
Exploiting Ransomware Paranoia For 

Execution Prevention
Ali AlSabeh, Jorge Crichigno, Elias Bou-Harb

Integrated Information Technology Department, University of South Carolina, Columbia, South Carolina

The Cyber Center For Security and Analytics, University of Texas at San Antonio, USA

A holistic hierarchy of the
proposed approach

• Several ransomware detection approaches have been proposed
in the literature that interchange between static and dynamic
analysis.

• Recently, ransomware attacks were shown to fingerprint the
execution environment before they attack the system to counter
dynamic analysis.

• In this project, we exploit the behavior of contemporary
ransomware to prevent its attack on real systems and thus avoid
the loss of any data.

• We explore a set of ransomware-generated artifacts that are
launched to sniff the surrounding and develop an approach that
monitors the behavior of a program by intercepting the called
APIs.

• The approach determines in real-time if the program is trying to
inspect its surrounding before the attack and abort it
immediately prior to the initiation of any malicious encryption or
locking.

• Through empirical evaluations, we study how ransomware and
benign programs inspect the environment and demonstrate how
to prevent ransomware with a low false positive rate.

Abstract

Ransomware detection techniques gaps

Acknowledgement

• This work was supported by the National Science Foundation (NSF),
Grants 1829698 and 1907821.

• Focusing on detection rather than prevention.
• Detection is mainly based on ransomware’s high level behavior

(encryption/locking).
• Lack of considering contemporary ransomware behavior.

Methodological considerations

• Environment fingerprinting techniques.
• Preventing contemporary ransomware.
• Addressing false positives when monitoring a program.
• Real-time, fast, and efficient monitoring technique.

Empirical evaluation

Concluding remarks and future direction

• The proposed approach addresses evasive ransomware attacks that perform fingerprinting to check if they are being executed in a real or monitored
environment, and prevents them from executing their intended encryption/locking behavior.

• The gathered prioritized artifacts were able to identify evasive ransomware samples from benign ones with a low false-positive rate.
• The approach can be enhanced by exploring deferring techniques to delay the execution of contemporary ransomware, and make it generic to

operate on various operating systems.

Contributions

• Exploring the behavior of contemporary ransomware by
collecting relevant artifacts related to fingerprinting the
execution environment, such as inspecting running processes,
system files, registries, and CPU performance.

• Designing and developing a host-based approach which can
detect contemporary ransomware through monitoring their
“paranoia” (i.e., generated behavior targeting the execution
environment) to prevent it from encrypting/locking the host
machine through investigation techniques rooted in API
interception methods.

• Executing empirical evaluations using real ransomware datasets,
and achieving an accuracy of 91% on training data, and 84% on
testing data.

Methodology

• Collect diverse set of malware samples, and filter the ones related to
ransomware.

• Among the collected ransomware samples, perform ransomware
family labeling to assure that the samples are representative and
diverse.

• Collect a set of APIs that are related to environment inspection
(executed by different ransomware samples prior to enumerating and
encrypting the target’s files)

• Tune the ratio of false positives by assigning a rank/priority that shows
how likely this API is to be launched by evasive ransomware samples
for sniffing the environment.

• Integrate the collected APIs inside a DLL and monitor programs’
execution by injecting this DLL into the address spaces of the executing
processes.

• The proposed monitoring mechanism will begin the moment a
program is executed.

• If the monitored program attempts to fingerprint the environment
through reaching a certain threshold where it is considered evasive
ransomware, then a kill signal is sent to abort its execution.

• Else, it is deemed as a benign operation and its execution is
uninterrupted.

API interception and score adjustment

Empirical evaluation

The variation of the accuracy value with respect to the threshold

Scores reported by our implemented approach when measuring the
evasiveness of ransomware training samples

Scores reported by our implemented approach when measuring the
evasiveness of benign training samples

Scores reported by our implemented approach when measuring the
evasiveness of ransomware testing samples

Scores reported by our implemented approach when measuring the
evasiveness of benign testing samples


