
1

P4Tune: Enabling Programmability

in a non-Programmable Network

Elie Kfoury, Jorge Crichigno

University of South Carolina

http://ce.sc.edu/cyberinfra

ekfoury@email.sc.edu, jcrichigno@cec.sc.edu

CI Engineering Lunch and Learn – Online

April 15, 2022

Agenda

• Non-programmable Networks

• Background on SDN and P4 programmable switches

• P4 switches adoption challenges

• P4Tune framework

• Use case 1: Dynamic buffer sizing

• Use case 2: Size-aware flow separation

• Use case 3: SYN flood mitigation

• Use case 4: DNS amplification

• Discussions

• Conclusion

2

Non-programmable Networks

• Since the explosive growth of the Internet in the 1990s, the networking industry has

been dominated by closed and proprietary hardware and software

• The interface between control and data planes has been historically proprietary

➢ Vendor dependence: slow product cycles of vendor equipment, no innovation from network owners

➢ A router is a monolithic unit built and internally accessed by the manufacturer only

3

SDN

• Protocol ossification has been challenged first by SDN

• SDN explicitly separates the control and data planes, and implements the control

plane intelligence as a software outside the switches

• The function of populating the forwarding table is now performed by the controller

• SDN is limited to the OpenFlow specifications

4

P4 Programmable Switches

5

• P41 programmable switches permit a programmer to program the data plane
➢ Define and parse new protocols

➢ Customize packet processing functions

➢ Measure events occurring in the data plane with

high precision

➢ Offload applications to the data plane

1. P4 stands for stands for Programming Protocol-independent Packet Processors

P4 Switches Deployment Challenges

6

• Data plane programmability knowledge by operators

➢ Operators only configure legacy devices (e.g., modify routing configuration, updating ACL)

➢ Programming P4 targets is complex1

• Cost of replacing the existing infrastructure

➢ Significant costs, time, and efforts spent in building the network and the existing equipment

➢ Replacing these devices with P4 switches would incur significant costs

• Vendor support

➢ The support in legacy devices is readily available

➢ P4 switches are whiteboxes, with little to no support from vendors

• Network disruption

➢ P4 programs might be potential sources of packet-processing error

➢ Bugs can lead to network disruption, affecting the availability of the services

1 The switch.p4 program, which contains the standard switch capabilities, has more than 1030 control paths

P4Tune Overview

7

Security appliance

Switch

Router Forwarding, QoS and access control

Data link Switch/Router Network TAPsFirewall P4 switch In-network applicationsSmart NIC

P4

8

Security appliance

Switch

Router Forwarding, QoS and access control

In-network line rate computing

… . . .
...

P4 switch

Smart NICs

FPGAs

M
easu

rem
en

ts

Data plane Data plane

D
ials

P4 P4

NICs…

Data link Switch/Router Network TAPsFirewall P4 switch In-network applicationsSmart NIC

P4

P4Tune Overview

9

Security appliance

Switch

Router Forwarding, QoS and access control

In-network line rate computing

… . . .
...

P4 switch

Smart NICs

FPGAs

M
easu

rem
en

ts

Data plane Data plane

D
ials

P4 P4

NICs…

Data link Switch/Router Network TAPsFirewall P4 switch In-network applicationsSmart NIC

P4

Switch control plane

x86-based server

HW acceleration

M
easu

rem
en

ts

MLRL

Control plane

P4

Collecting and analysisServer Server

D
ials

P4

P4Tune Overview

10

Security appliance

Switch

Router Forwarding, QoS and access control

In-network line rate computing

… . . .
...

