headers (according to custom or standard protocols) and
to parse them. The parser can be represented as a state machine. The programmable
match-action pipeline executes the operations over the packet headers and intermediate
results. A single match-action stage has multiple memory blocks (e.g., tables, registers)
and Arithmetic Logic Units (ALUs), which allow for simultaneous lookups and actions.
Since some action results may be needed for further processing (e.g., data dependencies),
stages are arranged sequentially. The programmable deparser assembles the packet
headers back and serializes them for transmission. A PISA device is protocol independent.
The P4 program defines the format of the keys used for lookup operations. Keys can be
formed using packet header’s information. The control plane populates table entries with
keys and action data. Keys are used for matching packet information (e.g., destination IP
address) and action data is used for operations (e.g., output port).

Programmable match-
action pipeline

...

Programmable
parser

ALU

Packets

Memory (e.g., table)

Programmable
deparser

Stage 1 Stage N

State

Packets

Switch
ASIC

Figure 1. A PISA-based data plane.

Programmable switches do not introduce performance penalty. On the contrary, they
may produce better performance than fixed-function switches. When compared with
general purpose CPUs, ASICs remain faster at switching, and the gap is only increasing.

1.2 Programmable parser

The programmable parser permits the programmer to define the headers (according to
custom or standard protocols) and to describe how the switch should process those
headers. The parser de-encapsulates the headers, converting the original packet into a
parsed representation of the packet. The programmer declares the headers that must be
recognized and their order in the packet. The parser can be represented as a state
machine without cycles (direct acyclic graph), with one initial state (start) and two final
states (accept or reject).

Lab 3: P4 Program Building Blocks

 Page 5

1.3 Programmable match-action pipeline

The match-action pipeline implements the processing occurring at a switch. The pipeline

consists of multiple identical stages (N stages are shown in Figure 1). Practical

implementations may have 10/15 stages on the ingress and egress pipelines. Each stage

contains multiple match-action units (4 units per stage in Figure 1). A match-action unit

has a match phase and an action phase. During the match phase, a table is used to match

a header field of the incoming packet against entries in the table (e.g., destination IP

address). Note that there are multiple tables in a stage (4 tables per stage in Figure 1),

which permit the switch to perform multiple matches in parallel over different header

fields. Once a match occurs, a corresponding action is performed by the ALU. Examples

of actions include: modify a header field, forward the packet to an egress port, drop the

packet, and others. The sequential arrangement of stages allows for the implementation

of serial dependencies. For example, if the result of an operation is needed prior to

perform a second operation, then the compiler would place the first operation at an

earlier stage than the second operation.

1.4 Programmable deparser

The deparser assembles back the packet and serializes it for transmission. The
programmer specifies the headers to be emitted by the deparser. When assembling the
packet, the deparser emits the specified headers followed by the original payload of the
packet.

1.5 The V1Model

Figure 2 depicts the V1Model2 architecture components. The V1Model architecture
consists of a programmable parser, an ingress match-action pipeline, a traffic manager,
an egress match-action pipeline, and a programmable deparser. The traffic manager
schedules packets between input ports and output ports and performs packet replication
(e.g., replication of a packet for multicasting). The V1Model architecture is implemented
on top BMv2’s simple_switch target3.

Programmable match-
action pipeline

...

Programmable
parser

ALU

Packets

Traffic
Manager

Memory (e.g., table)

Programmable match-
action pipeline

...

Programmable
deparser

Ingress match-action and checksum verification Egress match-action and checksum verification

Stage 1 Stage N Stage 1 Stage N

Configurable
component

State

Figure 2. The V1Model architecture.

Lab 3: P4 Program Building Blocks

 Page 6

1.6 P4 program mapping to the V1Model

The P4 program used in this lab is separated into different files. Figure 3 shows the
V1Model and its associated P4 files. These files are as follows:

• headers.p4: this file contains the packet headers’ and the metadata’s definitions.

• parser.p4: this file contains the implementation of the programmable parser.

• ingress.p4: this file contains the ingress control block that includes match-action
tables.

• egress.p4: this file contains the egress control block.

• deparser.p4: this file contains the deparser logic that describes how headers are
emitted from the switch.

• checksum.p4: this file contains the code that verifies and computes checksums.

• basic.p4: this file contains the starting point of the program (main) and invokes
the other files. This file must be compiled.

Programmable match-
action pipeline

...

Programmable
parser

Packets

Traffic
Manager

Programmable match-
action pipeline

...

Programmable
deparser

Ingress match-action and checksum verification Egress match-action and checksum verification

Stage 1 Stage N Stage 1 Stage N

Configurable
component

headers.p4 parser.p4 ingress.p4 egress.p4 deparser.p4

checksum.p4 checksum.p4Non-programmable

ALUMemory (e.g., table)State

Figure 3. Mapping of P4 files to the V1Model’s components.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 3: P4 Program Building Blocks

 Page 7

Figure 5. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab3 folder and search for the topology file called lab3.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 6. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 7. Running the emulation.

Lab 3: P4 Program Building Blocks

 Page 8

2.1 Starting host h1 and host h2

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Figure 8. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 9. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded on the switch.

3 Navigating through the components of a basic P4 program

Lab 3: P4 Program Building Blocks

 Page 9

This section shows the steps required to compile the P4 program. It illustrates the editor
that will be used to modify the P4 program, and the P4 compiler that will produce a data
plane program for the software switch.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 10. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4_Labs/lab3/

Figure 11. Launching the editor and opening the lab3 directory.

3.2 Describing the components of the P4 program

Step 1. Once the previous command is executed, VS Code will start. Click on basic.p4 in
the file explorer panel on the left hand side to open the P4 program in the editor.

Lab 3: P4 Program Building Blocks

 Page 10

Figure 12. The main P4 file and how it includes other user-defined files.

The basic.p4 file includes the starting point of the P4 program and other files that are
specific to the language (core.p4) and to the architecture (v1model.p4). To make the P4
program easier to read and understand, we separated the whole program into different
files. Note how the files in the explorer panel correspond to the components of the
V1Model. To use those files, the main file (basic.p4) must include them first. For example,
to use the parser, we need to include the parser.p4 file (#include “parser.p4”).

We will navigate through the files in sequence as they appear in the architecture.

Step 2. Click on the headers.p4 file to display the content of the file.

Lab 3: P4 Program Building Blocks

 Page 11

Figure 13. The defined headers.

The headers.p4 above shows the headers that will be used in our pipeline. We can see
that the ethernet and the IPv4 headers are defined. We can also see how they are
grouped into a structure (struct headers). The headers name will be used throughout

the program when referring to the headers. Furthermore, the file shows how we can use
typedef to provide an alternative name to a type.

Step 3. Click on the parser.p4 file to display the content of the parser.

Lab 3: P4 Program Building Blocks

 Page 12

Figure 14. The parser implementation.

The figure above shows the content of the parser.p4 file. We can see that the parser is
already written with the name MyParser. This name will be used when defining the
pipeline sequence.

Step 4. Click on the ingress.p4 file to display the content of the file.

Figure 15. The ingress component.

Lab 3: P4 Program Building Blocks

 Page 13

The figure above shows the content of the ingress.p4 file. We can see that the ingress is
already written with the name MyIngress. This name will be used when defining the
pipeline sequence.

Step 5. Click on the egress.p4 file to display the content of the file.

Figure 16. The egress component.

The figure above shows the content of the egress.p4 file. We can see that the egress is
already written with the name MyEgress. This name will be used when defining the
pipeline sequence.

Step 6. Click on the checksum.p4 file to display the content of the file.

Figure 17. The checksum component.

Lab 3: P4 Program Building Blocks

 Page 14

The figure above shows the content of the checksum.p4 file. We can see that the
checksum is already written with two control blocks: MyVerifyChecksum and
MyComputeChecksum. These names will be used when defining the pipeline sequence.
Note that MyVerifyChecksum is empty since no checksum verification is performed in
this lab.

Step 7. Click on the deparser.p4 file to display the content of the file.

Figure 18. The deparser component.

The figure above shows the content of the deparser.p4 file. We can see that the deparser
is already written with two instructions that reassemble the packet.

3.3 Programming the pipeline sequence

Now it is time to write the pipeline sequence in the basic.p4 program.

Step 1. Click on the basic.p4 file to display the content of the file.

Figure 19. Selecting the basic.p4 file.

Step 2. Write the following block of code at the end of the file

Lab 3: P4 Program Building Blocks

 Page 15

V1Switch (

MyParser(),

MyVerifyChecksum(),

MyIngress(),

MyEgress(),

MyComputeChecksum(),

MyDeparser()

) main;

Figure 20. Writing the pipeline sequence in the basic.p4 program

We can see here that we are defining the pipeline sequence according to the V1Model
architecture. First, we start by the parser, then we verify the checksum. Afterwards, we
specify the ingress block and the egress block, and we recompute the checksum. Finally,
we specify the deparser.

Step 3. Save the changes by pressing Ctrl+s.

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

Lab 3: P4 Program Building Blocks

 Page 16

Figure 21. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 3: P4 Program Building Blocks

 Page 17

Figure 22. Downloading the P4 program to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 23. Maximizing the MiniEdit window.

Step 2. In MiniEdit, right-click on the P4 switch icon and start the Terminal.

Figure 24. Starting the terminal on the switch.

Lab 3: P4 Program Building Blocks

 Page 18

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 25. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded to switch s1
after compiling the P4 program.

5 Configuring switch s1

5.1 Mapping the P4 program’s ports

Step 1. Issue the following command to display the interfaces on the switch s1.

ifconfig

Lab 3: P4 Program Building Blocks

 Page 19

Figure 26. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-eth0 and s1-eth1. The interface s1-eth0
on the switch s1 connects host h1. The interface s1-eth1 on the switch s1 connects host
h2.

Step 2. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 --nanolog ipc:///tmp/bm-log.ipc

basic.json &

Figure 27. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The --nanolog option is used to instruct the switch daemon that we want to see the
logs of the switch.

Lab 3: P4 Program Building Blocks

 Page 20

s1-eth0 0 s1-eth11

Figure 28. Mapping of the logical interface numbers (0, 1) to the Linux interfaces (s1-eth0, s1-
eth1).

5.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 29. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab3/rules.cmd

Figure 30. Loading the forwarding table entries into switch s1.

Now the forwarding table in the switch is populated.

Lab 3: P4 Program Building Blocks

 Page 21

6 Testing and verifying the P4 program

Step 1. Type the following command to initiate the nanolog client that will display the
switch logs.

nanomsg_client.py

Figure 31. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command below so that the host starts listening
for incoming packets.

./recv.py

Figure 32. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command to send a packet to host h2.

./send.py 10.0.0.2 HelloWorld

Lab 3: P4 Program Building Blocks

 Page 22

Figure 33. Sending a test packet from host h1 to host h2.

Now that the switch has a program with tables properly populated, the hosts are able to
reach each other.

Step 4. Go back to switch s1 terminal and inspect the logs.

Figure 34. Inspecting the logs in switch s1.

The figure above shows the processing logic as the packet enters switch s1. The packet
arrives on port 0 (port_in: 0), then the parser starts extracting the headers. After the

Lab 3: P4 Program Building Blocks

 Page 23

parsing is done, the packet is processed in the ingress and in the egress pipelines. Then,
the checksum update is executed and the deparser reassembles and emits the packet
using port 1 (port_out: 1).

Step 5. Verify that the packet was received on host h2.

This concludes lab 3. Stop the emulation and then exit out of MiniEdit.

References

1. C. Cascaval, D. Daly. "P4 Architectures." [Online]. Available:
https://tinyurl.com/3zk8vs6a.

2. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.
3. P4lang/behavioral-model github repository. “The BMv2 Simple Switch target.”

[Online]. Available: https://tinyurl.com/vrasamm.

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 4: Parser Implementation

Document Version: 01-25-2022

Lab 4: Parser Implementation

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Program headers and definitions ... 4

1.2 Programmable parser .. 6

2 Lab topology.. 7

2.1 Starting host h1 and host h2 .. 9

3 Defining the program’s headers ... 9

3.1 Loading the programming environment .. 9

3.2 Coding header’s definitions into the headers.p4 file ... 10

4 Parser Implementation ... 14

5 Loading the P4 program .. 17

5.1 Compiling and loading the P4 program to switch s1 ... 17

5.2 Verifying the configuration .. 19

6 Configuring switch s1 .. 20

6.1 Mapping P4 program’s ports.. 20

6.2 Loading the rules to the switch .. 22

7 Testing and verifying the P4 program ... 22

8 Augmenting the P4 program to parse IPv6 .. 24

9 Testing and verifying the augmented P4 program ... 28

References .. 31

Lab 4: Parser Implementation

 Page 3

Overview

This lab starts by describing how to define custom headers in a P4 program. It then
explains how to implement a simple parser that parses the defined headers. The lab
further shows how to track the parsing states of a packet inside the software switch.

Objectives

By the end of this lab, students should be able to:

1. Define custom headers in a P4 program.
2. Understand how the parser transitions between states and how it extracts the

headers from the packets.
3. Implement a simple parser in P4.
4. Trace the parsed states when a packet enters to the switch.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Defining the headers.
4. Section 4: Parser implementation.
5. Section 5: Loading the P4 program.
6. Section 6: Configuring switch s1.
7. Section 7: Testing and verifying the P4 program.
8. Section 8: Augmenting the P4 program to parse IPv6.
9. Section 9: Testing and verifying the augmented P4 program.

1 Introduction

Lab 4: Parser Implementation

 Page 4

1.1 Program headers and definitions

For several decades, the networking industry operated in a bottom-up approach. At the
bottom of the system are the fixed-function Application Specific Integrated Circuits
(ASICs), which enforce protocols, features, and processes available in the switch.
Programmers and operators are limited to these capabilities when building their
systems. Consequently, systems have features defined by ASIC vendors that are rigid
and may not fit the network operators’ needs. Programmable switches and P4 represent
a disruption of the networking industry by enabling a top-down approach for the design
of network applications. With this approach, the programmer or network operator can
precisely describe features and how packets are processed in the ASIC, using a high-level
language, P4.

With the Protocol Independent Switch Architecture (PISA)1, the programmer defines the
headers and corresponding parser as well as actions executed in the match-action
pipeline and the deparser. The programmer has the flexibility of defining custom
headers (i.e., a header not standardized). Such capability is not available in non-
programmable devices.

Destination Address Ether TypeSource Address

48 bits 16 bits48 bits

Figure 1. Ethernet header.

Bit 0 2 3 4 5 6 7 81 9 11 12 13 14 15 16 1710 18 20 21 22 23 24 25 2619 27 29 30 3128

Version IHL DSCP ECN Total Length

Identifier Flags Fragment Offset

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options (if IHL > 5)

0

32

64

96

128

160

Figure 2. IPv4 header.

Bit 0 2 3 4 5 6 7 81 9 11 12 13 14 15 16 1710 18 20 21 22 23 24 25 2619 27 29 30 3128

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source IP Address

Destination IP Address

0

32

64

192

Figure 3. IPv6 header.

Lab 4: Parser Implementation

 Page 5

Figure 4 shows an excerpt of a P4 program where the headers are defined. This is
typically written at the top of the program before the parsing starts. We can see that
the programmer defined a header corresponding to Ethernet (lines 11-15). The Ethernet
header fields are shown in Figure 1.

The programmer also defined an IPv4 header (lines 26-40). The IPv4 header format is
shown in Figure 2 and the IPv6 header is shown in Figure 3.

 1: #include <core.p4>

 2: #include <v1model.p4>

 3: const bit<16> TYPE_IPV4 = 0x800;

 4:

 5: /*************************HEADERS*************************/

 6:

 7: typedef bit<9> egressSpec_t;

 8: typedef bit<48> macAddr_t;

 9: typedef bit<32> ip4Addr_t;

10:

11: header ethernet_t{

12: macAddr_t dstAddr;

13: macAddr_t srcAddr;

14: bit<16> etherType;

15: }

16:

17: struct metadata {

18: /* empty */

19: }

20:

21: struct headers{

22: ethernet_t ethernet;

23: ipv4_t ipv4;

24: }

25:

26: header ipv4_t {

27: bit<4> version;

28: bit<4> ihl;
29: bit<6> DSCP;
30: bit<2> ECN;

31: bit<16> totalLen;

32: bit<16> identification;

33: bit<3> flags;

34: bit<13> fragOffset;

35: bit<8> ttl;

36: bit<8> protocol;

37: bit<16> hdrChecksum;

38: ip4Addr_t srcAddr;

39: ip4Addr_t dstAddr;

40: }

Figure 4. Program headers and definitions.

The code starts by including the core.p4 file (line 1) which defines some common types
and variables used in all P4 programs. For instance, the packet_in and packet_out
extern types which represent incoming and outgoing packets, respectively, are declared
in core.p42. Next, the v1model.p43 file is included (line 2) to define the V1Model
architecture4 and all its externs used when writing P4 programs. Line 3 creates a 16-bit

Lab 4: Parser Implementation

 Page 6

constant TYPE_IPV4 with the value 0x800. This means that TYPE_IPV4 can be used later
in the P4 program to reference the value 0x800. The typedef declarations (lines 7 - 9)
are used to assign alternative names to types. Subsequently, the headers and the
metadata structs that will be used in the program are defined. These headers are
customized depending on how the programmer wants the packets to be parsed. The
program in Figure 4 defines the Ethernet header (lines 11-15) and the IPv4 header (lines
26-40). The declarations inside each header are usually written after referring to the
standard specifications of the protocol. Note in the ethernet_t header the macAddr_t
is used rather than using a 48-bit field. Lines 17 - 19 show how to declare user-defined
metadata, which are passed from one block to another as the packet propagates
through the architecture. For simplicity, this program does not require any user
metadata.

1.2 Programmable parser

The programmable parser permits the programmer to describe how the switch will
process the packet. The parser de-encapsulates the headers, converting the original
packet into a parsed representation of the packet. The parser can be represented as a
state machine without cycles (direct acyclic graph), with one initial state (start) and two
final states (accept or reject).

parse_ipv4

etherType == TYPE_IPv4 etherType TYPE_IPv4

Accept

Reject

parse_ethernet

Start

(a)

Lab 4: Parser Implementation

 Page 7

 1: /*************************HEADERS*************************/

 2: parser MyParser(packet_in packet, out headers hdr,

 3: inout metadata meta,

 4: inout standard_metadata_t standard_metadata){

 5: state start {

 6: transition parse_ethernet;

 7: }

 8: state parse_ethernet {

 9: packet.extract(hdr.ethernet);

10: transition select(hdr.ethernet.etherType) {

11: TYPE_IPV4: parse_ipv4;

12: default: reject;

13: }

14: }

15: state parse_ipv4 {

16: packet.extract(hdr.ipv4);

17: transition accept;

18: }

19: }
(b)

Figure 5. Example of a parser. (a) Graphical representation of the parser. (b) In P4, the parser
always starts with the initial state called start. First, we transition unconditionally to

parse_ethernet. Then, we can create some conditions to direct the parser. Finally, when we

transition to the accept state, the packet is moved to the ingress block of the pipeline. A

packet that reaches the reject state will be dropped.

Figure 5a shows the graphical representation of the parser and Figure 5b its
corresponding P4 code. Note that packet is an instance of the packet_in extern
(specific to V1Model) and is passed as a parameter to the parser. The extract method

associated with the packet extracts N bits, where N is the total number of bits defined in
the corresponding header (for example, 112 bits for Ethernet). Afterwards, the
etherType field of the Ethernet header is examined using the select statement, and the
program branches to the parse_ipv4 state if the etherType field corresponds to IPv4.
The state transitions to the reject if it is not an IPv4 header, as shown in the figure
above (Line 12). In the parse_ipv4 state, the IPv4 header is extracted, and the program
unconditionally transitions to the accept state.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit.

