

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

SOFTWARE DEFINED NETWORKING
 LAB SERIES

Book Version: 07-08-2021

Principal Investigator: Jorge Crichigno

	 	
	 	

Software Defined Networking Lab Series

Contents

Lab 1: Introduction to Mininet
Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous
Forwarding Decisions
Lab 3: Early efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static
Forwarding Paths
Lab 4: Introduction to SDN
Exercise 1: SDN Network Configuration
Lab 5: Configuring VXLAN to Provide Network Traffic Isolation
Exercise 2: Configuring VXLAN
Lab 6: Introduction to OpenFlow
Exercise 3: OpenFlow Protocol Management
Lab 7: Routing within an SDN network
Lab 8: Interconnection between Legacy Networks and SDN Networks
Exercise 4: Incremental Deployment of SDN Networks within Legacy Networks
Lab 9: Configuring Virtual Private LAN Service (VPLS)
Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

SOFTWARE DEFINED NETWORKING

Lab 1: Introduction to Mininet

Document Version: 03-30-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 1: Introduction to Mininet

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to Mininet .. 3

2 Invoke Mininet using the CLI .. 5

2.1 Invoke Mininet using the default topology .. 5

2.2 Test connectivity .. 9

3 Build and emulate a network in Mininet using the GUI ... 10

3.1 Build the network topology ... 10

3.2 Test connectivity .. 12

3.3 Automatic assignment of IP addresses .. 15

3.4 Save and load a Mininet topology ... 18

4 Configure router r1 ... 19

4.1 Verify end-hosts configuration... 20

4.2 Configure router’s interface ... 21

4.3 Verify router r1 configuration .. 25

4.4 Test connectivity between end-hosts .. 26

References .. 26

Lab 1: Introduction to Mininet

 Page 3

Overview

This lab provides an introduction to Mininet, a virtual testbed used for testing network
tools and protocols. It demonstrates how to invoke Mininet from the command-line
interface (CLI) utility and how to build and emulate topologies using a graphical user
interface (GUI) application. In this lab we will use Containernet, a Mininet network
emulator fork that allows the use of Docker containers as hosts in emulated network
topologies. However, all the concepts covered are bounded to Mininet.

Objectives

By the end of this lab, you should be able to:

1. Understand what Mininet is and why it is useful for testing network topologies.
2. Invoke Mininet from the CLI.
3. Construct network topologies using the GUI.
4. Save/load Mininet topologies using the GUI.
5. Configure the interfaces of a router using the CLI.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access the Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Mininet.
2. Section 2: Invoke Mininet using the CLI.
3. Section 3: Build and emulate a network in Mininet using the GUI.
4. Section 4: Configure router r1.

1 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools and
protocols. With a single command, Mininet can create a realistic virtual network on any
type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides

Lab 1: Introduction to Mininet

 Page 4

an inexpensive solution and streamlined development running in line with production
networks1. Mininet offers the following features:

• Fast prototyping for new networking protocols.

• Simplified testing for complex topologies without the need of buying expensive
hardware.

• Realistic execution as it runs real code on the Unix and Linux kernels.

• Open-source environment backed by a large community contributing extensive
documentation.

Figure 1. Hardware network vs. Mininet emulated network.

Mininet is useful for development, teaching, and research as it is easy to customize and
interact with it through the CLI or the GUI. Mininet was originally designed to experiment
with OpenFlow2 and Software-Defined Networking (SDN)3. This lab, however, only focuses
on emulating a simple network environment without SDN-based devices.

Mininet’s logical nodes can be connected into networks. These nodes are sometimes
called containers, or more accurately, network namespaces. Containers consume
sufficiently fewer resources that networks of over a thousand nodes have created,
running on a single laptop. A Mininet container is a process (or group of processes) that
no longer has access to all the host system’s native network interfaces. Containers are
then assigned virtual Ethernet interfaces, which are connected to other containers
through a virtual switch4. Mininet connects a host and a switch using a virtual Ethernet
(veth) link. The veth link is analogous to a wire connecting two virtual interfaces, as
illustrated below.

Figure 2. Network namespaces and virtual Ethernet links.

h1 s1 h2s2

s3

Hardware NetworkMininet Emulated Network

Lab 1: Introduction to Mininet

 Page 5

Each container is an independent network namespace, a lightweight virtualization feature
that provides individual processes with separate network interfaces, routing tables, and
Address Resolution Protocol (ARP) tables.

Mininet provides network emulation opposed to simulation, allowing all network
software at any layer to be simply run as is; i.e. nodes run the native network software of
the physical machine. On the other hand, in a simulated environment applications and
protocol implementations need to be ported to run within the simulator before they can
be used.

2 Invoke Mininet using the CLI

The first step to start Mininet using the CLI is to start a Linux terminal.

2.1 Invoke Mininet using the default topology

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 3. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. To start a minimal topology, enter the command shown below. When prompted
for a password, type password and hit enter. Note that the password will not be visible
as you type it.

sudo mn

Lab 1: Introduction to Mininet

 Page 6

Figure 4. Starting Mininet using the CLI.

The above command starts Mininet with a minimal topology, which consists of a switch
connected to two hosts as shown below. The loaded topology matches the figure below.

h1

10.0.0.1

s1 h2

10.0.0.2

s1-eth1

h1-eth0

s1-eth2

h2-eth0

10.0.0.0/8

c0

Figure 5. Mininet’s default minimal topology.

When issuing the sudo mn command, Mininet initializes the topology and launches the
containernet command line interface which looks like this:

containernet>

Step 3. To display the list of Mininet CLI commands and examples on their usage, type the
following command.

help

Lab 1: Introduction to Mininet

 Page 7

Figure 6. Mininet’s help command.

Step 4. To display the available nodes, type the following command.

nodes

Figure 7. Mininet’s nodes command.

The output of this command shows that there is a controller, two hosts (host h1 and host
h2), and a switch (s1).

Step 5. It is useful sometimes to display the links between the devices in Mininet to
understand the topology. Issue the command shown below to see the available links.

net

Lab 1: Introduction to Mininet

 Page 8

Figure 8. Mininet’s net command.

The output of this command shows that:

1. Host h1 is connected using its network interface h1-eth0 to the switch on
interface s1-eth1.

2. Host h2 is connected using its network interface h2-eth0 to the switch on
interface s1-eth2.

3. Switch s1:
a. has a loopback interface lo.
b. connects to h1-eth0 through interface s1-eth1.
c. connects to h2-eth0 through interface s1-eth2.

4. Controller c0 is the brain of the network, where it has a global knowledge about
the network. A controller instructs the switches on how to forward/drop packets
in the network.

Mininet allows you to execute commands on a specific device. To issue a command for a
specific node, you must specify the device first, followed by the command.

Step 6. To proceed, issue the following command.

h1 ifconfig

Figure 9. Output of h1 ifconfig command.

Lab 1: Introduction to Mininet

 Page 9

This command executes the ifconfig Linux command on host h1. The command shows
host h1’s interfaces. The display indicates that host h1 has an interface h1-eth0 configured
with IP address 10.0.0.1, and another interface lo, configured with IP address 127.0.0.1
(loopback interface).

2.2 Test connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1
and host h2 respectively. To test connectivity between them, you can use the command
ping. The ping command operates by sending Internet Control Message Protocol (ICMP)
Echo Request messages to the remote computer and waiting for a response or reply.
Information available includes how many responses are returned and how long it takes
for them to return.

Step 1. On the CLI, type the command shown below. This command tests the connectivity
between host h1 and host h2.

h1 ping 10.0.0.2

Figure 10. Connectivity test between host h1 and host h2.

To stop the test, press Ctrl+c. The figure above shows a successful connectivity test.
Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2) and successfully received the
expected responses.

Step 2. Stop the emulation by typing the following command.

exit

Lab 1: Introduction to Mininet

 Page 10

Figure 11. Stopping the emulation using exit.

The command sudo mn -c is often used on the Linux terminal (not on the Mininet CLI)
to clean a previous instance of Mininet (e.g., after a crash).

3 Build and emulate a network in Mininet using the GUI

In this section, you will use the application MiniEdit5 to deploy the topology illustrated
below. MiniEdit is a simple GUI network editor for Mininet.

Figure 12. Lab topology.

3.1 Build the network topology

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 13. MiniEdit Desktop shortcut.

Lab 1: Introduction to Mininet

 Page 11

MiniEdit will start, as illustrated below.

Figure 14. MiniEdit Graphical User Interface (GUI).

The main buttons in this lab are:

1. Select: allows selection/movement of the devices. Pressing Del on the keyboard
after selecting the device removes it from the topology.

2. Host: allows addition of a new host to the topology. After clicking this button, click
anywhere in the blank canvas to insert a new host.

3. Legacy switch: allows addition of a new legacy switch to the topology. After
clicking this button, click anywhere in the blank canvas to insert the switch.

4. Link: connects devices in the topology (mainly switches and hosts). After clicking
this button, click on a device and drag to the second device to which the link is to
be established.

5. Run: starts the emulation. After designing and configuring the topology, click the
run button.

6. Stop: stops the emulation.

Step 2. To build the topology illustrated in Figure 12, two hosts and one switch must be
deployed. Deploy these devices in MiniEdit, as shown below.

Lab 1: Introduction to Mininet

 Page 12

Figure 15. MiniEdit’s topology.

Use the buttons described in the previous step to add and connect devices. The
configuration of IP addresses is described in Step 3.

Step 3. Configure the IP addresses of host h1 and host h2. Host h1’s IP address is
10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the
right click and selecting properties on the device. For example, host h2 is assigned the IP
address 10.0.0.2/8 in the figure below. Click OK for the settings to be applied.

Figure 16. Configuration of a host’s properties.

3.2 Test connectivity

Before testing the connection between host h1 and host h2, the emulation must be
started.

Lab 1: Introduction to Mininet

 Page 13

Step 1. Click on the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 17. Starting the emulation.

Step 2. Open a terminal on host h1 by holding the right click on host h1 and selecting
Terminal. This opens a terminal on host h1 and allows the execution of commands on the
host h1. Repeat the procedure on host h2.

Figure 18. Opening a terminal on host h1.

The network and terminals at host h1 and host h2 will be available for testing.

Lab 1: Introduction to Mininet

 Page 14

Figure 19. Terminals at host h1 and host h2.

Step 3. On host h1’s terminal, type the command shown below to display its assigned IP
addresses. The interface h1-eth0 at host h1 should be configured with the IP address
10.0.0.1 and subnet mask 255.0.0.0.

ifconfig

Figure 20. Output of ifconfig command on host h1.

Repeat step 3 on host h2. Its interface h2-eth0 should be configured with IP address
10.0.0.2 and subnet mask 255.0.0.0.

Step 4. On host h1’s terminal, type the command shown below. This command tests the
connectivity between host h1 and host h2.

Lab 1: Introduction to Mininet

 Page 15

ping 10.0.0.2

Figure 21. Connectivity test using ping command.

To stop the test, press Ctrl+c. The figure above shows a successful connectivity test.
Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2) and successfully received the
expected responses.

Step 5. Stop the emulation by clicking on the Stop button.

Figure 22. Stopping the emulation.

3.3 Automatic assignment of IP addresses

In the previous section, you manually assigned IP addresses to host h1 and host h2. An
alternative is to rely on Mininet for an automatic assignment of IP addresses (by default,
Mininet uses automatic assignment), which is described in this section.

Step 1. Remove the manually assigned IP address from host h1. Hold right-click on host
h1, Properties. Delete the IP address, leaving it unassigned, and press the OK button as
shown below. Repeat the procedure on host h2.

Lab 1: Introduction to Mininet

 Page 16

Figure 23. Host h1 properties.

Step 2. Click on Edit, Preferences button. The default IP base is 10.0.0.0/8. Modify this
value to 15.0.0.0/8, and then press the OK button.

Figure 24. Modification of the IP Base (network address and prefix length).

Step 3. Run the emulation again by clicking on the Run button. The emulation will start
and the buttons of the MiniEdit panel will be disabled.

Step 4. Open a terminal on host h1 by holding the right click on host h1 and selecting
Terminal.

Lab 1: Introduction to Mininet

 Page 17

Figure 25. Opening a terminal on host h1.

Step 5. Type the command shown below to display the IP addresses assigned to host h1.
The interface h1-eth0 at host h1 now has the IP address 15.0.0.1 and subnet mask
255.0.0.0.

ifconfig

Figure 26. Output of ifconfig command on host h1.

You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host
h2’s terminal. The corresponding interface h2-eth0 at host h2 has now the IP address
15.0.0.2 and subnet mask 255.0.0.0.

Step 6. Stop the emulation by clicking on Stop button.

Lab 1: Introduction to Mininet

 Page 18

Figure 27. Stopping the emulation.

3.4 Save and load a Mininet topology

In this section you will save and load a Mininet topology. It is often useful to save the
network topology, particularly when its complexity increases. MiniEdit enables you to
save the topology to a file.

Step 1. Save the current topology by clicking on File then Save. Provide a name for the
topology and save it in the local folder. In this case, we used myTopology as the topology
name.

Figure 28. Saving the topology.

Step 2. Load the topology by clicking on File then Open. Search for the topology file called
lab1.mn and click on Open. A new topology will be loaded to MiniEdit.

Lab 1: Introduction to Mininet

 Page 19

Figure 29. Opening a topology.

4 Configure router r1

In the previous step, you loaded a topology that consists of two networks directly
connected to router r1. Consider Figure 30. In this topology two LANs, defined by switch
s1 and switch s2 are connected to router r1. Initially, host h1 and host h2 do not have
connectivity thus, you will configure router r1’s interfaces in order to establish
connectivity between the two networks.

Figure 30. Topology.

Table 2 summarized the IP addresses used to configure router r1 and the end-hosts.

Table 2. Topology information.
Device Interface IP Address Subnet Default

gateway

 r1

r1-eth0 192.168.1.1 /24 N/A

r1-eth1 192.168.2.1 /24 N/A

 h1 h1-eth0 192.168.1.10 /24 192.168.1.1

 h2 h2-eth0 192.168.2.10 /24 192.168.2.1

Lab 1: Introduction to Mininet

 Page 20

Step 1. Click on the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 31. Starting the emulation.

4.1 Verify end-hosts configuration

In this section, you will verify that the IP addresses are assigned according to Table 2.
Additionally, you will check routing information.

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Figure 32. Opening a terminal on host h1.

Step 2. On host h1 terminal, type the command shown below to verify that the IP address
was assigned successfully. You will verify that host h1 has two interfaces, h1-eth0
configured with the IP address 192.168.1.10 and the subnet mask 255.255.255.0 and, the
loopback interface lo configured with the IP address 127.0.0.1.

ifconfig

Lab 1: Introduction to Mininet

 Page 21

Figure 33. Output of ifconfig command.

Step 3. On host h1 terminal, type the command shown below to verify that the default
gateway IP address is 192.168.1.1.

route

Figure 34. Output of route command.

Step 4. In order to verify host 2 default route, proceed similarly by repeating from step 1
to step 3 on host h2 terminal. Similar results should be observed.

4.2 Configure router’s interface

Step 1. In order to configure router r1, hold right-click on router r1 and select Terminal.

Figure 35. Opening a terminal on router r1.

Lab 1: Introduction to Mininet

 Page 22

Step 2. In this step, you will start the zebra daemon, a multi-server routing software that
provides TCP/IP based routing protocols. The configuration will not be working if you do
not enable the zebra daemon initially. To start zebra, type the following command.

zebra

Figure 36. Starting zebra daemon.

Step 3. After initializing zebra, vtysh should be started in order to provide all the CLI
commands defined by the daemons. To proceed, issue the following command.

vtysh

Figure 37. Starting vtysh on router r1.

Step 4. Type the following command in the router r1 terminal to enter in configuration
mode.

configure terminal

Figure 38. Entering in configuration mode.

Step 5. Type the following command in the router r1 terminal to configure interface r1-
eth0.

interface r1-eth0

Lab 1: Introduction to Mininet

 Page 23

Figure 39. Configuring interface r1-eth0.

Step 6. Type the following command on router r1 terminal to configure the IP address of
the interface r1-eth0.

ip address 192.168.1.1/24

Figure 40. Configuring an IP address to interface r1-eth0.

Step 7. Type the following command exit from interface r1-eth0 configuration.

exit

Figure 41. Exiting from configuring interface r1-eth0.

Step 8. Type the following command on router r1 terminal to configure the interface r1-
eth1.

interface r1-eth1

Lab 1: Introduction to Mininet

 Page 24

Figure 42. Configuring interface r1-eth1.

Step 9. Type the following command on router r1 terminal to configure the IP address of
the interface r1-eth1.

ip address 192.168.2.1/24

Figure 43. Configuring an IP address to interface r1-eth1.

Step 10. Type the following command to exit from r1-eth1 interface configuration.

exit

Figure 44. Exiting from configuring interface r1-eth1.

Lab 1: Introduction to Mininet

 Page 25

4.3 Verify router r1 configuration

Step 1. Exit from router r1 configuration mode issuing the following command.

exit

Figure 45. Exiting from configuration mode.

Step 2. Type the following command on router r1 terminal to verify the routing
information of router r1. It will be showing all the directly connected networks.

show ip route

Figure 46. Displaying routing information of router r1.

Lab 1: Introduction to Mininet

 Page 26

4.4 Test connectivity between end-hosts

In this section you will run a connectivity test between host h1 and host h2.

Step 1. On host h1 terminal type the command shown below. Notice that according to
Table 2, the IP address 192.168.2.10 is assigned to host h2. To stop the test press ctrl+c

ping 192.168.2.10

Figure 47. Connectivity test between host h1 and host h2.

This concludes Lab 1. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. Mininet walkthrough. [Online]. Available: http://Mininet.org.
2. N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.

Shenker, and J. Turner, “OpenFlow,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

3. J. Esch, “Prolog to, software-defined networking: a comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 10–13, 2015.

4. P. Dordal, “An Introduction to computer networks,”. [Online]. Available:
https://intronetworks.cs.luc.edu/.

5. B. Lantz, G. Gee, “MiniEdit: a simple network editor for Mininet,” 2013. [Online].
Available: https://github.com/Mininet/Mininet/blob/master/examples.

SOFTWARE DEFINED NETWORKING

Lab 2: Legacy Networks: BGP Example as a
Distributed System and Autonomous Forwarding

Decisions

Document Version: 03-30-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Traditional switch architecture .. 4

1.2 Legacy and SDN networks .. 4

1.3 Introduction to FRR .. 6

1.4 FRR architecture ... 7

1.5 FRR and Mininet integration .. 8

1.6 Introduction to BGP ... 8

2 Lab topology.. 9

2.1 Lab settings... 10

2.2 Loading the topology.. 10

2.3 Loading the configuration file .. 12

2.4 Running the emulation ... 13

2.5 Verify the configuration ... 14

2.6 Test connectivity between end-hosts .. 17

3 Configure BGP routing protocol .. 18

3.1 BGP neighbors on the routers .. 18

3.2 Advertise local networks on the routers .. 22

4 Verify connections .. 25

References .. 27

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 3

Overview

This lab is an introduction to legacy networks using Free Range Routing (FRR), which is a
routing software suite that provides Transmission Control Protocol (TCP)/Internet
Protocol (IP) based routing services with routing protocols support. In this lab, you will
understand the main difference between legacy and Software Defined Networking (SDN)
networks. Furthermore, you will explore FRR architecture, and load its basic configuration.
Furthermore, this lab emulates a simple legacy network that runs Border Gateway
Protocol (BGP) between two Autonomous Systems (ASes).

Objectives

By the end of this lab, you should be able to:

1. Understand the difference between legacy and SDN networks.
2. Understand the architecture of FRR.
3. Navigate through FRR terminal.
4. Explain the concept of BGP.
5. Configure and verify BGP between two ASes.
6. Perform a connectivity test between end hosts.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet
emulator.

Table 1. Credentials to access the Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Configure BGP routing protocol.
4. Section 4: Verify connections.

1 Introduction

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 4

1.1 Traditional switch architecture

In a traditional switch architecture, the switching functionalities are segregated into three
separate categories, also called layers/planes. These layers can communicate horizontally,
i.e., communicate with the same layer in a different switch. Additionally, the layers can
communicate vertically, i.e., from one layer to another within the same switch1.

Consider Figure 1. The vast majority of packets handled by the switch are only managed
by the data plane. The latter is composed of ports used to receive and transmit the
packets, as well as a forwarding table which instructs the switch on how to deal with
incoming packets. The data plane is responsible for packet buffering, packet scheduling,
header modification and forwarding11.

Some packets cannot be processed by the data plane directly, for example, their
information is not yet inserted in the forwarding table. Such packets are forwarded to the
control plane which lies on top of the data plane. The control plane involves in many
activities, mainly, to maintain the forwarding table of the data plane. Essentially, the
control plane is responsible for processing different control protocols that may affect the
forwarding table11.

The management plane lies on top of the control plane and it is used by network
administrators to configure and monitor the switch. Thus, allowing them to extract
information or modify data in the underlying planes (control and data planes) as
appropriate11.

Management Plane

Control plane

Data plane
Forwarding

TableData in
Data out

Unknown Packets,
Control Packets

Update
Forwarding

Table

Policies

ConfigurationStatistics, Status

Simple Network
Management Protocol

Figure 1. Roles of the control, data and, management planes3.

1.2 Legacy and SDN networks

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 5

In a legacy network, the data, control, and management layers are aggregated into the
same device, usually referred to as a router. When a packet arrives to a router, it checks
to see if the packet should be forwarded out one of its interfaces or if the packet needs
further processing. The decision is made based on the routing table of the router, which
consists of multiple entries, each maps a network/IP prefix to a next hop. The routing
table is built primarily through the use routing protocols. They specify how routers
communicate with each other to distribute information that enables them to select
routes between any two nodes on a computer network. Routing protocols include
Routing Information Protocol2 (RIP), Open Shortest Path First3 (OSPF), BGP4 and
Intermediate System to Intermediate System (IS-IS)5.

Consider Figure 2. A legacy network consists of several connected devices. Each device
runs a local algorithm in the control plane and inserts forwarding rules in the routing table
of the data plane.

Data Plane

Control Plane

Dst IP Itf

1
2
1

198.12.0/24
201.30/16
0.0.0.0/0

Local algorithm
(e.g., OSPF)

Local table

Topology

Local algorithm
(e.g., OSPF)

Topology
Local algorithm

(e.g., OSPF)

Topology

Proprietary
interface

Figure 2. The control plane and the data plane are coupled in the same legacy device.

Routing protocols were essential to respond to rapidly changing network conditions.
However, these conditions no longer exist in modern data centers. Typically, legacy
routing protocols work as a distributed system transmitting the connection status
information over the link and, each router performs the routing computation. A drawback
of this scheme is that the routing information relies on flooding the link state to update
information among routers. Therefore, this incurs in longer convergence time where the
link delay affects the convergence time8.

SDN is a new paradigm that solves the aforementioned problem by creating a centralized
approach, rather than a distributed one. The main concept of SDN is to separate the
control plane from the data plane in order to maximize the efficiency of the data plane
devices. Moving the control software off the device into a centralized server makes it

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 6

capable of seeing the entire network and making decisions that are optimal given a
complete understanding of the situation11.

Consider Figure 3. The control plane is decoupled from the data plane. The former is
moved into a centrally located computer resource and it controls data plane devices,
mainly OpenFlow switches, by pushing rules into their tables11.

Data Plane

Control Plane

Action

SrcIP = 198/8
DstIP = 98.3/16
Ingress Port=1

Header Field

Proprietary or
RFC compliant

Forward (1)
Drop

Forward (2)

Software-based
Centralized Controller

Global
Topology

OpenFlow
interface

App-1 App-2 … App-n

Figure 3. The control plane is embedded in a centralized server and it is decoupled from data
plane devices.

This lab solely focuses on understanding how legacy networks work. You will configure
BGP on legacy routers and inspect the inserted rules on each router’s forwarding table.
In order to do the configuration in an emulated environment, FRR will be used, which is
an open-source software that allows to configure the routers with a list of supported
routing protocols.

1.3 Introduction to FRR

Implementing IP routing usually involves buying expensive and vertically integrated
equipment from specific companies. This approach has limitations such as the cost of the
hardware, closed source software, and the training required to operate and configure the
devices. Networking professionals, operators, and researchers sometimes are limited by
the capabilities of such routing products. Moreover, combining routing functionalities
with existing open-source software packages is usually constrained by the number of
separate devices that can be deployed.

For example, operators could be interested in collecting some information about the
behavior of routing devices, process them, and make them available. Therefore, in order
to achieve such capabilities, additional storage and scripting capacities are required. Such

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 7

resources are not available in existing routing products. On the other hand, researchers
may be interested in developing routing protocols by extending an existing one without
writing a complete implementation from scratch.

FRR suite1 is a package of Unix/Linux software that implements common network routing
protocols, such as RIP2, OSPF3, BGP4 and IS-IS5. The package also includes a routing
information management process, to act as an intermediary between the various routing
protocols and the active routes installed with the kernel. A library provides support for
configuration and an interactive command-line interface. The routing protocols
supported by FRR, can be extended to enable experimentation, logging, or custom
processing. In addition, libraries and kernel daemon provide a framework to facilitate the
development of new routing protocol daemons. A wide range of functionalities can be
attained by combining other software packages to allow the integration into a single
device as well as enabling innovative solutions to networking problems.

1.4 FRR architecture

FRR takes a different approach compared to traditional routing software which, consists
of a single process program that provides all the routing protocol functionalities. FRR is
composed of a suite of daemons that work together to build a routing table. Each routing
protocol is implemented in its own daemon. These daemons exchange information
through another daemon called zebra, which is responsible for encompassing routing
decisions and managing the data plane.

Since all the protocols are running independently, this architecture provides high
resiliency, that means that an error, crash or exploit in one protocol daemon will generally
not affect the other protocols. It is also flexible and extensible since the modularity makes
it easy to implement new protocols and append them to the suite1. Additionally, each
daemon implements a plugin system allowing new functionality to be loaded at runtime.

