\\//
o

UNIVERSITY OF

South Carolina

Implementing a Packet Filter using a P4

Programmable Switch
Andrew Smith
Advisors: Ali Mazloum, Jose Gomez, Jorge Crichigno

Integrated Information Technology Department, University of South Carolina, Columbia, South Carolina

Abstract

This project presents a packet filter implemented using a P4 programmable

switch.

* P4is a programming language to describe the behavior of the data plane.

* The data plane is structured as a pipeline that processes a stream of bits.

* With P4, the programmer specifies how the pipeline will manipulate the
information contained in packet headers to make decisions.

* In this project, a P4 programmable switch inspects the content of packet headers
to decide whether to drop or allow them to pass.

* This decision is based on predefined rules that the network administrator
established as security policies.

* The P4 programmable switch will implement a counter to store the number of
times a packet is dropped based on these predefined rules.

* Results show that P4 facilitates implementing a packet filter that allows the
network administrator to configure security policies.

* Moreover, this project displays that P4 facilitates implementing counters to

record statistics of interest at runtime.

Project Description

A packet filter is a network device that examines each datagram in isolation and
determines whether the datagram should be allowed to pass or dropped based
on administrator-specific rules.

* Filtering decisions are typically based on:

* |P source or destination address.

* Protocol type in IP datagram field: TCP, UDP, ICMP, and others.
* TCP or UDP source and destination port.

« TCP flag bits: SYN, ACK, and other flags.

* ICMP message type.

 Different rules for datagrams leaving and entering the network.
* Different rules for the different router interfaces.

* This project aims at implementing a packet filter on a programmable switch using
the P4 language, as well as a counter to record the number of disallowed
packets.

* The packet filter will enable the network administrator to count and block

packets based on physical ingress and/or egress interfaces, IP source or

destination address, protocol type in the IP datagram field (TCP, UDP, ICMP), and

TCP or UDP source and destination port.

Background on P4 programmable switches

P4 programmable data planes emerge as a natural evolution of Software-Defined

Networking (SDN).

* In the SDN context, the software describes how packets are processed,
conceived, tested, and deployed in a much shorter time span by operators,
engineers, researchers, and practitioners in general.

* SDN fostered significant advances by separating the switch into two logical
components: the control and data planes.

* The control plane implements the switch intelligence, for instance, computing the
states of a routing protocol (e.g., BGP, OSPF), running a machine learning
algorithm (e.g., classifiers), and processing digests from the data plane.

* The data plane governs the forwarding behavior of a P4 switch by manipulating
packets at line rate.

* This project uses the V1 model, a P4 programming model comprising a
programmable parser, an ingress pipeline, an egress pipeline, a deparser, and a
non-programmable component, the traffic manager (TM).

* The parser extracts the information from packet headers so that the other
following stages can make decisions.

* The ingress and egress pipelines execute actions with match-action tables.

* Examples of actions in the data plane can be modifying the destination IP address
and decrementing the time-to-live (TTL) field in the IPv4 header.

* The deparser reassembles and emits the packet processed by the previous
stages.

* The traffic manager handles operations related to the switch’s queue and the
sending rate.

E Control plane

i Rules (e.g., Security policies)

Data plane
> >» .. BN
% o = ™ Meap CEan | mm
L 1D LB L 1D LD | IIm;
Parser Ingress pipeline Egress pipeline Deparser
h1 I R h?

A

portO port 1

i
]
O

P4 Switch

Sender Receiver

Test System

managed by the company (Zone 3).

Packets going from host h1 to host h2 and vice versa are subject to different

security policies than packets going to host h3.

Switch s1 leverages match-action tables to drop and count packets based on the
physical ingress port and the protocol in the IP datagram field(e.g., TCP, UDP,

ICMP).

The P4 program implemented in switch S1 blocks traffic from port 2 and leaves

the channel between the Headquarters and Branch Office open.
Zone 2 (Branch Office)

Zone 1 (Headquarters)

This project implements a packet filter and direct counter using the behavioral
model version 2 (BMv2) software switch that implements the V1 model.

The topology comprises three hosts and a P4 switch that acts as the packet filter.
Host h1 represents a device in a company’s headquarters (Zone 3), host h2 is a
device in a branch office (Zone 2), and host h3 represents a device that is not

Results

Results show that packets were successfully filtered.