10.0.0.1
aaaa::1

10.0.0.2
bbbb::1

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 6. Lab topology.

Lab 4: Parser Implementation

 Page 8

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 7. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab4 folder and search for the topology file called lab4.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 8. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Lab 4: Parser Implementation

 Page 9

Figure 9. Running the emulation.

2.1 Starting host h1 and host h2

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 10. Opening a terminal on host h1.

3 Defining the program’s headers

This section demonstrates how to define custom headers in a P4 program. It also shows
how to use constants and typedefs to make the program more readable.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Lab 4: Parser Implementation

 Page 10

Figure 11. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the
keyboard and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4_Labs/lab4

Figure 12. Launching the editor and opening the lab4 directory.

3.2 Coding header’s definitions into the headers.p4 file

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file
explorer on the left-hand side of the screen to locate the file.

Lab 4: Parser Implementation

 Page 11

Figure 13. Inspecting the headers.p4 file.

We can see that the headers.p4 is empty and we have to fill it.

Step 2. We will start by defining some typedefs and constants. Write the following in the
headers.p4 file.

typedef bit<48> macAddr_t;

typedef bit<32> ip4Addr_t;

const bit<16> TYPE_IPV4 = 0x800;

Figure 14. Data types and constant definitions.

In the figure above the typedef declarations used (lines 2 - 3) are used to assign
alternative names to types. Here we are saying that macAddr_t can be used instead of
bit<48>, and ip4Addr_t instead of bit<32>. We will use those typedefs when defining
the headers. Line 4 shows how to define a constant with the name TYPE_IPV4 and a
value of 0x800. We will use this value in the parser implementation.

Step 3. Now we will define the Ethernet header. Add the following code to the
headers.p4 file.

Lab 4: Parser Implementation

 Page 12

header ethernet_t {

 macAddr_t dstAddr;

 macAddr_t srcAddr;

 bit<16> etherType;

}

Figure 15. Adding the Ethernet header definition.

Note how we used the typedef macAddr_t which corresponds to bit<48> when
defining the destination MAC address field (dstAddr) and the source MAC address field

(srcAddr).

Step 4. Now we will define the IPv4 header. Add the following to the headers.p4 file.

header ipv4_t {

 bit<4> version;

 bit<4> ihl;

 bit<8> diffserv;

 bit<16> totalLen;

 bit<16> identification;

 bit<3> flags;

 bit<13> fragOffset;

 bit<8> ttl;

 bit<8> protocol;

 bit<16> hdrChecksum;

 ip4Addr_t srcAddr;

 ip4Addr_t dstAddr;

}

Lab 4: Parser Implementation

 Page 13

Figure 16. Adding the IPv4 header definition.

Consider the figure above. Note how we used the typedef ip4Addr_t which
corresponds to bit<32> when defining the source IP address field (srcAddr) and the
destination IP address field (dstAddr). Also, note how we are mapping the fields to
those defined in the standard IPv4 header (see Figure 3).

Step 5. Now we will create a struct to represent our metadata. Metadata are passed
from one block to another as the packet propagates through the architecture. For
simplicity, this program does not require any user metadata, and hence we will define it
as empty with no fields. Add the following to the headers.p4 file.

struct metadata {

 /* empty */

}

Figure 17. Adding the metadata structures.

Step 6. Now we will create a struct to contain our headers (Ethernet and IPv4). Append
the following code to the headers.p4 file.

Lab 4: Parser Implementation

 Page 14

struct headers {

 ethernet_t ethernet;

 ipv4_t ipv4;

}

Figure 18. Appending the headers’ data structure to the headers.p4 file.

Step 7. Save the changes by pressing Ctrl+s.

4 Parser Implementation

Now it is time to define how the parser works.

Step 1. Click on the parser.p4 file to display the content of the file.

Figure 19. Inspecting the parse.p4 file.

Lab 4: Parser Implementation

 Page 15

We can see that the headers.p4 file that we just filled is included here in the parser. The
file also includes a starter code which declares a parser named MyParser. Note how the
headers and the metadata structs that we defined previously are passed as parameters
to the parser.

Step 2. Add the start state inside the parser by inserting the following code.

state start {

 transition parse_ethernet;

}

Figure 20. Adding start state to the parser.p4 file.

The start state is the state where the parser begins parsing the packet. Here we are
transitioning unconditionally to the parse_ethernet state.

Step 3. Add the parse_ethernet state inside the parser by inserting the following code.

state parse_ethernet {

 packet.extract(hdr.ethernet);

 transition select(hdr.ethernet.etherType) {

 TYPE_IPV4: parse_ipv4;

 default: accept;

 }

}

Lab 4: Parser Implementation

 Page 16

Figure 21. Adding parse_ethernet state to the parser.p4 file.

The parse_ethernet state extracts the Ethernet header and checks for the value of the
header field etherType. Note how we reference a header field by specifying the header
to which that field belongs (i.e., hdr.ethernet.etherType). If the value of etherType
is TYPE_IPV4 (which corresponds to 0x800 as defined previously), the parser transitions
to the parse_ipv4 state. Otherwise, the execution of the parser terminates.

Step 4. Add the parse_ipv4 state inside the parser by inserting the following code.

state parse_ipv4 {

 packet.extract(hdr.ipv4);

 transition accept;

}

Lab 4: Parser Implementation

 Page 17

Figure 22. Adding parse_ipv4 state to the parser.p4 file.

The parse_ipv4 state extracts the IPv4 header and terminates the execution of the
parser.

Step 5. Save the changes to the file by pressing Ctrl + s.

5 Loading the P4 program

5.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

Lab 4: Parser Implementation

 Page 18

Figure 23. Compiling the code.

Step 2. Type the command below in the terminal panel to download the basic.json file
to the switch s1’s filesystem. The script accepts as input the JSON output of the p4c
compiler, and the target switch name. If asked for a password, type the password
password.

push_to_switch basic.json s1

Lab 4: Parser Implementation

 Page 19

Figure 24. Pushing the P4 program to switch s1.

5.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 25. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and start the Terminal.

Lab 4: Parser Implementation

 Page 20

Figure 26. Starting the terminal on the switch.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the command ls on the terminal of the switch s1 that was opened in the
previous step.

ls

Figure 27. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

6 Configuring switch s1

6.1 Mapping P4 program’s ports

Step 1. Issue the following command on switch s1 terminal to display the interfaces.

ifconfig

Lab 4: Parser Implementation

 Page 21

Figure 28. Displaying switch s1 interfaces.

We can see that the switch has the interfaces s1-eth0 and s1-eth1. The interface s1-eth0
on the switch s1 connects host h1. The interface s1-eth1 on the switch s1 connects host
h2.

Step 2. Start the switch daemon by typing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 --nanolog ipc:///tmp/bm-log.ipc

basic.json &

Figure 29. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

The --nanolog parameter is used to instruct the switch daemon that we want to see
the logs of the switch.

Lab 4: Parser Implementation

 Page 22

6.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 30. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab4/rules.cmd

Figure 31. Populating the forwarding table into switch s1.

7 Testing and verifying the P4 program

Step 1. Type the following command to initiate the nanolog client that will display the
switch logs.

nanomsg_client.py

Lab 4: Parser Implementation

 Page 23

Figure 32. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command below so that the host starts listening
for packets.

./recv.py

Figure 33. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command to send a packet to host h2.

./send.py 10.0.0.2 HelloWorld

Figure 34. Sending a test packet from host h1 to host h2.

Step 4. Inspect the logs on switch s1 terminal.

Lab 4: Parser Implementation

 Page 24

Figure 35. Inspecting the logs in switch s1.

The figure above shows that the Ethernet and IPv4 header are extracted.

8 Augmenting the P4 program to parse IPv6

Now we will augment the program to parse IPv6 packets. Figure 4 shows the IPv6
header fields.

Step 1. Go back to the headers.p4 file and add the following constant definition.

const bit<16> TYPE_IPV6 = 0x86dd;

Figure 36. Adding the IPv6 type definition.

Step 2. Add the IPv6 header definition as shown below.

header ipv6_t{

 bit<4> version;

 bit<8> trafficClass;

 bit<20> flowLabel;

 bit<16> payloadLen;

 bit<8> nextHdr;

 bit<8> hopLimit;

Lab 4: Parser Implementation

 Page 25

 bit<128> srcAddr;

 bit<128> dstAddr;

}

Figure 37. Adding the IPv6 header definition.

Step 3. Append the IPv6 header to the header’s data structure.

ipv6_t ipv6;

Figure 38. Adding IPv6 type to the header data structure.

Step 4. Go to the parser.p4 file and add the following line to the parse_ethernet state.

Lab 4: Parser Implementation

 Page 26

TYPE_IPV6: parse_ipv6;

Figure 39. Including the IPv6 state transition into the parse_ethernet state.

Step 5. Add the parse_ipv6 state inside the parser by inserting the following code.

state parse_ipv6 {

 packet.extract(hdr.ipv6);

 transition accept;

}

Figure 40. Adding parse_ipv6 state to the parser.p4 file.

Step 6. Save the changes by pressing Ctrl+s.

Lab 4: Parser Implementation

 Page 27

Step 7. Issue the following command in the terminal panel inside the Visual Studio Code
to compile the program.

p4c basic.p4

Figure 41. Compiling the P4 program.

Step 8. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 4: Parser Implementation

 Page 28

Figure 42. Pushing the P4 program to switch s1.

9 Testing and verifying the augmented P4 program

Step 1. In switch s1 terminal, press Ctrl + c to return to the CLI. The figure below
shows the output after executing the command.

Figure 43. Returning to the CLI.

Lab 4: Parser Implementation

 Page 29

Step 2. Type the command below in the terminal of switch s1 to stop the running
daemon.

pkill simple_switch

Figure 44. Ending switch s1 P4 process.

Step 3. Type the command below in the terminal of the switch s1 to start the daemon
with the new P4 program.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 --nanolog ipc:///tmp/bm-log.ipc

basic.json &

Figure 45. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Step 4. In switch s1 terminal, press Enter to return the CLI.

Figure 46. Returning to switch s1 CLI.

Step 5. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab4/rules.cmd

Lab 4: Parser Implementation

 Page 30

Figure 47. Populating the forwarding table into switch s1.

Step 6. Type the following command to display the switch logs.

nanomsg_client.py

Figure 48. Inspecting the logs in switch s1.

Step 7. On host h1’s terminal, type the following command to send an IPv6 packet to
host h2. Note that bbbb::1 is IPv6 address of host h2.

./send_ipv6.py bbbb::1 HelloWorld

Figure 49. Sending an IPv6 test packet from host h1 to host h2.

Lab 4: Parser Implementation

 Page 31

Step 8. Go back to switch s1 and inspect the logs.

Figure 50. Inspecting the logs in switch s1.

The figure above shows that the Ethernet and IPv6 header are extracted.

This concludes lab 4. Stop the emulation and then exit out of MiniEdit.

References

1. C. Cascaval, D. Daly. "P4 Architectures." [Online]. Available:
https://tinyurl.com/3zk8vs6a.

2. “p4c core.p4”. [Online]. Available:
https://github.com/p4lang/p4c/blob/main/p4include/core.p4.

3. “p4c v1model.p4”. [Online]. Available:
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4.

4. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 5: Introduction to Match-action Tables

Document Version: 03-30-2023

Lab 5: Introduction to Match-action Tables

Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to control blocks .. 3

1.1 Tables ... 4

1.2 Match types .. 4

1.3 Exact match .. 4

1.4 Longest prefix match (LPM) ... 6

2 Lab topology.. 7

2.1 Starting end hosts .. 9

3 Defining a table with exact match lookup .. 10

3.1 Loading the programming environment .. 11

3.2 Programming the exact table in the ingress block ... 11

4 Defining a table with LPM matching ... 17

4.1 Programming the ingress block .. 17

5 Loading the P4 program .. 19

5.1 Compiling and loading the P4 program to switch s1 ... 19

5.2 Verifying the configuration .. 21

6 Configuring switch s1 .. 22

6.1 Mapping P4 program’s ports.. 22

6.2 Loading the rules to the switch .. 24

7 Testing and verifying the P4 program ... 25

References .. 28

Lab 5: Introduction to Match-action Tables

Page 3

Overview

This lab describes match-action tables and how to define them in a P4 program. It then
explains the different types of matching that can be performed on keys. The lab further
shows how to track the misses/hits of a table key while a packet is received on the switch.

Objectives

By the end of this lab, students should be able to:

1. Understand what match-action tables are used for.
2. Describe the basic syntax of a match-action table.
3. Implement a simple table in a P4.
4. Trace a table’s misses/hits when a packet enters to the switch.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Defining a table with exact match lookup.
4. Section 4: Defining a table with LPM matching
5. Section 5: Loading the P4 program.
6. Section 6: Configuring switch s1.
7. Section 7: Testing and verifying the P4 program.

1 Introduction to control blocks

Lab 5: Introduction to Match-action Tables

Page 4

Control blocks are essential for processing a packet. For example, a control block for layer-
3 forwarding may require a forwarding table that is indexed by the destination IP address.
The control block may include actions to forward a packet when a hit occurs, and to drop
the packet otherwise. To forward a packet, a switch must perform routing lookup on the
destination IP address. Figure 1 shows the basic structure of a control block.

Match

... ...

Action Match

... ...

Action

Control
block

Control
block

Control
block

...

Figure 1. Control blocks.

1.1 Tables

Tables are essential components that define the processing behavior of a packet inside

the switch. A table is specified in the P4 program and has one or more entries (rows)

which are populated by the control plane. An entry contains a key, an action, and action

data.

• Key: it is used for lookup operations. The switch builds a key for the incoming
packet using one or more header fields (e.g., destination IP address) and then
lookups for that value in the table.

• Action: once a match occurs, the action specified in the entry is performed by the
arithmetic logic unit. Actions are simple operations such as modify a header field,
forward the packet to an egress port, and drop the packet. The P4 program
contains the possible actions.

• Action data: it can be considered as parameter/s used along with the action. For
example, the action data may represent the port number the switch must use to
forward the packet. Action data is populated by the control plane.

1.2 Match types

There are three types of matching: exact match, Longest Prefix match (LPM), and ternary
match. They are defined in the standard library (core.p41). Note that architectures may
define and implement additional match types. For example, the V1Model2 also has
matching based on ranges and selectors. In this lab we will discuss exact match.

1.3 Exact match

Lab 5: Introduction to Match-action Tables

Page 5

Assume that the exact match lookup is used to search for a specific value of an entry in a
table. Assume that Table 2 matches on the destination IP address. If an incoming packet
has 10.0.0.2 as the destination IP address, then it will match against the second entry and
the P4 program will forward the packet using port 2 as the egress port.

Table 2. Exact match table.

Key Action Action data

10.0.0.1 forward port 1

10.0.0.2 forward port 2

default drop

Figure 2 shows the ingress control block portion of a P4 program. Two actions are defined,
drop and forward. The drop action (lines 5 - 7) invokes the mark_to_drop primitive,
causing the packet to be dropped at the end of the ingress processing. The forward action

(lines 8 - 10) accepts as input (i.e., action data) the destination port. This parameter is
inserted by the control plane and updated in the packet during the ingress processing. In
line 9, the P4 program assigns the egress port defined by the control plane to the
standard_metadata egress specification field (i.e., the field that the traffic manager
looks at to determine which port the packet will be sent to). Lines 11-21 implement a
table named ipv4_exact. The match is against the destination IP address using the exact
lookup method. The actions associated with the table are forward and drop. The default
action which is invoked when there is a miss is drop. The maximum number of entries a
table can support is configured manually by the programmer (i.e., 1024 entries, see line
19). Note, however, that the number of entries is limited by the amount of memory in the
switch.

The control block starts executing from the apply statement (see lines 22-26) which
contains the control logic. In this program, the ipv4_exact table is enabled when the
incoming packet has a valid IPv4 header.

Lab 5: Introduction to Match-action Tables

Page 6

 1: /************************INGRESS PROCESSING************************/

 2: control MyIngress(inout headers hdr,

 3: inout metadata meta,

 4: inout standard_metadata_t standard_metadata){

 5: action drop(){

 6: mark_to_drop(standard_metadata);

 7: }

 8: action forward(egressSpec_t port) {

 9: standard_metadata.egressSpec = port;

10: }

11: table ipv4_exact {

12: key = {

13: hdr.ipv4.dstAddr:exact;

14: }

15: actions = {

16: forward;

17: drop;

18: }

19: size = 1024;

20: default_action = drop();

21: }

22: apply {

23: if (hdr.ipv4.isValid()){

24: ipv4_exact.apply();

25: }

26: }

27: }

Figure 2. Ingress control block portion of a P4 program. The code implements a match-action table
with exact match lookup.

1.4 Longest prefix match (LPM)

Table 2 is an example of a match-action table that uses LPM. Assume that the key is
formed with the destination IP address. If an incoming packet has the destination IP
address 172.168.3.5, two entries match. The first entry matches because the first 29 bits
in the entry are the same as the first 29 bits of the destination IP. The second entry also
matches because the first 16 bits in the entry are the same as the first 16 bits of the
destination IP. The LPM algorithm will select 172.168.3.0/29 because of the longest prefix
preference.

Table 2. Match-action table using LPM as the lookup algorithm.

Key Action Action data

172.168.3.0/29 forward port 1,
macAddr=00:00:00:00:00:01

172.168.0.0/16 forward port 2,
macAddr=00:00:00:00:00:02

default drop

Figure 3 shows the ingress control block portion of a P4 program. Two actions are defined,
drop and forward. The drop action (lines 5 - 7) invokes the mark_to_drop primitive,
causing the packet to be dropped at the end of the ingress processing. The forward action
(lines 8 - 11) accepts as input (action data) the port and the destination MAC address.
These parameters are inserted by the control plane and updated in the packet during the
ingress processing.

Lab 5: Introduction to Match-action Tables

Page 7

In line 9, the P4 program assigns the new egress port to the standard_metadata egress
port field (i.e., the field that the traffic manager looks at to determine which port the
packet must be sent to). Line 10 assigns the destination MAC address passed as parameter
to the packet's new destination address.

Lines 12-22 implement a table named ipv4_lpm. The table is matching against the
destination IP address using the LPM type. The actions associated with the table are
forward and drop. The default action is invoked when there is a miss. The maximum
number of entries is defined by the programmer (i.e., 1024 entries, see line 20).

The control block starts executing from the apply statement (see lines 23-27) which
contains the control logic. In this program, the ipv4_lpm table is activated in case the
incoming packet has a valid IPv4 header.

 1: /************************INGRESS PROCESSING************************/

 2: control MyIngress(inout headers hdr,

 3: inout metadata meta,

 4: inout standard_metadata_t standard_metadata){

 5: action drop(){

 6: mark_to_drop(standard_metadata);

 7: }

 8: action forward(egressSpec_t port, macAddr_t dstAddr) {

 9: standard_metadata.egressSpec = port;

10: hdr.ethernet.dstAddr = dstAddr;

11: }

12: table ipv4_lpm {

13: key = {

14: hdr.ipv4.dstAddr:lpm;

15: }

16: actions = {

17: forward;

18: drop;

19: }

20: size = 1024;

21: default_action = drop();

22: }

23: apply {

24: if (hdr.ipv4.isValid()){

25: ipv4_lpm.apply();

26: }

27: }

28: }

Figure 3. Ingress control block portion of a P4 program. The code implements a match-action table
with LPM lookup.