Figure 4 illustrates the FRR architecture. It consists of a set of processes communicating
via Inter-process Communication (IPC) protocol. This protocol refers to the mechanism
provided by an operating system (OS) to manage shared data between different
processes. Network routing protocols such as BGP, OSPF and IS-IS are implemented in
processes such as bgpd, ripd, ospfd, ldpd, etc. These processes are daemons that
implement routing protocols e.g., the BGP daemon is implemented by the bgpd process,
the RIP daemon is implemented by the ripd process and so on. Another daemon, called
zebra, acts as an intermediary between the kernel’s forwarding plane and the routing
protocol processes. Additionally, an interactive command-line tool called vtysh allows
these processes to be monitored and configured. The vtysh command-line tool
communicates with other processes via a simple string passing protocol, where the strings
are essentially identical to the commands entered.

The zebra process is a fundamental part of FRR architecture. Its purpose is to maintain a
backup of packet forwarding states, such as the network interfaces and the table of
currently active routes. The currently active routes are also referred to as the Forwarding
Information Base (FIB) 6. Usually, the kernel manages packet forwarding therefore, the

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 8

kernel maintains these. The zebra process also collects routing information from the
routing protocol processes and stores these, together with its shadow copy of the FIB, in
its own Routing Information Base (RIB)6 whereas, static routes are also configured. The
zebra process then is responsible for selecting the best route from all those available for
a destination and updating the FIB7. Additionally, the information about the current best
routes may be distributed to the protocol daemons. The zebra process maintains the
routing daemons updated if any change occurs in the network interface state.

Vtysh

Zebra (RIB)

Kernel (FIB)

bgpd ripd ospfd ldpd ...

Interactive
Command-line

Protocol
Daemons

Service
Daemons

Data
Plane

Packet
Forwarding

User Space

Figure 4. FRR architecture.

1.5 FRR and Mininet integration

Mininet is a network emulator which runs a collection of end-hosts, switches, routers and,
links on a single Linux kernel9. Mininet provides network emulation, allowing all network
software at any layer to be simply run as is, i.e., nodes run the native network software
of the physical machine. Hence, the set of commands provided by FRR are inherited and
can be run using Mininet’s command-line interface. This feature allows you to run and
configure FRR in the emulated routers. FRR is production-ready, but we are using it in an
emulated environment.

1.6 Introduction to BGP

The Internet can be viewed as a collection of networks or ASes that are interconnected.
An AS refers to a group of connected networks under the control of a single administrative
entity or domain8.

BGP is an exterior gateway protocol designed to exchange routing and reachability
information among ASes on the Internet. BGP is relevant to network administrators of
large organizations which connect to one or more Internet Service Providers (ISPs), as well

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 9

as to ISPs who connect to other network providers. In terms of BGP, an AS is referred to
as a routing domain, where all networked systems operate common routing protocols
and are under the control of a single administration8.

Two routers that establish a BGP connection are referred to as BGP peers or neighbors.
BGP sessions run over TCP. If a BGP session is established between two neighbors in
different ASes, the session is referred to as an External BGP (EBGP) session. If the session
is established between two neighbors in the same AS, the session is referred to as Internal
(IBGP)1. Figure 5 shows a network running the BGP protocol. Routers that exchange
information within the same AS use Internal BGP (IBGP), while routers that exchange
information between different ASes use EBGP.

AS 200

IBGP

AS 100

IBGP EBGP

Figure 5. Routers that exchange information within the same AS use IBGP, while routers that
exchange information between different ASes use EBGP.

2 Lab topology

Consider Figure 6. The topology consists of two networks, Network 1, and Network 2,
each in an AS. Both networks have the following elements: a router to connect the
networks together, a switch that defines a Local Area Network (LAN) and lastly, a host
aimed to test end-to-end connectivity. The Autonomous System Numbers (ASNs)
assigned to routers r1 and r2 are 100 and 200, respectively. Routers r1 and r2 exchange
routing information via EBGP.

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 10

s1

h1 h2

s2

r1
r2

h1-eth0

s1-eth1

s1-eth2

r1-eth0

r1-eth1 r2-eth1

r2-eth0

s2-eth2

s2-eth1

h2-eth0

AS 100
AS 200

.10 .10

.1 .1

.1 .2

192.168.1.0/24
192.168.2.0/24

192.168.12.0/30

EBGP

Network 1
Network 2

Figure 6. Lab topology.

2.1 Lab settings

Routers and hosts are already configured according to the IP addresses shown in Table 2.

Table 2. Topology information.
Device Interface IP Address Subnet Default

gateway

Router r1

r1-eth0 192.168.1.1 /24 N/A

r1-eth1 192.168.12.1 /30 N/A

Router r2

r2-eth0 192.168.2.1 /24 N/A

r2-eth1 192.168.12.2 /30 N/A

Host h1 h1-eth0 192.168.1.10 /24 192.168.1.1

Host h2 h2-eth0 192.168.2.10 /24 192.168.2.1

2.2 Loading the topology

In this section, you will open MiniEdit10 and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet. This tool has additional capabilities such as: configuring network
elements (IP addresses, default gateway), save the topology and export a layer 2 model.

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 11

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 7. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the Lab2.mn topology file stored in the default directory, /home/sdn/SDN_Labs /lab2 and
click on Open.

Figure 8. MiniEdit’s open dialog.

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 12

Figure 9. Mininet’s topology.

2.3 Loading the configuration file

At this point the topology is loaded. However, the interfaces are not configured. In order
to assign IP addresses to the interfaces of the devices, you will execute a script that loads
the configuration to the routers.

Step 1. Click on the icon below to open the Linux terminal.

Figure 10. Opening Linux terminal.

Step 2. Navigate into SDN_Labs/lab2 directory by issuing the following command. This
folder contains a configuration file and the script responsible for loading the configuration.
The configuration file will assign the IP addresses to the interfaces of the router.
The cd command is short for change directory followed by an argument that specifies the
destination directory.

cd SDN_Labs/lab2

Figure 11. Entering the SDN_Labs/lab2 directory.

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 13

Step 3. To execute the shell script, type the following command. The argument of the
program corresponds to the configuration zip file that will be loaded in all the routers in
the topology.

./config_loader.sh lab2_conf.zip

Figure 12. Executing the shell script to load the configuration.

Step 4. Type the following command to exit the Linux terminal.

exit

Figure 13. Exiting from the terminal.

2.4 Running the emulation

In this section, you will run the emulation and check the links and interfaces that connect
the devices in the given topology.

Step 1. At this point host h1 and host h2 interfaces are configured. To proceed with the
emulation, click on the Run button located in lower left-hand side.

Figure 14. Starting the emulation.

Step 2. Issue the following command to display the interface names and connections.

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 14

links

Figure 15. Displaying network interfaces.

In Figure 15, the link displayed within the gray box indicates that interface eth0 of host h1
connects to interface eth1 of switch s1 (i.e., h1-eth0<->s1-eth1).

2.5 Verify the configuration

You will verify the IP addresses listed in Table 2 and inspect the routing table of routers
r1 and r2.

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 16. Opening a terminal on host h1.

Step 2. On host h1 terminal, type the command shown below to verify that the IP address
was assigned successfully. You will corroborate that host h1 has two interfaces. Interface
h1-eth0 is configured with the IP address of 192.168.1.10 and the subnet mask

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 15

255.255.255.0. Interface lo is configured with the IP address of 127.0.0.1 with the subnet
mask of 255.0.0.0.

ifconfig

Figure 17. Output of ifconfig command.

Step 3. On host h1 terminal, type the command shown below to verify that the default
gateway IP address is 192.168.1.1.

route

Figure 18. Output of route command.

Step 4. In order to verify host h2 IP address default gateway, proceed similarly by
repeating step 1 to step 3 on host h2 terminal. Similar results should be observed.

Step 5. In order to verify router r1, hold right-click on router r1 and select Terminal.

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 16

Figure 19. Opening a terminal on router r1.

Step 6. In this step, you will start the zebra daemon, a multi-server routing software that
provides TCP/IP based routing protocols. The configuration will not be working if you do
not enable the zebra daemon initially. In order to start zebra, type the following command.

zebra

Figure 20. Starting zebra daemon.

Step 7. After initializing zebra, vtysh should be started in order to provide all the CLI
commands defined by the daemons. To proceed, issue the following command.

vtysh

Figure 21. Starting vtysh on router r1.

Step 8. Type the following command on router r1 terminal to verify the routing table of
router r1. It will list all the directly connected networks. The routing table of router r1
does not contain any route to the network of router r2 (192.168.2.0/24) as there is no
routing protocol configured yet.

show ip route

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 17

Figure 22. Displaying the routing table of router r1.

The output in the figure above shows that the network 192.168.1.0/24 is directly
connected through the interface r1-eth0. The network 192.168.12.0/30 is connected via
the interface r1-eth1.

Step 9. Router r2 is configured similarly to router r1 but with different IP addresses (see
Table 2). Those steps are summarized in the following figure. To proceed, in router r2
terminal issue the commands depicted below. At the end, you will verify all the directly
connected networks of router r2.

Figure 23. Displaying the routing table of router r2.

2.6 Test connectivity between end-hosts

In this section you will run a connectivity test between host 1 and host 2. You will notice
that there is no connectivity because there is no routing protocol configured in the routers.

Step 1. On host h1 terminal, type the command shown below. Notice that according to
Table 1, the IP address 192.168.2.10 is assigned to host h2.

ping 192.168.2.10

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 18

Figure 24. Connectivity test between host h1 and host h2.

To stop the test press Ctrl+c. The result in the figure above shows an unsuccessful
connectivity test.

3 Configure BGP routing protocol

In the previous section you used a script to assign the IP addresses to all the interfaces of
the devices, then you performed an unsuccessful connectivity test. In this section you will
configure a routing protocol in order to establish a connection between the two networks.
You will configure BGP in order to establish a connection between AS 100 and AS 200.
First, you will initialize the daemon that enables BGP configuration then. Then, you need
to assign BGP neighbors to allow BGP peering to the remote neighbor. Additionally, you
will advertise the local networks of each router.

3.1 BGP neighbors on the routers

In this section, you will add the neighbor IP address to allow BGP peering to the remote
neighbor.

Step 1. To configure BGP routing protocol, you need to enable the BGP daemon first. In
router r1, type the following command to exit the vtysh session.

exit

Figure 25. Exiting the vtysh session.

Step 2. Type the following command on router r1 terminal to start BGP routing protocol.

bgpd

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 19

Figure 26. Starting BGP daemon.

Step 3. In order to enter to router r1 terminal, type the following command.

vtysh

Figure 27. Starting vtysh on router r1.

Step 4. To enable router r1 configuration mode, issue the following command.

configure terminal

Figure 28. Enabling configuration mode on router r1.

Step 5. The ASN assigned for router r1 is 100. In order to configure BGP, type the following
command.

router bgp 100

Figure 29. Configuring BGP on router r1.

Step 6. To configure a BGP neighbor to router r1 (AS 100), type the command shown
below. This command specifies the neighbor IP address (192.168.12.2) and ASN of the
remote BGP peer (AS 200).

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 20

neighbor 192.168.12.2 remote-as 200

Figure 30. Assigning BGP neighbor to router r1.

Step 7. Type the following command to exit from the configuration mode.

end

Figure 31. Exiting from configuration mode.

Step 8. Type the following command to verify BGP neighbors. You will verify that the
neighbor IP address is 192.168.12.2. The corresponding ASN is 200.

show ip bgp neighbors

Figure 32. Verifying BGP neighbors on router r1.

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 21

Step 9. Router r2 is configured similarly to router r1 but with different IP addresses (see
Table 2). Those steps are summarized in the following figure. To proceed, in router r2
terminal, issue the commands depicted below. At the end, you will verify all the directly
connected networks of router r2.

Figure 33. Assigning BGP neighbor to router r2.

Step 10. Type the following command to verify BGP neighbors. You will verify that the
neighbor IP address is 192.168.12.1. The corresponding ASN is 100.

show ip bgp neighbors

Figure 34. Verifying BGP neighbors on router r2.

Step 11. In router r2 terminal, perform a connectivity test by running the command
shown below.

ping 192.168.12.1

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 22

Figure 35. Connectivity test using ping command.

To stop the test, press Ctrl+c. The result in the figure above shows a successful
connectivity test between router r1 and router r2.

Step 12. In router r2 terminal, perform a connectivity test between router r2 and host h1
by issuing the command shown below.

ping 192.168.1.10

Figure 36. Connectivity test using ping command.

To stop the test, press Ctrl+c. As shown in the figure above, router r2 cannot reach host
h1 at this point as the routing table of router r2 does not contain the network address of
host h1.

3.2 Advertise local networks on the routers

In this section, you will advertise the LANs so that the neighbor can receive the network
address through EBGP.

Step 1. In router r1 terminal, issue the following command.

configure terminal

Figure 37. Enabling configuration mode on router r1.

Step 2. You will advertise the LAN connected to router r1 via BGP. Type the following
command to enable BGP configuration mode.

router bgp 100

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 23

Figure 38. Entering to BGP configuration mode.

Step 3. Issue the following command so that router r1 advertises the network
192.168.1.0/24.

network 192.168.1.0/24

Figure 39. Advertising the network connected to router r1.

Step 4. Type the following command to exit from the configuration mode.

end

Figure 40. Exiting from configuration mode.

Step 5. Type the following command to verify BGP networks.

show ip bgp

Figure 41. Verifying BGP networks on router r1.

Step 6. Type the following command to verify the routing table of router r2. You will
observe the route to network 192.168.1.0/24, which is advertised by router r1. It also
shows that router r2 will use the neighbor IP 192.168.12.1 to reach the network
192.168.1.0/24.

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 24

show ip route

Figure 42. Verifying routing table of router r2.

Step 7. In order to verify the BGP table of router r2, issue the command shown below.
The output indicates that the network connected to router r1 is listed in the BGP table of
router r2. Additionally, it displays the next hop IP address (192.168.12.1) which
corresponds to router r2’s neighbor IP address (router r1).

show ip bgp

Figure 43. Verifying BGP table of router r2.

Step 8. Follow from step 1 to step 4 but with different metrics in order to advertise the
LAN connected to router r2. All these steps are summarized in the following figure.

Figure 44. Advertising the network connected to router r2.

Step 9. In router r2 terminal, issue the following command to verify the BGP table of
router r2. The output will list all the available BGP networks. In particular, the routing
table contains its own network (192.168.2.0/24) and the remote network
(192.168.1.0/24) which was advertised via EBGP.

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 25

show ip bgp

Figure 45. Verifying BGP table of router r2.

Step 10. In router r1 terminal, verify the routing table by typing the following command.
The output lists that router r1 contains a route to the network 192.168.2.0/24. Notice
that, this route was advertised by router r2.

show ip route

Figure 46. Verifying routing table of router r1.

4 Verify connections

In this section, you will verify that the applied configuration is working correctly by
running a connectivity test between host h1 and host h2.

Step 1. On host h1 terminal, perform a connectivity test between host h1 and host h2 by
issuing the command shown below.

ping 192.168.2.10

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 26

Figure 47. Connectivity test using ping command.

To stop the test, press Ctrl+c. The result in the figure above shows a successful

connectivity test.

Step 2. Hold right-click on host h2 and select Terminal. This opens the terminal of host
h2.

Figure 48. Opening host h2 terminal.

Step 3. Similarly, on host h2 terminal, perform a connectivity test between host h2 and
host h1 by issuing the command shown below.

ping 192.168.1.10

Figure 49. Connectivity test using ping command.

Lab 2: Legacy Networks: BGP Example as a Distributed System and Autonomous Forwarding Decisions

 Page 27

To stop the test, press Ctrl+c. The result in the figure above shows a successful
connectivity test.

This concludes Lab 2. Stop the emulation and then exit out of MiniEdit.

References

1. Linux foundation collaborative projects, “FRR routing documentation”, 2017.
[Online]. Available: http://docs.frrouting.org/en/latest/

2. G. Malkin, “RIP Version 2,” RFC 2453 updated by RFC 4822, 1998. [Online].
Available: http://www.ietf.org/rfc/rfc2453.txt.

3. J. Moy, “OSPF version 2”, 1998. [Online]. Available:
https://www.hjp.at/doc/rfc/rfc2178.html

4. Y. Rekhter, T. Li, S. Hares, “A border gateway protocol 4 (BGP-4),” RFC 4271
updated by RFCs 6286, 6608, 6793, 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4271.txt.

5. D. Oran, “OSI IS-IS intra-domain routing protocol,” RFC 1142, 1990. [Online].
Available: http://www.ietf.org/rfc/rfc1142.txt.

6. P. Jakma, D. Lamparter. “Introduction to the quagga routing suite,” 2014, IEEE
Network 28.

7. K. Ishiguro, “Gnu zebra,”. [Online]. Available: http://www. zebra. org (2002).
8. A. Tanenbaum, D. Wetherall, “Computer networks”, 5th Edition, Pearson, 2012.
9. Mininet walkthrough. [Online]. Available: http://Mininet.org.
10. B. Lantz, G. Gee, “MiniEdit: a simple network editor for Mininet,” 2013. [Online].

Available: https://github.com/Mininet/Mininet/blob/master/examples.
11. P. Goransson, C. Black, T. Culver. “Software defined networks: a comprehensive

approach”. Morgan Kaufmann, 2016

http://www.ietf.org/rfc/rfc1142.txt

SOFTWARE DEFINED NETWORKING

Lab 3: Early Efforts of SDN: MPLS Example of a
Control Plane that Establishes Semi-static

Forwarding Paths

Document Version: 07-04-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 2

Contents

Overview ... 2

Objectives.. 2

Lab settings ... 2

Lab roadmap ... 2

1 Introduction .. 2

1.1 Introduction to MPLS ... 2

1.2 Label distribution protocols ... 3

1.3 MPLS header architecture .. 4

2 Lab topology.. 5

2.1 Lab settings... 5

2.2 Open the topology and load the configuration ... 6

2.3 Load zebra daemon and verify the configuration .. 9

3 Configuring static MPLS from router r1 to router r2 .. 13

3.1 Push labels .. 13

3.2 Swap labels ... 16

3.3 Pop labels ... 17

4 Configuring static MPLS from router r2 to router r1 .. 20

5 Verifying the configuration ... 21

References .. 22

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 2

Overview

This lab presents an introduction to Multiprotocol Label Switching (MPLS). This protocol
allows routers to forward packets based on fixed-length labels rather than the destination
IP addresses. In this lab, static MPLS will be configured and verified between two hosts
that are required to exchange routes.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of MPLS.
2. Explore MPLS label distribution protocols.
3. Configure static MPLS in routers.
4. Verify MPLS labels by capturing the traffic between routers.

Lab settings

The information in Table 1 provides the credentials to access Client machine.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Configuring static MPLS from router r1 to router r2.
4. Section 4: Configuring static MPLS from router r2 to router r1.
5. Section 5: Verifying the configuration.

1 Introduction

1.1 Introduction to MPLS

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 3

In traditional IP routing, each router must look up the destination IP address of the packet
to make the forwarding decision. MPLS eliminates the look up process and ensures
transmission between end nodes with short path labels. The predetermined paths that
make MPLS work are called label-switched paths (LSPs). A router that operates at the
edge of an MPLS network and acts as the entry and exit point for the network is called
Label Edge Router (LER). The packet enters the edge of the MPLS backbone is examined
and forwarded to the next hop in the pre-set Label Switched Path (LSP). As the packet
travels that path, each router on the path uses the label – not other information, such as
the IP. An MPLS router that performs routing based only on the label is called a label
switch router (LSR). Each LSR has the ability to do three main things: push, pop, or swap
labels from a packet. To push a label simply means to add a label to a packet, to pop is to
remove a label from a packet, and to swap is to remove and add an alternative label to
the packet1. A packet can have multiple labels attached which are arranged in a stack and
are considered in the order from the most recent label to the least recent label.

However, within each router, the incoming label is examined, and its next hop is matched
with a new label. The old label is replaced with the new label for the packet’s next
destination, and then the freshly labeled packet is sent to the next router. Each router
repeats the process until the packet reaches the exit router. The label information is
removed at either the last hop or the exit router so that the packet goes back to being
identified by an IP header instead of an MPLS label.

The ingress LER is the first to insert an MPLS header and label on a packet. The egress LER
is the last point before leaving the network and removes all the MPLS labels and header.
Both the ingress and egress LER's are considered as Provider Edge (PE) routers. LSR's are
considered as Provider (P) routers.

CE PE CE

P

PE

LAN 1 LAN 2

IP packet IP packet

Figure 1. MPLS label forwarding.

Consider Figure 1. Customer Edge (CE) of Local Area Network (LAN) 1 will forward an IP
packet to the provider Edge (PE). PE will push label 33 along with the IP packet to the
provider (P). P will replace the label with label 34 which will be forwarded to the Provider
Edge (PE). PE will pop the label and the IP packet will be delivered to Customer Edge (CE)
of LAN 2 which is the destination router.

1.2 Label distribution protocols

Label distribution protocol is a set of procedures that provides the information MPLS uses
to create the forwarding tables in each LSR in the MPLS domain2. Followings are the most
widely used label distribution protocols in MPLS.

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 4

Static MPLS: MPLS entries can be configured statically, handling MPLS consists of pushing,
swapping, or popping labels to IP packets.

LDP: LDP is a protocol that automatically generates and exchanges labels between routers.
LDP enables LSRs to discover potential peers and to establish LDP sessions. It depends on
the network's Interior Gateway Protocol (IGP) to determine the path an LSP must take.

Resource Reservation Protocol-Traffic Engineering (RSVP-TE): RSVP-TE is used to
establish MPLS transport LSPs when there are traffic engineering requirements. RSVP is a
signaling protocol that handles bandwidth allocation and true traffic engineering across
an MPLS network. When RSVP and MPLS are combined, a flow or session can be defined
with greater flexibility and generality.

1.3 MPLS header architecture

MPLS operates at a layer that is generally considered to lie between OSI Layer 2 (data link
layer) and Layer 3 (network layer), often referred to as a layer 2.5 protocol.

The Label Value EXP S TTL

MPLS Header

20 bits 3 bits 1 bit 8 bits

Layer 3 HeaderLayer 2 Header

Figure 2. MPLS header architecture.

Consider Figure 2. MPLS works by prefixing packets with an MPLS header, containing one
or more labels. This is called a label stack. Each entry in the label stack contains four fields.

1. The Label Value: The first 20 bits are the label value. This value can be between 0
and 1,048,575. The first 16 values are exempted from normal use.

2. EXP: Three bits are the experimental (EXP) bits. These bits are used solely for
quality of service (QoS) purposes, which represents the set of techniques
necessary to manage network bandwidth, delay, jitter, and packet loss.

3. S: 1 bit is the Bottom of Stack (BoS) bit. The stack is the collection of labels that

are found on top of the packet. The BoS bit is set to 1 if this is the bottom label in
the stack. Otherwise, the BoS bit remains 0.

4. TTL: Last 8 bits are used for Time-to-Live (TTL). This TTL has the same function as

the TTL found in the IP header. It is simply decreased by 1 at each hop, and its
main function is to avoid a packet being stuck in a routing loop.

https://en.wikipedia.org/wiki/Stack_(data_structure)

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 5

2 Lab topology

Consider Figure 3. The topology consists of three routers, two switches and two end hosts.
Customer 1 (h1) and Customer 2 (h2) are allowed to exchange routes using static MPLS.

r1

r3

r2

s1

h1

h1-eth0

s1-eth2

s1-eth1

r1-eth0

.10

.1

s2

h2

r2-eth0

s2-eth1

s2-eth2

h2-eth0 .10

1
9

2
.1

6
8
.1

.0
/2

4
1
9

2
.1

6
8
.2

.0
/2

4

Customer 1 Customer 2

.1

Figure 3. Lab topology.

2.1 Lab settings

Routers and hosts are already configured according to Table 2.

Table 2. Topology information.

Device Interface IIPV4 Address Subnet Default
gateway

r1

r1-eth0 192.168.1.1 /24 N/A

r1-eth1 192.168.13.1 /30 N/A

r2

r2-eth0 192.168.2.1 /24 N/A

r2-eth1 192.168.23.1 /30 N/A

r3

r3-eth0 192.168.13.2 /30 N/A

r3-eth1 192.168.23.2 /30 N/A

h1 h1-eth0 192.168.1.10 /24 192.168.1.1

h2 h2-eth0 192.168.2.10 /24 192.168.2.1

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 6

2.2 Open the topology and load the configuration

In this section, you will open MiniEdit7 and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet. This tool has additional capabilities such as: configuring network
elements (IP addresses, default gateway), saving topologies, and exporting layer 2 models.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab topology. Open the
Lab3.mn topology file stored in the default directory, /home/sdn/SDN_Labs/lab3 and
click on Open.

Figure 5. MiniEdit’s open dialog.

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 7

Figure 6. Mininet topology.

At this point, the topology is loaded. However, the interfaces are not configured. In order
to assign IP addresses to the interfaces of the devices, you will execute a script that loads
the configuration to the routers.

Step 3. Click on the icon below to open the Linux terminal.

Figure 7. Opening the Linux terminal.

Step 4. Click on the Linux terminal and navigate into the SDN_Labs/lab3 directory by
issuing the following command. This folder contains a configuration file and the script
responsible for loading the configuration. The configuration file will assign the IP
addresses to the interfaces of the routers. The cd command is short for change directory
followed by an argument that specifies the destination directory.

cd SDN_Labs/lab3

Figure 8. Entering the SDN_Labs/lab3 directory.

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 8

Step 5. To execute the shell script, type the following command. The argument of the
program corresponds to the configuration zip file that will be loaded in all the routers in
the topology.

./config_loader.sh lab3_conf.zip

Figure 9. Executing the shell script to load the configuration.

Step 6. At this point the interfaces of hosts h1 and h2 are configured. To proceed with the
emulation, click on the Run button located on lower left-hand side.

Figure 10. Starting the emulation.

Step 7. Click on Mininet’s terminal, i.e., the one that launched when MiniEdit was started.

Figure 11. Opening Mininet’s terminal.

Step 8. Issue the following command to display the interface names and connections.

links

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 9

Figure 12. Displaying network interfaces.

In the figure above, the link displayed within the gray box indicates that interface eth0 of
router r1 connects to interface eth1 of switch s1 (i.e., r1-eth0<->s1-eth1).