P4 switch

Smart NICs

FPGAs

M
easu

rem
en

ts

Data plane Data plane

D
ials

P4 P4

NICs…

Data link Switch/Router Network TAPsFirewall P4 switch In-network applicationsSmart NIC

P4

Switch control plane

x86-based server

HW acceleration

M
easu

rem
en

ts

MLRL

Control plane

P4

Collecting and analysisServer Server

D
ials

P4

C
o

n
tr

o
l

C
o

n
tr

o
l

APIs

K
n

o
b

s

P4Tune Overview

K
n

o
b

s

Use Case 1: Dynamic Buffer Sizing

11

Buffer Sizing Problem

• Routers and switches have a memory referred to as packet buffer

• The size of the buffer impacts the network performance

➢ Large buffers -> excessive delays, bufferbloat

➢ Small buffers -> packet drops, potential low link utilization

12

Buffer Sizing Rules

• General rule-of-thumb: bandwidth-delay product (older rule)

➢ Buffer = C * RTT

➢ C is the capacity of the link and RTT is the average round-trip time (RTT)

• Stanford rule

➢ Buffer =
𝐶 ∗𝑅𝑇𝑇

√𝑁

➢ N is the number of long (persistent over time) flows traversing the link

13

Stanford Rule Applicability

• Setting the router’s buffer size to BDP/√N would require determining the current

average RTT and the number of flows

• A general-purpose CPU cannot cope with high traffic rates

• Sampling techniques (e.g., NetFlow) are not accurate enough1

14

1Spang, Bruce, and Nick McKeown. "On estimating the number of flows." Stanford Workshop on Buffer Sizing. 2019.

Proposed System

• Dynamically modify the buffer size of routers based on measurements collected on

programmable switches

1.Copy of the traffic is forwarded to a programmable switch by passively tapping router’s ports

2.The programmable switch identifies, tracks, and computes the RTT of long flows

3.The programmable switch modifies the legacy router’s buffer size

15

Implementation and Evaluation

• Different congestion control

algorithms1

• iPerf3

• Default buffer size of the router

is 200ms2

16

1Mishra et al. “The great Internet TCP congestion control census,” ACM on Measurement and Analysis of Computing Systems, 2019

2N. McKeown et al. “Sizing router buffers (redux),” ACM SIGCOMM Computer Communication Review, vol. 49, no. 5

Implementation and Evaluation

• Two scenarios are considered:

1. Default buffer size on the router, without any dynamic modification

2. P4 switch measures and modifies the buffer size of the router

17

Results

• Multiple long flows, CCAs, and propagation delays

• Average link utilization

• Average fairness index

• Average RTT

18

Results

• Performance of short flows sharing the bottleneck with long flows

• 1000 short flows are arriving according to a Poisson process

• Flow size distribution resembles a web search workload (10KB to 1MB)

• Background traffic: 200 long flows, propagation delay = 50ms

19

Use Case 2: Traffic Separation based on Flow Size

20

Size-Aware Flow Separation

• The FCT of short flows sharing a router queue with long flows is significantly

impacted when the network is busy

• A possible solution to prevent the increase of FCT is to separate short flows from

long flows

21

Router

Classifier
Queue 1

Queue 2

Short flowLong flow

Classification in Legacy Devices

• Typical classifiers available in commercial routers:

➢ Behavior aggregate (BA): Inspect the fixed-length fields in the packet header (e.g., DSCP)

➢ Multifield classifier (MF): examines multiple fields in the packet (e.g., source/destination

addresses/port, TCP flags, protocol, packet length) based on firewall filter rules

• Traffic rarely uses DSCP fields1

• Multifield classifier are used with hardcoded rules set by the operators

22

1Roddav et al. "On the Usage of DSCP and ECN Codepoints in Internet Backbone Traffic Traces for IPv4 and IPv6." ISNCC 2019

P4-Assisted Flow Classification

• P4 can identify large flows at line rate (e.g., count-min sketch to track packet counts)

• The 5-tuple of the large flows are created added as a firewall filter

• Flows in the firewall filter are assigned to a separate queue (Long flows queue)

23

Non-programmable Router

MF

Long flows queue

TAP

P4

Long flow

5-tuple firewall filter

Short flows queue

Short flowLong flow

Results

• Performance of short flows sharing the

bottleneck with long flows

• 10,000 short flows are arriving according

to a Poisson process

• Flow size distribution resembles a web

search workload (10KB to 1MB)