2 Lab topology

Let’s get started by opening a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch.

Lab 5: Introduction to Match-action Tables

Page 8

10.0.0.1 30.0.0.1

h1 h3

h1-eth0 s1-eth0 s1-eth2 h3-eth0

s1

s1-eth1

h2-eth0 h2

20.0.0.1
Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 5. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab5 folder and search for the topology file called lab5.mn and click on
Open. A new topology will be loaded to MiniEdit.

Lab 5: Introduction to Match-action Tables

Page 9

Figure 6. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 7. Running the emulation.

2.1 Starting end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Lab 5: Introduction to Match-action Tables

Page 10

Figure 8. Opening a terminal on host h1.

Step 2. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Figure 9. Verifying the configuration host h1 interfaces.

3 Defining a table with exact match lookup

This section demonstrates how to implement a simple table in P4 that uses exact
matching on the destination IP address of the packet. When there is a match, the switch
forwards the packet from a certain port. Otherwise, the switch drops the packet.

Lab 5: Introduction to Match-action Tables

Page 11

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.

Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI).

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4_Labs/lab5

Figure 11. Launching the editor and opening the lab5 directory.

3.2 Programming the exact table in the ingress block

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 5: Introduction to Match-action Tables

Page 12

Figure 12. Opening the ingress processing block.

We can see that the ingress.p4 declares a control block named MyIngress. Note that the
body of the control block is empty. Our objective is to define a P4 table, its actions, and
then invoke them inside the block.

Step 2. We will start by defining the possible actions that a table will call. In this simple
forwarding program, we have two actions:

• forward: This action defines a set of basic operations on a packet header. Such
operations are defined as follows: 1) Updating the egress port so the packet is
forwarded to its destination through the correct port. 2) Updating the source MAC
address with the packet’s previous destination MAC address. 3) Changing the
destination MAC address of the packet with the one corresponding to the next
hop. 4) Decrementing the time-to-live (TTL) field in the IPv4 header.

• drop: this action will be used to drop the packet.

Step 3. The following code fragment describes the behavior of the forward action. Insert
the code below inside the MyIngress control block.

action forward(macAddr_t dstAddr, egressSpec_t port){

 standard_metadata.egress_spec = port;

 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

 hdr.ethernet.dstAddr = dstAddr;

 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

Lab 5: Introduction to Match-action Tables

Page 13

Figure 13. Defining the forward action.

The action forward accepts as parameters the next hop’s MAC address (i.e., macAddr_t
dstAddr) and the port number (i.e., egressSpec_t port) to be used by the switch to
forward the packet. Note that egressSpec_t is just a typedef that corresponds to bit<9>
and macAddr_t is a typedef that corresponds to bit<48>. These types are defined in the
headers.p4 file.

The standard_metadata is an instance of the standard_metadata_t struct provided by
the V1Model1. This struct contains intrinsic metadata used in packet processing and in
more advanced features. For example, to determine the port on which a packet arrives,
we can use the ingress_port field in the standard_metadata (i.e.,
standard_metadata.ingress_port). Similarly, the egress port egress_spec field of the

standard_metadata defines the egress port. Line 12 shows how to assign the egress port
to forward an incoming packet to its destination.

To modify header fields inside the packet, we refer to the field name based on where it
exists inside the headers. Recall that the names of the headers and the fields are defined
by the programmer. The file headers.p4 defines the program’s headers. Line 13 shows
how we are assigning the destination MAC address of the packet (i.e.,
hdr.ethernet.dstAddr) to be the new source MAC of the packet (i.e.,
hdr.ethernet.srcAddr). Line 14 shows how we are assigning the destination MAC
address which is provided as a parameter (assigned later in the control plane) to be the
new destination MAC of the packet.

It is possible in P4 to perform basic arithmetic operations on header fields and other
variables. In line 15, we are decrementing the TTL value of the header field.

Step 4. Now we will define the drop action. Insert the code below inside the MyIngress
control block.

action drop() {

 mark_to_drop(standard_metadata);

}

Lab 5: Introduction to Match-action Tables

Page 14

Figure 14. Defining the drop action.

The drop() action invokes a primitive action mark_to_drop() that modifies the
standard_metadata.egress_spec to an implementation-specific special value that
causes the packet to be dropped.

Step 5. Now we will define the table named ipv4_exact. Write the following piece of
code inside the body of the MyIngress control block.

table ipv4_exact {

}

Figure 15. Declaring the ipv4_exact table.

Tables require keys and actions. In the next step we will define a key.

Lab 5: Introduction to Match-action Tables

Page 15

Step 6. Add the following code inside the forwarding table.

key = {

 hdr.ipv4.dstAddr: exact;

 }

Figure 16. Specifying the key and the match type.

The inserted code specifies that the destination IPv4 address of a packet
(hdr.ipv4.dstAddr) will be used as a key in the table. Also, the match type is exact,
denoting that the value of the destination IP address will be matched as is against a value
specified later in the control plane.

Step 7. Add the following code inside the forwarding table to list the possible actions that
will be used in this table.

actions = {

 forward;

 drop;

}

Lab 5: Introduction to Match-action Tables

Page 16

Figure 17. Adding the actions to the ipv4_exact table.

The code above defines the possible actions.

Step 8. Add the following code inside the forwarding table. The size keyword specifies
the maximum number of entries that can be inserted into this table from the control plane.
The default_action keyword specifies which default action to be invoked whenever
there is a miss.

size = 1024;

default_action = drop();

Lab 5: Introduction to Match-action Tables

Page 17

Figure 18. Specifying the size and default action of the ipv4_exact table.

The code above denotes that a maximum of 1024 rules can be inserted into the table, and
the default action to take whenever we have a miss is the drop() action.

4 Defining a table with LPM matching

This section demonstrates how to implement a simple table in P4 that uses LPM matching
on the packet’s destination IP address. When there is a match, the switch forwards the
packet from a certain port. Otherwise, the switch drops the packet.

4.1 Programming the ingress block

Step 1. Now we will define a table that performs a LPM on the destination IP address of
the packet. The table will be invoking the forward and the drop actions, and hence, those
actions will be listed inside the table definition.

table ipv4_lpm {

 key = {

 hdr.ipv4.dstAddr: lpm;

 }

 actions = {

 forward;

 drop;

 }

 size = 1024;

 default_action = drop();

}

Lab 5: Introduction to Match-action Tables

Page 18

Figure 19. Defining the table ipv4_lpm implementing LPM lookup.

The code above shows that the match type is lpm. The possible actions are forward and
drop. A maximum of 1024 rules can be inserted into the table, and the default action to
take whenever we have a miss is the drop() action.

Step 2. Add the following code at the end of the MyIngress block. The apply block defines
the sequential flow of packet processing. It is required in every control block, otherwise
the program will not compile. It describes the sequence of tables to be invoked, in
addition to other packet processing instructions.

apply {

 if(hdr.ipv4.isValid()) {

 if(ipv4_exact.apply().miss) {

 ipv4_lpm.apply();

 }

 }

}

Lab 5: Introduction to Match-action Tables

Page 19

Figure 20. Defining the apply block.

The logic of the code above is as follows: if the packet has an IPv4 header, apply the
ipv4_exact table which performs an exact match lookup on the destination IP address.
If there is no hit (i.e., the table does not contain a rule that corresponds to this IPv4
address, denoted by the miss keyword), apply the ipv4_lpm table, which matches the
destination IP address of the packet against a network address.

Step 3. Save the changes to the file by pressing Ctrl + s.

5 Loading the P4 program

5.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

Lab 5: Introduction to Match-action Tables

Page 20

Figure 21. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 5: Introduction to Match-action Tables

Page 21

Figure 22. Pushing the basic.json file to switch s1.

5.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 23. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Lab 5: Introduction to Match-action Tables

Page 22

Figure 24. Opening switch s1 terminal.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the following command on switch s1 terminal to inspect the content of the
current folder.

ls

Figure 25. Displaying the content of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

6 Configuring switch s1

6.1 Mapping P4 program’s ports

Step 1. Issue the following command on switch s1.

ifconfig

Lab 5: Introduction to Match-action Tables

Page 23

Figure 26. Displaying switch s1 interfaces.

The output displays switch s1 interfaces (i.e., s1-eth0, s1-eth1 and s1-eth2). The interface
s1-eth0 on the switch s1 connects to the host h1. The interface s1-eth1 on the switch s1
connects to the host h2 and s2-eth2 is connected to host h3.

Step 2. Start the switch daemon and map the logical interfaces (i.e., ports) to the switch’s
interfaces by issuing the following command. The --nanolog parameter is used to
instruct the switch daemon to provide the switch’s logs.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 --nanolog ipc:///tmp/bm-

log.ipc basic.json &

Lab 5: Introduction to Match-action Tables

Page 24

Figure 27. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

6.2 Loading the rules to the switch

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 28. Returning to switch s1 CLI.

Step 2. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab6/rules.cmd

Figure 29. Populating the forwarding table into switch s1.

The script above pushes the rules to the switch daemon. We can see that we added three
entries to the ipv4_exact and ipv4_lpm tables.

• The key of the first entry is 10.0.0.0/8 (which translates to 0a:00:00:00 in
hexadecimal as shown in the figure above, next to match key) and its action is
forward. This entry is added to the ipv4_lpm table. The action parameters or

Lab 5: Introduction to Match-action Tables

Page 25

runtime data are 00:00:00:00:00:01 for the destination MAC (i.e., host h1’s MAC
address) and 0 for the output port (i.e., the port facing host h1).

• The key of the second entry is 20.0.0.0/8 (which translates to 14:00:00:00 in
hexadecimal as shown in the figure above, next to match key) and its action is
forward. This entry is added to the ipv4_lpm table. The action parameter or
runtime data are 00:00:00:00:00:02 for the destination MAC (i.e., host h2’s MAC
address) and 1 for the output port (i.e., the port facing host h2).

• The key of the third entry is 30.0.0.1 (which translates to 1e:00:00:01 in
hexadecimal as shown in the figure above, next to match key) and its action is
forward. This entry is added to the ipv4_exact table. The action values are
00:00:00:00:00:03 for the destination MAC (i.e., host h3’s MAC address) and 2 for
the output port (i.e., the port facing host h3).

7 Testing and verifying the P4 program

Step 1. Type the following command to display the switch logs.

nanomsg_client.py

Figure 30. Displaying switch s1 logs.

Step 2. On host h2’s terminal, type the command the command below so that the host
starts listening for packets.

./recv.py

Figure 31. Listening for incoming packets in host h2.

Step 3. On host h1’s terminal, type the following command to send a message to host h3.

./send.py 30.0.0.1 HelloWorld

Lab 5: Introduction to Match-action Tables

Page 26

Figure 32. Sending a test packet from host h1 to host h3.

Step 4. Verify that the packet was received on host h2. Notice that the TTL was
decremented.

Figure 33. Sending a test packet from host h1 to host h3.

Step 5. Inspect the logs on switch s1 terminal.

Lab 5: Introduction to Match-action Tables

Page 27

Figure 34. Inspecting the logs in switch s1.

The figure above shows that there is a hit in the ipv4_exact table. Then, the packet is
forwarded through port 2, which is connected to host h3.

Step 6. On host h1’s terminal, type the following command to send a message to host h2.
The output will show the Ethernet, IP and TCP header fields and their values. The payload
is HelloWorld.

./send.py 20.0.0.1 HelloWorld

Figure 35. Sending a test packet from host h1 to host h2.

Step 7. Inspect the logs on switch s1 terminal.

Lab 5: Introduction to Match-action Tables

Page 28

Figure 36. Inspecting the logs in switch s1.

Results show that there is a miss in the ipv4_exact table, but there is a hit on the
ipv4_lpm table. Then, the packet is forwarded through port 1, which is connected to host
h2. This behavior corresponds to the logic described by the apply block in the ingress
processing.

This concludes lab 5. Stop the emulation and then exit out of MiniEdit.

References

1. “p4c core.p4”. [Online]. Available:
https://github.com/p4lang/p4c/blob/main/p4include/core.p4.

2. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.
3. Mininet walkthrough. [Online]. Available: http://Mininet.org.
4. M. Peuster, J. Kampmeyer, H. Karl. “Containernet 2.0: A rapid prototyping

platform for hybrid service function chains.” 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). 2018.

5. R. Cziva. “ESnet tutorial - P4 deep dive, slide 28.” [Online]. Available:
https://tinyurl.com/rruscv3.

6. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”
[Online]. Available: https://tinyurl.com/vrasamm.

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 6: Implementing a Stateful Packet Filter for

the ICMP Protocol

Document Version: 04-17-2023

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 P4 registers ... 4

1.2 Hashes in P4 ... 5

1.3 Lab scenario .. 5

2 Lab topology.. 6

2.1 Starting end hosts .. 8

3 Creating a P4 program that performs stateful packet filtering 11

3.1 Loading the programming environment .. 11

3.2 Defining the ICMP headers .. 12

3.3 Implementing a stateful packet filter for ICMP ... 14

4 Loading the P4 program .. 24

4.1 Compiling and loading the P4 program to switch s1 ... 24

4.2 Verifying the configuration .. 26

4.3 Mapping P4 program’s ports.. 27

5 Testing and verifying the P4 program ... 27

5.1 Configuring the policy rules ... 27

5.2 Testing the P4 program .. 29

References .. 31

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 3

Overview

This lab is an introduction to stateful packet filter in P4, a technique by which a network
administrator can implement network-based access control. In particular, the lab uses P4
registers to store the state of a connection. The lab further implements a stateful packet
filter for Internet Control Message Protocol (ICMP) via a policy defined by the network
administrator.

Objectives

By the end of this lab, students should be able to:

1. Understand stateful packet filters.
2. Understand what registers are used for.
3. Implement stateful packet filters in P4 using registers.
4. Test the defined policy for the stateful packet filter.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Creating a P4 program that performs stateful packet filtering.
4. Section 4: Loading the P4 program.
5. Section 5: Testing and verifying the P4 program.

1 Introduction

Packet filters control and manage the data flow across a network by filtering and analyzing
outgoing and incoming packets1. They are commonly implemented in firewalls or routers

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 4

to protect networks from unauthorized access and malicious activities. Packet filters can
be broadly classified into two categories: stateless and stateful.

Stateless packet filters operate on a per-packet basis, examining each packet individually
without considering any previous packets2. Stateless filters use predefined rules based on
packet header information, such as source and destination IP addresses, port numbers,
and protocols. Based on these rules, the filter decides whether to allow or deny the packet.
Stateless filters are relatively simple and fast, as they do not maintain any information
about ongoing connections or packet history. However, their simplicity can also be a
disadvantage, as they are unable to recognize the context of a network connection and
may be less effective in detecting complex attacks or handling certain protocols.

Stateful packet filters, on the other hand, maintain a state table that tracks the status of
ongoing network connections2. By keeping track of connection states, stateful filters can
make more informed decisions about whether to allow or deny a packet. When a new
packet arrives, the stateful filter examines both the packet header and the current state
of the connection in its state table. If the packet is part of an existing, legitimate
connection, it is allowed through; otherwise, it may be denied based on the filter's rules.
Stateful packet filters provide a higher level of security compared to stateless filters, as
they can better handle connection-oriented protocols and detect malicious activities that
span multiple packets. However, they can be more resource-intensive and slower due to
the additional overhead of maintaining and updating the state table.

1.1 P4 registers

P4 targets implement registers to save arbitrary data. Multiple packets can access the
data stored in the registers. Registers in P4 are organized into named arrays of cells.
Registers can be read and written by both the control and the data plane. In P4, registers
are global memory resources meaning that any match-action tables can reference them.

The syntax below shows how to declare a register array in P4. The register array R1
contains M values of N bits.

register<bit<N>>(M) R1;

Figure 1 depicts a graphical representation of the register R1. The functions write and

read are used to store and retrieve values from a specific position, where an index
specifies the position3. For example, the programmer invokes the following function to
store the value val in position 0 in the register array R1.

R1.write(0,val)

Similarly, the user invokes the function shown below to read a value stored in position 3.
Note that the retrieved value is stored in the variable res.

R1.read(res,3)

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 5

Index Value

0

1

2

3

4

5

6

7

N

...

...

Register R1

R1.write(0,val)

R1.read(res,3)

Figure 1. Register array R1. The register array contains N entries of M bits. The index indicates
the position of the value. Using the functions read and write, programmers can retrieve and

modify values in the register array.

1.2 Hashes in P4

P4 targets implement hash functions to map arbitrary data to a hash value. For example,
the V1Model implements hash functions as externs4. The following code shows how to
call a hash function in P4.

hash(hash_val, algo, min_val, {val_1, val_2, ..., val_N}, (n_bits, max_val))

The parameters of the hash function are as follows:

• hash_val: variable used to store the hash value.

• algo: indicates the hashing algorithm. For example, the V1Model supports
crc16, crc32, universal hashing (i.e., random), xor32, and others.

• min_val: establishes the minimum hash value.

• {val_1,val_2,…,val_N}: values to be hashed.

• n_bit: number of bits of the output (i.e., width).

• max_val: maximum hash value.

1.3 Lab scenario

This lab demonstrates how to implement a stateful packet filter for the ICMP protocol
using registers. Hashes are used to identify a flow, and registers are used to store the
flow’s state. The stateful packet filter will only allow hosts in the internal network to
originate ping tests towards hosts in the external network. ICMP flows that are not
originating from the internal network are dropped.

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 6

The P4 program presented in this lab performs the following:

1- If the packet is an ICMP REQUEST, the state of the flow (i.e., the ICMP identifier)
is stored in a register.

2- If the packet is an ICMP reply, the ICMP identifier of the flow is extracted from the
register. If the extracted ICMP identifier matches the one in the ICMP REPLY
headers, the packet is accepted.

2 Lab topology

Let us get started by opening a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch. Host h1 is in the internal
network, host h2 is in the DMZ network, and host h3 is in the external network.

h2-eth0 h2

172.16.0.10
DMZ

216.0.0.10

h3

h3-eth0

External network

192.168.0.10

h1

h1-eth0

Internal network

s1-eth0 s1-eth2

s1

s1-eth1

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 7

Figure 3. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab6 folder and search for the topology file called lab6.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 4. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 8

Figure 5. Running the emulation.

2.1 Verifying the configuration of the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 9

Figure 7. Verifying the configuration host h1 interfaces.

Step 3. Hold the right-click on host h2 and select Terminal. This opens the terminal of
host h2 and allows the execution of commands on that host.

Figure 8. Opening a terminal on host h2.

Step 4. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 10

Figure 9. Verifying the configuration host h2 interfaces.

Step 5. Hold the right-click on host h3 and select Terminal. This opens the terminal of
host h3 and allows the execution of commands on that host.

Figure 10. Opening a terminal on host h3.

Step 6. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 11

Figure 11. Verifying the configuration host h3 interfaces.

3 Creating a P4 program that performs stateful packet filtering

This section demonstrates how to implement a stateful packet filter in P4 using registers.
The stateful packet filter will be applied to ICMP. First, you will load the programming
environment. Then, you will define the headers to parse ICMP. Afterwards, you will create
the P4 tables that implement the filtering policies. You will also implement the registers
to store the state of the flow. The flow ID is produced by hashing the source and the
destination IPv4 addresses. This flow ID is used as an index for the register array.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.
Alternatively, click on the terminal icon in taskbar located in the lower left-hand side.

