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Agenda

- Motivation for a high-speed science architecture
- Enterprise network limitations
- Science DMZs

- TCP considerations
» Congestion control algorithms
» Parallel streams
» Maximum Segment Size (MSS)

» Pacing, fairness, TCP buffers, router’s buffers, ... (discussed in
labs)



Motivation for a High-Speed Science Architecture

- Science and engineering applications are now generating data
at an unprecedented rate

- Instruments produce hundreds of terabytes in short periods of
time (“big science data”)

- Data must be typically transferred across high-bandwidth
high-latency Wide Area Networks (WANS)
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Applications ESnet traffic

The Energy Science Network (ESnet) is the backbone connecting U.S. national laboratories and research centers



Enterprise Network Limitations

- Security appliances (IPS, firewalls, etc.) are CPU-intensive

- Inability of small-buffer routers/switches to absorb traffic bursts
- End devices incapable of sending/receiving data at high rates

- Lack of data transfer applications to exploit available bandwidth
- Many of the issues above relate to TCP
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Enterprise Network Limitations

- Effect of packet loss and latency on TCP throughput

Throughput vs RTT, 0.0046% Packet Loss
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Conference on High Performance Computing, Networking, Storage and Analysis, Nov. 2013.



5
Science DMZ

- The Science DMZ is a network designed for big science data
- Main elements
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Science DMZ

- The Science DMZ is a network designed for big science data

- Main elements
network

» High throughput, friction free WAN paths | e
Offline security

Border
router

» Data Transfer Nodes (DTNSs)
» End-to-end monitoring = perfSONAR appliance
» Security tailored for high speeds g

switches
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Friction-free high-latency WAN path
e Friction-induced low-latency LAN path
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Science DMZ

Science DMZ deployments, U.S.
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TCP Traditional Congestion Control (CC)

- The CC algorithm determines the sending rate

- Traditional CC algorithms follow an additive-increase
multiplicative-decrease (AIMD) form of congestion control
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TCP Traditional Congestion Control (CC)

- The CC algorithm determines the sending rate

- Traditional CC algorithms follow an additive-increase
multiplicative-decrease (AIMD) form of congestion control
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TCP Traditional Congestion Control (CC)

- The CC algorithm determines the sending rate

- Traditional CC algorithms follow an additive-increase
multiplicative-decrease (AIMD) form of congestion control
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BBR: Rate-based CC

- TCP Bottleneck Bandwidth and RTT (BBR) is a rate-based
congestion-control algorithm

- At any time, a TCP connection has one slowest link or bottleneck
bandwidth (btlbw)
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1. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based congestion control,” Communications of the
ACM, vol 60, no. 2, pp. 58-66, Feb. 2017.

2. https://www.thequilt.net/wp-content/uploads/BBR-TCP-Opportunities.pdf



BBR: Rate-based CC

- TCP Bottleneck Bandwidth and RTT (BBR) is a rate-based
congestion-control algorithm

- At any time, a TCP connection has one slowest link or bottleneck
bandwidth (btlbw)

- BBR tries to find btlbw and set the sending rate to that value
» The sending rate is independent of current packet losses; no AIMD rule
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Parallel Streams

- Conventional file transfer protocols use a control channel and a
(single) data channel (FTP model)
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Parallel Streams

- Conventional file transfer protocols use a control channel and a
(single) data channel (FTP model)

- gridFTP is an extension of the FTP protocol
- Afeature of gridFTP is the use of parallel streams
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Advantages of Parallel Streams

- Combat random packet loss not due congestion?
» Parallel streams increase the recovery speed after the multiplicative decrease

1. T. Hacker, B. Athey, B. Noble, “The end-to-end performance effects of parallel TCP sockets on a lossy wide-area network,” in
Proceedings of the Parallel and Distributed Processing Symposium, Apr. 2001.



Advantages of Parallel Streams

- Combat random packet loss not due congestion?
» Parallel streams increase the recovery speed after the multiplicative decrease
- Mitigate TCP round-trip time (RTT) bias?

» A low-RTT flow gets a higher share of the bandwidth than that of a high-RTT flow
» Increase bandwidth allocated to big science flows

1. T. Hacker, B. Athey, B. Noble, “The end-to-end performance effects of parallel TCP sockets on a lossy wide-area network,” in
Proceedings of the Parallel and Distributed Processing Symposium, Apr. 2001.

2. M. Mathis, J. Semke, J. Mahdavi, T. Ott, “The macroscopic behavior of the TCP congestion avoidance algorithm,” ACM Computer
Communication Review, vol. 27, no 3, pp. 67-82, Jul. 1997.



Advantages of Parallel Streams

- Combat random packet loss not due congestion?
» Parallel streams increase the recovery speed after the multiplicative decrease
- Mitigate TCP round-trip time (RTT) bias?

» A low-RTT flow gets a higher share of the bandwidth than that of a high-RTT flow
» Increase bandwidth allocated to big science flows

- Overcome TCP bhuffer limitations

» An application opening K parallel connections creates a virtual large buffer size on
the aggregate connection that is K times the buffer size of a single connection
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Maximum Segment Size (MSS)

- TCP receives data from application layer and places it in send buffer
- Data is typically broken into MSS units
- Atypical MSS is 1,500 bytes, but it can be as large as 9,000 bytes
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Advantages of Large MSS

- Less overhead

- The recovery after a packet loss is proportional to the MSS
» During the additive increase phase, TCP increases the congestion window by
approximately one MSS every RTT

» By using a 9,000-byte MSS instead of a 1,500-byte MSS, the throughput increases
Six times faster

Slope proportional

4 Additive increase to MSS

Multiplicative
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» Time



Results on a 10 Gbps Network

- 70-second experiments (first 10 seconds not considered)
- Ten experiments conducted and the average throughput is reported
- Impact of MSS and parallel streams on BBR, Reno, HTCP, Cubic
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1. J. Crichigno, Z. Csibi, E. Bou-Harb, N. Ghani, “Impact of segment size and parallel streams on TCP BBR,” IEEE
Telecommunications and Signal Processing Conference (TSP), Athens, Greece, July 2018.



Results on a 10 Gbps Network

Single Stream - Corruption Rate: 0.001% 10 Ten Streams - Corruption Rate: .001
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Results on a 10 Gbps Network
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Summary

- There are many aspects of TCP / transport protocol that
are essential to consider for high-performance networks
» Parallel streams
> MSS
» TCP buffers
» Router’s buffers, and others

- Still there is a need for applied research; e.g.,
» Performance studies of new congestion control algorithms
» TCP pacing
» Application of programmable switches