• Background traffic: 10 long flows, random

starting time over the test duration

24

Use Case 3: SYN Flood Detection and Mitigation

25

SYN Flood Attack

• Massive amount of TCP SYN requests with spoofed IP addresses are sent to the

server

• These connections consume the server’s resources, making it unresponsive to

legitimate traffic

26

Target server
Attack machine

SYN packets

Detecting SYN Flood with P4

• Count the number of SYN packets per second in the programmable data plane

• Implement the Random Early Discard (RED) method

• Construct a rule that makes the router drops with a probability

27

Non-programmable Router

TAP

P4

Count (SYN/sec)

Drop

probability

... . . .
Scheduler

Activate Thresh Max Thresh

DP

Never drop Always dropProbabilistically drop

CP

SYN packets

Results

• SYN flood synthetically generated

• The attack rate increases every 2

seconds

• Rate measured at the receiver

side (victim)

• SYN flood traffic was successfully

mitigated

28

Use Case 4: DNS Amplification Detection and Mitigation

29

DNS Amplification

• An attack where a massive amount of DNS response packets is sent to a victim’s

server

• Attacker sends requests with “ANY” keyword to gather as much zone information

as possible to maximize the amplification effect

30

DNS Amplification

• An attack where a massive amount of DNS response packets is sent to a victim’s

server

• Attacker sends requests with “ANY” keyword to gather as much zone information

as possible to maximize the amplification effect

31

Request: 64 bytes Response: 3876 bytes

Detecting DNS Amplification with P4

• Count the number of DNS responses

received without a DNS request/s/reflector

• Calculate the amplification factor

• Use machine learning to identify thresholds

used for attack detection

• Install a rule that matches on the reflector IP

and the DNS response packet length

• Allow/drop packet

32

Non-programmable Router

TAP

P4

Count (DNS/sec/reflector)

Calc (amplification factor)

...

DP

DNS responses wo/ matching requests

Machine Learning

MF

Drop
src_ip == reflector,

len(DNS_response) > X

Reflector detected

Allow

Drop

Detecting DNS Amplification with P4

• CAIDA traffic replayed

• > 10Gbps DNS amplification attack

generated

• Attack was mitigated in < 1s

33

Discussions

• P4Tune is cost-efficient as TAPs and programmable data planes are relatively cheap

• While P4Tune is not applying the configuration rules at line rate, the P4 switches are

still performing packet processing at line rate

• P4Tune can be used in other applications including:

➢ Traffic rerouting, load balancing

➢ Traffic steering

➢ Fine-grained measurements and telemetry

➢ etc.

• P4Tune does not support applications that send feedback to the clients (e.g., HPCC)1

34

1Li, Yuliang, et al. "HPCC: High precision congestion control." Proceedings of the ACM Special Interest Group on Data Communication.

2019. 44-58.

Conclusion

• P4Tune, a cost-efficient architecture that uses passive programmable data planes to

run custom packet processing on the traffic traversing the legacy network

• Configuration rules are constructed and pushed to the legacy devices

• The architecture creates a closed control loop

• Four use cases were implemented, namely, dynamic buffer sizing, flow separation,

SYN flood mitigation, DNS amplification mitigation

• For future work, we plan to implement more applications using the framework and

possibly test them in a production network

35

Acknowledgement

• Thanks to the National Science Foundation (NSF)

• This work was supported by NSF, Office of Advanced Cyberinfrastructure (OAC),

award 2118311

36

37

38

w

h1

5-tuple

…

+1

+1

+1

h2

hd

F_ID1 F_ID2 F_IDd

Match-action table
(idle_timeout=True)

F_ID TTL

Control plane

miss

match

(key=F_ID1)

Y

digest (F_ID1)

add (F_ID1, TTL)R1

R2

Rd

c = min (Ri[F_IDi])

…

(1)

(2)

(3)

(4)

(5)

(6)

(a)

Control plane
async

c > T

on_idle (F_ID1)

N = N+1 N = N-1

(b) (c)

Match-action table
(idle_timeout=True)

F_ID TTL
del

(F_ID1)

(7)

500ms 500ms

Identifying Long Flows in P4