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 12

Figure 12. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4_Labs/lab6

Figure 13. Launching the editor and opening the lab6 directory.

3.2 Defining the ICMP headers

Step 1. Click on the headers.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 13

Figure 14. Inspecting the headers.p4 file.

Step 2. Define the ICMP header by adding the code shown below.

header icmp_t {

 bit<8> type;

 bit<8> code;

 bit<16> hdrChecksum;

 bit<16> identifier;

 bit<16> seqNum;

}

Figure 15. Defining the ICMP header type.

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 14

Step 3. Save the changes to the file by pressing Ctrl + s.

3.3 Implementing an ICMP stateful packet filter

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Figure 16. Inspecting the ingress.p4 file.

We can see that the ingress.p4 declares a control block named MyIngress. Inside this
block, a table ipv4_exact is defined which matches on the destination IP address and
can invoke the forward action to forward the packet out of a port, or the drop action to
drop the packet.

Step 2. Now, we need to define a table that stores the rules for enforcing the ICMP policy.
The policy allows the administrator to specify the hosts that can send ICMP packets to
destination hosts. The following code implements a table that performs a Longest Prefix
Match (LPM) and ternary match on the source and destination IP addresses of the packet.
Insert the code below inside the MyIngress control block.

table icmp_policy {

 key = {

 hdr.ipv4.srcAddr: lpm;

 hdr.ipv4.dstAddr: ternary;

 }

 actions = {

 }

 size = 1024;

}

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 15

Figure 17. Defining the icmp_policy table.

Consider the figure above. The ICMP policy can specify which source hosts are able to
ping (issue an ICMP request to) which destination hosts.

In order to make the ICMP policy flexible, the icmp_policy table implements lpm and
ternary matches on the source and destination IP addresses so that network
administrator can enforce the policy on subnets within a single rule. Note that BMv2
compiler (p4c) does not allow a table to have more than one LPM key field, thus, the
ternary matching is used5.

Step 3. The ICMP policy needs to allow ICMP replies corresponding to ICMP requests that
match the enforced policy. Since ICMP requests and their corresponding replies have the
same 16-bit identifier in their headers, this identifier will be stored in the switch. The
following code defines the register icmp_ids that will store the ICMP identifiers. The
register can store up to 65536 (0-65535) ICMP identifiers. Insert the code below inside
the MyIngress control block.

register<bit<16>>(65535) icmp_ids;

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 16

Figure 18. Defining the register stateful element to store ICMP identifiers.

Step 4. Insert the code below to define a 16-bit variable to store the index
(flow_id_indx) where the ICMP flow will be saved in the register.

bit<16> flow_id_indx;

Figure 19. Defining the flow_id_indx variable.

Step 5. Add the following code inside the apply block of the MyIngress Control to check if
the packet is an ICMP packet. The apply block defines the sequential flow of packet

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 17

processing. It is required in every control block, otherwise the program will not compile.
It describes the sequence of tables to be invoked, in addition to other packet processing
instructions.

if (hdr.icmp.isValid()) {

}

Figure 20. Checking the validity of the icmp header.

Step 6. Now, you need to check if the ICMP packet is of type REQUEST so that it can be
checked in the icmp_policy table. Insert the code below inside the if statement which
checks the validity of the icmp header.

if (hdr.icmp.type == 8) {

}

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 18

Figure 21. Checking if the ICMP packet is a request.

The header field hdr.icmp.type defines the type of the ICMP packet. When it is equal to
8, the ICMP packet is of type REQUEST.

Step 7. Once an ICMP REQUEST packet arrives at the switch, the latter needs to check if
it matches an entry in the defined icmp_policy table. Insert the code below to check if

the ICMP REQUEST packet matches any rule in the icmp_policy table.

if (icmp_policy.apply().hit) {

}

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 19

Figure 22. Checking if the ICMP request packet matches any of the enforced rules within the
icmp_policy table.

The icmp_policy table is applied using the icmp_policy.apply() and the if statement
which checks if the packet matches any of the installed rules within the table using the
icmp_policy.apply().hit.

Step 8. Insert the code below to compute the flow identifier index that will be used to
store the ICMP identifier in the register.

hash(flow_id_indx, HashAlgorithm.crc16, (bit<1>)0,

 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},

 (bit<32>)65535);

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 20

Figure 23. Using the HashAlgorithm.crc16 to compute the index of the register where the

ICMP identifier will be stored.

The code in the figure above hashes flows based on their source and destination IP
addresses. The hash function produces a 16-bits output using the following parameters:

• flow_id_indx: The variable used to store the output.

• HashAlgorithm.crc16: the hash algorithm.

• (bit<1>)0: the minimum (or base) value produced by the hash algorithm.

• hdr.ipv4.srcAddr and hdr.ipv4.dstAddr: the data to be hashed.

• (bit<32>)65535: the maximum value produced by the hash algorithm.

Step 9. Insert the code below to store the ICMP identifier of the packet in the register
icmp_ids.

icmp_ids.write((bit<32>)flow_id_indx, hdr.icmp.identifier);

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 21

Figure 24. Storing hdr.icmp.idenitifier in the register icmp_ids.

The function icmp_ids.write stores the value of the hdr.icmp.identifier at the
index flow_id_indx of the icmp_ids register. The index of the register must be a 32-bit
value, thus, flow_id_indx is cast to a 32-bit value.

Step 10. Insert the code below to apply the ipv4_exact table and forward the packet to
the destination host.

ipv4_exact.apply();

Figure 25. Applying ipv4_exact table.

Step 11. Insert the code below to check if the ICMP packet is a REPLY.

else if (hdr.icmp.type == 0) {

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 22

}

Figure 26. Checking if the ICMP packet is a reply.

When the header field hdr.icmp.type is equal to 0, then the ICMP packet is a REPLY.

Step 12. Insert the code below to compute the flow identifier index that will be used to
retrieve the ICMP identifier from the register.

hash(flow_id_indx, HashAlgorithm.crc16, (bit<1>)0,

 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},

 (bit<32>)65535);

Figure 27. Using the HashAlgorithm.crc16 to compute the index of the register where the

ICMP identifier will be retrieved.

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 23

The code in the figure above hashes flows based on their destination and source IP
addresses. Note how the source and destination IP addresses are reversed in the hash
function so that the retrieved index matches as the one used in the associated ICMP
REQUEST.

Step 13. Insert the code below to retrieve the ICMP identifier from the register icmp_ids
and store it inside icmp_id variable.

bit<16> icmp_id;

icmp_ids.read(flow_id, (bit<32>flow_id_indx);

Figure 28. Retrieving the ICMP identifier (icmp_id) from the register icmp_ids.

The function icmp_ids.read retrieves the value at the index flow_id_indx of the
icmp_ids register and stores it in the variable icmp_id.

Step 14. Insert the code below to check if the retrieved value icmp_id from the register
is equal to the ICMP identifier of the ICMP REPLY packet (hdr.icmp.identifier) and to
forward the packet by applying the ipv4_exact table.

if (icmp_id == hdr.icmp.identifier) {

 ipv4_exact.apply();

}

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 24

Figure 29. Forwarding ICMP REPLY packets that match the ICMP requests packets conforming to
the enforced ICMP policy.

Step 15. Save the changes to the file by pressing Ctrl + s.

4 Loading the P4 program

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 25

Figure 30. Compiling a P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Figure 31. Pushing the basic.json file to switch s1.

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 26

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 32. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Figure 33. Opening switch s1 terminal.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the following command on switch s1 terminal to inspect the content of the
current folder.

ls

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 27

Figure 34. Displaying the content of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

4.3 Mapping P4 program’s ports

Step 1. Start the switch daemon and map the logical interfaces (i.e., ports) to the switch’s
interfaces by issuing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 basic.json &

Figure 35. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

5 Testing and verifying the P4 program

5.1 Configuring the policy rules

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 36. Returning to switch s1 CLI.

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 28

Step 2. Type the command below to inspect the content of the rules.cmd file. The file
contains the rules which will be inserted to the switch at runtime. cat utility prints the

content into the standard output.

cat ~/lab6/rules.cmd

Figure 37. Inspecting the rules.

In the figure above, the first rule populates the icmp_policy table. NoAction keyword is
used when we do not want to execute any specific action upon matching.
192.168.0.10/24 is the LPM key which matches packets coming from the internal
network. 0.0.0.0&&&0.0.0.0 is the ternary key which matches on any packet (similar to
0.0.0.0/0). Thus, the icmp_policy table will hit on any packet originated from the
internal network regardless of its destination IP address. Note that any ICMP packet
originated from the external network, or the DMZ will not match the policy, and
consequently, will be dropped.

The last three rules populate the ipv4_exact table with the forwarding rules.

Step 3. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab6/rules.cmd

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 29

Figure 38. Pushing the table entries to the switch.

5.2 Testing the P4 program

Step 1. On h1 terminal, type the command below to send four ICMP requests to h2.

ping 172.16.0.10 -c 4

Figure 39. Pinging h2 (DMZ) from h1 (internal network).

The figure above shows that the four ICMP packets were received successfully.

Step 2. On h1 terminal, type the command below to send four ICMP requests to h3.

ping 216.0.0.10 -c 4

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 30

Figure 40. Pinging h3 (external network) from h1 (internal network).

The figure above shows that the four ICMP packets were received successfully.

Step 3. On h2 terminal, type the command below to send four ICMP requests to h1.

ping 192.168.0.10 -c 4

Figure 41. Pinging h1 (internal network) from h2 (DMZ).

The figure above shows that the four ICMP packets were lost. The switch dropped the
packets because they did not originate from the internal network.

Step 4. On h2 terminal, type the command below send four ICMP requests to h3.

ping 216.0.0.10 -c 4

Figure 42. Pinging h3 (external network) from h2 (DMZ).

The figure above shows that the four ICMP packets were lost. The switch dropped the
packets because they did not originate from the internal network.

Lab 6: Implementing a Stateful Packet Filter for the ICMP Protocol

Page 31

Step 5. On h3 terminal, type the command below to send four ICMP requests to h1.

ping 192.168.0.10 -c 4

Figure 43. Pinging h1 (internal network) from h3 (external network).

The figure above shows that the four ICMP packets were lost. The switch dropped the
packets because they did not originate from the internal network.

Step 6. On h3 terminal, type the command below to send four ICMP requests to h2.

ping 172.16.0.10 -c 4

Figure 44. Pinging h2 (DMZ) from h3 (external network).

The figure above shows that the four ICMP packets were lost. The switch dropped the
packets because they did not originate from the internal network.

This concludes lab 6. Stop the emulation and then exit out of MiniEdit.

References

1. M. Rouse, “Packet Filtering.” [Online]. Available: https://tinyurl.com/8z4a2yp6
2. Diyaroy, “Stateless vs Stateful Packet Filtering Firewalls” Online]. Available:

https://tinyurl.com/3s2twcdp
3. P4-guide github repository, “Demo Global Register P416.” [Online]. Available:

https://tinyurl.com/mrytj9ad
4. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.
5. P4lang/behavioral-model github repository, “The BMv2 simple switch target.”

[Online]. Available: https://tinyurl.com/vrasamm.

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 7: Implementing a Stateful Packet Filter for

the TCP Protocol

Document Version: 04-18-2023

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 P4 registers ... 4

1.2 Hashes in P4 ... 5

1.3 Lab scenario .. 5

2 Lab topology.. 6

2.1 Verifying the configuration of the end hosts ... 8

3 Creating a P4 program that performs stateful packet filtering 11

3.1 Loading the programming environment .. 11

3.2 Implementing a TCP stateful packet filter ... 12

4 Loading the P4 program .. 23

4.1 Compiling and loading the P4 program to switch s1 ... 24

4.2 Verifying the configuration .. 25

4.3 Mapping P4 program’s ports.. 26

5 Testing and verifying the P4 program ... 27

5.1 Configuring the policy rules ... 27

5.2 Testing TCP connections destined to the DMZ .. 28

5.3 Testing TCP connections destined to the internal network 30

5.4 Testing TCP connections destined to the external network 31

References .. 32

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 3

Overview

This lab is an introduction to stateful packet filter in P4, a technique by which a network
administrator can implement network-based access control. In particular, the lab uses P4
registers to store the state of a connection. The lab further implements a stateful packet
filter for Transmission Control Protocol (TCP) via a policy defined by the network
administrator.

Objectives

By the end of this lab, students should be able to:

1. Understand stateful packet filters.
2. Understand what registers are used for.
3. Implement stateful packet filters in P4 using registers.
4. Test the defined policy for the stateful packet filter.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Creating a P4 program that performs stateful packet filtering.
4. Section 4: Loading the P4 program.
5. Section 5: Testing and verifying the P4 program.

1 Introduction

Packet filters control and manage the flow of data across a network by filtering and
analyzing outgoing and incoming packets1. They are commonly implemented in firewalls

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 4

or routers to protect networks from unauthorized access and malicious activities. Packet
filters can be broadly classified into two categories: stateless and stateful.

Stateless packet filters operate on a per-packet basis, examining each packet individually
without considering any previous packets2. Stateless filters use predefined rules based on
packet header information, such as source and destination IP addresses, port numbers,
and protocols. Based on these rules, the filter decides whether to allow or deny the packet.
Stateless filters are relatively simple and fast, as they do not maintain any information
about ongoing connections or packet history. However, their simplicity can also be a
disadvantage, as they are unable to recognize the context of a network connection and
may be less effective in detecting complex attacks or handling certain protocols.

Stateful packet filters, on the other hand, maintain a state table that tracks the status of
ongoing network connections2. By keeping track of connection states, stateful filters can
make more informed decisions about whether to allow or deny a packet. When a new
packet arrives, the stateful filter examines both the packet header and the current state
of the connection in its state table. If the packet is part of an existing, legitimate
connection, it is allowed through; otherwise, it may be denied based on the filter's rules.
Stateful packet filters provide a higher level of security compared to stateless filters, as
they can better handle connection-oriented protocols and detect malicious activities that
span multiple packets. However, they can be more resource-intensive and slower due to
the additional overhead of maintaining and updating the state table.

1.1 P4 registers

P4 targets implement registers to save arbitrary data. Multiple packets can access the
data stored in the registers. Registers in P4 are organized into named arrays of cells.
Registers can be read and written by both the control and the data plane. In P4, registers
are global memory resources meaning that any match-action tables can reference them.

The syntax below shows how to declare a register array in P4. The register array R1
contains M values of N bits.

register<bit<N>>(M) R1;

Figure 1 depicts a graphical representation of the register R1. The functions write and

read are used to store and retrieve values from a specific position, where an index
specifies the position3. For example, the programmer invokes the following function to
store the value val in position 0 in the register array R1.

R1.write(0,val)

Similarly, the user invokes the function shown below to read a value stored in position 3.
Note that the retrieved value is stored in the variable res.

R1.read(res,3)

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 5

Index Value

0

1

2

3

4

5

6

7

N

...

...

Register R1

R1.write(0,val)

R1.read(res,3)

Figure 1. Register array R1. The register array contains N entries of M bits. The index indicates
the position of the value. Using the functions read and write, programmers can retrieve and

modify values in the register array.

1.2 Hashes in P4

P4 targets implement hash functions to map arbitrary data to a hash value. For example,
the V1Model implements hash functions as externs4. The following code shows how to
call a hash function in P4.

hash(hash_val, algo, min_val, {val_1, val_2, ..., val_N}, (n_bits, max_val))

The parameters of the hash function are as follows:

• hash_val: variable used to store the hash value.

• algo: indicates the hashing algorithm. For example, the V1Model supports
crc16, crc32, universal hashing (i.e., random), xor32, and others.

• min_val: establishes the minimum hash value.

• {val_1,val_2,…,val_N}: values to be hashed.

• n_bit: number of bits of the output (i.e., width).

• max_val: maximum hash value.

1.3 Lab scenario

This lab shows how to implement a stateful packet filter for the TCP protocol using
registers. Hashes are used to identify a flow, and registers are used to store the flow’s
state. The stateful packet filter will only allow hosts to initiate a TCP session to the DMZ
server, thus, TCP flows that are not destined to the DMZ server are dropped.

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 6

The P4 program presented in this lab performs the following:

1- If the TCP header matches the assigned policy, the state of the flow (i.e., the TCP
source and destination ports) is stored in a register.

2- If the TCP header does not match the assigned policy, the source and destination
ports of the flow are extracted from the registers. If the extracted source and
destination ports match the destination and source ports of the packet,
respectively, the packet is accepted.

2 Lab topology

Let’s get started by opening a simple Mininet topology using MiniEdit. The topology
comprises three end hosts and one P4 programmable switch. Host h1 is in the internal
network, host h2 is in the DMZ network, and host h3 is in the external network.

h2-eth0 h2

172.16.0.10
DMZ

216.0.0.10

h3

h3-eth0

External network

192.168.0.10

h1

h1-eth0

Internal network

s1-eth0 s1-eth2

s1

s1-eth1

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 7

Figure 3. MiniEdit shortcut.

Step 2. In the MiniEdit application, load the topology by clicking on File then Open.
Navigate to the lab7 folder and search for the topology file called lab7.mn and click on
Open. A new topology will be loaded to MiniEdit.

Figure 4. MiniEdit’s Open dialog.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 8

Figure 5. Running the emulation.

2.1 Verifying the configuration of the end hosts

Step 1. Right-click on host h1 and select Terminal. This opens the terminal of host h1 and
allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 9

Figure 7. Verifying the configuration host h1 interfaces.

Step 3. Hold the right-click on host h2 and select Terminal. This opens the terminal of host
h2 and allows the execution of commands on that host.

Figure 8. Opening a terminal on host h2.

Step 4. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 10

Figure 9. Verifying the configuration host h2 interfaces.

Step 5. Hold the right-click on host h3 and select Terminal. This opens the terminal of host
h3 and allows the execution of commands on that host.

Figure 10. Opening a terminal on host h3.

Step 6. Verify the interfaces’ configuration by issuing the following command.

ifconfig

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 11

Figure 11. Verifying the configuration host h3 interfaces.

3 Creating a P4 program that performs stateful packet filtering

This section demonstrates how to implement a stateful packet filter in P4 using registers.
The stateful packet filter will be applied on TCP. First, you will load the programming
environment. Then, you will define the headers to parse TCP. Following, you will create
P4 tables to apply the desired policies, as well as registers to store the state of the flow.
The flow ID is produced by a hashing algorithm that computes the source and destination
IPv4 addresses to produce an index. This index will be used to access the state of the flow
and decide whether to forward or block packet based on the policy.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the icon located on the desktop.
Alternatively, click on the terminal icon in taskbar located in the lower left-hand side.

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 12

Figure 12. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the Visual
Studio Code (VS Code) and opens the directory where the P4 program for this lab is
located.

code ~/P4_Labs/lab7

Figure 13. Launching the editor and opening the lab7 directory.

3.2 Implementing a TCP stateful packet filter

Step 1. Click on the ingress.p4 file to display the contents of the file. Use the file explorer
on the left-hand side of the screen to locate the file.

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 13

Figure 14. Inspecting the ingress.p4 file.

We can see that the ingress.p4 declares a control block named MyIngress. Inside this
block, a table ipv4_exact is defined which matches on the destination IP address and
can invoke the forward action to forward the packet out of a port, or the drop action to
drop the packet.

Step 2. Add the code below under the ipv4_exact table to define tcp_policy table. The
table is responsible for checking incoming TCP packets against the access rules defined by
the policy.

table tcp_policy {

 key = {

 hdr.ipv4.srcAddr: lpm;

 hdr.ipv4.dstAddr: ternary;

 }

 actions = {

 }

 size = 1024;

}

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 14

Figure 15. Defining the tcp_policy table.