Step 9. In order to enable MPLS forwarding in all the router’s interfaces, type the
following command in the opened Linux terminal. If a password is required, type
password.

./enable_MPLS.sh

Figure 13. Enabling MPLS forwarding in all the routers.

Consider the figure above. The command executes a shell script that enables MPLS
forwarding in all routers. All the router interfaces assign labels that are used to forward
packets. Value 1 is assigned to all the router interfaces so that they participate in the label
processing. Router interfaces connected to the host do not perform label processing.
Platform_labels is the table that recognizes all the assigned labels and participates in label
forwarding. Value 100000 (maximum value for label forwarding) is assigned to
platform_labels in order to enable label forwarding.

2.3 Load zebra daemon and verify the configuration

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 10

You will verify that IP addresses listed in Table 2 and inspect the routing table of the
routers.

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands in that host.

Figure 14. Opening host h1’s terminal.

Step 2. In host h1 terminal, type the command shown below to verify that the IP address
was assigned successfully. You will verify that interface h1-eth0 is configured with IP
address 192.168.1.10 and subnet mask 255.255.255.0.

ifconfig

Figure 15. Output of ifconfig command.

Step 3. In host h1 terminal, type the following command to verify the default gateway IP
address, 192.168.1.1.

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 11

route

Figure 16. Output of the route command.

Step 4. In order to verify host h2, proceed similarly by repeating from step 1 to step 3 in
host h2 terminal. Similar results should be observed.

Step 5. In router r1’s terminal, you will start zebra daemon, which is a multi-server routing
software that provides TCP/IP based routing protocols. The configuration will not be
working if you do not enable zebra daemon initially. In order to start the zebra, type the
following command:

zebra

Figure 17. Starting zebra daemon.

Step 6. After initializing zebra, vtysh should be started in order to provide all the CLI
commands defined by the daemons. To proceed, issue the following command:

vtysh

Figure 18. Starting vtysh in router r1.

Step 7. Type the following command in router r1’s terminal to verify the routing table of
router r1. It will list all the directly connected networks. The routing table of router r1
does not contain any route to the network attached to router r2 (192.168.2.0/24) as there
is no routing protocol configured yet.

show ip route

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 12

Figure 19. Displaying routing table of router r1.

Step 8. Router r2 is configured similarly to router r1 but, with different IP addresses (see
Table 2). Those steps are summarized in the following figure. To proceed, in router r2’s
terminal, issue the commands depicted below. At the end, you will verify all the directly
connected networks of router r2.

Figure 20. Displaying routing table of router r2.

Step 9. Router r3 is configured similarly to router r1 but, with different IP addresses (see
Table 2). Those steps are summarized in the following figure. To proceed, in router r3’s
terminal, issue the commands depicted below. At the end, you will verify all the directly
connected networks of router r3.

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 13

Figure 21. Displaying routing table of router r3.

3 Configuring static MPLS from router r1 to router r2

In this section, you will configure static MPLS in routers. Router r1 will push a label to
router r3. Routers r3 will swap label and the data packet will reach to router r2. Router r2
will pop the label and the data packet will be delivered to the destination host h2.

3.1 Push labels

Step 1. At this point, router r1 can reach the directly connected network 192.168.13.0/30.
To communicate with other networks, you will configure static routing in router r1. To
configure static routing, you need to enable the static daemon first. In router r1, type the
following command to exit the vtysh session:

exit

Figure 22. Exiting the vtysh session.

Step 2. Type the following command to enable the static routing daemon in router r1.

staticd

Figure 23. Starting staticd daemon.

Step 3. In order to enter router r1’s terminal, issue the following command:

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 14

vtysh

Figure 24. Starting vtysh in router r1.

Step 4. To enable router r1’s configuration mode, issue the following command:

configure terminal

Figure 25. Enabling configuration mode in router r1.

Step 5. Type the following command to configure a static route to the network
192.168.2.0/24. Router r1 will assign label 100 to forward traffic for the destination
network 192.168.2.0/24 via 192.168.13.2.

ip route 192.168.2.0/24 192.168.13.2 label 100

Figure 26. Pushing label for network 192.168.2.0/24.

Step 6. Type the following command to exit from the configuration mode.

end

Figure 27. Exiting from configuration mode.

Step 7. In router r3 terminal, type the following command to exit from vtysh.

exit

Figure 28. Exiting from vtysh.

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 15

Step 8. Type the following command to start Wireshark packet analyzer. A new window
will emerge.

wireshark

Figure 29. Starting Wireshark packet analyzer.

Step 9. Select interface r3-eth0 and click on the icon located on the upper left-hand side
to start capturing packets.

Figure 30. Starting packet capture.

Step 10. Test the connectivity between hosts h1 and h2 using the ping command. In host
h1, type the command specified below.

ping 192.168.2.10

Figure 31. Output of the ping command in host h1.

Step 11. In Wireshark, click on any ICMP packet to see the MPLS label.

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 16

Figure 32. Verifying MPLS label.

Consider the figure above. You will notice that MPLS label 100 has been assigned. Router
r1 uses label 100 to forward traffic to interface r3-eth0 (192.168.13.2).

Close Wireshark after verifying the label. Select ‘Stop and Quit without saving’ option for
unsaved packets.

Step 12. In host h1’s terminal, press Ctrl+c to stop the test.

3.2 Swap labels

At this point, router r1 will use label 100 to reach router r3. Router r3 will swap the label
with a new label to forward the packet.

Step 1. In router r3 terminal, type the following command to enable vtysh:

vtysh

Figure 33. Enabling vtysh in router r3.

Step 2. To enable configuration mode in router r3, issue the following command:

configure terminal

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 17

Figure 34. Enabling configuration mode in router r3.

Step 3. In this step, you will configure label swapping in router r3. Router r3 will receive
label 100 from router r1 and swap the label with label 200 to forward the traffic to the
interface r2-eth1 (192.168.23.1). Type the following command to enable label swapping
in router r3.

mpls lsp 100 192.168.23.1 200

Figure 35. Enabling label swapping in router r3.

Step 4. Type the following command to exit from the configuration mode.

exit

Figure 36. Exiting from configuration mode.

3.3 Pop labels

At this point, router r3 will use label 200 to reach router r2. Router r2 will pop the label
and the IP packet will be delivered to the destination host h2.

Step 1. To enable configuration mode in router r2, issue the following command:

configure terminal

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 18

Figure 37. Enabling configuration mode in router r2.

Step 2. Issue the following command in router r2. Router r2 will pop the label (200) and
the IP packet will be delivered to the destination host, h2 (192.168.2.10).

mpls lsp 200 192.168.2.10 implicit-null

Figure 38. Enabling label popping in router r2.

The keyword implicit-null indicates that the router will perform a pop and the IP
packet will be delivered to the destination.

Step 3. Type the following command to exit from the configuration mode.

end

Figure 39. Exiting configuration mode.

Step 4. Type the following command to exit the vtysh session:

exit

Figure 40. Exiting the vtysh session.

Step 5. Type the following command to start Wireshark packet analyzer. A new window
will emerge.

wireshark

Figure 41. Starting Wireshark packet analyzer.

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 19

Step 6. Select interface r2-eth0 and click on the icon located on the upper left-hand side
to start capturing packets.

Figure 42. Starting packet capture.

Step 7. Test the connectivity between hosts h1 and h2 using the ping command. In host
h1, type the command specified below.

ping 192.168.2.10

Figure 43. Output of the ping command in host h1.

Step 8. Click on any of the ICMP packets and verify MPLS label in Wireshark.

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 20

Figure 44. Verifying MPLS label.

Consider the figure above. You will notice there is no MPLS label attached to the IP packet
as router r2 popped the label and delivered the IP packet to its destination. You will notice
that host h2 (192.168.2.10) is generating a reply for the destination host h1
(192.168.1.10) but router r2 does not have a route back to router r1.

Step 9. In host h1’s terminal, press Ctrl+c to stop the test and close Wireshark.

4 Configuring static MPLS from router r2 to router r1

In this section, you will configure static MPLS from router r2 to router r1 so that both the
hosts, h1 and h2 can ping each other.

Step 1. Type the following command to create a static route for the network
192.168.1.0/24. Assign label 300 for the next hop 192.168.23.2. The necessary steps are
summarized in the following figure.

Figure 45. Pushing labels in router r2.

Step 2. Type the following commands in router r3. Router r3 will receive label 300, swap
the label with 400 and the packet will be delivered to router r1 (192.168.13.1). All the
commands are summarized in the following figure.

Figure 46. Enabling label swapping in router r3.

Step 3. Type the following commands to pop the label in router r1 which was received
from router r3. Router r1 will pop the label (400) and the IP packet will be delivered to
the destination host, h1 (192.168.1.10).

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 21

Figure 47. Popping label in router r1.

5 Verifying the configuration

In this section, you will verify the MPLS table and the connectivity between the two hosts.

Step 1. Type the following command to verify the routing table in router r1. You will notice
static routes and the labels assigned to router r1.

show ip route

Figure 48. Verifying routing table in router r1.

Step 2. In host h1, type the following command to test the connectivity between host h1
and host h2 using the ping command. To stop the test, press Ctrl+c. The figure below
shows a successful connectivity test.

ping 192.168.2.10

Figure 49. Output of the ping command in host h2.

Step 3. Type the following command to verify routing table in router r3.

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 22

show ip route

Figure 50. Verifying routing table in router r3.

Consider the figure above. Router r3 only knows about directly connected networks.
Hosts h1 and h2 can communicate with each other since routers r3 uses MPLS labels to
perform packet forwarding.

Step 4. Type the following command to verify the MPLS table in router r3.

show mpls table

Figure 51. Verifying MPLS table in router r3.

Consider the figure above. Router r3 forwards packets based on the labels only. If the
router receives packet with label 100, it will forward the traffic to router r2 (192.168.23.1),
if the receiving label is 300, the nexthop is 192.168.13.1.

This concludes Lab 4. Stop the emulation and then exit out of MiniEdit.

References

1. Luc De Ghein, “MPLS fundamentals”, 1st Edition, Pearson. 2006.
2. Juniper, “MPLS label distribution protocols overview”, 2018. [Online]. Available:

https://www.juniper.net/documentation/en_US/junose15.1/topics/concept/mpl
s-label-distribution-protocols.html

3. Greek University, “Static route”, [Online]. Available:
https://geek-university.com/ccna/static-
routes/#:~:text=Static%20routes%20are%20manually%20added,to%20one%20of
%20its%20interfaces.

Lab 3: Early Efforts of SDN: MPLS Example of a Control Plane that Establishes Semi-static Forwarding Paths

 Page 23

4. Lydia Parziale, David T. Britt, Chuck Davis, Jason Forrester, Wei Liu, Carolyn
Matthews, Nicolas Rosselot, “TCP/IP tutorial and technical overview”, 8th Edition,
Pearson, 2006.

5. Linux foundation collaborative projects, “FRR routing documentation”, 2017.
[Online]. Available: http://docs.frrouting.org/en/latest/zebra.html#mpls-
commands

6. Juniper, “Understanding MPLS label operations”, 2020. [Online]. Available:
https://www.juniper.net/documentation/en_US/junos/topics/concept/mpls-
label-operations-qfx-series.html

SOFTWARE DEFINED NETWORKING

Lab 4: Introduction to SDN

Document Version: 07-07-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 4: Introduction to SDN

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to SDN ... 4

1.2 SDN data plane architecture .. 5

1.3 SDN controller architecture ... 6

2 Lab topology.. 7

2.1 Lab settings... 8

2.2 Loading the topology.. 8

3 Starting ONOS ... 10

3.1 Activating the ONOS OpenFlow application .. 13

3.2 Activating the ONOS forwarding application ... 17

4 Navigating the ONOS GUI ... 20

4.1 Accessing the web user interface... 20

4.2 Exploring network components ... 21

References .. 28

Lab 4: Introduction to SDN

 Page 3

Overview

This lab is an introduction to Software Defined Networking (SDN), a new networking
paradigm that overcomes several limitations of the current network infrastructure. In this
lab, we will introduce the components of SDN and describe how they operate. The focus
in this lab is to gain in-depth knowledge about the role of the control plane and the data
plane.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of SDN.
2. Enable the ONOS controller.
3. Navigate through the ONOS environment.
4. Activate basic ONOS applications and understand their effects.
5. Understand flow tables in SDN devices.
6. Perform a connectivity test.
7. Visualize topology information in the GUI dashboard.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Starting ONOS
4. Section 4: Navigating the ONOS GUI.

1 Introduction

In just a few years, SDN has created enormous interest in academia and industry. An open,
vendor-neutral, control-data plane interface such as OpenFlow1 allows network hardware

Lab 4: Introduction to SDN

 Page 4

and software to evolve independently. Furthermore, it facilitates the replacement of
expensive, proprietary hardware and firmware with commodity hardware and a free,
open-source Network Operating System (NOS). By managing network resources and
providing high-level abstractions and APIs for interacting with, managing, monitoring, and
programming network switches, the NOS provides an open platform that simplifies the
creation of innovative and beneficial network applications and services that work across
a wide range of hardware2.

1.1 Introduction to SDN

Traditional IP networks depend on distributed routing protocols running inside the
routers to exchange routing information. Despite their widespread adoption, traditional
IP networks are complicated by their nature, and they are not trivial to be managed. For
example, network administrators need to configure each network separately using low-
level, vendor-specific commands. A traditional networking device bundles the control
plane (that decides how to handle network traffic) and the data plane (that forward
network traffic). Thus, reducing the flexibility and hindering innovation and evolution of
the networking infrastructure3.

SDN is an emerging networking paradigm that gives hope to change the limitations of
current network infrastructures3. It breaks the control plane from the data plane and
implements each separately. The disaggregation of the control plane and the data plane
allows network switches to become simple forwarding devices and the control logic to be
implemented in a logically centralized controller. Thus, amplifying the flexibility in the
network, breaking the network control problem into tractable pieces, introducing new
abstractions, and facilitating network evolution and innovation3.

Consider Figure 1. the vast majority of packets handled by the switch are only managed
by the data plane. The latter is composed of ports used to receive and transmit the
packets, as well as a forwarding table that instructs the switch on how to deal with
incoming packets. The data plane is responsible for packet buffering, packet scheduling,
header modification, and forwarding4.

Some packets cannot be processed by the data plane directly, for example, their
information is not yet inserted in the forwarding table. Such packets are forwarded to the
control plane, which lies on top of the data plane. The control plane involves many
activities, mainly to maintain the forwarding table of the data plane. Essentially, the
control plane is responsible for processing different control protocols that may affect the
forwarding table.

SDN applications run on top of the controller. They are ultimately responsible for
managing the flow table on the network devices (data plane). For example, route packets
through the best path between two endpoints, or balance traffic loads across multiple
paths4.

Lab 4: Introduction to SDN

 Page 5

Data Plane

Control Plane

Action

SrcIP = 198/8
DstIP = 98.3/16
Ingress Port=1

Header Field

Proprietary or
RFC compliant

Forward (1)
Drop

Forward (2)

Software-based
Centralized Controller

Global
Topology

OpenFlow
interface

App-1 App-2 … App-n

Figure 1. The control plane is embedded in a centralized server, and it is decoupled from data
plane devices in SDN networks.

1.2 SDN data plane architecture

Consider Figure 2. An SDN device is composed of an Application Programming Interface
(API) for communication with the controller, an abstraction layer, and a packet-processing
function.

The standard API used to communicate with the controller is OpenFlow1, or it could be
some proprietary alternative in certain SDN solutions4.

The abstraction layer embodies one or more flow tables, which are the fundamental data
structures in an SDN device. These flow tables allow the device to evaluate incoming
packets and take the appropriate action. Flow tables consist of a number of flow entries,
each of which typically consists of two components: match fields and actions. Match fields
are used to compare against incoming packets, for example, matching against the Media
Access Control (MAC) address, User Datagram Protocol (UDP), or Transmission Control
Protocol (TCP) port. Actions are the instructions that the forwarding device should
perform if an incoming packet matches a flow entry. These actions may include
forwarding the packet to a specific port, dropping the packet, or flooding the packet on
all ports, among others4.

The packet-processing logic consists of the mechanisms used to take actions based on the
results of evaluating incoming packets. In a hardware switch, these mechanisms are
implemented by specialized hardware, such as Ternary Content Addressable Memory
(TCAM) and Content Addressable Memory (CAM)4.

Lab 4: Introduction to SDN

 Page 6

OpenFlow
API

Abstraction Layer

Packet Processing

Flow Table

To the Controller

Figure 2. SDN switch architecture.

1.3 SDN controller architecture

A controller keeps a view of the entire network, implements policy decisions, controls all
the SDN devices that comprise the network infrastructure, and provides a northbound
API for the application. Also, controllers implement policy decisions about routing,
forwarding, redirecting, and load balancing. Controllers often come with their own set of
common application modules, such as a learning switch, a router, a basic firewall, and a
simple load balancer. Such features are considered SDN applications, and they are often
bundled with the controller4.

Figure 3 depicts the modules that provide the controller’s core functionality, both a
northbound and southbound API, and a few sample applications. The southbound API is
used to interface with the SDN device. Commonly, this API is OpenFlow. The controller
abstracts the details of the SDN controller-to-device protocol so that the applications such
as the GUI, learning switch, router, and others can transparently communicate with the
SDN devices. Every controller provides core functionality between these raw interfaces.
Core features in the controller include4:

• End-user device discovery: discovery of end-user devices, such as laptops,
desktops, printers, mobile devices, etc.

• Network device discovery: discovery of network devices that comprise the
infrastructure of the network, such as switches, routers, and wireless access
points.

• Network device topology management: maintain information about the
interconnection details of the network device to each other, and to the end-user
devices to which they are directly attached.

• Flow management: maintain a database of the flows being managed by the
controller and perform all necessary coordination with the devices to ensure
synchronization of the device flow entries with that database.

Lab 4: Introduction to SDN

 Page 7

REST
API

Python
API

Java
API

Northbound
API

Modules

Southbound
API

Device
Mgr

Topo

Stats Flows
Disco &

Topo

OpenFlow

GUI
Learning
Switch

Router Others...

Figure 3. SDN controller architecture.

2 Lab topology

Consider Figure 4. The topology consists of four end-hosts, three switches, and a
controller. The devices with the blue circle represent OpenFlow switches. All switches are
connected to the controller c0.

s1

s2 s3

c0

h1 h2 h3 h4

.1 .2 .3 .4

10.0.0.0/8

h1-eth0 h2-eth0 h3-eth0 h4-eth0

Out-of-band connection

s2-eth1 s2-eth2 s3-eth1 s3-eth2

s2-eth3 s3-eth3

s1-eth1 s1-eth2

Figure 4. Lab topology.

Lab 4: Introduction to SDN

 Page 8

2.1 Lab settings

The devices are already configured according to Table 2.

Table 2. Topology information.

Device Interface MAC Address IP Address Subnet

h1 h1-eth0 00:00:00:00:00:01 10.0.0.1 /8

h2 h2-eth0 00:00:00:00:00:02 10.0.0.2 /8

h3 h3-eth0 00:00:00:00:00:03 10.0.0.3 /8

h4 h4-eth0 00:00:00:00:00:04 10.0.0.4 /8

c0 N/A N/A 172.17.0.2 /16

2.2 Loading the topology

In this section, you will open MiniEdit and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet5. This tool has additional capabilities such as: configuring interface
parameters (IP addresses, default gateway), save the topology and export a layer 2 model.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the Lab4.mn topology file stored in the default directory, /home/sdn/SDN_Labs /lab4 and
click on Open.

Lab 4: Introduction to SDN

 Page 9

Figure 6. Opening topology.

Figure 7. MiniEdit’s topology.

Step 3. Click on the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Lab 4: Introduction to SDN

 Page 10

Figure 8. Starting the emulation.

3 Starting ONOS

Step 1. Open the Linux terminal by clicking on the shortcut depicted below.

Figure 9. Opening Linux terminal.

Step 2. Navigate into SDN_Labs/lab4 directory by issuing the following command. This
folder contains the script responsible for starting ONOS. The cd command is short for
change directory followed by an argument that specifies the destination directory.

cd SDN_Labs/lab4

Figure 10. Entering the SDN_Labs/lab4 directory.

Step 3. A script was written to run ONOS and enter its Command Line Interface (CLI). In
order to run the script in superuser (root) mode, issue the following command. When
prompted for a password, type password. In addition to running ONOS, the script will

modify the MAC addresses of the hosts so that they conform with the topology.

sudo ./run_onos.sh

Figure 11. Starting the ONOS controller.

Lab 4: Introduction to SDN

 Page 11

Once the script finishes executing and ONOS is ready, you will be able to execute
commands on the ONOS CLI as shown in the figure below. Note that this script may take
few seconds.

Figure 12. ONOS CLI.

Step 4. ONOS supplies a set of its own commands, in order to list all available commands,
press the TAB key.

Figure 13. Displaying a list of ONOS commands.

Lab 4: Introduction to SDN

 Page 12

Step 5. To confirm displaying all possibilities of ONOS commands, press the TAB key one
more time. This will display all ONOS commands on the left-hand side of the CLI, as well
as their explanation on the right-hand side of the CLI.

Figure 14. Displaying a list of ONOS commands.

Step 6. To display the list of all currently known flows for the ONOS controller, type the
following command.

flows

Figure 15. Displaying the currently known flows.

Step 7. To display the list of all currently known devices (OVS switches), type the following
command.

devices

Figure 16. Displaying the currently known devices (switches).

Step 8. To display the list of all currently known hosts, type the following command.

hosts

Lab 4: Introduction to SDN

 Page 13

Figure 17. Displaying the currently known hosts.

Step 9. To display the list of all currently known links, type the following command.

links

Figure 18. Displaying the currently known link.

Consider Figures 15, 16, 17, and 18. No flows, devices, hosts, or link are displayed since
we have not activated the necessary applications that allow the controller to discover
them.

3.1 Activating the ONOS OpenFlow application

In this section, you will activate OpenFlow application that comes with ONOS and allows
to speak OpenFlow protocol with the devices. You will notice how the Mininet topology
becomes visible, i.e., the devices (switches), and hosts are now recognized by ONOS.

Step 1. In the ONOS terminal, issue the following command to activate the OpenFlow
application.

app activate org.onosproject.openflow

Figure 19. Activating OpenFlow application.

Step 2. Open Mininet terminal.

Lab 4: Introduction to SDN

 Page 14

Figure 20. Opening Mininet terminal.

Step 3. Once the OpenFlow application is activated, you might not get accurate results
immediately, for example, not all the hosts are discovered yet. In order to stimulate ONOS
and the activated application, perform a pingall command. This command pings from
every host in the network to all other hosts. To do so, write the following command.

pingall

Figure 21. Pinging all hosts to stimulate host discovery in the Controller.

Consider Figure 21. The connectivity test resulted in 100% dropped. The pings sent from
a host to a destination are IP packets received by a switch. For example, pinging host h2
from h1 is received by switch s1. Since there are no flows inserted that deal with IP
packets, then the packets will be dropped immediately.

Step 4. Go to the ONOS terminal.

Figure 22. Opening ONOS terminal.

Step 5. To display the list of all currently known devices (OVS switches), type the following
command.

devices

Lab 4: Introduction to SDN

 Page 15

Figure 23. Displaying the currently known devices (switches).

Consider Figure 23. The three switches are displayed with their corresponding ids, as well
as additional attributes, such as the status (available=true), the type of the switch
(hw=Open vSwitch), and which OpenFlow version the switch is running
(protocol=OF_10).

Step 6. ONOS commands might have multiple options. To display the list of options for
the flows command, type the command flows , then press the TAB button twice.

flows

Figure 24. Displaying the currently known flows.

Consider Figure 24. The flows command has multiple options according to the state of
the flow, which could be:

• added: the flow has been added to the switch.

• failed: the flow failed to be added.

• pending_add: the flow has been submitted and forwarded to the switch.

• pending_remove: the request to remove the flow has been submitted and
forwarded to the switch.

• removed: the rule has been removed.

• any: all flows.

Step 7. To display the list of all added switches, complete the above command by typing
added, then press the TAB button twice.

flows added

Lab 4: Introduction to SDN

 Page 16

Figure 25. Displaying the currently known added flows for switch 1.

Consider Figure 25. Once you press the TAB button, the ONOS CLI automatically fills the
common prefix of all the switches’ ids (000000000000000). You can also alternate
between the displayed switches’ ids using the TAB button.

Step 8. To display the list of all added flows for switch 1 (id: 00000000000001), complete
the id of the switch (you only have to enter the number 1 for switch s1) and hit enter.

flows added of:00000000000001

Figure 26. Displaying the currently known added flows for switch 1.

Consider Figure 26. Three flows for switch s1 were added. ONOS provides many details
about the flows inserted in the switches. For example, each flow entry defines a selector
and treatment which are the set of traffic matched by the flow entry and how this traffic
should be handled, respectively.

The controller has installed three initial flows which are:

• Flow 1 (ETH_TYPE=bddp): forwards Broadcast Domain Discovery Protocol (BDDP)
to the controller ([OUTPUT:CONTROLLER]).

• Flow 2 (ETH_TYPE=lldp): forwards Link Layer Discovery Protocol (LLDP) packets
to the controller ([OUTPUT:CONTROLLER]).

• Flow 3 (ETH_TYPE=arp): forwards Address Resolution Protocol (ARP) packets to
the controller ([OUTPUT:CONTROLLER]).

The above flows are used for link and host discovery. Notice as well that each flow entry
is tagged by an appId (application id), this appId identifies which application installed
the corresponding flow entry. Other important details include:

Lab 4: Introduction to SDN

 Page 17

• packets: number of packets forwarded or dropped for that flow.

• bytes: byte count of the matched packets.

• tableId: id of the table in which these flows are installed.

• duration: time elapsed in seconds since the flow was installed.

Step 9. To display the list of all currently known hosts, type the following command.

hosts

Figure 27. Displaying the currently known hosts.

Consider Figure 27. Each discovered host is displayed along with some details, such as the
identification of the host, the location where the host is connected to (with the
identification of the switch), and the IP address.