* The ping command was used to verify the first scenario.

* Packets originating from physical port 2 (Danger) were dropped.

* The nanolog tool also corroborated that the match-action table was applied
correctly.

root@sl: /behavioral-model

=il
e]
el oy
I--I = 4

PIPELINE START, pipelin

'ARSER DOMNE,

rype: COMDITION EVAL, condition id: @ (node 2),
ype: TABLE HIT, table id: @ (MyIngre jre P
ype: ALTION EXECUTE, action 1d: © (NOACT1oOn)

Host hl

'-_,.:.-:-. TABLE MISS, table id: 1 (MyIngres:
[ywpe: ACTION EXECUTE gCTion 10
HOSt hz type: PIPELINE DONE,

* In the second scenario, Host h2 was configured with a simple HTTP server, and

Host h1 used the wget command to try to connect over tcp.
* The nanolog tool displayed that request packets using TCP were dropped.

root@sl: /behavioral-model

nanomsg client.py

c:/f//tmp/bm-10g.ipc (obtained fro

match-action table:

10.0.0.3

Zone 3 (Outside/Danger)

Experimentation

Table name: forwarding.

 For simplicity, full connectivity will be allowed by default using the forwarding

* Finally, the counter was verified using the P4 runtime CLI.
* The output confirmed that 4 ping packets were dropped and counted and 4 wget
attempts were dropped and counted.

root@sl: /behavioral-model
"] .II. I_ I.' I. P

Key (Dst. IP)

Action

Action data (egress port)

10.0.0.1

forward

O

10.0.0.2

forward

1

10.0.0.3

forward

2

First implement a match-action table to simultaneously block and count a packet

when called. This is done in the following steps.
* Establish a direct counter to count on a per-packet basis:

direct counter(CounterType.packets) blocked counter;

* Create the table block_counter and supply it with the above counter and

default action of drop:

 This table will be called via the Ingress apply logic whenever a packet hits on
another specific table. Thus, if a hit occurs on the other table, block_counter
will iterate, blocking and counting the packet. Otherwise, forwarding will

proceed.

The following scenarios were implemented using match-action tables to test the

packet filter:

Scenario 1: Dropping packets from physical ingress port 2 (Danger).
* The table ingress_port_ACL is populated with the following rules:

 Packets that entering through switch port 2 will hit on ingress_port_ACL.
Scenario 2: Dropping packets based on protocol type in IP datagram field.
* The table datagram_field_ACL is populated with the following rules:

* The table matches for the protocol

Table name: block_counter.

Rule #

Key

Action

Action data

default

drop

Table name: ingress_port_ACL.

Rule #

Key (In. Port)

Action

Action data

1

2

NoAction

Table name: datagram_field_ACL.

Rule #

Key (protocol)

Action

Action data

Ox0O6

NoAction

Ox11

NoAction

Ox0O1

NoAction

on datagram_field_ACL.

Note: the tables that define the desired packet trait to be dropped (e.g., ingress_port_ACL
and datagram_field_ACL) do not have actions. This is because the apply logic will call the
block_counter when a packet hits on either table, allowing the packet to be dropped and

counted

numbers, written in hexadecimal. TCP
(0x06), UDP (Ox11), ICMP (0x01). Thus, all TCP, UDP, and ICMP packets will hit

Lessons Learned

Learned how to implement a packet filter using P4.

Leveraged match-action tables to implement security policies.

Implemented a direct counter to record the number of blocked packets.
Validated the implementation of the security policies in the Netlab environment.
Understood the flexibility of P4 programmable switches in implementing security
features.

Understood the ability of P4 programmable switches to track and store useful
data at line rate.

Conclusion

* This project implemented a packet filter and direct counter using the P4
programming language.

* P4 provides the tools to define how packets are processed in the data plane.

* With P4, the programmer can implement custom security policies.

* Match-action tables are valuable constructs to perform actions on a per-packet
basis.

* P4 offers pathways to export important statistics (e.g., counters)

* Future works can include more complex packet processing and statistic

gathering using other constructs available in P4.

Acknowledgement

 This work was supported by the Office of Naval Research, under Award NOOO14-
23-1-2245.

	Slide 1