In the code above, the table tcp_policy uses the IP source and destination addresses as
the table keys, i.e., the table checks if the incoming packets belong to a defined rule by
inspecting the source and destination IP addresses. The keys are populated and
configured by the control plane at runtime based on the policy in place. lpm and ternary
matching types are used to allow the administrator to define a policy on a range of IP
addresses. Note that BMv2 compiler (p4c) does not allow a table that has more than one
LPM key field, thus, the ternary matching is used5.

Step 3. Define two registers tcp_srcPort and tcp_dstPort by typing the code below.
The registers are responsible for storing the source and destination ports of the allowed
TCP sessions, enabling stateful packet filter.

register<bit<16>>(65535) tcp_srcPort;

register<bit<16>>(65535) tcp_dstPort;

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 15

Figure 16. Defining the registers store TCP ports.

Step 4. Insert the code below to define a 16-bit variable to store the hash index of the
flow.

bit<16> flow_id_indx;

Figure 17. Defining the variable flow_id_indx.

Step 5. Insert the code below to define two 16-bit variables to store the TCP source
(srcPort) and destination (dstPort) ports.

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 16

bit<16> srcPort;

bit<16> dstPort;

Figure 18. Defining the variables srcPort and dstPort.

Step 6. Add the following code inside the apply block of the MyIngress control to check if
the packet is an TCP packet. The apply block defines the sequential flow of packet
processing. It is required in every control block, otherwise the program will not compile.
It describes the sequence of tables to be invoked, in addition to other packet processing
instructions.

if (hdr.tcp.isValid()) {

}

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 17

Figure 19. Checking the validity of the tcp header.

Step 7. Add the following code to check if the TCP packet matches one of the access rules
defined by the tcp_policy table.

if (tcp_policy.apply().hit) {

}

Figure 20. Checking if the packet matches the policy defined by tcp_policy table.

Note that a table hit occurs only if a packet matches against the table’s keys. In the code
above, the if statement applies to the tcp_policy table and checks if the source and

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 18

destination IP addresses of the packet match the table’s keys, i.e., the packet matches the
policy. If the packet matches the policy, then its source and destinations ports should be
stored inside stateful registers. The registers should be indexed using the hash of the
source and destinations ports.

Step 8. Add the following code to calculate the hash of the source and destination ports
and store it inside flow_id_indx variable. The hash will be used to index tcp_srcPort
and tcp_dstPort registers.

hash(flow_id_indx, HashAlgorithm.crc16, (bit<1>)0,

 {hdr.ipv4.srcAddr, hdr.ipv4.dstAddr},

 (bit<32>)65535);

Figure 21. Calculating the index of the registers where the source and destination ports will be
stored.

The code in the figure above hashes flows based on their source and destination IP
addresses. The hash function produces a 16-bits output using the following parameters:

• flow_id_indx: The variable used to store the output.

• HashAlgorithm.crc16: the hash algorithm.

• (bit<1>)0: the minimum (or base) value produced by the hash algorithm.

• hdr.ipv4.srcAddr and hdr.ipv4.dstAddr: the data to be hashed.

• (bit<32>)65535: the maximum value produced by the hash algorithm.

Step 9. Add the following code to store the source and destination ports inside the
tcp_srcPort and tcp_dstPort registers, respectively.

tcp_srcPort.write((bit<32>)flow_id_indx, hdr.tcp.srcPort);

tcp_dstPort.write((bit<32>)flow_id_indx, hdr.tcp.dstPort);

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 19

Figure 22. Storing source and destination ports inside the tcp_srcPort and tcpdstPort

registers.

Step 10. Insert the code below to apply the ipv4_exact table and forward the packet to
the destination host.

ipv4_exact.apply();

Figure 23. Applying ipv4_exact table.

At this stage, the source and destination ports of packets that match the policy are stored
inside two stateful registers thar are indexed by the hash of the source and destination
ports. The next step is to write a code to process the packets that do not match the policy.

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 20

Step 11. Add the following code to check if the TCP packet does not match one of the
access rules defined by the tcp_policy table.

else {

}

Figure 24. Checking if the packet does not match the policy defined by tcp_policy table.

Step 12. Add the following code to calculate the hash of the source and destination ports
and store it inside flow_id_indx variable. The hash will be used to index tcp_srcPort
and tcp_dstPort registers.

hash(flow_id_indx, HashAlgorithm.crc16, (bit<1>)0,

 {hdr.ipv4.dstAddr, hdr.ipv4.srcAddr},

 (bit<32>)65535);

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 21

Figure 25. Calculating the index of the registers where the source and destination ports will be
retrieved from.

The code in the figure above hashes flows based on their destination and source IP
addresses. Notice how the source and destination IP addresses are inverted in the hash
function so that the retrieved index is the same as the one used in the associated TCP
session.

Step 13. Add the following code to retrieve the source and destination ports from the
tcp_srcPort and tcp_dstPort registers.

tcp_srcPort.read(srcPort, (bit<32>)flow_id_indx);

tcp_dstPort.read(dstPort, (bit<32>)flow_id_indx);

Figure 26. Retrieving the source and destination ports from the tcp_srcPort and

tcpdstPort registers.

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 22

Step 14. Add the following code to check if the retrieved source and destination ports
match the packet’s ports.

if (srcPort == hdr.tcp.dstPort && dstPort == hdr.tcp.srcPort) {

}

Figure 27. Checking if the packet belongs to an existing TCP session.

In the code above, the source and destination ports of the packets are compared against
the retrieved ports from the registers. The two pairs should match only if the packet
belongs to an existing TCP session, and consequently, the packet should be forwarded.
Otherwise, the packet should be dropped.

Step 15. Add the following code to forward the packet if it belongs to an existing TCP
session.

ipv4_exact.apply();

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 23

Figure 28. Forwarding TCP packets that belong to an existing session.

Step 16. Add the following code to drop the packet if it does not belong to an existing TCP
session.

else {

 drop();

}

Figure 29. Dropping TCP packets that do not belong to an existing session.

Step 17. Save the changes to the file by pressing Ctrl + s.

4 Loading the P4 program

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 24

4.1 Compiling and loading the P4 program to switch s1

Step 1. Issue the following command in the terminal panel inside the VS Code to compile
the program.

p4c basic.p4

Figure 30. Compiling the P4 program.

Step 2. Type the command below in the terminal panel to push the basic.json file to the
switch s1’s filesystem. The script accepts as input the JSON output of the p4c compiler,
and the target switch name. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 25

Figure 31. Pushing the basic.json file to switch s1.

4.2 Verifying the configuration

Step 1. Click on the MinEdit tab in the start bar to maximize the window.

Figure 32. Maximizing the MiniEdit window.

Step 2. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 26

Figure 33. Opening switch s1 terminal.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch terminal.

Step 3. Issue the following command on switch s1 terminal to inspect the content of the
current folder.

ls

Figure 34. Displaying the content of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was pushed previously after
compiling the P4 program.

4.3 Mapping P4 program’s ports

Step 1. Start the switch daemon and map the logical interfaces (i.e., ports) to the switch’s
interfaces by issuing the following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 basic.json &

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 27

Figure 35. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

5 Testing and verifying the P4 program

5.1 Configuring the policy rules

Step 1. In switch s1 terminal, press Enter to return the CLI.

Figure 36. Returning to switch s1 CLI.

Step 2. Type the command below to inspect the content of the rules.cmd file. The file
contains the rules which will be inserted to the switch at runtime. cat utility prints the
content into the standard output.

cat ~/lab7/rules.cmd

Figure 37. Inspecting the rules.

In the figure above, the first rule populates the tcp_policy table. NoAction keyword is
used when a table does not include any actions in its definition. 0.0.0.0/0 is the LPM
key which matches on any incoming packets. 172.16.0.10&&&255.255.255.255 is the
ternary key which matches on any packet destined to the DMZ. Thus, the tcp_policy

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 28

table will hit on any packet destined to the DMZ regardless of its source IP address. Note
that any connection destined to the internal or external networks will not match the
policy, and consequently, will be dropped.

The last three rules populate the ipv4_exact table with the forwarding rules.

Step 3. Push the table entries to the switch by typing the following command.

simple_switch_CLI < ~/lab7/rules.cmd

Figure 38. Pushing the table entries to the switch.

5.2 Testing TCP connections destined to the DMZ

In this section, an HTTP server will be configured on the DMZ. GET requests will be
initiated from the internal and external networks. The requests should be successful
because the policy accepts any connection destined to the DMZ.

Step 1. On h2 terminal, type the command below to start an HTTP server using Python.
-m is used to run a module as a script, allowing the execution of Python module directly
from the command line. SimpleHTTPServer is a Python 2 module that provides a basic
HTTP server capable of serving static files from the current directory. The server will be
listening on port 80 for incoming packets.

python -m SimpleHTTPServer 80

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 29

Figure 39. Starting HTTP server on h2 (DMZ).

Step 2. On h1 terminal, type the command below to issue an HTTP GET request. wget is
a utility for non-interactive download of files from the Web. 172.16.0.10 is the IP
address of the HTTP server running on host h2. --delete-after option tells Wget to
delete every single file it downloads, after having done so.

wget 172.16.0.10 --delete-after

Figure 40. Issuing HTTP GET requests from h1 (internal network).

The figure above shows that the request was successful.

Step 3. On h3 terminal, type the command below to issue an HTTP Get request.

wget 172.16.0.10 –-delete-after

Figure 41. Issuing HTTP GET requests from h3 (external network).

The figure above shows that the request was successful.

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 30

Step 4. On h2 terminal, press Ctrl + c to stop the server.

5.3 Testing TCP connections destined to the internal network

In this section, an HTTP server will be configured on the internal network. GET requests
will be initiated from the external network and the DMZ. The requests should not be
successful because the policy drops any connection destined to the internal network.

Step 1. On h1 terminal, type the command below to start an HTTP server using Python.

python -m SimpleHTTPServer 80

Figure 42. Starting HTTP server on h1 (internal network).

Step 2. On h2 terminal, type the command below to issue an HTTP GET request.

wget 192.168.0.10

Figure 43. Issuing HTTP GET requests from h2 (DMZ).

The figure above shows that the request was not successful because the switch blocked
the connection.

Note that the connection will not be dropped by h2, as it will retry to connect multiple
times. You should manually terminate the connection.

Step 3. On host h2, press Ctrl + c to terminate the HTTP GET request.

Step 4. On h3 terminal, type the command below to issue an HTTP Get request.

wget 192.168.0.10

Figure 44. Issuing HTTP GET requests from h3 (external network).

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 31

The figure above shows that the request was not successful because the switch blocked
the connection.

Step 5. On host h3, press Ctrl + c to terminate the HTTP GET request.

Step 6. On h1 terminal, press Ctrl + c to stop the server.

5.4 Testing TCP connections destined to the external network

In this section, an HTTP server will be configured on the internal network. GET requests
will be initiated from the internal network and the DMZ. The requests should not be
successful because the policy drops any connection destined to the external network.

Step 1. On h3 terminal, type the command below to start an HTTP server using Python.

python -m SimpleHTTPServer 80

Figure 45. Starting HTTP server on h3 (external network).

Step 2. On h2 terminal, type the command below to issue an HTTP Get request.

wget 216.0.0.10

Figure 46. Issuing HTTP GET requests from h2 (DMZ).

The figure above shows that the request was not successful because the switch blocked
the connection.

Step 3. On h1 terminal, type the command below to issue an HTTP Get request.

wget 216.0.0.10

Figure 47. Issuing HTTP GET requests from h1 (internal network).

Lab 7: Implementing a Stateful Packet Filter for the TCP Protocol

Page 32

The figure above shows that the request was not successful because the switch blocked
the connection.

This concludes lab 7. Stop the emulation and then exit out of MiniEdit.

References

1. M. Rouse. “Packet Filtering.” [Online]. Available: https://tinyurl.com/8z4a2yp6
2. Diyaroy. “Stateless vs Stateful Packet Filtering Firewalls” Online]. Available:

https://tinyurl.com/3s2twcdp
3. P4-guide github repository. “Demo Global Register P416.” [Online]. Available:

https://tinyurl.com/mrytj9ad
4. P4 Language Tutorial. [Online]. Available: https://tinyurl.com/2p9cen9e.
5. P4lang/behavioral-model github repository. “The BMv2 simple switch target.”

[Online]. Available: https://tinyurl.com/vrasamm.

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 8: Detecting and Mitigating the DNS

Amplification Attack

Document Version: 04-18-2023

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Lab scenario .. 4

2 Lab topology.. 5

2.1 Verifying connectivity between host h1 and host h2 .. 7

3 Loading the basic P4 program .. 8

4 Performing DNS amplification attack ... 13

4.1 Starting and testing the DNS server ... 13

4.2 Performing the attack .. 14

5 Modifying the P4 program to mitigate DNS amplification 16

5.1 Modifying the headers file ... 16

5.2 Modifying the parser file .. 18

5.3 Modifying the ingress file ... 19

5.4 Loading the modified P4 program ... 25

5.5 Performing the DNS amplification attack .. 27

References .. 29

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 3

Overview

This lab introduces the DNS amplification attack and provides the steps to implement a
P4 program to mitigate the attack. In a DNS amplification attack, the attacker floods the
victim with DNS responses by utilizing a DNS resolver. To mitigate this attack, the user will
use P4’ registers to store the transaction ID of the DNS queries issued by the victim. Any
DNS response with transaction ID not stored by the switch will be dropped.

Objectives

By the end of this lab, students should be able to:

1. Define DNS amplification attack.
2. Understand the workflow of the DNS amplification attack.
3. Perform a DNS amplification attack.
4. Write a P4 program that mitigates the DNS amplification attack.

Lab settings

Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Loading a basic P4 program.
4. Section 4: Performing DNS amplification attack.
5. Section 5: Modifying the P4 program to mitigate DNS amplification.

1 Introduction

Domain Name System (DNS) is an essential component of the internet, responsible for
translating human-readable domain names (e.g., www.example.com) into IP addresses
(e.g., 192.0.2.1) that can be understood by devices connected to the internet1. Recursive

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 4

DNS servers are responsible for resolving these domain names on behalf of clients and
caching the results for subsequent requests.

DNS Amplification is a type of Distributed Denial of Service (DDoS) attack that exploits the
DNS infrastructure to amplify the amount of traffic directed towards a target system,
overwhelming its resources, and causing it to become unresponsive2. In a DNS
amplification attack, the attacker sends a large number of spoofed DNS query packets to
vulnerable, open recursive DNS servers. These packets have a forged source IP address
set to the target's IP. As a result, when the DNS server responds to the query, it sends a
much larger response packet to the target, rather than the actual source of the query.

Attackers typically use small query packets with a high amplification factor, meaning that
the response packets are considerably larger in size than the query packets2. This
amplification effect allows attackers to generate a massive volume of traffic with
relatively minimal resources, amplifying the impact of the attack on the targeted system.
Mitigating DNS Amplification attacks requires a combination of strategies, including
securing open recursive DNS servers, implementing rate limiting on DNS queries, and
employing traffic filtering techniques to identify and block malicious traffic3.

1.1 Lab scenario

In this lab, a P4 programmable switch will mitigate the DNS amplification attack by
dropping the DNS responses that do not match DNS requests. The switch will use the hash
of the 5-tuple (source IP, destination IP, source port, destination port, and transport
protocol) to index flows in a register. The DNS transaction ID will be stored in the cell of
the register. The transaction ID is generated by the client sending a DNS request.

Figure 1 depicts a DNS amplification attack scenario. The attacker is performing DNS
amplification attack by using the IP of the victim as the source IP of the packets. The DNS
server responds to malicious requests and sends the replies to the victim. The victim is
flooded with DNS replies from the server.

Victim

Attacker

Attacker starts DNS
amplification attack

DNS server responds to all requests

DNS server

Figure 1. DNS amplification attack.

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 5

Figure 2 depicts the DNS amplification attack mitigation using P4 switch. The attacker is
performing DNS amplification attack by using the IP of the victim as the source IP of the
packets. The DNS server responds to the malicious requests and sends the replies to the
victim. The P4 switch drops all the replies as they do not associate with DNS requests
issued by the victim. After that, the victim sends a DNS query to the DNS server. The DNS
server responds to the legitimate request and the P4 switch forward the legitimate reply
to the victim. Note that the P4 switch forwarded the legitimate reply while dropping all
the replies resulting from the attack.

Victim

Attacker

Victim sends a DNS query

Attacker starts DNS
amplification attack

P4 switch forwards only the legitimate
DNS response

DNS server responds to all requests

DNS server

Figure 2. DNS amplification attack mitigation using a P4 switch.

The P4 programmable switch identifies DNS requests by inspecting the dns_qr header of
DNS packets4. dns_qr = 0 means that the packet is a DNS request. dns_qr = 1 means that
the packet is a DNS response. For DNS requests, the switch stores their transaction IDs in
register cells. The hash of the 5-tuple of the request will be used as an index to the register.
The 5-tuple is hashed in the following order: source IP, destination IP, source port,
destination port, and transport protocol. For DNS responses, the switch hashes the 5-
tuple. The 5-tuple is hashed in the following order: destination IP, source IP, source port,
destination port, and transport protocol. The source IP and destination IP are reversed so
that the DNS response maps to the same cell as the DNS request. After retrieving the
transaction ID from the cell, the ID is compared to the transaction ID of the DNS response.
If the values match, the switch forwards the packet. Otherwise, the switch drops the
packet.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

AttackerVictim

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 6

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab8, select the file lab8.mn, and click on
Open.

Figure 5. Opening a topology in MiniEdit.

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 7

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 6. Running the emulation.

2.1 Verifying connectivity between host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Figure 7. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 8

Figure 8. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded into the switch.

3 Loading the basic P4 program

In this section, the user will compile and run a P4 program that implements the basic
forwarding functionality. The switch will then be configured by mapping the P4 program’s
ports and loading the rules to the switch.

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on
the desktop.

Figure 9. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4_Labs/lab8

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 9

Figure 10. Launching the editor and opening the lab8 directory.

Step 3. To compile the P4 program, issue the following command in the terminal panel
inside the VS Code.

p4c basic.p4

Figure 11. Compiling the P4 program using the VS Code terminal.

Step 4. Type the command below in the terminal panel to download the basic.json file to
the switch s1. The script accepts as input the JSON output of the p4c compiler, and the
target switch name (e.g., s1). If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 10

Figure 12. Downloading the compiled program to switch s1.

Step 5. Click on the MinEdit tab in the start bar to maximize the window.

Figure 13. Maximizing the MiniEdit window.

Step 6. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 11

Figure 14. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 7. Issue the following command to list the files in the current directory.

ls

Figure 15. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

Step 8. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 basic.json &

Figure 16. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 12

s1-eth0 0 s1-eth11

Figure 17. Ports 0 and 1 are mapped to the interfaces s1-eth0 and s1-eth1 of switch s1.

Step 9. In switch s1 terminal, press Enter to return the CLI.

Figure 18. Returning to switch s1 CLI.

Step 10. Populate the table with forwarding rules by typing the following command.

simple_switch_CLI < ~/lab8/rules.cmd

Figure 19. Loading table entries to switch s1.

The figure above shows the table entries described in the file rules.cmd.

Step 11. Go back to host h1 terminal to test the connectivity between host h1 and host
h2 by issuing the following command.

ping 10.0.0.2 -c 4

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 13

Figure 20. Performing a connectivity test between host h1 and host h2.