3.2 Activating the ONOS forwarding application

In the previous section, when performing a connectivity test, 100% of the packets were
dropped. The pings sent from a host to a destination are IP packets received by a switch,
which does not have flows that match IP packets. In this section, you will activate a simple
forwarding application that comes with ONOS. This application installs flows in response
to every miss IP packet that arrives at the controller.

Step 1. To enable the forwarding application, type the command shown below.

app activate org.onosproject.fwd

Figure 28. Activating the forwarding application.

Step 2. To display the flows of switch s1, type the following command.

Lab 4: Introduction to SDN

 Page 18

flows added of:0000000000000001

Figure 29. Displaying the currently known devices (switches).

Consider Figure 29. A new flow is added with ETH_TYPE:ipv4 that deals with IPv4 packet
by forwarding them to the controller (OUTPUT:CONTROLLER), which in turn decides the
action on the corresponding packet.

Step 3. Hold right-click on host h1 and select Terminal.

Figure 30. Displaying the currently known devices (switches).

Step 4. On host h1 terminal, run a connectivity test by issuing the command shown below.

Lab 4: Introduction to SDN

 Page 19

ping 10.0.0.2

Figure 31. Pinging host h2 from host h1.

To stop the test, press Ctrl+c. The result in the figure above shows a successful
connectivity test.

Step 5. To display the flows of switch s2, type the following command on the ONOS
terminal.

flows added of:0000000000000002

Figure 32. Displaying the added flows on switch s2.

Consider Figure 32. After pinging host h2 from h1, two flows are installed on switch s2.
The first flow (id=5f000005b81dbe) instructs the switch to forward incoming packets at
port 2 (IN_PORT:2) out of port 1 (OUTPUT:1). Similarly, the second flow instructs the
switch to forward the packets from port 1 to port 2. The inserted flows allow switch s1 to
exchange packets between hosts h1 and h2 without relaying them to the controller.

Lab 4: Introduction to SDN

 Page 20

Note that these two flows expire after a certain duration. This is because the forwarding
application sets an expiry time for the inserted flows to avoid overflowing the flow table
of the switches.

4 Navigating the ONOS GUI

The ONOS GUI is a single-page web-application, providing a visual interface to the ONOS
controller. In this section, you will navigate through the ONOS GUI and discover a number
of its features.

4.1 Accessing the web user interface

Step 1. Open the web browser by clicking on the shortcut located on the lower left-hand
side.

Figure 33. Opening the web browser

Step 2. Navigate to the following URL to access the ONOS web user interface.

localhost:8181/onos/ui

Figure 34. Opening the ONOS web user interface.

Step 3. Provide the following credentials to access the web user interface.

• User: onos

• Password: rocks

Lab 4: Introduction to SDN

 Page 21

Figure 35. ONOS authentication window.

A topology consisting of three switches will be displayed. Such topology corresponds to
the one created on Mininet.

Figure 36. Displaying the topology in ONOS GUI.

Notice that the network components will show up in a random arrangement. You can click
on the components and drag them to their preferred location.

4.2 Exploring network components

The ONOS web user interface provides the tools to monitor the specification of each
device that in the network.

Lab 4: Introduction to SDN

 Page 22

Step 1. To open the ONOS menu, click on the upper left-hand side icon. A drop-down
menu will be displayed. To check the devices, click on devices. A new window will emerge.

Figure 37. Opening devices.

The emerging window will display three devices. Those three devices correspond to the
three switches that compound the topology. The information provided in the GUI
includes:

• FRIENDLY NAME: if not specified, it is the name of the device.

• DEVICE ID: name of the switch.

• MASTER: IP address where ONOS is running. ONOS is running locally in a docker
container (172.17.0.2).

• PORTS: number of ports of the switch.

• PROTOCOL: OpenFlow version running on the switch.

Lab 4: Introduction to SDN

 Page 23

Figure 38. Information about the devices.

Step 2. Click on the entry corresponding to switch s1 (0000000000000001).

Figure 39. Selecting switch s1.

Consider Figure 39. Once you select a device, a side window will appear on the right-hand
side of the screen showing a summary of the device.

Step 3. Click on the upper right button to show a view of the flow table of switch s1.

Figure 40. Displaying the flow table of switch s1.

Similarly, you can navigate around the buttons displayed on the upper right to display
information related to the port of the selected device, as well as other advanced features.

Lab 4: Introduction to SDN

 Page 24

Step 4. From the menu list, click on hosts to verify the hosts’ information.

Figure 41. Opening hosts.

Similarly, the new window presents the information regarding the hosts that compound
the topology. The information provided in the GUI include:

• Host ID/MAC ADDRESS: mac address of the host.

• IP ADDRESSES: IP address of the host.

• Location: the port of the switch connected to the host.

Figure 42. Hosts’ information.

Step 5. Go back to the main window (topology).

Lab 4: Introduction to SDN

 Page 25

Figure 43. Opening the topology.

Step 6. Click on the bar located on the lower left-hand side. A toolbox will show up. Select
the host icon to see the hosts connected to the topology.

Figure 44. Enabling hosts visualization.

Lab 4: Introduction to SDN

 Page 26

Step 7. Go back to the topology to verify the network components.

Figure 45. Network components.

Consider Figure 45. The information attached to the hosts includes their IP addresses.

Step 8. To view a summary of a specific device, you can click on that device as shown in
the figure below.

Figure 46. Network components.

Consider Figure 46. Upon clicking on switch s1, a panel opens on the right-hand side of
the topology. The panel displays a summary of the device. For example, if it is a switch, it
would display information such as the name, number of ports, and flows in that switch.

Lab 4: Introduction to SDN

 Page 27

Step 9. From the menu list, click on Applications to load the applications available in ONOS.

Figure 47. Opening applications.

Figure 48. Displaying ONOS applications.

Consider Figure 48. A list of all the available applications is displayed. The activated
applications are checked in green (e.g., Default Drivers application), whereas the
deactivated applications are marked with a red square (e.g., Access Control Lists

Lab 4: Introduction to SDN

 Page 28

application). Note that the activated applications are a result of activating the OpenFlow
and the forwarding application.

Step 10. To deactivate an application, you can click on the application, click the
deactivation button (gray square on the right-hand side of the window), then confirm the
operation. The steps are shown in the figure below, where we deactivate the forwarding
application (reactive forwarding).

Figure 49. Deactivating an application using the GUI.

Step 11. To activate an application, you can click on the application, click the activation
button (gray arrow on the right-hand side of the window), then confirm the operation.
The steps are shown in the figure below, where we activate the forwarding application
(reactive forwarding).

Figure 50. Activating an application using the GUI.

This concludes Lab 4. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O'Connor,
P. Radoslavov, W. Snow, and G. Parulkar. "ONOS: towards an open, distributed SDN
OS," In Proceedings of the third workshop on Hot topics in software defined
networking, pp. 1-6, 2014.

2. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner. "OpenFlow: enabling innovation in campus networks." ACM
SIGCOMM Computer Communication Review 38, no. 2 (2008): 69-74.

3. D. Kreutz, F.M. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, and S. Uhlig,
“Software-defined networking: A comprehensive survey,” Proceedings of the IEEE,
103(1), pp.14-76, 2014.

Lab 4: Introduction to SDN

 Page 29

4. P. Goransson, C. Black, T. Culver. “Software defined networks: a comprehensive
approach”. Morgan Kaufmann, 2016.

5. Mininet walkthrough, [Online]. Available: http://mininet.org.

SOFTWARE DEFINED NETWORKING

Exercise 1: SDN Network Configuration

Document Version: 09-02-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Exercise 1: SDN Network Configuration

Contents

1 Exercise description .. 3

1.1 Topology settings ... 3

1.2 Credentials ... 3

2 Deliverables ... 4

Exercise 1: SDN Network Configuration

1 Exercise description

Consider Figure 1. The topology consists of two end-hosts, two switches and a controller
within the Software Defined Networking (SDN) network. The blue devices represent
OpenFlow switches. All switches are connected to the controller c0.

The goal of this exercise is to manage the OpenFlow switches using the ONOS controller
so that the two hosts can communicate with each other. Essentially, you should navigate
through the ONOS Command Line Interface (CLI) to enable applications, inspect the links,
devices, etc., and the flow table of the switches. The topology below is already built and
you should use Mininet to emulate it.

s1

s1-eth1

s2

h1 h2

h1-eth0

s2-eth1

h2-eth0
15.0.0.0/8

Out-of-band connection

c0

.1 .2

s1-eth2 s2-eth2

Figure 1. Exercise topology.

1.1 Topology settings

The devices are already configured according to Table 1.

Table 1. Topology information.

Device Interface MAC Address IP Address Subnet

h1 h1-eth0 00:00:00:00:00:01 15.0.0.1 /8

h2 h2-eth0 00:00:00:00:00:02 15.0.0.2 /8

c0 N/A N/A 172.17.0.2 /16

1.2 Credentials

Exercise 1: SDN Network Configuration

The information in Table 2 provides the credentials to access the Client’s virtual machine.

Table 2. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

2 Deliverables

Follow the steps below to complete the exercise.

a) Open MiniEdit and load the topology above. The topology file Exercise1.mn of this
exercise is in the directory ~/SDN_Labs/Exercise1 as shown in the figure below.

Figure 2. Loading the topology file in Mininet.

b) In the Linux terminal, navigate to the directory ~/SDN_Labs/Exercise1 and execute, in
superuser mode, the script run_onos.sh that runs the ONOS controller. When prompted
for a password, type password. The steps to run ONOS are depicted in the figure below.

Figure 3. Starting the ONOS controller.

Exercise 1: SDN Network Configuration

c) In the ONOS terminal, inspect and list the flows, devices, hosts, and links observed by
the ONOS controller. Explain the results.

d) Activate the necessary ONOS application that allows the controller to communicate
with the OpenFlow switches. Repeat the previous step and report any changes. Explain
the results.

e) Test the connectivity between the two hosts by performing a ping test from host h1 to
host h2. Explain the result of the connectivity test.

f) Activate the necessary ONOS application that enables IP forwarding.

g) In the ONOS terminal, inspect the flow table of switches s1 and s2 and report the flow
entry (specifically, the match and the action of the entry) that enables IP forwarding.

h) Test the connectivity between the two hosts by performing a ping test from host h1 to
host h2. While the connectivity test is running, report the added entries in the flow table
of switch s1 and explain their functionality.

SOFTWARE DEFINED NETWORKING

Lab 5: Configuring VXLAN to Provide Network
Traffic Isolation

Document Version: 03-30-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 VXLAN architecture .. 4

1.2 VXLAN segment format .. 5

2 Lab topology.. 6

2.1 Lab settings... 6

2.2 Loading the topology.. 7

2.3 Load the configuration file ... 9

2.4 Run the emulation .. 10

2.5 Verify the configuration ... 11

3 Configuring OSPF on routers r1, r2, and r3 ... 14

4 Configuring VXLAN .. 17

4.1 Run Mininet instances within the containers .. 18

4.2 Adding entries to the flow tables of the switches ... 20

5 Verifying configuration ... 22

5.1 Performing connectivity test between end-hosts ... 23

5.2 Verifying VXLAN network identifiers using Wireshark 24

References .. 29

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 3

Overview

This lab presents Virtual eXtensible Local Area Network (VXLAN), a network virtualization
scheme that provides a solution for the scalability problems associated with data center
and large cloud computing deployments. The goal of this lab is to configure VXLAN to
isolate network traffic within an emulated environment.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of VXLAN.
2. Emulate servers by using docker containers.
3. Push flow tables to configure VXLAN in a switch.
4. Isolate network traffic by using VXLAN.
5. Visualize VXLAN network identifiers by using Wireshark.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Configuring OSPF router r1 and router r2.
4. Section 4: Configuring VXLAN.
5. Section 5: Verifying configuration.

1 Introduction

Data centers operate by hosting services for multiple tenants, such as data servers and
cloud computing services. Those services require on-demand provisioning of computing
resources for multi-tenant environments. Network virtualization supports such
requirements and provides an efficient way to host multiple tenants on the same server.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 4

Additionally, it incorporates traffic isolation to avoid a tenant having access to another
tenant's data.

Network traffic isolation can be performed on layer 2 or layer 3 networks. For example,
Virtual Local Area Networks (VLANs) isolate layer 2 traffic by tagging and handling
network frames. However, VLAN-based network isolation can handle up to 4094 VLANs,
which is insufficient considering cloud services' high demand. Additionally, a tenant might
require multiple VLANs, which aggravates the issue.

On the other hand, layer 3 networks do not provide a comprehensive solution for multi-
tenant networks. Two tenants might use the same set of layers 3 addresses within their
networks, which requires the cloud provider to provide traffic isolation in other forms.
Further, requiring all tenants to use IP excludes customers relying on direct layer 2 or non-
IP layer 3 protocols for inter virtual machine (VM) communication.

1.1 VXLAN architecture

Virtual eXtensible Local Area Network1 (VXLAN) addresses the shortcomings of VLAN,
providing a framework for overlaying virtualized layer 2 networks over layer 3 networks.
Hypervisor-based overlay networks are a novel use of Software-Defined Network (SDN)
capabilities. This concept does not modify the physical network, which means that
networking devices and their configurations remain unchanged. In these networks,
details about the physical network are not shared or accessible from the end-devices.
VXLAN runs over the existing networking infrastructure and supports a higher number of
hosts compared to what VLANs can handle. Each overlay is unique within the tenant
domain and is known as the VXLAN segment. The communication is restricted just among
hosts within the same VXLAN segment.

Figure 1(a) presents a topology that illustrates how VXLAN segments are transported over
a layer 3 network (e.g., IP network). The endpoints of the tunnels are known as the VXLAN
Tunnel End Point (VTEP). The VTEP is responsible for encapsulating the layer 2 frames in
a VXLAN header and forward that on the IP Network. It also handles the reversal process
that consists of de-encapsulating an incoming VXLAN segment and forward the original
frame to its corresponding Local Area Network (LAN). Figure 1(b) shows that the VXLAN
framework is represented as a tunneling scheme that transports layer 2 frames on top of
a layer 3 network. The tunnels are stateless, meaning that each frame is encapsulated
according to a set of predefined rules. The end-hosts do not store session information.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 5

Figure 1. VXLAN overview. (a) VXLAN segments are transported over a layer 3 network (e.g., IP
network). (b) The VXLAN framework is represented as a tunneling scheme that transports layer 2
frames on top of layer 3 networks.

1.2 VXLAN segment format

Figure 2 illustrates the format of a VXLAN segment2. The original layer 2 frame contains a
VXLAN header encapsulated in a UDP-IP packet. VXLAN encapsulation adds an 8-bytes
header to the original layer 2 frame. The VXLAN header and the original layer 2 frame are
in the UDP payload. The outer header contains the MAC and IP addresses appropriate for
sending a unicast packet to the destination switch, acting as a virtual tunnel endpoint. A
VXLAN segment consists of a 24-bit segment tag called the VXLAN Network Identifier (VNI).
Therefore, VXLANs can handle around 16 million (i.e., 224) network segments that coexist
within the same administrative domain.

Server 1 Server 2

h1 h3

h2 h4

 VXLAN 100 VXLAN 200

IP Network

Hypervisor Hypervisor

s1 s2

(b)

VXLAN Tunnels

Server 1 Server 2

h1 h3

h2 h4

IP Network

s2

Hypervisor

s1

r1 r2

r3

Hypervisor(a)

VTEP VTEP
VXLAN

Segments

VTEP VTEP

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 6

Figure 2. VXLAN segment format.

2 Lab topology

Consider Figure 3. The topology consists of four end-hosts, two switches, and three
routers. The end-hosts and switches are running inside Server 1 and Server 2. Those
servers are implemented in Docker10 containers (i.e., Container d1 and Container d2),
which run Mininet instances. Routers r1, r2, and r3 run Free-Range Routing (FRR) engine
representing an IP network.

Server 1 Server 2

h1 h3

h2 h4

 VXLAN 100 VXLAN 200

IP Network

s1 s2
r1 r2

r3

10.0.0.0/8 10.0.0.0/8

.1

.1 .2

.2

h1-eth0

h2-eth0

h3-eth0

h4-eth0

s1-eth1

s1-eth2

s2-eth1

s2-eth2

203.0.13.0/30 203.0.23.0/30

s1-eth0 s2-eth0r1-eth0 r2-eth0

192.168.1.0/24 192.168.2.0/24

d1-eth0 d2-eth0

.10 .10.1 .1

.1

.2 .1

.2

Container d1 Container d2

Figure 3. Lab topology.

2.1 Lab settings

The devices are already configured according to Table 2.

Outer
MAC Header

Outer
IP Header

UDP
Header

VXLAN
Header

Original Layer 2 Frame

V
XL

A
N

R
R

R
R

 1
R

R
R

R
e

se
rv

e
d

R
e

se
rv

e
d

V
N

ID

24-bits

8-bytes

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 7

Table 2. Topology information.
Device Interface IP Address Subnet

r1

r1-eth0 192.168.1.1 /24

r1-eth1 203.0.13.1 /30

r2

r2-eth0 192.168.2.1 /24

r2-eth1 203.0.23.2 /30

r3

r3-eth0 203.0.13.2 /30

r3-eth1 203.0.23. /30

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.1 /8

h3 h2-eth0 10.0.0.2 /8

h4 h4-eth0 10.0.0.2 /8

d1 d1-eth0 192.168.1.10 /24

d2 d2-eth0 192.168.2.10 /24

2.2 Loading the topology

In this section, you will open MiniEdit and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet. This tool has additional capabilities such as configuring network
elements (i.e., IP addresses, default gateway), saving the topology, and exporting a layer
2 model.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 8

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the Lab5.mn topology file stored in the default directory, /home/sdn/SDN_Labs /lab5 and
click on Open.

Figure 5. Opening topology.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 9

Figure 6. MiniEdit’s topology.

2.3 Load the configuration file

At this point, the topology is loaded. However, the interfaces are not configured. In order
to assign IP addresses to the interfaces of the devices, you will execute a script that loads
the configuration to the routers.

Step 1. Click on the icon below to open the Linux terminal.

Figure 7. Opening Linux terminal.

Step 2. Click on the Linux terminal and navigate into SDN_Labs/lab5 directory by issuing
the following command. This folder contains a configuration file and the script
responsible for loading the configuration. The configuration file will assign the IP
addresses to the interfaces of the routers. The cd command is short for the change
directory followed by an argument that specifies the destination directory.

cd SDN_Labs/lab5

Figure 8. Entering the SDN_Labs/lab5 directory.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 10

Step 3. To execute the shell script, type the following command. The argument of the
program corresponds to the configuration zip file that will be loaded in all the routers in
the topology.

./config_loader.sh lab5_conf.zip

Figure 9. Executing the shell script to load the configuration.

Step 4. Type the following command to exit the Linux terminal.

exit

Figure 10. Exiting from the terminal.

2.4 Run the emulation

In this section, you will run the emulation and check the links and interfaces that connect
the devices in the given topology.

Step 1. To proceed with the emulation, click the Run button located on the lower left-
hand side.

Figure 11. Starting the emulation.

Step 2. Issue the following command on the Mininet terminal to display the interface
names and connections.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 11

links

Figure 12. Displaying network interfaces.

In Figure 12, the link displayed within the gray box indicates that interface eth1 of router
r1 connects to interface eth0 of router r3 (i.e., r1-eth1<->r3-eth0).

2.5 Verify the configuration

You will verify the IP addresses listed in Table 2 and inspect the routing table of routers
r1, r2, and r3.

Step 1. In order to verify router r1, hold right-click on router r1 and select Terminal.

Figure 13. Opening a terminal on router r1.

Step 2. In this step, you will start the zebra daemon, a multi-server routing software that
provides TCP/IP-based routing protocols. The configuration will not be working if you do
not enable the zebra daemon initially. In order to start zebra, type the following command.

zebra

Figure 14. Starting zebra daemon.

Step 3. After initializing zebra, vtysh must be started, vtysh is the command-line interface
(CLI) used to configure the router. To proceed, issue the following command.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 12

vtysh

Figure 15. Starting vtysh on router r1.

Step 4. Type the following command on router r1 terminal to verify the routing table of
router r1. It will list all the directly connected networks. The routing table of router r1
does not contain any route to external networks as there is no routing protocol configured
yet.

show ip route

Figure 16. Displaying routing table of router r1.

The output in the figure above shows that the networks 192.168.1.0/24 and
203.0.13.0/30 are directly connected through the interfaces r1-eth0 and r1-eth1,
respectively.

Step 5. Hold right-click on router r2 and select Terminal.

Figure 17. Opening a terminal on router r2.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 13

Step 6. Router r2 is configured similarly to router r1 but with different IP addresses (see
Table 2). Those steps are summarized in the following figure. To proceed, in router r2
terminal issue the commands depicted below. In the end, you will verify all the directly
connected networks of router r2.

Figure 18. Displaying routing table of router r2.

Step 7. Hold right-click on router r3 and select Terminal.

Figure 19. Opening a terminal on router r3.

Step 8. Router r3 is configured according to Table 2. Those steps are summarized in the
following figure. To proceed, in router r3 terminal issue the commands depicted below.
In the end, you will verify all the directly connected networks of router r3.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 14

Figure 20. Displaying routing table of router r3.

3 Configuring OSPF on routers r1, r2, and r3

In this section, you will configure the OSPF routing protocol in routers r1, r2, and r3. First,
you will enable the OSPF daemon on the routers. Second, you will establish a single-area
OSPF, which is classified as area 0 or backbone area. Finally, you will advertise all the
connected networks.

Step 1. To configure the OSPF routing protocol, you need to enable the OSPF daemon first.
In router r1, type the following command to exit the vtysh session.

exit

Figure 21. Exiting the vtysh session.

Step 2. Type the following command on the router r1 terminal to enable the OSPF
daemon.

ospfd

Figure 22. Starting OSPF daemon.

Step 3. In order to enter to router r1 terminal, issue the following command.

vtysh

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 15

Figure 23. Starting vtysh on router r1.

Step 4. To enable router r1 global configuration mode, issue the following command.

configure terminal

Figure 24. Enabling configuration mode on router r1.

Step 5. In order to configure the OSPF routing protocol, type the command shown below.
This command enables OSPF configuration mode where you advertise the networks
directly connected to router r1.

router ospf

Figure 25. Configuring OSPF on router r1.

Step 6. In this step, you will enable all the interfaces of the router r1 to participate in the
OSPF routing process, i.e., all the attached networks will be advertised to OSPF neighbors.
The advertised networks have area 0. To advertise all connected networks, issue the
following command.

network 0.0.0.0/0 area 0

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 16

Figure 26. Enabling all the interfaces of router r1 to participate in the OSPF routing process.

Step 7. Type the following command to exit from the configuration mode.

end

Figure 27. Exiting from the configuration mode.

Step 8. Router r2 is configured similarly to router r1. Those steps are summarized in the
following figure. To proceed, on route r2 terminal, issue the commands depicted below.

Figure 28. Summary of router r2 configuration.

Step 9. Router r3 is configured similarly to router r2. Those steps are summarized in the
following figure. To proceed, on route r3 terminal, issue the commands depicted below.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 17

Figure 29. Summary of router r3 configuration.

Step 10. Navigate into router r1 terminal and, type the following command to verify the
routing table of router r1.

show ip route

Figure 30. Verifying the routing table of router r1.

Consider the figure above. The network 192.168.2.0/24 is learned via OSPF (O>*) and it

is reachable via the next hop 203.0.13.2 (router r3).

4 Configuring VXLAN

In this section, you will start the networks within containers d1 and d2. Both containers
run a Mininet topology, as depicted in Figure 3. In container d1, the topology consists of
two end-hosts (h1 and h2) connected to a switch (s1). Similarly, container d2 runs a
topology with two end-hosts (h3 and h4) connected to a switch (s2). The end-hosts within
the containers will be isolated by using VXLAN.

Note that the containers d1 and d2 emulate a multi-tenant environment. Multi-tenancy
is a mode of operation where multiple independent instances such as end-hosts (see
Figure 3) of a tenant operate in a shared environment while ensuring logical segmentation
between the instances. A tenant could be a business entity, user group, applications, or

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 18

cloud services. The tenant instances such as h1, h2, h3, and h4 are logically isolated but
physically operate on the same fabric.

4.1 Run Mininet instances within the containers

The following section shows the steps to run a Mininet topology within the containers
and how to navigate through the configuration files.

Step 1. Hold right-click on container d1 and select Terminal as shown below. A window
will appear.

Figure 31. Opening container’s d1 Terminal.

Step 2. In container d1 terminal, execute the following python script to start a Mininet
instance that consists of two end-hosts connected to a switch.

python start_server1.py

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 19

Figure 32. Starting a Mininet instance within container d1.

The figure above starts a Mininet instance in container d1. Also, the information about
the end-hosts is summarized after starting switch s1.

Notice that host h1 and host h2 have the same IP addresses and MAC addresses. They will
be isolated using VXLAN.

Step 3. In container d1, run the following command to verify the devices in the topology.

links

Figure 33. Verifying the links between the devices in container d1.

The figure above shows that the host h1 and switch s1 are connected via the interface
pair h1-eth0<->s1-eth1. Similarly, host h2 is connected to the switch s1 (h2-eth0<->s1-
eth2).

Step 4. Similarly, in container d2 terminal, execute the following python script to start a
Mininet instance that consists of two end-hosts connected to a switch as well.

python start_server2.py

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 20

Figure 34. Starting a Mininet instance within container d2.

The figure above starts a Mininet instance in container d2. Also, the information about
the hosts is summarized after starting switch s2.

Notice that host h3 and host h4 have the same IP addresses and MAC addresses. These
hosts will be isolated b using VXLAN.

Step 5. In container d2 terminal, run the following command to verify the devices in the
topology.

links

Figure 35. Verifying the links between the devices in container d2.

The figure above shows that the host h3 and switch s2 are connected via the interface
pair h3-eth0<->s2-eth1. Similarly, host h4 is connected to the switch s2 (h4-eth0<->s2-
eth2).

4.2 Adding entries to the flow tables of the switches

In this section, you will add entries to the flow tables of switch s1 and switch s2. These
entries are added to a table that is responsible for traffic processing. In this lab, the flow

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 21

tables specify the VXLAN tags and the actions to forward the packets to their right
destination.