The figure above shows that there is connectivity between the two hosts.

4 Performing DNS amplification attack

4.1 Starting and testing the DNS server

Step 1. Hold the right-click on host h2 and select Terminal. This opens the terminal of
host h2 and allows the execution of commands on that host.

Figure 21. Opening a terminal on host h2.

Step 2. Start a DNS server on h2 by issuing the command below. dnsmasq command starts
a lightweight DNS server.

dnsmasq

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 14

Figure 22. Starting the DNS server on h2.

Step 3. On h1 terminal, type the command below to validate that h2 operates as a DNS
server. dig (domain information groper) is a flexible tool for interrogating DNS name
servers. It performs DNS lookups and displays the answers that are returned from the
name server(s) that were queried. @10.0.0.2 is the IP address of the DNS server which
is running on h2. localhost is the target of the DNS query.

dig @10.0.0.2 localhost

Figure 23. Issuing DNS query.

The figure above shows that 1 DNS server is detected. The IP address of the server is
10.0.0.2. The answer section contains the IP address of the localhost (127.0.0.1).

4.2 Performing the attack

In this section, the DNS server will flood h1 with DNS responses. The responses are stored
inside a PCAP file.

Step 1. On h1 terminal, type the command below to display the current network usage.
nload is a console application that monitors network traffic and bandwidth usage in real
time.

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 15

nload

Figure 24. Staring nload on h1.

Step 2. On h2 terminal, type the command below to open the file amplification.pcap
using Wireshark.

wireshark amplification.pcap

Figure 25. Opening amplification.pcan file using Wireshark.

Step 3. Inspect the content of the amplification.pcap file. Close Wireshark by clicking on
the X icon at the top right corner.

Figure 26. Inspecting the content of amplification.pcap file.

The figure above shows that all the packets inside the file are DNS responses. The packets
of this file will be replayed to emulate a DNS amplification attack.

Step 4. On h2 terminal, type the command below to perform DNS amplification attack.

./perform_DNS_amplification.sh

Figure 27. Performing the DNS amplification attack.

Step 5. Inspect the network usage at h1.

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 16

Figure 28. Inspecting resource usage at h1.

The figure above shows the increase in network usage caused by the DNS amplification
attack.

5 Modifying the P4 program to mitigate DNS amplification

In this section, the P4 program will be modified to mitigate DNS amplification attacks. To
do this, the DNS header will be added to the header file. Then, the parser will be modified
to extract the DNS header from incoming packets. After that the ingress block will be
modified to drop all the DNS responses that do not belong to DNS requests initiated by
h1. Finally, the P4 program will be tested by performing the DNS amplification attack and
observing the network usage at h1.

5.1 Modifying the headers file

Step 1. Use VScode to access the header.p4 file. In the header.p4 file, add the following
constant.

const bit<16> TYPE_DNS = 53;

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 17

Figure 29. Adding TYPE_DNS constant.

In the figure above, DNS_TYPE represents the port number used by DNS queries. All UDP
packets with source port or destination port of DNS_TYPE (i.e., 53) are DNS packets.

Step 2. In the header.p4 file, define the DNS header under the UDP header by adding the
following code.

header dns_t{

 bit <16> transaction_id;

 bit <1> qr_flag;

 bit <7> padding;

}

Figure 30. Defining the DNS header.

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 18

Note that in the code above, the padding field was added because headers in P4 should
be byte aligned (the length of headers in P4 should be a multiple of 8).

Step 3. Add the DNS header to the headers struct by typing the following code.

dns_t dns;

Figure 31. Adding the DNS header to the headers struct.

Step 4. Save the changes to the file by pressing Ctrl + s.

5.2 Modifying the parser file

Step 1. Use VScode to access the parser.p4 file. In the parser.p4 file, modify the state
parse_udp by adding the following code to extract the DNS header if either the source
port or the destination port of a UDP packet is TYPE_DNS (i.e., 53). The code must replace
the transition accept; statement.

transition select(hdr.udp.srcPort, hdr.udp.dstPort){

 (TYPE_DNS,_): parse_dns;

 (_,TYPE_DNS): parse_dns;

 (_,_): accept;

}

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 19

Figure 32. Adding the transition from UDP to DNS.

Step 2. Add the parse_dns state below the parse_udp state by typing the following code.

state parse_dns {

 packet.extract (hdr.dns);

 transition accept;

}

Figure 33. Adding the parse_dns state.

Step 3. Save the changes to the file by pressing Ctrl + s.

5.3 Modifying the ingress file

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 20

Step 1. In VScode, access the parser.p4 file. In the ingress.p4 file, define the register
transaction_ids to store the DNS transaction IDs and a variable idx to store the hash
of the 5-tuple.

register<bit<16>>(65535) transaction_ids;

bit<16> idx;

Figure 34. Defining register to store transaction Ids.

The code above defines a register named transaction_ids. The register contains 65535
cells. Each cell will be indexed by a flow ID and will store the transaction ID of that flow.
The code also defines a 16-bit variable name idx. This variable will be used by the hashing
actions.

Step 2. Define the action compute_flow_id by typing the following code.

action compute_flow_id(){

hash (

 idx,

HashAlgorithm.crc16,

(bit<1>)0,

{

 hdr.ipv4.srcAddr,

 hdr.ipv4.dstAddr,

 hdr.udp.srcPort,

 hdr.udp.dstPort,

 hdr.ipv4.protocol

},

(bit<16>)65535

);

}

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 21

Figure 35. Defining compute_flow_id action.

The code in the figure above hashes flows based on their 5-tuple. The hash function
produces a 16-bits output using the following parameters:

• idx: The variable used to store the output.

• HashAlgorithm.crc16: the hash algorithm.

• (bit<1>)0: the minimum (or base) value produced by the hash algorithm.

• hdr.ipv4.srcAddr, hdr.ipv4.dstAddr, hdr.udp.srcPort,
hdr.udp.dstPort, and hdr.ipv4.protocol: the data to be hashed.

• (bit<32>)65535: the maximum value produced by the hash algorithm.

Step 3. Define the action compute_reverse_flow_id that hashes the 5-tuple of DNS
packets.

action compute_reverse_flow_id(){

hash (

 idx,

HashAlgorithm.crc16,

(bit<1>)0,

{

 hdr.ipv4.dstAddr,

 hdr.ipv4.srcAddr,

 hdr.udp.dstPort,

 hdr.udp.srcPort,

 hdr.ipv4.protocol

},

(bit<16>)65535

);

}

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 22

Figure 36. Defining compute_reverse_flow_id action.

Note that the order of hashing the source and destination IP addresses and ports is
reversed in compute_reverse_flow_id compared to compute_flow_id so that the DNS
requests and responses will be processed as a single flow and their hash will map to the
same register cell.

Step 4. Override the apply block as follows.

apply {

 if (hdr.dns.isValid()){

 if (hdr.dns.qr_flag == 0) {

 compute_flow_id();

 transaction_ids.write((bit<32>) idx, hdr.dns.transaction_id);

 forwarding.apply();

 }

 }

}

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 23

Figure 37. Implementing the apply block.

In the code above, if(hdr.dns.isValid()) checks the validity of the DNS header. For
DNS packets, if(hdr.dns.qr_flag == 0) checks if the current packet is a DNS request
packet. If yes, the hash of the flow is calculated using compute_flow_id action. The
transaction ID of the DNS packet is then stored inside the transaction_ids register. The
hash of the flow is used to index the transaction_ids register.

Step 5. Add the following code to the apply block to calculate the hash of the DNS
responses and retrieve the corresponding transaction id.

else if (hdr.dns.qr_flag == 1){

 bit<16> transaction_id;

 compute_reverse_flow_id();

 transaction_ids.read(transaction_id, (bit<32>) idx);

}

Figure 38. Implementing the apply block.

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 24

In the code above, else if (hdr.dns.qr_flag == 1) checks if the DNS packet is a
reply packet. The compute_reverse_flow_id action calculates the hash of DNS reply
packet. The hash value is used to index the transaction_ids register and retrieve the
corresponding transaction id. The retrieved ID is stored inside the transaction_id
variable.

Step 6. Add the following code to forward the packet if the retrieved transaction ID (i.e.,
transaction_id) is the same as the transaction ID extracted from the current packet
(i.e., hdr.dns.transaction_id). The packet will be dropped if the two ids do not match.

if (transaction_id == hdr.dns.transaction_id){

 forwarding.apply();

}

else {

 drop();

}

Figure 39. Implementing the apply block.

Step 7. Add the following code to forward non-DNS packets.

else {

 forwarding.apply();

}

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 25

Figure 40. Implementing the apply block.

Step 8. Save the changes to the file by pressing Ctrl + s.

5.4 Loading the modified P4 program

Step 1. To compile the P4 program, issue the following command in the terminal panel in
VS Code.

p4c basic.p4

Figure 41. Compiling the P4 program using the VS Code terminal.

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 26

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1. If asked for a password, type the password password.

push_to_switch basic.json s1

Figure 42. Downloading the compiled program to switch s1.

Step 3. Type the command below to kill the simple switch daemon, so that the new P4
program can be loaded.

pkill switch

Figure 43. Killing the simple switch daemon.

Step 4. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 basic.json &

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 27

Figure 44. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Step 5. In switch s1 terminal, press Enter to return the CLI.

Figure 45. Returning to switch s1 CLI.

Step 6. Populate the table with forwarding rules by typing the following command.

simple_switch_CLI < ~/lab8/rules.cmd

Figure 46. Loading table entries to switch s1.

The figure above shows the table entries described in the file rules.cmd.

5.5 Performing the DNS amplification attack

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 28

Step 1. On h2 terminal, type the command below to perform DNS amplification attack.

./perform_DNS_amplification.sh

Figure 47. Performing the DNS amplification attack.

Step 2. Inspect the network usage at h1. Press Ctrl + c to exit nload after inspecting the
network usage.

Figure 48. Inspecting resource usage at h1.

The figure above shows that there is no network usage at h1. The switch was successful
in dropping all the packets.

Step 3. On h1 terminal, type the command below to validate that legitimate DNS queries
will be forwarded by the switch.

dig @10.0.0.2 localhost

Lab 8: Detecting and Mitigating the DNS Amplification Attack

 Page 29

Figure 49. Issuing DNS query.

The figure above shows that h1 received the DNS response.

This concludes lab 8. Stop the emulation and then exit out of MiniEdit.

References

1. Amazon, “What is DNS?” [Online]. Available: https://tinyurl.com/ynb9esn6
2. NOCTION, “DNS Amplification Attacks Detection with NetFlow or sFlow.”

[Online]. Available: https://tinyurl.com/yh9v6nba
3. PURPLESEC, “How To Prevent A Domain Name Server (DNS) Amplification

attack.” [Online]. Available: https://tinyurl.com/5evebess
4. Charles M. Kozierok, “The TCP/IP Guide.” [Online]. Available:

https://tinyurl.com/83r4bc5m

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 9: Identifying Heavy Hitters using Count-min

Sketches (CMS)

Document Version: 04-18-2023

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Lab scenario .. 4

2 Lab topology.. 5

2.1 Verifying connectivity between host h1 and host h2 .. 7

3 Implement Count-Min Sketch data structure in P4 .. 8

3.1 Loading the programming environment .. 8

3.2 Modify the header file .. 9

3.3 Modify the ingress file .. 11

3.4 Loading the program and configuring the switch .. 15

4 Testing the P4 program... 20

References .. 24

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 3

Overview

This lab introduces the concept of heavy hitters and demonstrates how to implement the
Count-Min Sketch data structure in a P4 program to detect heavy hitters. Heavy hitters
refer to network traffic flows with significantly higher data rates or packet counts than
average, often dominating network resources and potentially causing congestion or
service degradation. Count-Min Sketch is a probabilistic data structure that estimates the
frequency of elements in a stream of data. The user will implement the Count-Min Sketch
data structure using P4 registers to detect heavy hitters and then drop them.

Objectives

By the end of this lab, students should be able to:

1. Define heavy hitters.
2. Understand the workflow of the Count-Min Sketch data structure.
3. Leverage Count-Min Sketch to detect heavy flows in P4.

Lab settings

Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Implementing Count-Min Sketch data structure in P4.
4. Section 4: Testing the P4 program.

1 Introduction

Heavy hitter detection is an essential task in the analysis of large-scale data streams,
aiming to identify items with a frequency exceeding a specified threshold. These items,
known as heavy hitters, can reveal crucial insights in various applications, such as network

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 4

traffic analysis, clickstream analysis, and natural language processing. Count-Min Sketch
(CM Sketch) is a probabilistic data structure that provides an efficient solution for
estimating item frequencies in high-dimensional and high-velocity data streams with
bounded error1.

CM Sketch utilizes hashing and a compact 2D array to store and track frequency
information2. It allows for fast updates and queries while significantly reducing memory
requirements compared to exact counting methods. As a result, it is particularly suitable
for heavy hitter detection in situations where data streams are too large to fit in memory,
and a small degree of error is acceptable.

To detect heavy hitters using CM Sketch, the data stream is processed incrementally,
updating the sketch with each incoming packet3. When querying for potential heavy
hitters, the sketch returns estimated frequencies, which can be compared to the
predefined threshold to determine if an item qualifies as a heavy hitter.

While the nature of the CM Sketch introduces some estimation errors, it offers a tunable
trade-off between accuracy and memory usage by adjusting its parameters4. This trade-
off is crucial for applications where space efficiency is of paramount importance. Despite
its inherent limitations, the CM Sketch remains a popular choice for heavy hitter detection
due to its effectiveness, simplicity, and versatility in handling massive data streams.

Consider Figure 1. The CM Sketch data structure is constructed using d register arrays that
contain w cells each. Thus, the data structure can be seen as a matrix of size w ∗ d. The
CM Sketch uses d pairwise-independent hash functions hi, ..., hd that are applied to the
5-tuple fields in the packet headers. The results of the hash functions correspond to the
indices of the counts in the d register arrays; these counts are incremented by one.
Calculating the minimum between these counts gives an approximation of the packet
counts per flow; note that this is an approximation and not the exact count because
collisions might occur, which leads to overestimating the counts.

w

h1

5-tuple

…

+1

+1

+1

h2

hd

F_ID1 F_ID2 F_IDd

c = min (Ri[F_IDi])

…

(1)

(2)

(3)

Figure 1. Workflow of CM Sketch.

1.1 Lab scenario

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 5

In this lab, the P4 switch will blacklist heavy flows. The P4 program will estimate the
number of packets per flow, where a flow is characterized by its 5-tuple (source IP,
destination IP, source port, destination port, and protocol). The CM Sketch data structure
will track the number of packets for each flow. When the number of packets exceeds a
predefined threshold, the data plane will classify the flow as a heavy hitter and blacklist
it. All subsequent packets of a blacklisted flow are dropped.

Consider Figure 2. The topology consists of an HTTP server, an iPerf3 server, an HTTP
client, and an iPerf3 client. The HTTP client performs GET requests from the HTTP server.
The requests will be successful as the number of packets per request will be less than the
heavy hitter detection threshold. The iPerf3 client and the iPerf3 server will be
transferring a large file. The number of packets of the iPerf3 flow will exceed the heavy
detection threshold, causing the flow to be blacklisted.

HTTP client HTTP server

Iperf3 client Iperf3 server

1
i

1
t

n
1

t

i

1

CM Sketch with threshold t

i1

i < t :
forward all

packets

i1

n1

n > t :
forward first t
packets only

t1

Figure 2. Lab scenario.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 6

s1

10.0.02

10.0.0.4

h2

h4

s1-eth0

h2-eth0

10.0.0.1

10.0.0.3

h1

h3

h3-eth0 h4-eth0

s1-eth1

s1-eth4s1-eth3

h1-eth0

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab9, select the file lab9.mn, and click on
Open.

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 7

Figure 5. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 6. Running the emulation.

2.1 Verifying connectivity between host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 8

Figure 7. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 8. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded into the switch. Note that there will be no connection between any
two hosts in the topology before loading the P4 program.

3 Implement Count-Min Sketch data structure in P4

In this section, the user will implement the CM Sketch data structure. The data structure
will utilize three different hash functions.

3.1 Loading the programming environment

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on
the desktop.

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 9

Figure 9. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4_Labs/lab9

Figure 10. Launching the editor and opening the lab9 directory.

3.2 Modify the header file

Step 1. In the header.p4 file, add the following two definitions.

#define SKETCH_LENGTH 28

#define SKETCH_WIDTH 32

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 10

Figure 11. Defining the length and width of the sketches.

In the code above, SKETCH_LENGTH represents the number of cells in a sketch and
SKETCH_WIDTH represents the size of counters inside a sketch.

Step 2. Define the metadata by adding the following code inside the metadata struct.

bit<32> index_sketch0;

bit<32> index_sketch1;

bit<32> index_sketch2;

bit<32> value_sketch0;

bit<32> value_sketch1;

bit<32> value_sketch2;

Figure 12. Defining the metadata.

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 11

The code above defines an index variable and a value variable for each of the three
sketches (sketch0, sketch1, and sketch2) that will build the CM Sketch.

Step 3. Save the changes to the file by pressing Ctrl + s.

3.3 Modify the ingress file

Step 1. Use VScode Explorer to access the ingress.p4 file. In the ingress.p4 file, add the
definition below. THRESHOLD defines the maximum number of packets a flow can have
before being considered a heavy flow. The threshold is set to 20000 packets.

#define THRESHOLD 20000

Figure 13. Defining the detection threshold.

Step 2. In the ingress.p4 file, add the following code.

#define SKETCH_REGISTER(num) register<bit<SKETCH_WIDTH>>(SKETCH_LENGTH)

sketch##num

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 12

Figure 14. Defining SKETCH_REGISTER.

In the definition above, the ## symbols indicate that the name of the register will depend
on the num provided for SKETCH_REGISTER. When the user initiates a SKETCH_REGISTER
and provides a number num as an argument (i.e., SKETCH_REGISTER(num)), a register
with name sketchnum will be initiated. For example, if the user defines
SKETCH_REGISTER(0) then the following register will be created:
register<bit<32>>(28) sketch0. The register will have SKETCH_LENGTH cells (i.e., 28
cells) where each cell stores SKETCH_WIDTH bits (i.e., 32 bits).

Step 3. In the ingress.p4 file, add the following code.

#define SKETCH_APPLY(num) hash(meta.index_sketch##num, \

 HashAlgorithm.crc32_custom, (bit<16>)0, \

 { \

 hdr.ipv4.srcAddr, \

 hdr.ipv4.dstAddr, \

 hdr.tcp.srcPort, \

 hdr.tcp.dstPort, \

 hdr.ipv4.protocol \

 },\

 (bit<32>)SKETCH_LENGTH); \

 sketch##num.read(meta.value_sketch##num, meta.index_sketch##num); \

 meta.value_sketch##num = meta.value_sketch##num + 1; \

 sketch##num.write(meta.index_sketch##num, meta.value_sketch##num); \

 if(minimum > meta.value_sketch##num) { \

 minimum = meta.value_sketch##num; }

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 13

Figure 15. Defining SKETCH_APPLY.

The code above defines SKETCH_APPLY function that takes the number of the sketch as
input and performs the actions to be described next on that sketch. For simplicity, assume
that SKETCH_APPLY(0) is called. The hash of the 5-tuple (source IP, destination IP, source
port, destination port, protocol) is stored inside meta.index_sketch0 using
HashAlgorithm.crc32_custom hashing algorithm. The hashing algorithm uses different
offsets for each sketch to assure that the hash functions of different sketches produce
different hash values for the same 5-tuple. The offsets are populated by the control plane.

After calculating the index, the number of packets stored in sketch0 register at that index
is retrieved and stored inside meta.value_sketch0. meta.value_sketch0 is then
incremented by one to account for the current packet. Next, the updated number of
packets is stored inside the sketch0 register at meta.index_sketch0. The updated value
(i.e., meta.value_sketch0) is compared to the variable minimum. If the value is smaller
than minimum, minimum is updated to be meta.value_sketch0.

Step 4. In the MyIngress control block, add the following code to initiate three sketch
registers.

SKETCH_REGISTER(0);

SKETCH_REGISTER(1);

SKETCH_REGISTER(2);

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 14

Figure 16. Initiating three sketch registers.

Step 5. In the MyIngress control block, add the following code to declare a variable
minimum. The value of minimum is set to a large number so that the variable will be larger
than the meta.value_sketchnum and be override after calling SKETCH_APPLY(num).

bit<32> minimum = 4294967295;

Figure 17. Declaring minimum variable.

Step 6. Add the following code inside the apply block.

if(hdr.ipv4.isValid()) {

 if(hdr.tcp.isValid()) {

 SKETCH_APPLY(0)

 SKETCH_APPLY(1)

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 15

 SKETCH_APPLY(2)

 if(minimum > THRESHOLD) {

 drop();

 }

 }

}

Figure 18. Modifying the apply block.

In the code above, if(hdr.ipv4.isValid()) checks if the packet contains the IPv4

header. if(hdr.tcp.isValid()) checks if the packet contains the TCP header. For a TCP
packet, SKETCH_APPLY is called for the three sketch registers. If the minimum variable is
larger than THRESHOLD (i.e., the flow has at least 20000 packets), the packet will be
dropped.

Step 7. Save the changes to the file by pressing Ctrl + s.

3.4 Loading the program and configuring the switch

Step 1. To compile the P4 program, issue the following command in the terminal panel
inside the VS Code.

p4c basic.p4

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 16

Figure 19. Compiling the P4 program using the VS Code terminal.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1. If asked for a password, type the password password.

push_to_switch basic.json s1

Figure 20. Downloading the compiled program to switch s1.

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 17

Step 3. Click on the MinEdit tab in the start bar to maximize the window.

Figure 21. Maximizing the MiniEdit window.

Step 4. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Figure 22. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 5. Issue the following command to list the files in the current directory.

ls

Figure 23. Displaying the contents of the current directory in the switch s1.

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 18

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

Step 6. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 -i 3@s1-eth3 basic.json &

Figure 24. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Step 7. In switch s1 terminal, press Enter to return the CLI.

Figure 25. Returning to switch s1 CLI.

Step 8. Issue the following command to inspect the rules to be populated by the control
plane. cat command concatenates files and prints on the standard output.

cat ~/lab9/rules.cmd

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 19

Figure 26. Inspecting the contents of rules.cmd file.

The figure above displays the forwarding rules (first four rules in the file). The last three
rules define three different seeds for the three hash functions of the sketches (sketch0,
sketch1, and sketch2). By having different seeds, the three hash functions will output
three different hash values for the same input. Note that the hash functions use the same
hashing algorithm and that it is necessary to have different seeds for the functions to
output different hash values.

Step 9. Populate the table with forwarding rules by typing the following command.

simple_switch_CLI < ~/lab9/rules.cmd

Figure 27. Loading table entries to switch s1.

The figure above shows the table entries described in the file rules.cmd.

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 20

Step 10. Go back to host h1 terminal to test the connectivity between host h1 and host
h2 by issuing the following command.

ping 10.0.0.2 -c 4

Figure 28. Performing a connectivity test between host h1 and host h2.

The figure above shows that there is connectivity between the two hosts.

4 Testing the P4 program

Step 1. Hold the right-click on host h2 and select Terminal. This opens the terminal of host
h2 and allows the execution of commands on that host.

Figure 29. Opening a terminal on host h2.

Step 2. On h2 terminal, type the command below to start an HTTP server using Python.
-m is used to run a module as a script, allowing the execution of Python module directly

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 21

from the command line. SimpleHTTPServer is a Python 2 module that provides a basic
HTTP server capable of serving static files from the current directory. The server will be
listening on port 80 for incoming packets.

python -m SimpleHTTPServer 80

Figure 30. Starting HTTP server on h2.

Step 3. Hold the right-click on host h4 and select Terminal. This opens the terminal of host
h4 and allows the execution of commands on that host.

Figure 31. Opening a terminal on host h4.

Step 4. On h4 terminal, type the command below to start iperf3 as a server. iperf3 is
a tool for performing network throughput measurements. -s option runs iperf3 in
server mode.

iperf3 -s

Figure 32. Starting iperf3 server on h4.

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 22

The figure above shows that the server is listening on port 5201.

Step 5. On h1 terminal, type the command below to continuously issue HTTP requests.
The script utilized wget to perform HTTP Get request every 1 second. wget is a utility for
non-interactive download of files from the Web. 10.0.0.2 is the IP address of the HTTP
server. sleep 1 command causes the calling thread to sleep for 1 second.

while [1]; do wget 10.0.0.2; sleep 1; done

Figure 33. Issuing repetitive HTTP GET requests from h1.

Step 6. Inspect h1 terminal.

Figure 34. Inspecting h1 terminal.

The figure above shows that the client successfully downloaded the file index.html twice
from the HTTP server.

Step 7. Hold the right-click on host h3 and select Terminal. This opens the terminal of host
h3 and allows the execution of commands on that host.

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 23

Figure 35. Opening a terminal on host h3.

Step 8. On h3 terminal, type the command below to start iperf3 as a client. -c option
runs iperf3 in client mode. 10.0.0.4 is the IP address of the iperf3 server.

iperf3 -c 10.0.0.4

Figure 36. Starting iperf3 test between h3 and h4.

Lab 9: Identifying Heavy Hitters using Count-min Sketches (CMS)

 Page 24

The figure above shows that the bitrate dropped to zero at second 6. This occurs because
the number of packets transferred by the test exceeded the defined threshold and the
switch blacklisted the flow.

Step 9. Inspect h1 terminal.

Figure 37. Inspecting h1 terminal.

The figure above shows that all the GET requests are successful. Note that the switch did
not drop the flows because the number of packets of an HTTP GET request is smaller than
the heavy hitter detection threshold.

This concludes lab 9. Stop the emulation and then exit out of MiniEdit.

References

1. Itamar Haber, “Count-Min Sketch: The Art and Science of Estimating Stuff.”
[Online]. Available: https://tinyurl.com/9f6ynpm2

2. Yu, Minlan, Lavanya Jose, and Rui Miao. "Software Defined Traffic Measurement
with OpenSketch." NSDI. Vol. 13. 2013.

3. Brandon Fain, “Count Min-Sketch: The Heavy Hitters Problem.” [Online].
Available: https://tinyurl.com/mtswjdmf

4. Cormode, Graham. "Count-Min Sketch." (2009): 511-516.

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 10: Limiting the Impact of SYN Flood by

Probabilistically Dropping Packets

Document Version: 04-20-2023

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Lab scenario .. 4

2 Lab topology.. 5

2.1 Verifying connectivity between host h1 and host h2 .. 6

3 Developing a P4 program to mitigate SYN flood attack ... 7

3.1 Loading the environment ... 7

3.2 Modifying the ingress file ... 8

3.3 Loading the P4 program ... 17

4 Testing the P4 code against SYN flood attack ... 21

4.1 Configuring the mitigation parameters ... 21

4.2 Performing SYN flood attack .. 23

References .. 26

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 3

Overview

This lab introduces the TCP SYN flood attack and provides the steps to implement a P4
program that mitigates the attack. In TCP SYN flood, the attacker initiates many TCP
connections without completing the handshake process. To mitigate this attack, the user
will define a policy to drop a percentage of packets when the number of received SYN
packets per second exceeds a predefined threshold. The user will utilize P4 registers to
store the dropping percentage, so that the dropping percentage can be modified at
runtime.

Objectives

By the end of this lab, students should be able to:

1. Define the TCP SYN flood attack.
2. Understand the workflow of the TCP SYN flood attack.
3. Perform a TCP SYN flood attack.
4. Write a P4 program that mitigates the TCP SYN flood attack.

Lab settings

Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Developing a P4 program to mitigate SYN flood attack.
4. Section 4: Testing the P4 code against SYN flood attack.

1 Introduction

Volumetric DoS attacks flood the target machine with traffic, depriving legitimate users
from downloading the target’s resources1. Today, most attackers launch Distributed DoS

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 4

(DDoS) to amplify the attack’s volume. In DDoS, an attacker instructs hundreds or
thousands of machines to flood a target server with requests. DoS attacks typically spoof
the source IP address of the packets to hide the identity of the attacker.

DoS attacks can be performed at various levels of the protocol stack. For instance, an
attacker can launch a DoS attack by leveraging a transport layer protocol such as the
Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP). Examples of
transport layer flood attacks include TCP SYN flood2.

TCP SYN flood is an attack that initiates many TCP connections without completing the
TCP handshake4. The TCP handshake process includes three steps: 1) the client sends a
TCP SYN packet to the server; the server reserves resources that will be dedicated to the
TCP connection; 2) the server responds with a TCP SYN-ACK packet; and 3) the client sends
a TCP ACK packet. In SYN flood attack, the attacker does not complete the handshake (it
stops at step 2), leaving the server in a waiting state. When many SYN requests are sent,
all the resources of the server will be allocated, which prevents legitimate users from
accessing the server.

1.1 Lab scenario

In this lab, a P4 programmable switch will mitigate the SYN flood attack by performing
random packet drop when the number of received SYN packets exceeds a predefined
threshold. The programmable switch detects SYN flood by monitoring the number of SYN
packets. During an attack, the number of SYN packets will be larger than some threshold.
The switch counts and compares the number of SYN packets per second against that
threshold. If the number is larger, the switch considers that a SYN flood attack is being
performed. Consequently, the switch starts dropping subsequent SYN packets based on a
dropping percentage specified from the control plane. The switch exits from the
mitigation phase when the count of SYN packets per second drops below the threshold.

Consider Figure 1. Assume that the SYN packets threshold is 100, the dropping percentage
is 50 (i.e., 50 packets out of 100 will be dropped), and the attacker is sending 900 packets
per second to the victim. Because the number of the sent packets is larger than the
threshold, the switch will drop 50% of the packets above the threshold (i.e., out of the
900 packets, 100 will be normally forwarded, and the 50% dropping rate will be applied
to the remaining 800 packets per second). Thus, the switch will forward 500 packets per
second only.

Victim Attacker

90015001

SYN packets threshold: 100 Dropping percentage: 50%
Figure 1. Lab scenario.

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 5

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

10.0.0.1 10.0.0.2

h1 h2

h1-eth0 s1-eth0 s1-eth1 h2-eth0

s1

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab10, select the file lab10.mn, and click on
Open.

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 6

Figure 4. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Figure 5. Running the emulation.

2.1 Verifying connectivity between host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 7

Figure 6. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Figure 7. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded into the switch.

3 Developing a P4 program to mitigate SYN flood attack

In this section, a basic P4 program will be modified to mitigate SYN flood attack. To do
this, stateful registers will be used to track the number of received SYN packets per second.
If the number of packets exceeds a predefined threshold, the switch will start dropping
packets. The percentage to be dropped is stored in a stateful register and can be
configured from the control plane.

3.1 Loading the environment

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 8

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on
the desktop. Alternatively, you can click on the icon in the taskbar located in lower left-
hand side.

Figure 8. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4_Labs/lab10

Figure 9. Launching the editor and opening the lab10 directory.

3.2 Modifying the ingress file

Step 1. In the ingress.p4 file, define the variable THRESH. THRESH represents the threshold
of received SYN packets per second after which the switch will start dropping packets.
The threshold is set to 100 packets.

#define THRESH 100

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 9

Figure 10. Defining THRESH.

Step 2. Define the register drop_percent_reg to maintain the percentage of packets to
be dropped after the number of received SYN packets increases above the threshold.

register<bit<7>>(1) drop_percent_reg;

Figure 11. Defining register to store the packet drop percentage.

The code above defines a register named drop_percent_reg. The register contains a
single cell. The cell stores the percentage of packets to be dropped. This register can be
configured from the control plane at runtime to specify the dropping percentage. Because

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 10

the maximum possible dropping percentage is 100, and 7 is the minimum number of bits
needed to represent 100 (since 27 = 128), the size of the register cell is set to 7 bits.

Step 3. Define the register syn_counts_reg to maintain the count of the received SYN
packets.

register<bit<32>>(1) syn_counts_reg;

Figure 12. Defining register to store the number of received SYN packets.

The code above defines a register named syn_counts_reg. The register contains a single
cell. The cell stores the number of received SYN packets. Later, we will be resetting the
value of this register to zero; thus, this cell will contain the number of received SYN
packets per second.

Step 4. Define the register percent_iterator_reg to maintain the packet count iterator.

register<bit<7>>(1) percent_iterator_reg;

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 11

Figure 13. Defining register to store the number dropped SYN packets.

The code above defines a register named percent_iterator_reg. The register contains
a single cell. This cell is used to track how many packets to drop and to allow out of 100.

Step 5. Add the following code to the apply block to retrieve the dropping percentage
from the register.

if(hdr.tcp.isValid()){

 bit<7> drop_percent;

 drop_percent_reg.read(drop_percent, (bit<32>)0);

}

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 12

Figure 14. Retrieving the dropping percentage from the register.

In the code above, if(hdr.tcp.isValid()) checks if the packet is a TCP packet. For TCP
packets, the dropping percentage is retrieved from drop_percentage_reg and stored in
the drop_percent variable. Note that the dropping percentage will be specified from the
control plane.

Step 6. Add the following code to check if the incoming packet is a SYN packet.

if(hdr.tcp.flags == 2) {

}

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 13

Figure 15. Checking the type of TCP packets.

Step 7. Add the following code to increment the count of SYN packets.

bit<32> syn_counts = 0;

syn_counts_reg.read(syn_counts, (bit<32>)0);

syn_counts = syn_counts +1;

syn_counts_reg.write((bit<32>)0, syn_counts);

Figure 16. Incrementing the count of SYN packets.

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 14

In the code above, the count of SYN packets is retrieved from the syn_counts_reg and
stored in the syn_counts variable. The variable is incremented by one to account for the

current packet. After that, the updated syn_counts variable is stored in the
syn_count_reg register.

Step 8. Add the following code to check if the number of SYN packets exceeded THRESH.

if(syn_counts > THRESH){

}

Figure 17. Checking the number of SYN packets against the threshold.

Step 9. Add the following code to retrieve the iterator from the percent_iterator_reg.

bit<7> percent_iterator;

percent_iterator_reg.read(percent_iterator, (bit<32>)0);

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 15

Figure 18. Retrieving the number of dropped packets from the register.

In the code above, the iterator is retrieved from percent_iterator_reg and stored
inside the percent_iterator variable.

Step 10. Add the following code to check if the iterator is less than the dropping
percentage.

if(percent_iterator < drop_percent){

}

Figure 19. Checking if the number of dropped packets is less than the dropping percentage.

Step 11. Add the following code to drop the packet and increment the iterator if the
percent_iterator is less than the drop_percent.

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 16

percent_iterator = percent_iterator + 1;

percent_iterator_reg.write((bit<32>)0, percent_iterator);

drop();

Figure 20. Dropping SYN packets.

In the code above, the percent_iterator variable is incremented by one and stored in
the percent_iterator_reg register. After that, the packet is dropped.

Step 12. Add the following code to increment the count of dropped packets by one
without dropping the packet if the number of dropped packet is less than 100.

else if (percent_iterator < 100) {

 percent_iterator = percent_iterator + 1;

 percent_iterator_reg.write((bit<32>)0, percent_iterator);

}

Figure 21. Incrementing the iterator.

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 17

From each 100 packets, we are dropping the first drop_percent packets (e.g., the first
50 packets if the drop_percent is 50%). The remaining packets (i.e., 100 –

drop_percent) are forwarded.

Step 13. Add the following code to reset percent_iterator_reg register when
percent_iterator reaches 100.

else if (percent_iterator == 100) {

 percent_iterator_reg.write((bit<32>)0, 0);

}

Figure 22. Resetting the percent_iterator_reg register.

Step 14. Save the changes to the file by pressing Ctrl + s.

3.3 Loading the P4 program

Step 1. To compile the P4 program, issue the following command in the terminal panel
inside the VS Code.

p4c basic.p4

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 18

Figure 23. Compiling the P4 program using the VS Code terminal.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1. If asked for a password, type the password password.

push_to_switch basic.json s1

Figure 24. Downloading the compiled program to switch s1.

Step 3. Click on the MinEdit tab in the start bar to maximize the window.

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 19

Figure 25. Maximizing the MiniEdit window.

Step 4. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Figure 26. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 5. Issue the following command to list the files in the current directory.

ls

Figure 27. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 20

Step 6. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 basic.json &

Figure 28. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

s1-eth0 0 s1-eth11

Figure 29. Ports 0 and 1 are mapped to the interfaces s1-eth0 and s1-eth1 of switch s1.

Step 7. In switch s1 terminal, press Enter to return the CLI.

Figure 30. Returning to switch s1 CLI.

Step 8. Populate the table with forwarding rules by typing the following command.

simple_switch_CLI < ~/lab10/rules.cmd

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 21

Figure 31. Loading table entries to switch s1.

The figure above shows the table entries described in the file rules.cmd.

Step 9. Go back to host h1 terminal to test the connectivity between host h1 and host h2
by issuing the following command.

ping 10.0.0.2 -c 4

Figure 32. Performing a connectivity test between host h1 and host h2.

The figure above shows that there is connectivity between the two hosts.

4 Testing the P4 code against SYN flood attack

4.1 Configuring the mitigation parameters

Step 1. In switch s1 terminal, access the simple_switch_CLI by typing the command
below.

simple_switch_CLI

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 22

Figure 33. Accessing simple_switch_CLI.

Step 2. Configure the dropping rate to be 0% by typing the command below.

register_write MyIngress.drop_percent_reg 0 0

Figure 34. Configuring the dropping rate.

By setting the dropping percentage to 0%, we are disabling the mitigation phase.

Note that the register value in P4 is 0 by default5. In the previous step, the value was set
to 0 to explicitly show the user that the dropping rate is 0% and that the mitigation phase
of the program is disabled.

Step 3. Start a second terminal on s1 by right-clicking on the P4 switch icon in MiniEdit
and select Terminal.

Figure 35. Starting the terminal on switch s1.

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 23

Step 4. On the new terminal, type the command below to reset the number of counts
every second.

while [1]; do echo 'register_write MyIngress.syn_counts_reg 0 0' |

simple_switch_CLI; sleep 1; done

Figure 36. Resetting the dropping rate every 1 second

Note that the spaces in the previous command are mandatory. If you write while [1]
instead of while [1], the command will produce an error.

4.2 Performing SYN flood attack

Step 1. On h1 terminal, type the command below to display number of received SYN
packets per seconds.

bash get_SYN_packets_per_second.sh

Figure 37. Displaying the number of received SYN packets per second.

Step 2. Hold the right-click on host h2 and select Terminal. This opens the terminal of host
h2 and allows the execution of commands on that host.

Figure 38. Opening a terminal on host h2.