The main purpose of configuring VXLAN in this lab is to isolate the traffic from h1 to h3
and from h2 to h4.

Step 1. in container d1, type the following to visualize the entries of the flow table to be
added to switch s1.

sh cat flows1.txt | nl

Figure 36. Flow table in container d1.

The file contains entries for two tables (i.e., table 0 and table 1). The first three lines
correspond to table 0. In line 1 and 2, the switch is instructed to add the VNID as a function
of the ingress ports. Line 3 specifies that all packets from table 0 must be resubmitted to
table 1. Table 1 (i.e., from line 4 to line 8) specifies the output of a packet depending on
its destination IP address and its VNIC. Line 8 enables ARP.

Step 2. In container d1, type the following command to add entries to the flow table of
switch s1.

sh ovs-ofctl add-flows s1 flows1.txt

Figure 37. Adding flow entries to switch s1.

Step 3. In this step, you will configure a VTEP that will enable outgoing traffic from switch
s1 to the external network. A script is written to facilitate this process. To execute the
script, type the following command.

sh ./vxlan_cmd1.cmd

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 22

Figure 38. Enabling outgoing traffic in switch s1.

The script above executes the following command:

ovs-vsctl add-port s1 vtep -- set interface vtep type=vxlan option:
remote_ip=192.168.2.10 option:key=flow ofport_request=10

VTEP is the entity responsible for encapsulating and de-encapsulating layer 2 traffic. It
handles the connection between the overlay and the underlay network. In this case, the
VTEP is configured to transfer packets between the switches and the container’s
interface.

Step 4. In container d2, issue the following command to add entries to the flow table of
switch s2.

sh ovs-ofctl add-flows s2 flows2.txt

Figure 39. Adding flow entries to switch s2.

Step 5. Similarly, in container d2, type the command below to configure a VTEP in order
that enables outgoing traffic from switch s2 to the outer network.

sh ./vxlan_cmd2.cmd

Figure 40. Enabling outgoing traffic in switch s2.

The script above executes the following command:

ovs-vsctl add-port s2 vtep -- set interface vtep type=vxlan option:
remote_ip=192.168.1.10 option:key=flow ofport_request=10

5 Verifying configuration

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 23

In this section, you will verify that the VXLAN tags were applied correctly. You will also
notice that the traffic between h1 and h3 has the VXLAN tag 100 and the traffic between
h2 and h4 has the VXLAN tag 200. This tag is known as the VNI, which is used to identify
VXLAN traffic.

5.1 Performing connectivity test between end-hosts

The following steps aim to verify the connectivity between end-hosts. This means that
there should be connectivity between h1 and h3, as well as between hosts h2 and h4.

Step 1. In container d1 terminal, issue the following command to verify the connectivity
between host h1 and host h3. Notice that h1 specifies host 1 as the source.

h1 ping 10.0.0.2

Figure 41. Performing a connectivity test between host h1 and host h3.

Consider the figure above. The results show a successful connectivity test.

Step 2. In container d2 terminal, issue the command shown below to disable the network
interface of host h3.

h3 ip link set dev h3-eth0 down

Figure 42. Disabling h3 network interface.

Step 3. Click on container d1 terminal. You will verify that the connectivity is lost. Press
Ctrl+c to stop the test.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 24

Figure 43. Verifying connectivity between host h1 and host h3.

Step 4. In container d1 terminal, issue the following command to test the connectivity
between host h2 and host h4. Notice that h2 specifies host h2 as the source.

h2 ping 10.0.0.2

Figure 44. Performing a connectivity test between host h2 and host h4.

The results will display a successful connectivity test. Do not stop the connectivity test.

5.2 Verifying VXLAN network identifiers using Wireshark

The following steps show how to verify VXLAN network identifiers using the Wireshark
network analyzer. The identifiers are used by the switch to isolate network traffic.

Step 1. Click on router r3 terminal and issue the following command to exit the vtysh
session.

exit

Figure 45. Exiting from vtysh.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 25

Step 2. In router r3 terminal, start Wireshark by issuing the following command. A new
window will emerge.

wireshark

Figure 46. Starting Wireshark network analyzer.

After executing the above command on the router r3 terminal, the Wireshark window will
open, where you monitor different interfaces related to router r3.

Step 3. Click on interface r3-eth1 then, click the blue ‘shark fin’ icon located on the upper
left-hand side to start capturing packets on this interface.

Figure 47. Starting packet capturing on interface r3-eth0.

Step 4. In the filter box located on the upper left-hand side, type vxlan to filter the packets
containing VXLAN tags.

Figure 48. Filtering network traffic.

Step 5. Stop the packet capturing by clicking the red stop button.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 26

Figure 49. Stopping the packet capturing.

Step 6. Select a packet which source IP is 10.0.0.1 and destination IP is 10.0.0.2.

Figure 50. Selecting a packet for further inspection.

Step 7. Click on the arrow located on the left most of the field called Virtual eXtensible
Local Area Network. A list will be displayed. Verify that the VXLAN Network Identifier is
200. Notice that such tag corresponds to the traffic from h2 to h4.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 27

Figure 51. Verifying VXLAN network identifier.

Step 8. In container d1, press Ctrl+c to stop the test.

Step 9. In the container d2 terminal, re-enable the network interface in host h3 by issuing
the following command.

h3 ip link set dev h3-eth0 up

Figure 52. Re-enabling interface h2-eth0.

Step 10. Perform a connectivity test between h1 and h3 by issuing the following command.

h1 ping 10.0.0.2

Figure 53. Performing a connectivity test between host h1 and host h3.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 28

Consider the figure above. The results show a successful connectivity test.

Step 11. The Wireshark window starts the packet capturing by clicking on the button
located on the upper left-hand side.

Figure 54. Starting packet capturing.

Step 12. A notification window will be prompted. Click on Continue without Saving to
proceed.

Figure 55. Closing without saving previous packet capture.

Step 13. Stop the packet capturing by clicking the red stop button.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 29

Figure 56. Stopping the packet capturing.

Step 14. Select a packet which source IP is 10.0.0.1 and destination IP is 10.0.0.2.

Figure 57. Selecting a packet for further inspection.

Step 15. Select a packet which source IP is 10.0.0.1 and verify that the VXLAN Network
Identifier is 100. Notice that this tag corresponds to the traffic from h1 to h3.

Figure 58. Verifying VXLAN network identifier.

This concludes Lab 5. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 30

1. M. Mallik, D. Dut, K.Duda, P. Agarwal, L. Kreeger, TSridhar, M. Bursell and C. Wright.
"RFC 7348: Virtual eXtensible Local Area Network (VXLAN): a framework for
overlaying virtualized layer 2 networks over layer 3 Networks.", (2014).

2. Cisco press., “Implementing Data Center Overlay Protocols.”, [Online]: Available:
https://www.ciscopress.com/articles/article.asp?p=2999385&seqNum=3.

3. Mininet walkthrough, [Online]. Available: http://mininet.org.
4. M. Peuster, J. Kampmeyer, and H. Karl. "Containernet 2.0: A rapid prototyping

platform for hybrid service function chains." 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). (2018).

5. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner. "OpenFlow: enabling innovation in campus networks." ACM
SIGCOMM Computer Communication Review 38, no. 2 (2008).

6. P. Goransson, C. Black, T. Culver. “Software defined networks: a comprehensive
approach”. Morgan Kaufmann, (2016).

7. P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, "ONOS:
towards an open, distributed SDN OS," In Proceedings of the third workshop on Hot
topics in software defined networking, (2014).

8. Juniper Networks, “Understanding EVPN with VXLAN Data Plane Encapsulation”,
[Online]. Available: https://www.juniper.net/documentation/en_US/junos/topics
/concept/evpn-vxlan-data-plane-encapsulation.html.

9. Q. Xiaorong, W. Hao, and Y. Yin. "L3 gateway for VXLAN." U.S. Patent No. 8,923,155.
(2014).

10. D. Merkel. "Docker: lightweight linux containers for consistent development and
deployment." Linux journal, (2014).

11. Linux foundation collaborative projects, “FRRouting: what’s in your router”, [Online].
https://frrouting.org/

SOFTWARE DEFINED NETWORKING

Exercise 2: Configuring VXLAN

Document Version: 09-02-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Exercise 2: Configuring VXLAN

Contents

1 Exercise description .. 3

1.1 Topology settings ... 3

1.2 Credentials ... 4

2 Deliverables ... 4

Exercise 2: Configuring VXLAN

1 Exercise description

Consider Figure 1. The topology comprises two servers using Docker containers, both
connected to the IP network. Each server contains three hosts that run in Mininet. In each
server, every host has a unique IP address and a VXLAN Network Identifier (VNID). Within
the two servers, hosts that have the same VNID, also share the same IP address.

The goal of this exercise is to isolate the traffic in each server and provide end-to-end
connectivity between the hosts with the same VNID. To do that, you should connect two
remote servers over an IP network using VXLAN. Essentially, you should configure a single
area OSPF within the IP network. Then, you need to configure VTEP in each server to
isolate the traffic, and load the flow tables to switches s1 and s2.

Server 1 Server 2

h1

h2

h6

 VNID 10 VNID 20

IP Network

s1 s2r1

r3

20.0.0.0/24

.1

s1-eth0 s2-eth0r1-eth0 r2-eth0

d1-eth0 d3-eth0

.10 .10

Container d1 Container d2

h3

h5

h4

.2

.1

.1

.2

.2

.2

h2-eth0
s1-eth2

 VNID 30

s2-eth2
h5-eth0

20.0.0.0/24

173.0.13.0/30

.1 .1

r2192.168.10.0/24 192.168.20.0/24

r1-eth1 .1

r3-eth0 r3-eth1

.1.2

r2-eth1

173.0.23.0/30

Figure 1. Exercise topology.

1.1 Topology settings

The devices are already configured according to Table 1.

Table 1. Topology information.
Device Interface IIP Address Subnet

Router r1

r1-eth0 192.168.10.1 /24

r1-eth1 173.0.13.1 /30

Router r2

r2-eth0 192.168.20.1 /24

r2-eth1 173.0.23.2 /30

Router r3
r3-eth0 173.0.13.2 /30

r3-eth1 173.0.23.1 /30

Exercise 2: Configuring VXLAN

Host h1 h1-eth0 20.0.0.1 /24

Host h2 h2-eth0 20.0.0.1 /8

Host h3 h3-eth0 20.0.0.1 /8

Host h4 h4-eth0 20.0.0.2 /8

Host h5 h5-eth0 20.0.0.2 /8

Host h6 h6-eth0 20.0.0.2 /8

1.2 Credentials

The information in Table 2 provides the credentials to access the Client’s virtual machine.

Table 2. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

2 Deliverables

Follow the steps below to complete the exercise.

a) Open MiniEdit and load the topology above. The topology file Exercise2.mn of this
exercise is in the directory /home/sdn/SDN_Labs/Exercise2 as shown in the figure below.
Do not run MiniEdit.

Figure 2. Loading the topology file in Mininet.

Exercise 2: Configuring VXLAN

b) In Linux terminal, run the script responsible for loading the IP addresses to the
interfaces of the routers as shown in the figure below. The script config_loader.sh takes
the IP addresses file Exercise2_conf.zip as an argument, and both files are in the directory
SDN_Labs/Exercise2.

Figure 3. Executing the shell script to load the configuration.

c) Run MiniEdit and verify in Mininet terminal that the links conform to the topology
figure and settings table above.

d) Configure a single area OSPF in each router. Essentially, the routers should advertise
via OSPF all their directly connected networks.

e) In the container d1, run the following python script to start the Mininet topology:

python start_server1.py

f) In the container d2, run the following python script to start the Mininet topology:

python start_server2.py

g) In the container d1, add entries to the flow tables of switch s1 by issuing the following
command:

ovs-ofctl add-flows s1 flows1.txth

h) In the container d2, add entries to the flow tables of switch s2 by issuing the following
command:

ovs-ofctl add-flows s2 flows2.txt

i) In the container d1, run the following command to configure the VTEP:

sh ./vxlan_cmd1.cmd

j) In the container d2, run the following command to configure the VTEPs:

sh ./vxlan_cmd2.cmd

k) Verify the configuration by testing the connectivity between hosts with the same VNID.

Exercise 2: Configuring VXLAN

l) Capture packets on the interface r2-eth0 using Wireshark and verify that the VNIDs are
configured according to the topology in Figure 1.

SOFTWARE DEFINED NETWORKING

Lab 6: Introduction to OpenFlow

Document Version: 07-03-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 6: Introduction to OpenFlow

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 OpenFlow Overview ... 3

1.2 OpenFlow components .. 4

2 Lab topology.. 5

2.1 Lab settings... 6

2.2 Loading the topology.. 6

3 Monitoring and administering OpenFlow switches .. 8

4 Capturing OpenFlow packets .. 12

4.1 Starting Wireshark .. 12

4.2 Starting the ONOS controller ... 14

4.3 Capturing PACKET_IN and PACKET_OUT messages ... 17

References .. 21

Lab 6: Introduction to OpenFlow

 Page 3

Overview

This lab is an introduction to OpenFlow, which defines both the communications protocol
between the Software Defined Networking (SDN) data plane and the SDN control plane,
and part of the behavior of the data plane. In this lab, you will use the ovs-ofctl command
line utility to administer OpenFlow switches, such as inserting/deleting flows. The focus
in this lab is to understand and inspect the OpenFlow messages exchanged between the
control plane and the data plane.

Objectives

By the end of this lab, you should be able to:

1. Understand SDN and its components.
2. Understand OpenFlow.
3. Configure OpenFlow switches using ovs-ofctl.
4. Configure the ONOS controller.
5. Use the Wireshark network analyzer to capture OpenFlow packets.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Monitoring and administering OpenFlow switches.
4. Section 4: Capturing OpenFlow packets.

1 Introduction

1.1 OpenFlow Overview

Lab 6: Introduction to OpenFlow

 Page 4

OpenFlow defines both the communication protocol between the SDN data plane and the
SDN control plane, as well as part of the behavior of the data plane. It does not describe
the behavior of the controller itself. There are other approaches to SDN, but today
OpenFlow is the only nonproprietary, general-purpose protocol for programming the
forwarding plane of SDN switches3.

Consider Figure 1. In a basic component of the OpenFlow system, there is always an
OpenFlow controller that communicates to one or more OpenFlow switches. The
OpenFlow protocol defines the specific messages and message formats exchanged
between the controller (control plane) and the device (data plane). The OpenFlow
behavior specifies how the device should react in various situations and how it should
respond to commands from the controller.

s1

c0

s2 s3 s5s4

Figure 1. OpenFlow components.

1.2 OpenFlow components

In a packet switch, the core function is to take packets that arrive on one port and forward
them through another port. OpenFlow switches perform this operation using the packet-
matching function with the flow table. Thus, once a packet arrives to the switch, the
packet matching function will look up in its flow table and check if there is a match.
Consequently, the switch will decide which action to take based on the flow table. The
action could be:

• Forward the packet out a local port.

• Drop the packet.

• Pass the packet to the controller.

The basic functions of an OpenFlow switch and its relationship to a controller are depicted
in Figure 2. When the data plane does not have a match to the incoming packet, it sends
a PACKET_IN message to the controller. The control plane runs routing and switching
protocols and other logic to determine what the forwarding tables and logic in the data
plane should be. Consequently, when the controller has a data packet to forward out

Lab 6: Introduction to OpenFlow

 Page 5

through the switch, it uses the OpenFlow PACKET_OUT message. All the communication
between the OpenFlow controller and data plane is defined by the OpenFlow protocol.

OpenFlow controller

Flow table

PACKET_IN

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6

OpenFlow switch

Packet-matching
function

OpenFlow protocol

PACKET_OUT

Figure 2. OpenFlow switch.

2 Lab topology

Consider Figure 3. The topology consists of two end-hosts, a switch, and a controller. The
blue device is an OpenFlow switch, and it is directly connected to the controller c0.

Lab 6: Introduction to OpenFlow

 Page 6

s1

c0

h1 h2

.2

10.0.0.0/8

h1-eth0 h2-eth0

s1-eth1 s1-eth2

.1

Out-of-band connection

Figure 3. Lab topology.

2.1 Lab settings

The devices are already configured according to Table 2.

Table 2. Topology information.

Device Interface MAC Address IP Address Subnet

h1 h1-eth0 00:00:00:00:00:01 10.0.0.1 /8

h2 h2-eth0 00:00:00:00:00:02 10.0.0.2 /8

c0 N/A N/A 172.17.0.2 /16

2.2 Loading the topology

In this section, you will open MiniEdit and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet. This tool has additional capabilities such as: configuring network
elements (i.e IP addresses, default gateway), saving the topology, and exporting a layer 2
model.

Lab 6: Introduction to OpenFlow

 Page 7

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the Lab6.mn topology file stored in the default directory, /home/sdn/SDN_Labs /lab6 and
click on Open.

Figure 5. Opening topology.

Lab 6: Introduction to OpenFlow

 Page 8

Figure 6. MiniEdit’s topology.

Step 3. Click on the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 7. Starting the emulation.

3 Monitoring and administering OpenFlow switches

In this section, you will use ovs-ofctl command line tool to monitor and administer
OpenFlow switches. This tool can show the current state of an OpenFlow switch, including
its features, configuration, and table entries.

Step 1. Open the Linux terminal by clicking on the shortcut depicted below.

Figure 8. Opening Linux terminal.

Step 2. Issue the command below to execute programs with the security privileges of
the superuser (root). When prompted for a password, type password.

Lab 6: Introduction to OpenFlow

 Page 9

sudo su

Figure 9. Switching to root mode.

Step 3. Issue the command below to connect to switch s1 and show its information.

ovs-ofctl show s1

Figure 10. Showing switch s1 information.

Consider Figure 10. Switch s1 has three interfaces. Each interface displays the Media
Access Control (MAC) address (addr) along with other information, such as the current
state of the switch. Note that the generated MAC addresses might be different since they
are randomly generated by Mininet.

Step 4. Issue the command below to print the flow entries of switch s1.

ovs-ofctl dump-flows s1

Figure 11. Showing the flow entries of switch s1.

Lab 6: Introduction to OpenFlow

 Page 10

Consider Figure 11. No output was shown in response to the command above. This is
because initially, the switch has no flow entries.

Step 5. Hold right-click on host h1 and select Terminal.

Figure 12. Opening host h1 terminal.

Step 6. Run a connectivity test by issuing the command shown below. The ping command
is used to verify the connectivity between two ends. It must be followed by the IP address
of the destination host, which is 10.0.0.2 (host h2) in this case. Then, you can stop the
test, press Ctrl+c.

ping 10.0.0.2

Figure 13. Pinging host h2 from host h1.

In the figure above, the connectivity test is unsuccessful since switch s1 flow table is
empty. Incoming traffic to the switch will not match any rule, and hence no action will be
taken. Therefore, switch s1 does not know what to do with incoming traffic, leading to
ping failure.

Step 7. Open the Linux terminal.

Lab 6: Introduction to OpenFlow

 Page 11

Figure 14. Opening Linux terminal.

Step 8. Issue the below command to manually install a flow into switch s1. The inserted
flow forwards incoming packets at port 1 (in_port=1) to port 2 (actions=output:2).

ovs-ofctl add-flow s1 in_port=1,actions=output:2

Figure 15. Adding a flow entry to switch s1.

Step 9. Issue the below command to manually install a flow into switch s1. The inserted
flow forwards incoming packets at port 2 (in_port=2) to port 1 (actions=output:1).

ovs-ofctl add-flow s1 in_port=2,actions=output:1

Figure 16. Adding a flow entry to switch s1.

Step 10. Issue the command below to print the flow entries of switch s1.

ovs-ofctl dump-flows s1

Figure 17. Showing the flow entries of switch s1.

Step 11. On host h1 terminal, run a connectivity test with host h2 by issuing the
following command. Then, you can press Ctrl+c to stop the test.

Lab 6: Introduction to OpenFlow

 Page 12

ping 10.0.0.2

Figure 18. Pinging host h2 from host h1.

Step 12. In addition to adding flow entries to the switches using ovs-ofctl, you can also
delete entries as well as deleting the whole flow table. Issue the following command on
the Linux terminal to delete the flow table of switch s1.

ovs-ofctl del-flows s1

Figure 19. Deleting the flow table of switch s1.

4 Capturing OpenFlow packets

In this section, you will start Wireshark, navigate through some of its features, and learn
how to monitor network traffic. Additionally, you will enable the ONOS controller and
capture OpenFlow packets.

4.1 Starting Wireshark

In this section, you will use Wireshark, the defacto network protocol analyzer, to monitor
the network and inspect OpenFlow packets that are being transmitted between the
controller and the data plane (switch).

Step 1. In the Linux terminal, issue the following command to launch Wireshark.

wireshark &

Lab 6: Introduction to OpenFlow

 Page 13

Figure 20. Starting Wireshark.

Wireshark window depicted in Figure 21 will appear after executing the command above.

Figure 21. Wireshark window.

Step 2. In the opened Wireshark window, you will see a list of interfaces that Wireshark
can capture network traffic on, such as s1-eth1, s1-eth2. Click on docker0 then start
capturing the packets by clicking the blue shark fin icon on the top left of the Window. By
clicking on this interface, you will capture the traffic on the ONOS controller that is
running in a docker container.

Figure 22. Start capturing packets in Wireshark.

Step 3. When you start capturing packets, you will notice that Wireshark is divided into
three sections. The first section displays the captured packets including their number,
time they were captured, source and destination IP addresses, protocol, length, and
information about the packet. The second section contains detailed information about

Lab 6: Introduction to OpenFlow

 Page 14

every captured packet (each selected packet will have its own information). The third
section contains the real data that was captured in the packet. Currently, no packets are
captured on the docker container since ONOS is not started ONOS yet.

Figure 23. Capturing from Loopback: lo interface.

Step 4. Wireshark supports filters, i.e., you can apply filters to display a specific set of
capture packets. To show OpenFlow packets only (protocol: OpenFlow), write the
following expression in the Wireshark filter text box, then press Enter.

openflow_v1

Figure 24. Capturing only OpenFlow packets in Wireshark.

Consider Figure 24. The applied filter in Wireshark displays packets with protocol type
OpenFlow only, specifically. You will use Wireshark in the next section to capture
OpenFlow packets once you run ONOS and activate the OpenFlow application.

4.2 Starting the ONOS controller

Lab 6: Introduction to OpenFlow

 Page 15

In this section, you will start the ONOS controller and activate basic ONOS applications,
such as the OpenFlow application. The latter triggers the exchange of OpenFlow packets
between the data plane (switch s1) and the control plane (c0). Thus, allowing the
controller to discover the topology and insert flow entries into switch s1. Using Wireshark,
you will capture the exchanged OpenFlow packets and understand their main types.

Step 1. In the opened Linux terminal, press Enter then navigate into SDN_Labs/lab6
directory by issuing the following command. This folder contains the script responsible
for starting ONOS. The cd command is short for change directory followed by an
argument that specifies the destination directory.

cd SDN_Labs/lab6

Figure 25. Entering the SDN_Labs/lab6 directory.

Step 2. A script was written to run ONOS and enter its Command Line Interface (CLI). In
order to run the script, issue the following command. In addition to running ONOS, the
script will modify the MAC addresses of the hosts so that they conform with the topology.

./run_onos.sh

Figure 26. Starting the ONOS controller.

Once the script finishes executing and ONOS is ready, you will be able to execute
commands on the ONOS CLI as shown in the figure below. Note that this script may take
few seconds.

Lab 6: Introduction to OpenFlow

 Page 16

Figure 27. ONOS CLI.

Step 3. In the ONOS terminal, issue the following command to activate the OpenFlow
application. This application allows the ONOS controller to discover the hosts, devices,
and links in the current topology.

app activate org.onosproject.openflow

Figure 28. Activating the OpenFlow application.

Step 4. After activating the OpenFlow application, you should see a number of OpenFlow
messages displayed in Wireshark as shown in the below figure.

Figure 29. Capturing OpenFlow packets using Wireshark.

Lab 6: Introduction to OpenFlow

 Page 17

The figure above shows the first captured packets in Wireshark. The exchanged OpenFlow
messages include:

• Hello message (from the controller to the switch): the controller sends its version
number to the switch.

• Hello message (from the switch to the controller): the switch replies with its
supported version number.

• Features request (from the controller to the switch): the controller asks to see
which ports are available.

• Features reply (from the switch to the controller): the switch replies with a list of
ports, port speeds, and supported tables and actions.

• Set Config)from the controller to the switch): the controller asks the switch to
send flow expirations.

• Port status (from the switch to the controller): the switch informs the controller if
any ports are added, modified, or removed from the datapath.

4.3 Capturing PACKET_IN and PACKET_OUT messages

In this section, you will capture more OpenFlow messages exchanged between the
controller and the switch after activating the ONOS forwarding application. The latter
inserts flow entries into the flow table of the switches allowing them to handle IP packets.

Step 1. To enable the forwarding application, type the command shown below in the
ONOS terminal. This command activates the forwarding application.

app activate org.onosproject.fwd

Figure 30. Activating the OpenFlow application.

Step 2. On the Linux terminal, click on File>New Tab to open an additional tab in the Linux
terminal.

Lab 6: Introduction to OpenFlow

 Page 18

Figure 31. Opening an additional tab.

Step 3. Issue the command below to execute programs with the security privileges of the
superuser (root). When prompted for a password, type password.

sudo su

Figure 32. Switching to root mode.

Step 4. Issue the command below to print the flow entries of switch s1.

ovs-ofctl dump-flows s1

Figure 33. Showing the flow entries of switch s1.

Consider Figure 33. Instead of manually adding entries in switch s1 flow table, the ONOS
controller inserted the rules above to discover the topology, as well as to manage
incoming IP packets by forwarding them to the controller (ip
actions=CONTROLLER:65535).

Step 5. On host h1 terminal, ping host h2 and observe the captured packets in Wireshark.
To do this, write the following command. Then, you can stop the ping test pressing
Ctrl+c.

ping 10.0.0.2

Lab 6: Introduction to OpenFlow

 Page 19

Figure 34. Pinging host h2 from host h1.

Step 6. Go to the Wireshark window and inspect the exchanged OpenFlow packets.

Figure 35. Capturing OpenFlow packets using Wireshark.

Consider Figure 35. During the pinging process from host h1 to host h2, you will notice a
number of OpenFlow packets of the following types:

• PACKET_IN: the switch sends this message to the controller when a packet is
received and did not match any entry in the flow table of the switch.

• PACKET_OUT: the controller sends a packet out of one or more switch ports.

Other OpenFlow packet types include:

• OFPT_STATS_REQUEST: the controller sends this message type to query the
current state of the datapath.

• OFPT_STATS_REPLY: the switch responds to the request sent by the controller
(OFPT_STATS_REQUEST).

Step 7. Click on the first PACKET_IN captured packet and expand the header field
OpenFlow 1.0 as shown in the below figure.

Lab 6: Introduction to OpenFlow

 Page 20

Figure 36. Inspecting the first PACKET_IN packet in OpenFlow.

Consider Figure 36. The first PACKET_IN packet is a broadcast message that has the source
MAC address of host h1 (00:00:00:00:00:01). Initially, when host h1 pings host h2, it will
request the MAC address of host h2 using an Address Resolution Protocol (ARP) request.
Switch s2 will receive the request, matches it against the flow entry that deals with ARP
packets (i.e., the flow installed by the activated OpenFlow application), and forwards it to
the controller.

Step 8. In the same inspected packet, expand the Address Resolution Protocol

(request) field as shown in the below figure.

Figure 37. Inspecting the first PACKET_IN packet in OpenFlow.

Consider Figure 37. In the ARP request, the sender’s MAC (00:00:00:00:00:01) and IP
(10.0.0.1) addresses belong to host h1, whereas the target IP address (10.0.0.2) belongs
to host h2. The target MAC address is filled with zeros since host h1 does not know it yet.

Step 9. Click on the first PACKET_OUT captured packet and expand the header field
OpenFlow 1.0 as shown in the below figure.

Lab 6: Introduction to OpenFlow

 Page 21

Figure 38. Inspecting the first PACKET_OUT packet in OpenFlow.

Consider Figure 38. The first PACKET_OUT packet is a broadcast message that has the
source MAC address of host h1 (00:00:00:00:00:01). This message (PACKET_OUT) is an ARP
request that is sent from the controller to discover the MAC address of host h2. The
subsequent PACKET_IN packet will include an ARP reply from host h2 with its MAC
address to the controller. Consequently, the controller will send this ARP reply message
to host h1 so that it knows the MAC address of host h2.

Step 10. Stop capturing packets in Wireshark by clicking the red icon.

Figure 39. Stop Capturing Wireshark packets.

This concludes Lab 6. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. Mininet walkthrough, [Online]. Available: http://mininet.org.
2. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.

Shenker, and J. Turner. "OpenFlow: enabling innovation in campus networks." ACM
SIGCOMM Computer Communication Review 38, no. 2 (2008): 69-74.

3. P. Goransson, C. Black, T. Culver. “Software defined networks: a comprehensive
approach”. Morgan Kaufmann, 2016.

4. P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, "ONOS:
towards an open, distributed SDN OS," In Proceedings of the third workshop on Hot
topics in software defined networking, pp. 1-6, 2014.

SOFTWARE DEFINED NETWORKING

Exercise 3: OpenFlow Protocol Management

Document Version: 09-02-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Exercise 3: OpenFlow Protocol Management

Contents

1 Exercise description .. 3

1.1 Topology settings ... 3

1.2 Credentials ... 4

2 Deliverables ... 4

Exercise 3: OpenFlow Protocol Management

1 Exercise description

Consider Figure 1. The topology consists of two end-hosts, two switches and a controller
within a Software Defined Networking (SDN) network. The blue devices represent
OpenFlow switches. All switches are connected to the controller c0.

The goal of this exercise is to connect the two hosts by managing the switches via the
OpenFlow protocol. Initially, you should administer the OpenFlow switches without
running the ONOS controller, where you will install flow entries to forward the traffic
between host h1 and host h2. Later, you should run ONOS, activate some of its
applications, and inspect the OpenFlow messages exchanged between the control plane
and data plane. The topology below is already built and you should use Mininet to
emulate it.

s1

s1-eth1

s2

h1 h2

h1-eth0

s2-eth1

h2-eth0
15.0.0.0/8

Out-of-band connection

c0

.1 .2

s1-eth2 s2-eth2

Figure 1. Exercise topology.

1.1 Topology settings

The devices are already configured according to Table 1.

Table 1. Topology information.

Device Interface MAC Address IP Address Subnet

h1 h1-eth0 00:00:00:00:00:01 15.0.0.1 /8

h2 h2-eth0 00:00:00:00:00:02 15.0.0.2 /8

c0 N/A N/A 172.17.0.2 /16

Exercise 3: OpenFlow Protocol Management

1.2 Credentials

The information in Table 2 provides the credentials to access the Client’s virtual machine.

Table 2. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

2 Deliverables

Follow the steps below to complete the exercise.

a) Open MiniEdit and load the topology above. The topology file Exercise3.mn of this
exercise is in the directory ~/SDN_Labs/Exercise3 as shown in the figure below.

Figure 2. Loading the topology file in Mininet.

b) Using the command line tool that monitors and administers OpenFlow switches,
inspect the flow tables of switches s1 and s2. Validate that there are no entries inserted
in the switches.

c) Insert flow entries on switches s1 and s2 to connect hosts h1 and h2. The flow entries
should match incoming traffic based on the port number.

d) Inspect the flow tables of the switches and validate the added entries. Additionally,
test the connectivity between the hosts by performing a ping test from host h1 to host
h2.

Exercise 3: OpenFlow Protocol Management

e) Delete all the added flow entries on the switches and run the ONOS controller.

f) In the Linux terminal, navigate to the directory ~/SDN_Labs/Exercise3 and execute, in
superuser mode, the script run_onos.sh that runs the ONOS controller. When prompted
for a password, type password. The steps to run ONOS are depicted in the figure below.

Figure 3. Starting the ONOS controller.

g) Activate the necessary ONOS application that allows the controller to communicate
with the OpenFlow switches. Using Wireshark, capture on docker0 interface (i.e., where
the controller is running) the first OpenFlow messages (e.g., the first four OpenFlow
messages) exchanged when activating the application and explain their functionality.

h) Activate the necessary ONOS application that enables IP forwarding. Inspect the newly
added entries in the flow tables of the switches.

i) Test the connectivity between the hosts by performing a ping test from host h1 to host
h2. While the connectivity test is running, you should capture the necessary OpenFlow
packets exchanged between the controller and the switches that allow the hosts to
communicate. Explain briefly how the two hosts can communicate starting from the first
message sent by host h1.

SOFTWARE DEFINED NETWORKING

Lab 7: Routing within an SDN network

Document Version: 07-08-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 7: Routing within an SDN network

 Page 2

Contents

Overview ... 3
Objectives.. 3
Lab settings ... 3
Lab roadmap ... 3
1 Introduction .. 3

1.1 Legacy routing vs SDN routing .. 4
1.2 Integrating BGP with an SDN network .. 4
1.3 Establishing a virtual gateway via the reactive-routing application 4

2 Lab topology.. 5
2.1 Lab settings ... 6
2.2 Loading the topology .. 7
2.3 Loading the configuration file ... 8
2.4 Running the emulation ... 9
2.5 Verifying the configuration ... 10

3 Starting the ONOS controller .. 13
4 Integrating SDN and BGP .. 17

4.1 Connecting the IBGP speaker (router r1) with the ONOS controller 17
4.2 Configuring BGP on router r1 ... 21
4.3 Activating the SDN-IP application ... 24

5 Activating reactive-routing application and verifying the connectivity between the
networks ... 27
References .. 29

Lab 7: Routing within an SDN network

 Page 3

Overview

The focus in this lab is to perform Internet Protocol (IP) routing within the Software
Defined Networking (SDN) network via the reactive-routing application. The reactive-
routing application is dependent on the SDN-IP application, which allows SDN networks
to connect to legacy networks using the standard Border Gateway Protocol (BGP).

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of SDN network.
2. Understand how the ONOS controller interacts with the legacy router.
3. Configure BGP on a legacy router.
4. Activate the SDN-IP application.
5. Activate the reactive-routing application.
6. Perform IP routing within the SDN network.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Starting the ONOS controller.
4. Section 4: Integrating SDN and BGP.
5. Section 5: Activating reactive-routing application and verifying the

connectivity between the networks.

1 Introduction

SDN provides a set of abstractions delivered by the control plane, such as a global network
view, network applications, the flexibility of testing new protocols, and centralized
management. Integrating the widely deployed Internet infrastructure with SDN

Lab 7: Routing within an SDN network

 Page 4

represents a significant challenge that requires innovative approaches to increase the
deployment of SDN networks. During the transition, SDN networks need to coexist with
traditional IP networks. Any SDN deployment must be able to exchange reachability
information.

1.1 Legacy routing vs SDN routing

Routing protocols were essential to respond to rapidly changing network conditions.
However, these conditions no longer exist in modern data centers. Typically, legacy
routing protocols work as a distributed system transmitting the connection status
information over the link and, each router performs the routing computation. A drawback
of this scheme is that the routing information relies on flooding the link state to update
information among routers. Therefore, this incurs in longer convergence time where the
link delay affects the convergence time1.

SDN is a new paradigm that solves the problem mentioned above by creating a centralized
approach rather than a distributed one. The central concept of SDN is to separate the
control plane from the data plane to maximize the efficiency of data plane devices.
Moving the control software outside the device simplifies the network management and
enables optimal routing. Also, SDN routing provides robustness, scalability, and self-
healing2.

1.2 Integrating BGP with an SDN network

SDN networks operate differently from legacy networks. One of the obstacles to
deploying an SDN network is integrating it with the existing IP networks1. Usually, peering
between Autonomous Systems (ASes) on the Internet is traditionally done using BGP.
Therefore, a precise mechanism is needed for an SDN Autonomous System (AS) to
communicate with other ASes via BGP1.

In this lab, the SDN switches use the Open Network Operating System (ONOS) controller,
which provides applications with the capability to enable several functionalities such as
connecting to external networks. The ONOS application that performs the function
mentioned above is called SDN-IP. SDN-IP allows an SDN network to connect to external
networks on the Internet using the standard BGP3.

1.3 Establishing a virtual gateway via the reactive-routing application

In a legacy IP network, hosts use gateway as the default router to access the Internet.
However, in SDN networks, OpenFlow switches are used instead of routers to connect the
network by inserting flow entries into these switches. Thus, there is no physical gateway
router in the SDN network. As a result, hosts within the SDN network will not reach other
networks without a default gateway as the next hop to the sent packets. Additionally, the
Media Access Control (MAC) address of the next-hop is unknown to the host, leading to
insufficient information to compose the packet and send it out.

Lab 7: Routing within an SDN network

 Page 5

To mitigate this issue, the ONOS controller includes the reactive-routing application that
establishes a virtual gateway for SDN networks. Once the host is assigned a default
gateway address, it will send out an Address Resolution Protocol (ARP) packet to look for
the MAC address. Since there is no physical gateway in SDN, the virtual gateway module
in ONOS will handle all ARP requests. It will compose the ARP reply packet and send it out
as packet-out to the host.

Every SDN network only needs one virtual gateway. This virtual gateway has one MAC
address only and may have several gateway IP addresses. The MAC address of the virtual
gateway corresponds to the BGP speaker (the legacy router that uses BGP) within the SDN
network. Essentially, the existence of a BGP speaker is required for establishing a virtual
gateway within the SDN network.

Consider Figure 1. Typically, an SDN network is composed of various OpenFlow switches
(switches s1, s2, and s3) and a BGP router (router r1) connected to the controller (c0). The
SDN-IP application runs on top of the ONOS controller and, it is connected to the BGP
speaker (router r1) within the SDN network through an Internal BGP (IBGP) session4.

Controller

s1

s2 s3

r1

IB
G

P

Out-of-band connection

Figure 1. Integrating SDN and IP networks.

2 Lab topology

Consider Figure 2. The topology consists of one SDN network (AS 100). Router r1 runs BGP
and acts as a BGP speaker. Router r1 is connected to the controller in order to propagate
the BGP advertisements to the SDN-IP application running on top of the ONOS controller.
Router r1 and the controller are connected via the network 10.0.0.0/24.

Lab 7: Routing within an SDN network

 Page 6

c0

r1

s2 s3

s1

r1-eth0

s1-eth1

s3-eth2

s1-eth3s1-eth2

s2-eth2

192.168.2.0/24

10.0.0.1/24

10.0.0.3/24

r1-eth1

192.168.1.1/24
192.168.2.1/24

h1

.10

h2

.10

192.168.1.0/24

.1 .1s2-eth1 s3-eth1

h1-eth0 h2-eth0

AS 100

Figure 2. Lab topology.

2.1 Lab settings

The devices are already configured according to Table 2.

Table 2. Topology information.

Device Interface MAC address IP Address Subnet Default
gateway

Router r1

r1-eth0

00:00:00:00:01:01 192.168.1.1 /24 N/A

00:00:00:00:01:01 192.168.2.1 /24 N/A

r1-eth1 00:00:00:00:01:02 10.0.0.1 /24 N/A

Switch s2 s2-eth1 N/A 192.168.1.1 /24 N/A

Switch s3 s3-eth1 N/A 192.168.2.1 /24 N/A

Host h1 h1-eth0 00:00:00:00:00:01 192.168.1.10 /24 192.168.1.1

Host h2 h2-eth0 00:00:00:00:00:02 192.168.2.10 /24 192.168.2.1

c0

N/A N/A 172.17.0.2 /16 N/A

N/A N/A 10.0.0.3 /24 N/A

Lab 7: Routing within an SDN network

 Page 7

2.2 Loading the topology

In this section, you will open MiniEdit and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet. This tool has additional capabilities such as: configuring network
elements (i.e., IP addresses, default gateway), saving the topologies, and exporting layer
2 models.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the Lab7.mn topology file stored in the default directory, /home/sdn/SDN_Labs /lab7 and
click on Open.

Figure 4. Opening topology.

Lab 7: Routing within an SDN network

 Page 8

Figure 5. MiniEdit’s topology.

Consider Figure 5. The direct link between router r1 and controller c0 is not yet
established since MiniEdit does not allow that. In section 4, you will execute a script to
connect the controller and the router via the network 10.0.0.0/24.

2.3 Loading the configuration file

At this point, the topology is loaded. However, the interfaces are not configured. In order
to assign IP addresses to the interfaces of the device, you will execute a script that loads
the configuration to the routers.

Step 1. Click on the icon below to open the Linux terminal.

Figure 6. Opening Linux terminal.

Step 2. Click on the Linux terminal and navigate into SDN_Labs/lab7 directory by issuing
the following command. This folder contains a configuration file and the script
responsible for loading the configuration. The configuration file will assign the IP
addresses to the interfaces of the router. The cd command is short for change directory
followed by an argument that specifies the destination directory.

cd SDN_Labs/lab7

Lab 7: Routing within an SDN network

 Page 9

Figure 7. Entering the SDN_Labs/lab7 directory.

Step 3. To execute the shell script, type the following command. The argument of the
program corresponds to the configuration zip file that will be loaded in all the routers in
the topology.

./config_loader.sh lab7_conf.zip

Figure 8. Executing the shell script to load the configuration.

Step 4. Type the following command to exit the Linux terminal.

exit

Figure 9. Exiting from the terminal.

2.4 Running the emulation

In this section, you will run the emulation and check the links and interfaces that connect
the devices in the given topology.

Step 1. At this point, host h1 and host h2 interfaces are configured. To proceed with the
emulation, click on the Run button located on the lower left-hand side.

Lab 7: Routing within an SDN network

 Page 10

Figure 10. Starting the emulation.

Step 2. Issue the following command on Mininet terminal to display the interface names
and connections.

links

Figure 11. Displaying network interfaces.

In Figure 11, the link displayed within the gray box indicates that interface eth0 of host h1
connects to interface eth1 of switch s2 (i.e., h1-eth0<->s2-eth1).

2.5 Verifying the configuration

You will verify the IP addresses listed in Table 2 and inspect the routing table of router r1.

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Lab 7: Routing within an SDN network

 Page 11

Figure 12. Opening a terminal on host h1.

Step 2. On host h1 terminal, type the command shown below to verify that the IP address
was assigned successfully. You will corroborate that host h1 has two interfaces. Interface
h1-eth0 is configured with the IP address 192.168.1.10 and the subnet mask
255.255.255.0. Interface lo is configured with the IP address 127.0.0.1 and the subnet
mask 255.0.0.0.

ifconfig

Figure 13. Output of ifconfig command.

Step 3. On host h1 terminal, type the command shown below to verify that the default
gateway IP address is 192.168.1.1.

route

Lab 7: Routing within an SDN network

 Page 12

Figure 14. Output of route command.

Step 4. In order to verify host h2 IP address and default gateway, proceed similarly by
repeating step 1 to step 3 on host h2 terminal. Similar results should be observed.

Step 5. In order to verify router r1, hold right-click on router r1 and select Terminal.

Figure 15. Opening a terminal on router r1.

Step 6. In this step, you will start the zebra daemon, a multi-server routing software that
provides TCP/IP based routing protocols. The configuration will not be working if you do
not enable the zebra daemon initially. In order to start zebra, type the following command.

zebra

Figure 16. Starting zebra daemon.

Step 7. After initializing zebra, vtysh should be started in order to provide all the
Command Line Interface (CLI) commands defined by the daemons. To proceed, issue the
following command.

vtysh

Lab 7: Routing within an SDN network

 Page 13

Figure 17. Starting vtysh on router r1.

Step 8. Type the following command on router r1 terminal to verify the routing table of
router r1. It will list all the directly connected networks.

show ip route

Figure 18. Displaying the routing table of router r1.

The output in the figure above shows that the networks 192.168.1.0/24 and
192.168.2.0/24 are directly connected through the interface r1-eth0.

3 Starting the ONOS controller

In this section, you will start the ONOS controller and activate OpenFlow application so
that the controller discovers the devices, hosts, and links in the topology.

Step 1. Go to the Linux terminal, Shell No.1.

Figure 19. Opening Linux terminal.

Lab 7: Routing within an SDN network

 Page 14

Step 2. Click on File>New Tab to open an additional tab in the Linux terminal. Alternatively,
you may press Ctrl+Shift+T.

Figure 20. Opening an additional tab.

Step 3. Navigate into SDN_Labs/lab7 directory by issuing the following command.

cd SDN_Labs/lab7

Figure 21. Entering the SDN_Labs/lab7 directory.

Step 4. Issue the command below to execute programs with the security privileges of the
superuser (root). When prompted for a password, type password.

sudo su

Figure 22. Switching to root mode.

Step 5. A script was written to run ONOS and enter its CLI. In order to run the script, issue
the following command. In addition to running ONOS, the script will modify the MAC
addresses of the hosts and the router so that they conform with the topology.

./run_onos.sh

Figure 23. Starting the ONOS controller.

Lab 7: Routing within an SDN network

 Page 15

Figure 24. ONOS CLI.

Step 6. On the ONOS terminal, issue the following command to activate the OpenFlow
application.

app activate org.onosproject.openflow

Figure 25. Activating OpenFlow application.

Note that when you activate any ONOS application, you may have to wait few seconds so
that the application gives the correct output.

Step 7. To display the list of all currently known devices (OVS switches), type the following
command.

devices

Lab 7: Routing within an SDN network

 Page 16

Figure 26. Displaying the currently known devices (switches).

Step 8. To display the list of all currently known links, type the following command.

links

Figure 27. Displaying the currently known links.

Step 9. Click on the Mininet tab on the left-hand side and type the command shown below
to ping all hosts in the topology.

pingall

Figure 28. Pinging all the hosts.

In the figure above, the hosts and the router will ping each other. The packets will reach
the OpenFlow switches. The OpenFlow switches will forward them to the controller as

Lab 7: Routing within an SDN network

 Page 17

they do not have the necessary rules installed to route the packets. Once the controller
receives the packets, it will store the information related to these devices.

Step 10. Switch back to the ONOS CLI, the right tab. To display the list of all currently
known hosts, type the following command.

hosts

Figure 29. Displaying the currently known hosts.

Consider Figure 29. ONOS recognizes host h1 (192.168.1.10), host h2 (192.168.2.10), and
the interface of router r1 (192.168.1.1 and 192.168.2.1). Furthermore, ONOS displays the
interfaces of the OpenFlow switches connected to the hosts. Note that you might have to
wait until ONOS discovers the devices in case they do not appear immediately.

4 Integrating SDN and BGP

In the previous sections, you configured the legacy devices, as well as started ONOS and
its OpenFlow application to discover the topology. In this section, you will first execute a
script that connects the IBGP speaker (router r1) with the ONOS controller, so that the
two entities can communicate. Furthermore, you will activate the ONOS SDN-IP
application in order for the controller to access BGP information. This section is a
prerequisite for the reactive-routing application to be activated and functional.

4.1 Connecting the IBGP speaker (router r1) with the ONOS controller

In this section, you will execute a script that creates a peer-to-peer link connecting router
r1 with ONOS.

Step 1. Go to Mininet tab in the Linux terminal.

Lab 7: Routing within an SDN network

 Page 18

Figure 30. Opening Mininet tab.

Step 2. In order to create a point-to-point network between the IBGP speaker (router r1)
and ONOS, a script was written to facilitate the process. In order to execute the script,
type the following command.

source ./SDN_Labs/lab7/create_link.sh

Figure 31. Creating a point-to-point network (link) between the IBGP speaker and the ONOS
controller.

Consider Figure 31. The script creates a point-to-point network between router r1 and
ONOS. The network address of the point-to-point network is 10.0.0.0/24. Router r1 is
assigned the IP address 10.0.0.1/24, whereas the ONOS controller is assigned 10.0.0.3/24.
Furthermore, the script pushes a configuration file (network-cfg.json) to the controller
necessary to run ONOS applications, such as SDN-IP and reactive-routing.

Step 3. In router r1 terminal, type the following command to exit the vtysh session.

exit

Figure 32. Exiting the vtysh session.

Step 4. Now that router r1 is connected to the ONOS controller, a new interface must
appear. In order to verify the connected interface, type the following command.

ifconfig

Lab 7: Routing within an SDN network

 Page 19

Figure 33. Listing the interfaces of router r1.

Consider Figure 33. Interface r1-eth1 is added after creating a point-to-point network
between router r1 and the ONOS controller. Furthermore, the interface has the IP address
10.0.0.1.

Step 5. Navigate back to the Client Desktop and double click on the Computer icon.

Figure 34. Opening the Computer icon.

Step 6. Navigate to the directory /home/sdn/SDN_Labs/lab7 and open the file network-
cfg.json.

Lab 7: Routing within an SDN network

 Page 20

Figure 35. Opening the network configuration file.

Figure 36. Opening network-cfg.json file.

Lab 7: Routing within an SDN network

 Page 21

Figure 37. Opening network-cfg.json file.

Consider Figures 36 and 37. The configuration file network-cfg.json is pushed into the
ONOS controller so that the applications work properly. The configuration file consists of
two json objects, namely ports and apps. Figure 36 specifies the interfaces of the
OpenFlow switches connected to the hosts, along with the associated IP address of these
switches. Figure 37 includes the name of the ONOS application (reactive.routing) with
some attributes needed by this application. For instance, the reactive-routing application
requires the IP address of the SDN networks (192.168.1.0/24 and 192.168.2.0/24) and
their default gateways. The MAC address 00:00:00:00:01:02 is the virtual gateway address
for the ONOS controller.

Note that the file network-cfg.json is customized based on the running ONOS applications.
This file is generated automatically by a script to facilitate the process of configuring the
lab.

4.2 Configuring BGP on router r1

In this section, you will configure BGP on router r1 to peer with the ONOS controller.

Step 1. Type the following command on router r1 terminal to start BGP routing protocol.

bgpd

Lab 7: Routing within an SDN network

 Page 22

Figure 38. Starting BGP daemon.

Step 2. In order to enter to router r1 terminal, type the following command.

vtysh

Figure 39. Starting vtysh on router r1.

Step 3. To enable router r1 global configuration mode, issue the following command.

configure terminal

Figure 40. Enabling configuration mode on router r1.

Step 4. The ASN assigned for router r1 is 100. In order to configure BGP, type the following
command.

router bgp 100

Figure 41. Configuring BGP on router r1.

Step 5. Router r1 and the ONOS controller are connected using a point-to-point network
(10.0.0.0/24). The IP address assigned to the controller is 10.0.0.3. As router r1 is the IBGP
speaker within the SDN network, it must establish a BGP peering relationship with the

Lab 7: Routing within an SDN network

 Page 23

controller in its network (AS 100). In order to establish BGP peering relationship with the
controller, type the following command.

neighbor 10.0.0.3 remote-as 100

Figure 42. Assigning BGP neighbor to router r1.

Step 6. By default, ONOS listens to TCP port number 2000 for incoming BGP connections,
which is not the default BGP port number 179. In order to specify the port for incoming
BGP messages from ONOS, write the following command.

neighbor 10.0.0.3 port 2000

Figure 43. Changing the Listening port for BGP connections.

Step 7. Type the following command to exit from the configuration mode.

end

Figure 44. Exiting from configuration mode.

Lab 7: Routing within an SDN network

 Page 24

Step 8. Type the following command on router r1 terminal to verify the routing table of
router r1. It will list all the directly connected networks. The routing table of router r1
contains a directly connected network, 10.0.0.0/24.

show ip route

Figure 45. Displaying the routing table of router r1.

4.3 Activating the SDN-IP application

In this section, you will activate the SDN-IP application and other dependencies
(applications) that will interconnect the SDN network with BGP.

Step 1. Go to the ONOS terminal.

Figure 46. Opening ONOS terminal.

Step 2. Before activating the SDN-IP application you must start the config application. This
is an application for the network configuration. In order to activate the config application,
type the following command.

app activate org.onosproject.config

Figure 47. Activating ONOS config application.

Lab 7: Routing within an SDN network

 Page 25

Step 3. The SDN-IP application has an additional application dependency, which is used
to resolve ARP requests. This is the proxyarp application that responds to ARP requests
on behalf of hosts and external routers.

app activate org.onosproject.proxyarp

Figure 48. Activating the ONOS proxyarp application.