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 24

Step 3. On h2 terminal, type the command below to perform SYN flood attack. hping3 is
a network tool able to send custom TCP/IP packets and to display target replies. -i u1000
instructs hping3 to send 1000 packets per second. -S option sets SYN TCP flag for the
packets to be sent. 10.0.0.1 is the destination IP of the packets generated by hping3. >
/dev/null direct the output of the command to the null device.

hping3 -i u1000 -S 10.0.0.1 > /dev/null

Figure 39. Performing the SYN flood attack.

Step 4. Inspect the number of received SYN packets at h1.

Figure 40. Inspecting the number of received SYN packets at h1.

The figure above shows that h1 is receiving around 920 SYN packets per second. Not that
no packets are dropped by the switch because the dropping percentage is set to zero.

Step 5. On s1, use the terminal running the simple_switch_CLI to configure the
dropping rate to be 50% by typing the command below.

register_write MyIngress.drop_percent_reg 0 50

Figure 41. Configuring the dropping rate.

Because the received number of SYN packets per second is around 900, and the threshold
is 100, the dropping threshold will be applied on 800 packets only (900 - 100). Note that
the switch does not apply the dropping mechanism on the first 100 SYN packets. By
setting the dropping percentage to 50%, we expect to receive 100 + 800/2 SYN packets,
which is around 500 packets.

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 25

Step 6. Inspect the number of received SYN packets at h1.

Figure 42. Inspecting the number of received SYN packets at h1.

The figure above shows that h1 is receiving around 500 SYN packets per second.

Step 7. Configure the dropping rate to be 100% by typing the command below.

register_write MyIngress.drop_percent_reg 0 100

Figure 43. Configuring the dropping rate.

By setting the dropping threshold to 100%, the expected number of SYN packets to be
received per second is around 100 because all the packets above the threshold will be
dropped.

Step 8. Inspect the number of received SYN packets at h1.

Figure 44. Inspecting the number of received SYN packets at h1.

The figure above shows that h1 is receiving around 100 SYN packets per second.

Lab 10: Limiting the Impact of SYN Flood by Probabilistically Dropping Packets

 Page 26

This concludes lab 10. Stop the emulation and then exit out of MiniEdit.

References

1. NETSCOUT, “What is a Volumetric Attack?” [Online]. Available:
https://tinyurl.com/4fcehbrb

2. Cloudflare, “SYN Flood Attack.” [Online]. Available: https://tinyurl.com/bdeef2uv
3. GURU99, “What is TCP Three-Way HandShake?.” [Online]. Available:

https://tinyurl.com/bdhnd4xu
4. NETSCOUT, “What is a SYN flood attack and how do you to prevent it?” [Online].

Available: https://tinyurl.com/584ufywk
5. P4lang, “[PSA] meter and register initial state.” [Online]. Available:

https://tinyurl.com/2s4zey2y

CYBERSECURITY APPLICATIONS ON P4
PROGRAMMABLE DATA PLANES

Lab 11: Blocking Application Layer Slow DDoS

Attack (Slowloris)

Document Version: 04-20-2023

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Lab scenario .. 4

2 Lab topology.. 5

2.1 Verifying connectivity between host h1 and host h2 .. 7

3 Loading the basic P4 program .. 8

4 Performing SlowLoris attack ... 13

4.1 Starting the HTTP server .. 13

4.2 Performing the attack .. 14

5 Modifying the P4 program to mitigate SlowLoris ... 16

5.1 Modifying the ingress file ... 16

5.2 Loading the program and configuring the switch .. 23

5.3 Testing the P4 program .. 25

References .. 26

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 3

Overview

This lab introduces the slow DDoS Attack (SlowLoris) and provides the steps to implement
a P4 program to mitigate the attack. In SlowLoris, the attacker occupies the resources of
a web server by maintaining multiple simultaneous TCP connections, such that the
attacker just sends enough packets for each connection to prevent it from terminating
due to timeout. To mitigate this attack, the user will limit the number of TCP connections
per IP address. In the P4 program, the user will define a register to track the number of
TCP connections and will use the source IP address of the packets as the index of the
register. If the count of connections for a specific IP address exceeds a predefined
threshold, the switch will drop all new connections coming from that IP address.

Objectives

By the end of this lab, students should be able to:

1. Define the slow DDoS Attack.
2. Understand the workflow of the slow DDoS attack.
3. Perform a slow DDoS attack.
4. Write a P4 program that mitigates the slow DDoS attack.

Lab settings

Table 1 contains the credentials of the virtual machine used for this lab.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Loading a basic P4 program.
4. Section 4: Performing slow DDoS attack.
5. Section 5: Modifying the P4 program to mitigate slow DDoS attack.

1 Introduction

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 4

SlowLoris is a type of low-bandwidth, application-layer denial-of-service (DoS) attack that
targets web servers by exploiting their connections and resources1. The attack targets
servers using HTTP, making it highly effective against web servers that do not have proper
protection mechanisms in place.

The primary objective of the SlowLoris attack is to exhaust the server's available
connections, rendering it unable to serve legitimate requests. Unlike conventional DoS
attacks that involve flooding the target with massive amounts of data, SlowLoris operates
discreetly by opening multiple connections to the target server and maintaining them for
an extended period. It does this by sending HTTP requests in a slow, fragmented manner,
using partial request headers, and deliberately prolonging the completion of these
requests.

The attacker keeps these connections alive by periodically sending additional headers or
whitespace, without ever completing the request. Since most web servers have a limit on
the number of concurrent connections they can handle, SlowLoris eventually causes the
server to reach its connection limit, preventing it from accepting new, legitimate
connections. Consequently, the server becomes unresponsive or significantly slowed
down, affecting its ability to serve content to users.

Due to its stealthy nature and low bandwidth consumption, SlowLoris can be difficult to
detect and mitigate. However, various countermeasures can help defend against this type
of attack, including limiting the number of connections from a single IP address, adjusting
server timeouts, employing reverse proxies, or using load balancers. Implementing these
defenses can help improve a web server's resilience against SlowLoris and other similar
attacks3.

1.1 Lab scenario

In this lab, a P4 programmable switch will mitigate the SlowLoris attack by forcing clients
to have a limited number of ongoing connections with the HTTP server. The switch tracks
the number of flows per client by using registers that store the count of ongoing flows per
IP address. The hash of the source IP is used as the index to the registers. The counters of
the registers are incremented when a new SYN packet is received and are decremented
when a FIN packet is received. If the register value exceeds a predefined threshold (i.e., a
client has the maximum allowed number of connections), no new connections from the
client will be allowed before terminating an existing one.

Consider Figure 1. The topology consists of a legitimate user, an attacker, a web server,
and a P4 switch. The attacker performs a SlowLoris attack to occupy all the available
connections at the web server and consequently makes it unavailable. The P4 switch
mitigates the attack by dropping the connections initiated by the attacker when the
number of ongoing connections exceeds the predefined threshold. The legitimate user
will be able to communicate with the web server as the switch prevents the resources of
the web server from being occupied by the SlowLoris attack.

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 5

Web server

Attacker

Legitimate client

1

i

1
t

n

i1

Allowed connections threshold: t

t1

n1

n > t : Allow
the first t

connections
only

t1

i1

i < t : allow
all the

connections
to pass

i1

Figure 1. SlowLoris attack mitigation using P4 switch.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

s1

10.0.02

10.0.0.3

h2

h3

s1-eth0

h2-eth0

10.0.0.1

h1

h3-eth0

s1-eth1

s1-eth2

h1-eth0

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
double-clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 6

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. A
window will emerge. Open the folder called lab11, select the file lab11.mn, and click on
Open.

Figure 4. Opening a topology in MiniEdit.

Step 3. The network must be started. Click on the Run button located at the bottom left
of MiniEdit’s window to start the emulation.

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 7

Figure 5. Running the emulation.

2.1 Verifying connectivity between host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Test the connectivity between host h1 and host h2 by issuing the command below.

ping 10.0.0.2 -c 4

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 8

Figure 7. Performing a connectivity test between host h1 and host h2.

The figure above indicates no connectivity between host h1 and host h2 because there is
no program loaded into the switch. Note that there will be no connectivity between any
two hosts in the topology before loading a P4 program to the switch.

3 Loading the basic P4 program

In this section, the user will compile and run a P4 program that implements the basic
forwarding functionality. The switch will then be configured by mapping the P4 program’s
ports and loading the rules to the switch.

Step 1. Launch a Linux terminal by double-clicking on the Linux terminal icon located on
the desktop. Alternatively, click on the Linux terminal icon located on the lower left-hand
side.

Figure 8. Shortcut to open a Linux terminal.

Step 2. In the terminal, type the command below. This command launches the VS Code
and opens the directory where the P4 program for this lab is located.

code P4_Labs/lab11

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 9

Figure 9. Launching the editor and opening the lab11 directory.

Step 3. In this lab, we will not modify the P4 code. Instead, we will just compile it and
download it to the switch s1. To compile the P4 program, issue the following command
in the terminal panel inside the VS Code.

p4c basic.p4

Figure 10. Compiling the P4 program using the VS Code terminal.

Step 4. Type the command below in the terminal panel to download the basic.json file to
the switch s1. The script accepts as input the JSON output of the p4c compiler, and the
target switch name (e.g., s1). If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 10

Figure 11. Downloading the compiled program to switch s1.

Step 5. Click on the MinEdit tab in the start bar to maximize the window.

Figure 12. Maximizing the MiniEdit window.

Step 6. Right-click on the P4 switch icon in MiniEdit and select Terminal.

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 11

Figure 13. Starting the terminal on switch s1.

Note that the switch is running on an Ubuntu image started on a Docker container. Thus,
you will be able to execute any Linux command on the switch’s terminal.

Step 7. Issue the following command to list the files in the current directory.

ls

Figure 14. Displaying the contents of the current directory in the switch s1.

We can see that the switch contains the basic.json file that was downloaded after
compiling the P4 program.

Step 8. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 basic.json &

Figure 15. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Step 9. In switch s1 terminal, press Enter to return the CLI.

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 12

Figure 16. Returning to switch s1 CLI.

Step 10. Populate the table with forwarding rules by typing the following command.

simple_switch_CLI < ~/lab11/rules.cmd

Figure 17. Loading table entries to switch s1.

The figure above shows the table entries described in the file rules.cmd.

Step 11. Go back to host h1 terminal to test the connectivity between host h1 and host
h2 by issuing the following command.

ping 10.0.0.2 -c 4

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 13

Figure 18. Performing a connectivity test between host h1 and host h2.

The figure above shows that there is connectivity between the two hosts. Note that at
this stage there should be connectivity between any two hosts in the topology.

4 Performing SlowLoris attack

4.1 Starting the HTTP server

Step 1. Start a DNS server on h1 by issuing the command below.

nginx -c /home/admin/nginx-conf.conf

Figure 19. Starting the HTTP server on h1.

nginx is an HTTP server. -c /home/admin/nginx-conf.conf specifies to use nginx-
conf.conf configuration file when starting the HTTP server.

Step 2. Hold the right-click on host h3 and select Terminal. This opens the terminal of host
h3 and allows the execution of commands on that host.

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 14

Figure 20. Opening a terminal on host h3.

Step 3. On h3 terminal, type the command below to validate that h1 operates as an HTTP
server. wget is a utility for non-interactive download of files from the Web. --delete-
after option tells wget to delete every single file it downloads, after having done so.
10.0.0.1 is the IP address of the HTTP server.

wget --delete-after 10.0.0.1

Figure 21. Issuing HTTP Get request.

The figure above shows that h3 downloaded a file from h1 using HTTP GET request.

4.2 Performing the attack

In this section, h3 will perform SlowLoris attack against the web server running on h1.

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 15

Step 1. Hold the right-click on host h2 and select Terminal. This opens the terminal of host
h2 and allows the execution of commands on that host.

Figure 22. Opening a terminal on host h2.

Step 2. On h2 terminal, type the command below to perform SlowLoris attack on the web
server running on h1. slowhttptest implements the most common low-bandwidth
application Layer DoS attacks. -c sets the number of connections to be initiated by the
attack. -u specifies the URL of the target server.

slowhttptest -c 10000 -u http://10.0.0.1

Figure 23. Performing SlowLoris attack.

The attack needs around 1 minute to occupy all the available connection of the web
server. Wait for one minute before moving to the next step.

Step 3. On h3 terminal, type the command below to perform a legitimate HTTP GET
request.

wget --delete-after 10.0.0.1

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 16

Figure 24. Issuing HTTP Get request.

The figure above shows that h3 was not able to perform an HTTP request because all the
resources at the web server (i.e., h1) are occupied by the attack performed by h2.

5 Modifying the P4 program to mitigate SlowLoris

In this section, the P4 program will be modified to mitigate slow DDoS attacks. To do this,
a register array that stores the number of ongoing connections per host will be initiated.
The array is indexed by the hash of the source IP address of the incoming SYN packets.
The number of ongoing connections will be increased when a new SYN packet is received,
and the counter will be decremented when a new FIN packet is received.

5.1 Modifying the ingress file

Step 1. Use VScode to access the ingress.p4 file. In the ingress.p4 file, define the variable
THRESH. THRESH represents the maximum number of allowed connections per IP address.
The maximum number of allowed connections is 50.

#define THRESH 50

Figure 25. Defining the number of allowed connections.

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 17

Step 2. Define the register connections_count to store the number of ongoing
connections per host.

register<bit<16>>(65536) connections_count;

Figure 26. Defining register to store the number of connections.

The code above defines a register named connections_count. The register contains
65536 cells. Each cell will be indexed by the hash of the source IP address and will store
the number of ongoing connections of that IP address.

Step 3. Define the variable conn_counts which will be used to temporarily hold the
number of connections retrieved from the array.

bit<16> conn_counts;

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 18

Figure 27. Declaring conn_counts variable.

Step 4. Define the variable idx to store the hash of the source IP address.

bit<16> idx;

Figure 28. Declaring idx variable.

Step 5. Define the action compute_idx by typing the following code.

action compute_idx(){

 hash (

 idx,

HashAlgorithm.crc16,

(bit<1>)0,

{

 hdr.ipv4.srcAddr

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 19

},

(bit<16>)65535

);

}

Figure 29. Defining compute_idx action.

The code in the figure above hashes flows based on their source IP address. The hash
function produces a 16-bits output using the following parameters:

• idx: The variable used to store the output.

• HashAlgorithm.crc16: the hash algorithm.

• (bit<1>)0: the minimum (or base) value produced by the hash algorithm.

• hdr.ipv4.srcAddr: the data to be hashed.

• (bit<32>)65535: the maximum value produced by the hash algorithm.

Step 6. Add the following code to the apply block to check if the packet is a SYN packet.

if(hdr.tcp.isValid()){

 if(hdr.tcp.flags == 2){

 }

}

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 20

Figure 30. Checking the type of the SYN packet.

In the code above, if(hdr.tcp.isValid()) checks if the packet is a TCP packet. For TCP
packets, if(hdr.tcp.flags == 2) checks if the TCP packet is a SYN packet by inspecting
the flags field.

Step 7. Add the following code to retrieve the number of connections originated from the
same IP address.

compute_idx();

connections_count.read(conn_counts,(bit<32>)idx);

Figure 31. Implementing the apply block.

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 21

In the code above, compute_idx action calculates the hash of the incoming packet.
connections_count.read (conn_counts,(bit<32>)idx) retrieves the number of

connections stored at index idx and store it in the variable conn_counts.

Step 8. Add the following code to increment the count of connections and store the
incremented value in the register connections_count.

conn_counts = conn_count + 1;

connections_count.write((bit<32>)idx, conn_counts);

Figure 32. Incrementing the number of connections.

Step 9. Add the following code to drop the current packet if conn_counts is larger than
THRESH.

if(conn_counts > THRESH){

 drop();

}

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 22

Figure 33. Dropping SYN packet.

Step 10. Add the following code to decrease the number of connections when receiving
a FIN packet.

else if(hdr.tcp.flags == 1) {

 compute_idx();

 connections_count.read(conn_counts, (bit<32>)idx);

 conn_counts = conn_counts – 1;

 connections_count.write((bit<32>)idx, conn_counts);

}

Figure 34. Decrementing the number of connections.

In the code above, else if(hdr.tcp.flags == 1) checks if the packet is a FIN packet.
For FIN packets, the corresponding index is calculated using compute_idx function. The

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 23

number of connections is retrieved from connections_count register, decremented,
and then stored back in the register.

Step 11. Save the changes to the file by pressing Ctrl + s.

5.2 Loading the program and configuring the switch

Step 1. To compile the P4 program, issue the following command in the terminal panel
inside the VS Code.

p4c basic.p4

Figure 35. Compiling the P4 program using the VS Code terminal.

Step 2. Type the command below in the terminal panel to download the basic.json file to
the switch s1. If asked for a password, type the password password.

push_to_switch basic.json s1

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 24

Figure 36. Downloading the compiled program to switch s1.

Step 3. In switch s1 terminal, type the command below to kill the simple switch daemon,
so that the new P4 program can be loaded.

pkill switch

Figure 37. Killing the simple switch daemon.

Step 4. Start the switch daemon and map the ports to the switch interfaces by typing the
following command.

simple_switch -i 0@s1-eth0 -i 1@s1-eth1 -i 2@s1-eth2 basic.json &

Figure 38. Starting the switch daemon and mapping the logical interfaces to Linux interfaces.

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 25

Step 5. In switch s1 terminal, press Enter to return the CLI.

Figure 39. Returning to switch s1 CLI.

Step 6. Populate the table with forwarding rules by typing the following command.

simple_switch_CLI < ~/lab11/rules.cmd

Figure 40. Loading table entries to switch s1.

5.3 Testing the P4 program

Step 1. On h2 terminal, type the command below to perform SlowLoris attack on the web
server running on h1.

slowhttptest -c 10000 -u http://10.0.0.1

Figure 41. Performing SlowLoris attack.

Lab 11: Blocking Application Layer Slow DDoS Attack (Slowloris)

 Page 26

The attack needs around 1 minute to occupy all the available connection of the web
server. Wait for one minute before moving to the next step.

Step 2. On h3 terminal, type the command below to perform a legitimate HTTP GET
request.

wget --delete-after 10.0.0.1

Figure 42. Issuing HTTP Get request.

The figure above shows that h3 downloaded the file from the web server. The P4 switch
was able to stop the SlowLoris attack.

This concludes lab 11. Stop the emulation and then exit out of MiniEdit.

References

1. NETSCOUT, “What is a Slowloris Attack?” [Online]. Available:
https://tinyurl.com/3awxn2ws

2. Cloudflare, “Slowloris DDoS attack?” [Online]. Available:
https://tinyurl.com/mrarw9ub

3. Zach Norton, “How to Mitigate a Slowloris DDoS Attack.” [Online]. Available:
https://tinyurl.com/5n6h8brm

	Cover
	Contents
	Lab 1 - Introduction to Mininet
	Lab 2 - Introduction to P4 and BMv2
	Lab 3 - P4 Program Building Blocks
	Lab 4 - Parser Implementation
	Lab 5 - Introduction to Match-action Tables
	Lab 6 - Implementing a Stateful Packet Filter for the ICMP protocol
	Lab 7 - Implementing a Stateful Packet Filter for the TCP Protocol
	Lab 8 - Detecting and Mitigating the DNS Amplification Attack
	Lab 9 - Identifying Heavy Hitters using Count-min Sketches (CMS)
	Lab 10 - Limiting the Impact of SYN Flood by Probabilistically Dropping Packets
	Lab 11 - Blocking Application Layer Slow DDoS Attack (Slowloris)