Step 4. Once the dependencies are started, the SDN-IP application can be activated. In
order to do that, type the following command.

app activate org.onosproject.sdnip

Figure 49. Activating ONOS SDN-IP application.

After activating the applications above, you might have to wait few minutes until the
applications discover the topology and exchange information in order to get correct
results.

Step 5. Click on the Mininet tab on the left-hand side and type the command shown below
to ping all hosts in the topology.

pingall

Lab 7: Routing within an SDN network

 Page 26

Figure 50. Pinging all the hosts.

The test result will be unsuccessful. The purpose of this step is to provide information
about the hosts to the controller.

Step 6. On the ONOS terminal, type the following command to show the IBGP neighbors
that have connected to SDN-IP application.

bgp-neighbors

Figure 51. Viewing IBGP neighbors within the SDN network.

Consider Figure 51. The neighbor 192.168.2.1 corresponds to router r1 in AS 100. This is
the internal BGP speaker in the SDN network. The local router ID that the SDN-IP
application uses is 10.0.0.3.

Step 7. Test the connectivity between host h1 and host h2 using the ping command. On

host h1, type the command specified below.

ping 192.168.2.10

Figure 52. Output of ping command.

Lab 7: Routing within an SDN network

 Page 27

To stop the test, press Ctrl+c. In the figure above, the result of the ping test shows an
unsuccessful connectivity test as the reactive-routing application is not activated yet.

Step 8. On the ONOS terminal, type the following command to verify the flows in switch
s2. Use the tab key to autocomplete the OpenFlow port.

flows added of:0000000000000002

Figure 53. Verifying flows on s2.

Consider Figure 53. The hosts are unreachable at this point since no flow deals with IPv4
traffic in the flow table of the switches.

5 Activating reactive-routing application and verifying the connectivity
between the networks

In this section, you will activate the reactive-routing application in order to establish
connectivity between the two networks 192.168.1.0/24 and 192.168.2.0/24. Additionally,
you will inspect the flow table of the switches, and verify the connectivity between the
two hosts.

Step 1. In order to activate the reactive-routing application, type the following command.

app activate org.onosproject.reactive-routing

Figure 54. Activating ONOS SDN-IP application.

Step 2. Test the connectivity between host h1 and host h2 using the ping command. On
host h1, type the command specified below.

Lab 7: Routing within an SDN network

 Page 28

ping 192.168.2.10

Figure 55. Output of ping command.

To stop the test, press Ctrl+c. The figure above shows a successful connectivity test.

Step 3. Type the following command to verify the flows on the switch s2.

flows added of:0000000000000002

Figure 56. Verifying flows on s2.

Consider Figure 56. You will notice ipv4 flow is added in the flow table. Additionally, you
can verify the reactively installed routing path to reach a specific destination. For instance,
incoming packets on port 2 (IN_PORT:2) having target MAC address 00:00:00:00:00:01
(ETH_DST) and IPv4 destination 192.168.1.10/32 (IPV4_DST) will be forwarded out of port
1 (OUTPUT:1). Similarly, incoming IPv4 packets on port 1 (IN_PORT:1) having IPv4
destination 192.168.2.10/32 will undergo two actions. First, their MAC destination
address will be modified to 00:00:00:00:00:02, then they will be forwarded out of port 2.

Since the routing paths are installed reactively, each traffic appears in the flow table only
for a certain period (approx. 60 sec)

Lab 7: Routing within an SDN network

 Page 29

This concludes Lab 7. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. A. Tanenbaum, D. Wetherall, “Computer networks”, 5th Edition, Pearson, 2012.
2. P. Goransson, C. Black, T. Culver. “Software defined networks: a comprehensive

approach”. Morgan Kaufmann, 2016.
3. P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-Shabibi, K.C.

Wang, J. Bi. “Seamless interworking of SDN and IP”. In Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM, pp. 475-476, 2013.

4. ONOS project, “SDN-IP”, [Online]. Available:
https://wiki.onosproject.org/display/ONOS/SDN-IP.

SOFTWARE DEFINED NETWORKING

Lab 8: Interconnection between legacy networks
and SDN networks

Document Version: 07-08-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 8: Interconnection between legacy networks and SDN networks

 Page 2

Contents

Overview ... 3
Objectives.. 3
Lab settings ... 3
Lab roadmap ... 3
1 Introduction .. 3

1.1 Exchanging routing information within legacy networks 4
1.2 Integrating SDN with legacy networks via SDN-IP application 4

2 Lab topology.. 5
2.1 Lab settings ... 6
2.2 Loading the topology .. 7
2.3 Loading the configuration file ... 8
2.4 Running the emulation ... 10
2.5 Verifying the configuration ... 10

3 Configuring BGP within legacy networks .. 15
4 Starting the ONOS controller .. 19
5 Integrating SDN and legacy networks ... 22

5.1 Connecting the IBGP speaker (router r1) with the ONOS controller 23
5.2 Configuring BGP on router r1 ... 24
5.3 Activating the SDN-IP application ... 28

6 Verifying the connectivity between the networks ... 31
7 Inspecting the flow table of the OpenFlow switches ... 33
References .. 35

Lab 8: Interconnection between legacy networks and SDN networks

 Page 3

Overview

This lab is an introduction to integrating Software Defined Networking (SDN) networks
with legacy networks. The focus of the lab is to understand how to use the SDN-IP
application to peer with a legacy network. The SDN-IP application allows the SDN network
to communicate with legacy networks using the Border Gateway Protocol (BGP).

Objectives

By the end of this lab, you should be able to:

1. Understand how SDN networks exchange routing information with legacy
networks.
2. Configure BGP on legacy routers.
3. Integrate SDN and legacy networks through the SDN-IP application.
4. Verify the connectivity between the SDN and legacy networks.
5. Inspect the flow table of the switches to understand the SDN-IP application.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Configuring BGP within legacy networks.
4. Section 4: Starting the ONOS controller.
5. Section 5: Integrating SDN and legacy networks.
6. Section 6: Verifying the connectivity between the networks.
7. Section 7: Inspecting the flow table of the OpenFlow switches.

1 Introduction

Lab 8: Interconnection between legacy networks and SDN networks

 Page 4

Today's Internet is utterly dependent on routing protocols, such as BGP, so without a
clean mechanism to integrate an OpenFlow/SDN and legacy/IP networks, the use of
OpenFlow will remain restricted to isolated data center deployments. This lab shows how
to integrate SDN and legacy networks and how the SDN controller translates the BGP
information into OpenFlow entries1.

1.1 Exchanging routing information within legacy networks

The Internet is a collection of networks or Autonomous Systems (ASes) that are
interconnected. An AS refers to a group of connected networks under a single
administrative entity or domain. Traditional networks depend on routing protocols to
interconnect and share routing information. Such protocols are also referred to as control
protocols, and each device runs them in the network1.

BGP is the standard exterior gateway protocol designed to exchange routing and
reachability information among ASes on the Internet. BGP is relevant to network
administrators of large organizations that connect to one or more Internet Service
Providers (ISPs) and ISPs who connect to other network providers1.

Two routers that establish a BGP connection are referred to as BGP peers or neighbors.
BGP sessions run over Transmission Control Protocol (TCP). Suppose a BGP session is
established between two neighbors in different ASes. In that case, the session is referred
to as an External BGP (EBGP) session. If the session is established between two neighbors
in the same AS, the session is referred to as Internal BGP (IBGP) session1.

Figure 1 shows two legacy networks, each in an AS. Each router runs its internal local
algorithm (routing protocol) to communicate with other peers. The routing protocol used
between ASes is BGP.

Figure 1. Legacy networks use BGP to share routing information between ASes.

1.2 Integrating SDN with legacy networks via SDN-IP application

AS 100

Local algorithm
(BGP)

Topology

Forwarding table

Control plane
Data plane

AS 200

Local algorithm
(BGP)

Topology

Forwarding table

Control plane
Data plane

BGP session

Lab 8: Interconnection between legacy networks and SDN networks

 Page 5

The Border Gateway Protocol version 4 (BGPv4)2 is the most widely adopted technique
used to peer ASes on the Internet. Therefore, to integrate legacy networks with SDN-
driven ASes, a peering mechanism that facilitates the BGP protocol is required. This
integration is performed via the SDN-IP application that runs on top of the SDN controller.

Consider Figure 2. Typically, an SDN network is composed of various OpenFlow switches
(switches s1 and s2) connected to the controller (c0). The external network (AS 100) can
connect to the SDN network (AS 200) by establishing an EBGP session between the BGP
router (router r1) and the OpenFlow switch (switch s1). The BGP speaker (router r2),
referred to as an IBGP router, must exist within the SDN network and be connected to the
data plane to communicate with external IP networks. The SDN-IP application is
connected to the IBGP speaker within the SDN network via an IBGP session3.

Figure 2. Integrating SDN and IP networks.

2 Lab topology

Consider Figure 3. The topology consists of two IP networks (AS 200 and AS 300) and one
SDN network (AS 100). The IP networks connect to the SDN network through their BGP
routers. Router r1 is a BGP router within the SDN network. It communicates with EBGP
routers r2 and r3 via the networks 192.168.12.0/30 and 192.168.13.0/30, respectively.
Furthermore, router r1 is connected to the controller in order to propagate the BGP
advertisements to the SDN-IP application running on top of the ONOS controller. Router
r1 and the controller are connected via the network 10.0.0.0/24.

AS 100

AS 200

SDN-IP
application

IBGP

EBGP

r1

c0
r2

s1 s2

Out-of-band connection

Lab 8: Interconnection between legacy networks and SDN networks

 Page 6

Figure 3. Lab topology.

2.1 Lab settings

The devices are already configured according to Table 2.

Table 2. Topology information.

Device Interface MAC Address IP Address Subnet Default
gateway

Router r1

r1-eth0

00:00:00:00:01:01 192.168.12.1 /30 N/A

00:00:00:00:01:01 192.168.13.1 /30 N/A

r1-eth1 00:00:00:00:01:02 10.0.0.1 /24 N/A

Router r2

r2-eth0 00:00:00:00:02:01 192.168.2.1 /24 N/A

r2-eth1 00:00:00:00:02:02 192.168.12.2 /30 N/A

Router r3

r3-eth0 00:00:00:00:03:01 192.168.3.1 /24 N/A

r3-eth1 00:00:00:00:03:02 192.168.13.2 /30 N/A

Host h1 h1-eth0 00:00:00:00:00:01 192.168.2.10 /24 192.168.2.1

c0

h1

r1

r2 r3

s2 s3

s1

r2-eth0

s4-eth2

s4

s4-eth1

h1-eth0

h2

r3-eth0

s5-eth2

s5

s5-eth1

h2-eth0

r2-eth1 r1-eth0

s1-eth1s2-eth1

r3-eth1

s3-eth1s3-eth2

s1-eth2s1-eth3

s2-eth2

192.168.2.0/24 192.168.3.0/24

.1

.10

.1

.10

192.168.12.2/30 192.168.13.2/30

AS 200

AS 100

AS 300

10.0.0.1/24

10.0.0.3/24

Out-of-band connection

r1-eth1

192.168.12.1/30
192.168.13.1/30

Lab 8: Interconnection between legacy networks and SDN networks

 Page 7

Host h2 h2-eth0 00:00:00:00:00:02 192.168.3.10 /24 192.168.3.1

c0

N/A N/A 172.17.0.2 /16 N/A

N/A N/A 10.0.0.3 /24 N/A

2.2 Loading the topology

In this section, you will open MiniEdit and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet. This tool has additional capabilities such as: configuring network
elements (i.e IP addresses, default gateway), saving the topologies, and exporting layer 2
models.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the Lab8.mn topology file stored in the default directory, /home/sdn/SDN_Labs /lab8 and
click on Open.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 8

Figure 5. Opening topology.

Figure 6. MiniEdit’s topology.

2.3 Loading the configuration file

At this point, the topology is loaded. However, the interfaces are not configured. In order
to assign IP addresses to the interfaces of the devices, you will execute a script that loads
the configuration to the routers.

Step 1. Click on the icon below to open the Linux terminal.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 9

Figure 7. Opening the Linux terminal.

Step 2. Click on the Linux terminal and navigate into SDN_Labs/lab8 directory by issuing
the following command. This folder contains a configuration file and the script
responsible for loading the configuration. The configuration file will assign the IP
addresses to the interfaces of the routers. The cd command is short for change directory
followed by an argument that specifies the destination directory.

cd SDN_Labs/lab8

Figure 8. Entering the SDN_Labs/lab8 directory.

Step 3. To execute the shell script, type the following command. The argument of the
program corresponds to the configuration zip file that will be loaded in all the routers in
the topology.

./config_loader.sh lab8_conf.zip

Figure 9. Executing the shell script to load the configuration.

Step 4. Type the following command to exit the Linux terminal.

exit

Figure 10. Exiting from the terminal.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 10

2.4 Running the emulation

In this section, you will run the emulation and check the links and interfaces that connect
the devices in the given topology.

Step 1. At this point, host h1 and host h2 interfaces are configured. To proceed with the
emulation, click on the Run button located on the lower left-hand side.

Figure 11. Starting the emulation.

Step 2. Issue the following command on Mininet terminal to display the interface names
and connections.

links

Figure 12. Displaying network interfaces.

In Figure 12, the link displayed within the gray box indicates that interface eth1 of switch
s4 connects to interface eth0 of host h1 (i.e., s4-eth1<->h1-eth0).

2.5 Verifying the configuration

You will verify the IP addresses listed in Table 2 and inspect the routing table of routers
r1, r2, and r3.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 11

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 13. Opening a terminal on host h1.

Step 2. On host h1 terminal, type the command shown below to verify that the IP address
was assigned successfully. You will corroborate that host h1 has two interfaces. Interface
h1-eth0 is configured with the IP address 192.168.2.10 and the subnet mask
255.255.255.0. Interface lo is configured with the IP address 127.0.0.1 and the subnet
mask of 255.0.0.0.

ifconfig

Figure 14. Output of ifconfig command.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 12

Step 3. On host h1 terminal, type the command shown below to verify that the default
gateway IP address is 192.168.2.1.

route

Figure 15. Output of route command.

Step 4. In order to verify host h2 IP address and default gateway, proceed similarly by
repeating step 1 to step 3 on host h2 terminal. Similar results should be observed.

Step 5. In order to verify router r1, hold right-click on router r1 and select Terminal.

Figure 16. Opening a terminal on router r1.

Step 6. In this step, you will start the zebra daemon, a multi-server routing software that
provides TCP/IP based routing protocols. The configuration will not be working if you do
not enable the zebra daemon initially. In order to start zebra, type the following command.

zebra

Lab 8: Interconnection between legacy networks and SDN networks

 Page 13

Figure 17. Starting zebra daemon.

Step 7. After initializing zebra, vtysh should be started in order to provide all the CLI
commands defined by the daemons. To proceed, issue the following command.

vtysh

Figure 18. Starting vtysh on router r1.

Step 8. Type the following command on router r1 terminal to verify the routing table of
router r1. It will list all the directly connected networks. The routing table of router r1
does not contain any route to the network of router r2 (192.168.2.0/24) or router r3
(192.168.3.0/24) as there is no routing protocol configured yet.

show ip route

Figure 19. Displaying the routing table of router r1.

The output in the figure above shows that the networks 192.168.12.0/24 and
192.168.13.0/30 are directly connected through the interface r1-eth0.

Step 9. Hold right-click on router r2 and select Terminal.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 14

Figure 20. Opening a terminal on router r2.

Step 10. Router r2 is configured similarly to router r1 but with different IP addresses (see
Table 2). Those steps are summarized in the following figure. To proceed, in router r2
terminal issue the commands depicted below. In the end, you will verify all the directly
connected networks of router r2.

Figure 21. Displaying the routing table of router r2.

Step 11. Router r3 is configured similarly to router r1 but with different IP addresses (see
Table 2). Those steps are summarized in the following figure. To proceed, in router r3
terminal issue the commands depicted below. In the end, you will verify all the directly
connected networks of router r3.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 15

Figure 22. Displaying the routing table of router r3.

3 Configuring BGP within legacy networks

In the previous section, you used a script to assign the IP addresses to all device interfaces.
In this section, you will configure the BGP routing protocol on the legacy networks
(routers r2 and r3). First, you will initialize the daemon that enables BGP configuration.
Then, you need to assign BGP neighbors to allow BGP peering to the remote neighbor.
Additionally, you will advertise the local networks so that they are advertised to EBGP
neighbors.

Step 1. To configure the BGP routing protocol, you need to enable the BGP daemon first.
In router r2, type the following command to exit the vtysh session.

exit

Figure 23. Exiting the vtysh session.

Step 2. Type the following command on router r2 terminal to start the BGP routing
protocol.

bgpd

Figure 24. Starting BGP daemon.

Step 3. In order to enter to router r2 terminal, type the following command.

vtysh

Lab 8: Interconnection between legacy networks and SDN networks

 Page 16

Figure 25. Starting vtysh on router r2.

Step 4. To enable router r2 global configuration mode, issue the following command.

configure terminal

Figure 26. Enabling configuration mode on router r2.

Step 5. The Autonomous System Number (ASN) assigned for router r2 is 200. In order to
configure BGP, type the following command.

router bgp 200

Figure 27. Configuring BGP on router r2.

Step 6. To configure a BGP neighbor to router r2 (AS 200), type the command shown
below. This command specifies the neighbor IP address (192.168.12.1) and ASN of the
remote BGP peer (AS 100).

neighbor 192.168.12.1 remote-as 100

Lab 8: Interconnection between legacy networks and SDN networks

 Page 17

Figure 28. Assigning BGP neighbor to router r2.

Step 7. Issue the following command so that router r2 advertises the network
192.168.2.0/24.

network 192.168.2.0/24

Figure 29. Advertising the network connected to router r2.

Step 8. Type the following command to exit from the configuration mode.

end

Figure 30. Exiting from configuration mode.

Step 9. Type the following command to show the BGP neighbors. You will verify that the
neighbor’s IP address is 192.168.12.1. The corresponding ASN is 100.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 18

show ip bgp neighbors

Figure 31. Verifying BGP neighbors on router r2.

Step 10. The configuration of BGP on router r3 is similarly configured as router r2. Router
r3 lies within AS 300, it establishes BGP neighbor relationship with router r1
(192.168.13.1) in AS 100 and advertises the network 192.168.3.0/24. The configuration
of BGP on router r3 is depicted in the figure below.

Figure 32. BGP configuration on router r3.

Step 11. To verify BGP neighbors of router r3, type the following command.

show ip bgp neighbors

Figure 33. Verifying BGP neighbors on router r3.

Currently no BGP peering session has been established since BGP is not configured yet
on the neighboring router r1.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 19

4 Starting the ONOS controller

In this section, you will start the ONOS controller and activate OpenFlow application so
that the controller discovers the devices, hosts, and links in the topology.

Step 1. Go to the Linux terminal, Shell No. 1.

Figure 34. Opening Linux terminal.

Step 2. Click on File>New Tab to open an additional tab in the Linux terminal.
Alternatively, you may press Ctrl+Shift+T.

Figure 35. Opening an additional tab.

Step 3. Navigate into SDN_Labs/lab8/ directory by issuing the following command.

cd SDN_Labs/lab8/

Figure 36. Entering the SDN_Labs/lab8/ directory.

Step 4. Issue the command below to execute programs with the security privileges of the
superuser (root). When prompted for a password, type password.

sudo su

Lab 8: Interconnection between legacy networks and SDN networks

 Page 20

Figure 37. Switching to root mode.

Step 5. A script was written to run ONOS and enter its Command Line Interface (CLI). In
order to run the script, issue the following command. In addition to running ONOS, the
script will modify the Media Access Control (MAC) addresses of the hosts and routers so
that they conform with the topology.

./run_onos.sh

Figure 38. Starting the ONOS controller.

Once the script finishes executing and ONOS is ready, you will be able to execute
commands on the ONOS CLI as shown in the figure below. Note that this script may take
few seconds.

Figure 39. ONOS CLI.

Step 6. In the ONOS terminal, issue the following command to activate the OpenFlow
application.

app activate org.onosproject.openflow

Lab 8: Interconnection between legacy networks and SDN networks

 Page 21

Figure 40. Activating OpenFlow application.

Note that when you activate any ONOS application, you may have to wait few seconds so
that the application gives the correct output.

Step 8. To display the list of all currently known devices (OVS switches), type the following
command.

devices

Figure 41. Displaying the currently known devices (switches).

Step 9. To display the list of all currently known links, type the following command.

links

Figure 42. Displaying the currently known links.

Step 10. Click on the Mininet tab on the left-hand side and type the command shown
below to ping all hosts in the topology.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 22

pingall

Figure 43. Pinging all the hosts.

Consider the figure above. The purpose of this step is to provide hosts information to the
controller.

Step 11. To display the list of all currently known hosts, type the following command in
the ONOS terminal.

hosts

Figure 44. Displaying the current known links.

Consider Figure 44. ONOS recognizes router r2 (192.168.12.2) and router r3
(192.168.13.2) and displays the interfaces of the OpenFlow switches they are connected
to. Note that you might have to wait until ONOS discovers the two hosts in case they do
not appear immediately.

5 Integrating SDN and legacy networks

In the previous sections, you configured the legacy devices as well as started ONOS and
its OpenFlow application to discover the topology. In this section, you will first execute a
script that connects the IBGP speaker (router r1) with the ONOS controller, so that the
two entities can communicate. Additionally, you will configure BGP on router r1 so that it

Lab 8: Interconnection between legacy networks and SDN networks

 Page 23

peers with routers r2 and r3 in the external networks, as well as with ONOS. Furthermore,
you will activate the ONOS SDN-IP application to interconnect the three ASes.

5.1 Connecting the IBGP speaker (router r1) with the ONOS controller

In this section, you will execute a script that creates a peer-to-peer link connecting router
r1 with ONOS.

Step 1. Go to Mininet tab in the Linux terminal.

Figure 45. Opening Mininet tab.

Step 2. In order to create a point-to-point network between the IBGP speaker (router r1)
and ONOS, a script was written to facilitate the process. In order to execute the script,
type the following command.

source ./SDN_Labs/lab8/create_link.sh

Figure 46. Creating a point-to-point network (link) between the IBGP speaker and the ONOS
controller.

Consider Figure 46. The script creates a point-to-point network between router r1 and
ONOS. The network address of the point-to-point network is 10.0.0.0/24. Router r1 is
assigned the IP address 10.0.0.1/24, whereas the ONOS controller is assigned 10.0.0.3/24.
Furthermore, the script pushes a configuration file (network-cfg.json) to the controller
necessary to run the SDN-IP application.

Step 3. In router r1 terminal, type the following command to exit the vtysh session.

exit

Lab 8: Interconnection between legacy networks and SDN networks

 Page 24

Figure 47. Creating a network between the IBGP speaker and the ONOS controller.

Step 4. Now that router r1 is connected to the ONOS controller, a new interface must
appear. In order to verify the connected interface, type the following command.

ifconfig

Figure 48. Listing the interfaces of router r1.

Consider Figure 48. Interface r1-eth1 is added after creating a point-to-point network
between router r1 and the ONOS controller. Furthermore, the interface has the IP address
10.0.0.1.

5.2 Configuring BGP on router r1

In this section, you will configure BGP on router r1 to peer with routers r2 and r3, as well
as with ONOS.

Step 1. Type the following command on router r1 terminal to start the BGP routing
protocol.

bgpd

Lab 8: Interconnection between legacy networks and SDN networks

 Page 25

Figure 49. Starting BGP daemon.

Step 2. In order to enter to router r1 terminal, type the following command.

vtysh

Figure 50. Starting vtysh on router r1.

Step 3. To enable router r1 global configuration mode, issue the following command.

configure terminal

Figure 51. Enabling configuration mode on router r1.

Step 4. The ASN assigned for router r1 is 100. In order to configure BGP, type the following
command.

router bgp 100

Figure 52. Configuring BGP on router r1.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 26

Step 5. To configure a BGP neighbor to router r1 (AS 100), type the command shown
below. This command specifies the neighbor IP address (192.168.12.2) and ASN of the
remote BGP peer (AS 200).

neighbor 192.168.12.2 remote-as 200

Figure 53. Assigning BGP neighbor to router r1.

Step 6. Similarly, add router r3 (192.168.13.2) in AS 300 as a BGP neighbor to router r1.

neighbor 192.168.13.2 remote-as 300

Figure 54. Assigning BGP neighbor to router r1.

Step 7. Router r1 and the ONOS controller are connected using a point-to-point network
(10.0.0.0/24). The IP address assigned to the controller is 10.0.0.3. As router r1 is the IBGP
speaker within the SDN network, it must establish a BGP peering relationship with the
controller in its network (AS 100). In order to establish BGP peering relationship with the
controller, type the following command.

neighbor 10.0.0.3 remote-as 100

Lab 8: Interconnection between legacy networks and SDN networks

 Page 27

Figure 55. Assigning BGP neighbor to router r1.

Step 8. By default, ONOS listens on TCP port number 2000 for incoming BGP connections,
which is not the default BGP port number 179. In order to specify the port for incoming
BGP messages from ONOS, write the following command.

neighbor 10.0.0.3 port 2000

Figure 56. Changing the Listening port for BGP connections.

Step 9. Type the following command to exit from the configuration mode.

end

Figure 57. Exiting from configuration mode.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 28

Step 10. Type the following command on router r1 terminal to verify the routing table of
router r1. It will list all the directly connected networks. The routing table of router r1
does not contain any route to the network of router r2 (192.168.2.0/24) or router r3
(192.168.3.0/24) as there is no enabled ONOS application that deals with BGP routes.

show ip route

Figure 58. Displaying the routing table of router r1.

5.3 Activating the SDN-IP application

In this section, you will activate the SDN-IP application and other dependencies
(applications) that will interconnect the SDN network with the legacy network.

Step 1. Go to the ONOS terminal.

Figure 59. Opening the ONOS terminal.

Step 2. Before activating the SDN-IP application you must start the config application. The
latter is an application for the network configuration. In order to activate the config
application, type the following command.

app activate org.onosproject.config

Figure 60. Activating ONOS config application.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 29

Step 3. The SDN-IP application has an additional application dependency, which is used
to resolve Address Resolution Protocol (ARP) requests. This is the proxyarp application
that responds to ARP requests on behalf of hosts and external routers.

app activate org.onosproject.proxyarp

Figure 61. Activating ONOS proxyarp application.

Step 4. Once the dependencies are started, the SDN-IP application can be activated. In
order to do that, type the following command.

app activate org.onosproject.sdnip

Figure 62. Activating ONOS SDN-IP application.

After activating the applications above, you might have to wait few minutes until the
applications discover the topology and exchange information in order to get correct
results.

Step 5. Click on the Mininet tab on the left-hand side and type the command shown
below to ping all hosts in the topology.

pingall

Lab 8: Interconnection between legacy networks and SDN networks

 Page 30

Figure 63. Pinging all the hosts.

The test result will be unsuccessful. The purpose of this step is to provide information
about the hosts to the controller.

Step 6. In the ONOS terminal, type the following command to show the IBGP neighbors
that have connected to SDN-IP application.

bgp-neighbors

Figure 64. Viewing IBGP neighbors within the SDN network.

Consider Figure 64. The neighbor 192.168.13.1 corresponds to router r1 in AS 100. This is
the internal BGP speaker in the SDN network. The local router ID that the SDN-IP
application uses is 10.0.0.3.

Step 7. To show the routing table of SDN-IP, type the following command.

routes

Lab 8: Interconnection between legacy networks and SDN networks

 Page 31

Figure 65. Showing the routing table of the SDN-IP application.

Consider Figure 65. The networks 192.168.2.0/24 and 192.168.3.0/24 are inserted in the
routing table of the SDN-IP application.

6 Verifying the connectivity between the networks

Step 1. Open router r1 terminal and type the following command to show the BGP table.

show ip bgp

Figure 66. Showing the BGP table of router r1.

Consider Figure 66. The networks 192.168.2.0/24 and 192.168.3.0/24 are inserted in the
BGP table of router r1. The next hops to reach these networks are 192.168.12.2 (router
r2) and 192.168.13.2 (router r3), respectively.

Step 2. In router r1 terminal, type the following command to show the routing table.

show ip route

Lab 8: Interconnection between legacy networks and SDN networks

 Page 32

Figure 67. Showing the routing table of router r1.

Consider Figure 67. The networks 192.168.2.0/24 and 192.168.3.0/24 advertised by
routers r2 and r3, respectively, are added to the routing table of router r1.

Step 3. Open router r2 terminal and type the following command to show the routing
table.

show ip route

Figure 68. Showing the routing table router r2.

Consider Figure 68. The network 192.168.3.0/24 is added to the routing table of router
r2, and it is reachable via 192.168.12.1 (router r1). Similarly, you can verify the routing
table of router r3.

Step 4. Open host h1 terminal and type the following command to test the connectivity
with host h2.

ping 192.168.3.10

Lab 8: Interconnection between legacy networks and SDN networks

 Page 33

Figure 69. Pinging host h2 from host h1.

Consider Figure 69. The result shows a successful connectivity test. Thus, BGP is
successfully configured and integrated between legacy and SDN networks. Do not stop
the test as you will inspect the flow entries that handle the traffic between ASes 200 and
300.

7 Inspecting the flow table of the OpenFlow switches

In this section, you will inspect the flow rules installed on the OpenFlow switches to better
understand the SDN-IP application and see how the BGP route advertisements are
translated into OpenFlow entries.

Step 1. On the ONOS terminal, type the following command to inspect the flows in switch
s2. Use the tab key to autocomplete the OpenFlow port.

flows added of:0000000000000002

Figure 70. Inspecting flow entries on switch s2.

Figure 71. Inspecting flow entries on switch s2 that handle BGP traffic.

Figure 72. Inspecting flow entries on switch s2 that handle BGP traffic.

Consider Figures 70, 71, and 72. There are 11 flow rules installed on switch s2. For
simplicity, we only show some of the rules that handle BGP traffic. The highlighted rule in

Lab 8: Interconnection between legacy networks and SDN networks

 Page 34

figure 71 handles BGP traffic from router r2 to router r1 on switch s2. The match criteria
of the rule are as follow:

• IN_PORT:1 Incoming packets at port 1 (s2-eth1).

• ETH_TYPE:ipv4 IPv4 packets.

• IP_PROTO:6 TCP packets.

• IPV4_SRC: 192.168.12.2/32 The IP address of router r2 (r2-eth1).

• IPV4_DST: 192.168.12.1/32 The IP address of router r1 (r1-eth0).

• TCP_SRC: 179 TCP source port where BGP is running.

Packets matching the criteria above will be forwarded out of port 2 (s2-eth2). Likewise,
the highlighted rule in figure 72 handles BGP traffic from router r1 to router r2.

Step 2. On the ONOS terminal, type the following command to inspect the flows in switch
s1. Use the tab key to autocomplete the OpenFlow port.

flows added of:0000000000000001

Figure 73. Inspecting flow entries on switch s1.

Figure 74. Inspecting flow entries on switch s1 that handle BGP traffic.

Figure 75. Inspecting flow entries on switch s1 that handle BGP traffic.

Consider Figures 73, 74, and 75. There are 17 flow rules installed on switch s1. For
simplicity, we only show some of the rules that handle BGP traffic. The highlighted rule in
figure 74 handles BGP traffic from router r2 to router r1 on switch s1. Likewise, the
highlighted rule in figure 75 handles BGP traffic from router r1 to router r2 on switch s1.
Similarly, you can inspect other flows on switches s1 and s3 that deal with the BGP traffic
between routers r1 and r3.

Step 3. On the ONOS terminal, type the following command to inspect the flows in switch
s2. Use the tab key to autocomplete the OpenFlow port.

Lab 8: Interconnection between legacy networks and SDN networks

 Page 35

flows added of:0000000000000002

Figure 76. Inspecting flow entries on switch s2.

Figure 77. Inspecting flow entries on switch s2 that handle traffic between ASes 200 and 300.

Consider Figure 77. Switch s2 has two flow rules that handle the traffic between ASes 200
and 300. The first flow rule matches against IPv4 packets destined to AS 300
(192.168.3.0/24). The corresponding actions are changing the MAC destination address
to interface r3-eth1 (ETH_DST:00:00:00:00:03:02), followed by forwarding the packets
out of port 1 (OUTPUT:2), which corresponds to s2-eth2. The second flow matches against
packets destined to router r2 (ETH_DST:00:00:00:00:02:02) and forwards them out of
port 1 (s2-eth1).

This concludes Lab 8. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. A. Tanenbaum, D. Wetherall, “Computer networks”, 5th Edition, Pearson, 2012.
2. Y. Rekhter, T. Li, and S. Hares. "A border gateway protocol 4 (BGP-4)." RFC 4271

(1994).
3. ONOS project, “SDN-IP”, [Online]. Available:

https://wiki.onosproject.org/display/ONOS/SDN-IP.
4. P. Goransson, C. Black, T. Culver. “Software defined networks: a comprehensive

approach”. Morgan Kaufmann, 2016.
5. P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-Shabibi, K.C.

Wang, J. Bi. “Seamless interworking of SDN and IP”. In Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM, pp. 475-476, 2013.

SOFTWARE DEFINED NETWORKING

Exercise 4: Incremental Deployment of SDN
Networks within Legacy Networks

Document Version: 09-02-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Exercise 4: Incremental Deployment of SDN Networks within Legacy Networks

 Page 2

Contents

1 Exercise description .. 3

1.1 Topology settings ... 3

1.2 Credentials ... 4

2 Deliverables ... 4

Exercise 4: Incremental Deployment of SDN Networks within Legacy Networks

 Page 3

1 Exercise description

Consider Figure 1. The topology consists of two IP networks in Autonomous Systems
(ASes) 20 and 30 and one Software Defined Networking (SDN) network in AS 10. The IP
networks connect to the SDN network through their Border Gateway Protocol (BGP)
routers. Router r1 is a BGP router within the SDN network that communicates with the
External BGP (EBGP) routers r2 and r3 via the networks 173.17.12.0/30 and
173.17.13.0/30, respectively. Furthermore, router r1 connects to the ONOS controller via
the network 10.0.0.0/24 to propagate the BGP advertisements received from other
networks. The SDN network contains two hosts that are in networks 192.168.1.0/24 and
192.168.2.0/24, respectively, and should communicate after configuring the SDN control
and data planes.

The goal of this exercise is to configure the SDN switches to interconnect with the legacy
networks, as well as to emulate virtual gateways and routing within the SDN network. To
interconnect the three ASes, you should configure BGP on the legacy routers and enable
the necessary ONOS applications within the SDN network. To emulate virtual gateways
and connect hosts h3 and h4, you should reconfigure ONOS with a new network
configuration file and enable an additional ONOS application. The topology below is
already built and you should use Mininet to emulate it. Additionally, you should use Free
Range Routing (FRR) to configure network protocols.

c0

h1

r1

r2 r3

s2 s3

s1

r2-eth0

s4-eth2

s4

s4-eth1

h1-eth0

h2

r3-eth0

s5-eth2

s5

s5-eth1

h2-eth0

r2-eth1 r1-eth0

s1-eth1s2-eth1

r3-eth1

s3-eth1s3-eth2

s1-eth2s1-eth3

s2-eth2

173.17.2.0/24

.1

.10

.1

.10

173.17.12.2/30 173.17.13.2/30

AS 20

AS 10

AS 30

192.168.1.0/24

10.0.0.3/24

Out-of-band connection

r1-eth1

173.17.12.1/30
173.17.13.1/30
192.168.1.1/24
192.168.2.1/24

h3

h3-eth0

10.0.0.1/24

.1

.10

s2-eth3

h4

h4-eth0

.1

.10

s3-eth3

173.17.3.0/24

192.168.2.0/24

Figure 1. Lab topology.

1.1 Topology settings

The devices are already configured according to Table 1.

Exercise 4: Incremental Deployment of SDN Networks within Legacy Networks

 Page 4

Table 1. Topology information.

Device Interface MAC Address IP Address Subnet Default
gateway

Router r1

r1-eth0

00:00:00:00:01:01 173.17.12.1 /30 N/A

00:00:00:00:01:01 173.17.13.1 /30 N/A

00:00:00:00:01:01 192.168.1.1 /24 N/A

00:00:00:00:01:01 192.168.2.1 /24 N/A

r1-eth1 00:00:00:00:01:02 10.0.0.1 /24 N/A

Router r2

r2-eth0 00:00:00:00:02:01 173.17.2.1 /24 N/A

r2-eth1 00:00:00:00:02:02 173.17.12.2 /30 N/A

Router r3

r3-eth0 00:00:00:00:03:01 173.17.3.1 /24 N/A

r3-eth1 00:00:00:00:03:02 173.17.13.2 /30 N/A

Switch s2 s2-eth3 N/A 192.168.1.1 /24 N/A

Switch s3 s3-eth3 N/A 192.168.2.1 /24 N/A

Host h1 h1-eth0 00:00:00:00:00:01 173.17.2.10 /24 173.17.2.1

Host h2 h2-eth0 00:00:00:00:00:02 173.17.3.10 /24 173.17.3.1

Host h3 h3-eth0 00:00:00:00:00:03 192.168.1.10 /24 192.168.1.1

Host h4 h4-eth0 00:00:00:00:00:04 192.168.2.10 /24 192.168.2.1

c0

N/A N/A 172.17.0.2 /16 N/A

N/A N/A 10.0.0.3 /24 N/A

1.2 Credentials

The information in Table 2 provides the credentials to access the Client’s virtual machine.

Table 2. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

2 Deliverables

Exercise 4: Incremental Deployment of SDN Networks within Legacy Networks

 Page 5

Follow the steps below to complete the exercise.

a) Open MiniEdit and load the topology above. The topology file Exercise4.mn of this
exercise is in the directory ~/SDN_Labs/Exercise4 as shown in the figure below. Do not
run MiniEdit.

Figure 2. Loading the topology file in Mininet.

b) In Linux terminal, run the script responsible for loading the IP addresses to the
interfaces of the routers as shown in the figure below. The script config_loader.sh takes
the IP addresses file Exercise4_conf.zip as an argument, and both files are in the directory
~/SDN_Labs/Exercise4.

Figure 3. Executing the shell script to load the configuration.

c) Run MiniEdit and verify in Mininet terminal that the links conform to the topology
figure and settings table above.

d) In FRR shell, inspect the routing table and verify the directly connected networks on
each router.

e) Configure BGP on routers r2 and r3 within the legacy networks. Routers r2 and r3
should peer with router r1 and advertise their local network. Inspect the BGP tables of
routers r2 and r3 and report any learned routes. Explain the results.

Exercise 4: Incremental Deployment of SDN Networks within Legacy Networks

 Page 6

f) In the Linux terminal, navigate to the directory ~/SDN_Labs/Exercise4 and execute, in
superuser mode, the script run_onos.sh that runs the ONOS controller. When prompted
for a password, type password. The steps to run ONOS are depicted in the figure below.

Figure 4. Starting the ONOS controller.

g) Activate the application that allows the communication between the controller and the
OpenFlow switches. Additionally, inspect and list the devices and links observed by ONOS.
Verify that the results conform with the topology figure and settings above.

h) Create a point-to-point network between the IBGP speaker (router r1) and ONOS. To
do that, you should run the script create_link.sh located in ~/SDN_Labs/Exercise4/ from
within the Mininet terminal as shown in the figure below.

Figure 5. Creating a point-to-point network (link) between the IBGP speaker and the ONOS
controller.

i) Verify the added network by inspecting the interfaces of router r1. Report the added
interface along with its IP address.

j) Configure BGP on router r1 to peer with the legacy networks and ONOS.

k) Activate the ONOS applications responsible for interconnecting the legacy and SDN
networks.

l) Issue the ONOS command to view the IBGP neighbors of the SDN networks. Validate
that the result obtained conforms with the topology above.

m) Issue the command to view the routing table of the ONOS application interconnecting
the SDN and legacy networks.

n) Inspect the BGP tables of the legacy routers and report the newly learned routes.
Compare the results obtained to those in part e and explain the results briefly.

o) Test the connectivity between the legacy networks by performing a ping test from host
h1 to host h2. Keep the ping test active for the following step.

Exercise 4: Incremental Deployment of SDN Networks within Legacy Networks

 Page 7

p) List the flow that forwards the BGP traffic from router r2 to router r1 on switch s2 and
the flow that forwards the IP packets destined to host h1 on switch s3.

q) Test the connectivity between the SDN hosts by performing a ping test from host h3 to
host h4.

r) ONOS is loaded with a configuration file network-cfg1.json necessary for the application
that enables the interconnection between the legacy and SDN networks. To enable
routing within the SDN network, a new configuration file network-cfg2_loader.sh must be
loaded into ONOS. The file network-cfg2_loader.sh is necessary for the application that
enables routing within the SDN network. To load the network-cfg2_loader.sh file into
ONOS, you should run the script network-cfg2_loader.sh located in
~/SDN_Labs/Exercise4/ from within the Linux terminal in superuser mode as shown in the
figure below.

Figure 6. Loading a new network configuration file into ONOS to enable routing.

s) Activate the ONOS application that enables routing within the SDN network and
connects hosts h3 and h4.

t) Test the connectivity between the SDN hosts by performing a ping test from host h3 to
host h4. Report the result of the connectivity test.

u) List the flow that forwards the IP packets destined to host h4 on switch s2.

v) Inspect the two configuration files network-cfg1.json and network-cfg2.json and check
the JSON objects that were added to enable routing in the SDN network.

SOFTWARE DEFINED NETWORKING

Lab 9: Configuring Virtual Private LAN Service
(VPLS)

Document Version: 07-03-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 VPLS architecture ... 4

2 Lab topology.. 5

2.1 Lab settings... 5

2.2 Loading the topology.. 6

2.3 Starting the ONOS controller ... 7

2.4 Verifying the configuration .. 9

3 Configuring VPLS ... 10

3.1 Enabling OpenFlow and VPLS applications .. 11

3.2 Displaying host information ... 11

3.3 Associating OpenFlow interfaces to the end-hosts ... 13

3.4 Creating a VPLS ... 13

3.5 Adding interfaces to an existing VPLS .. 14

4 Verifying connectivity between end-hosts ... 16

References .. 19

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 3

Overview

The following lab presents Virtual Private Local Area Network Service (VPLS). A VPLS
emulates a Local Area Network (LAN) and provides multipoint broadcast over layer 2
circuits between multiple endpoints. This service enables remote sites to share an
Ethernet broadcast domain by connecting sites through pseudowires. In this lab, you will
configure VPLS in a simple topology using Open Flow switches.

Objectives

By the end of this lab, you should be able to:

1. Understand the operation of VPLS.
2. Enable OpenFlow switches to enable VPLS operation.
3. Use the Open Network Operating System (ONOS) controller to perform VPLS

configuration.
4. Verify end-to-end connectivity between the end-hosts attached to the same

VPLS and inspect the flow table of the switches.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Configuring VPLS.
4. Section 4: Verifying connectivity between end-hosts.

1 Introduction

Networks that use the data link layer to interconnect devices are referred to as layer 2
networks. A data link layer device operates in the second layer of the Open Systems
Interconnection (OSI) model. For example, a typical layer 2 network is an Ethernet

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 4

network that englobes endpoint devices such as servers, printers, and computers
interconnected using one or more Ethernet switches. Ethernet switches enable layer 2
communication by forwarding Ethernet frames within the network.

VPLS works as a layer 2 Virtual Private Network (VPN) service that extends two or more
remote customer networks known as VPLS sites. This service can be provided over
intermediate networks often referred to as a provider network. A VPLS is delivered
transparently, which implies that the remote customer sites seem to be connected in the
same Local Area Network (LAN). VPLS enables layer 2 communications between customer
networks through intermediate networks1.

1.1 VPLS architecture

Consider Figure 1. A VPLS emulates a LAN and provides layer 2 functionalities by acting as
an emulated Ethernet switch within a Wide Area Network (WAN). Once a VPLS instance
is created, its primary function is to interconnect two or more remote customer sites.
Additionally, VPLS supports Virtual Local Area Networks (VLAN) and Multiprotocol Label
Switching (MPLS) encapsulations. When a VPLS instance is configured, it creates a full
mesh of pseudowires between the Provider’s Edge (PE) routers participating in the VPLS
instance. PE routers can replicate and forward broadcast and multicast frames. Therefore,
the emulated switch has all the characteristics of a layer 2 switch2.

VPLS

Customer
site 1

Customer
site 2

PE 1 PE 2
Pseudowires

Emulated
Ethernet switch

CECE

Customer
site 1

CE

Customer
site 2

CE

Figure 1. VPLS architecture.

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 5

VPLS is implemented as an ONOS application that provides multi-point broadcast layer 2
circuits between multiple endpoints in an OpenFlow network. Additionally, it supports
encapsulations such as VLAN and MPLS. To establish VPLS connectivity between two or
more end-hosts, they must fulfill the following conditions:

• At least one VPLS must be defined.

• At least the interfaces of two end-host must be configured.

• At least two interfaces must be associated with the same VPLS.

Once the conditions above are satisfied, end-hosts attached to the configured VPLS will
send and receive broadcast traffic such as the Address Resolution Protocol (ARP) request
messages. This is needed to make sure that all hosts are discovered before establishing
unicast communication.

2 Lab topology

Consider Figure 2. The topology consists of four end-hosts, two OpenFlow switches, and
a controller. This topology presents a scenario where two customers have two remote
sites. Hosts h1 and h3 belong to VPLS1, and hosts h2 and h4 belong to VPLS2.

h1

h4

h3

s1 s2

h1-eth0

h2-eth0

s1-eth1 s2-eth1

s2-eth2

s1-eth3 s2-eth3

Customer 1
site 1

Customer 1
site 2

c0

h2

s1-eth2

Customer 2
site 1

Customer 2
site 2

VPLS 1

h3-eth0

h4-eth0

VPLS 2

10.0.0.0/8

.1

.2

.3

.4

Figure 2. Lab topology.

2.1 Lab settings

The devices are already configured according to Table 2.

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 6

Table 2. Topology information.

Device Interface MAC Address IP Address Subnet

h1 h1-eth0 00:00:00:00:00:01 10.0.0.1 /8

h2 h2-eth0 00:00:00:00:00:02 10.0.0.2 /8

h3 h3-eth0 00:00:00:00:00:03 10.0.0.3 /8

h4 h4-eth0 00:00:00:00:00:04 10.0.0.4 /8

c0 N/A N/A 172.17.0.2 /16

2.2 Loading the topology

In this section, you will open MiniEdit and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet. This tool has additional capabilities such as: configuring network
elements (i.e., IP addresses, default gateway), saving topologies, and exporting layer 2
models.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
clicking on the MiniEdit’s shortcut. When prompted for a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the Lab9.mn topology file stored in the default directory, /home/sdn/SDN_Labs /lab9 and
click on Open.

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 7

Figure 4. Opening the topology.

Figure 5. MiniEdit’s topology.

Step 3. Click on the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 6. Starting the emulation.

2.3 Starting the ONOS controller

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 8

Step 1. Click on the icon below to open the Linux terminal.

Figure 7. Opening the Linux terminal.

Step 2. Navigate into the SDN_Labs/lab9 directory by issuing the following command.
This folder contains the script responsible for starting ONOS. The cd command is short
for change directory followed by an argument that specifies the destination directory.

cd SDN_Labs/lab9

Figure 8. Entering the SDN_Labs/lab9 directory.

Step 3. A script was written to run ONOS and enter its Command Line Interface (CLI). In
order to run the script in superuser (root) mode, issue the following command. When
prompted for a password, type password. In addition to running ONOS, the script will
modify the MAC addresses of the hosts so that they conform with the topology.

sudo ./run_onos.sh

Figure 9. Starting the ONOS controller.

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 9

Figure 10. ONOS CLI.

2.4 Verifying the configuration

In this section, you will verify the IP addresses listed in Table 2 and perform a connectivity
test.

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands in that host.

Figure 11. Opening host h1 terminal.

Step 2. On host h1 terminal, type the command shown below to verify that the IP address
was assigned successfully. You will corroborate that host h1 has two interfaces. Interface
h1-eth0 is configured with the IP address 10.0.0.1 and the subnet mask 255.0.0.0. The
loopback interface lo is configured with the IP address of 127.0.0.1 with a subnet mask of
255.0.0.0.

ifconfig

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 10

Figure 12. Output of the ifconfig command.

Step 3. In order to verify the IP address of other hosts, proceed similarly by repeating
steps 1 and 2 on the host’s terminal. Similar results should be observed.

Step 4. Test the connectivity between host h1 and host h3 using the ping command. On
host h1 terminal, type the command specified below.

ping 10.0.0.3

Figure 13. Performing a connectivity test on host h1 terminal.

To stop the test, press Ctrl+c. The figure above shows an unsuccessful connectivity test
and as a result the test had 100% packet loss.

3 Configuring VPLS

In this section, you will configure VPLS by enabling the OpenFlow and the VPLS
applications in ONOS. Then, you will define two VPLS instances in order to establish a
connection between the two customers sites.

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 11

3.1 Enabling OpenFlow and VPLS applications

Step 1. Select the ONOS CLI by clicking on the Linux terminal as shown in the figure below.

Figure 14. Navigating into the ONOS CLI.

Step 2. Activate the OpenFlow application by issuing the following command.

app activate org.onosproject.openflow

Figure 15. Activating the OpenFlow application.

Step 3. Activate the VPLS application by typing the command below.

app activate org.onosproject.vpls

Figure 16. Activating the VPLS application.

3.2 Displaying host information

Step 1. Open Mininet’s CLI by selecting the terminal shown below.

Figure 17. Navigating into Mininet’s CLI.

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 12

Step 2. In the CLI, type the command shown below and wait until the test finishes.

pingall

Figure 18. Performing a connectivity test between all the participants.

The results will show an unsuccessful (X X X) connectivity test among all end-hosts.

Step 3. Navigate back to the ONOS CLI by clicking on the Linux terminal as shown in the
figure below.

Figure 19. Navigating into ONOS CLI.

Step 4. Type the following command to display the hosts information.

hosts

Figure 20. Displaying host information.

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 13

You will visualize the location and the IP address of each host. The location is related to
the OpenFlow switch ports. For example, the location of:0000000000000001/2 specifies
the OpenFlow switch s1 and the port number 2.

3.3 Associating OpenFlow interfaces to the end-hosts

Step 1. Considering the information contained in Table 2, associate h1 to its OpenFlow
port by typing the following command.

interface-add of:0000000000000001/1 h1

The sequence of zeroes is long and might be a source of mistakes. To have the correct
number of zeros, consider using Tab to autocomplete.

Figure 21. Adding an interface.

Step 2. Proceed similarly to associate the remaining interfaces. Those steps are
summarized in the figure below.

Figure 22. Adding interfaces.

3.4 Creating a VPLS

Step 1. To create a new VPLS, type the command below according to the information
displayed in Table 2 and the topology.

vpls create VPLS1

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 14

Figure 23. Creating VPLS1.

Step 2. Similarly, create another VPLS by typing the following command.

vpls create VPLS2

Figure 24. Creating VPLS2.

Step 3. To list the created VPLS, type the following command.

vpls list

Figure 25. List of VPLSes.

3.5 Adding interfaces to an existing VPLS

Step 1. To add host h1 to VPLS1 type the following command.

vpls add-if VPLS1 h1

Figure 26. Assigning host h1 to VPLS1.

Step 2. Add host h3 to VPLS1 by typing the command below. Now, host h1 and host h3
are in the same VPLS.

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 15

vpls add-if VPLS1 h3

Figure 27. Assigning host h3 to VPLS1.

Step 3. To add host h2 to VPLS2 type the following command.

vpls add-if VPLS2 h2

Figure 28. Assigning host h2 to VPLS2.

Step 4. Similarly, add host h4 to VPLS2 by issuing the following command.

vpls add-if VPLS2 h4

Figure 29. Assigning host h4 to VPLS2.

Step 5. To verify if the configuration was applied correctly, issue the command below.

vpls show

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 16

Figure 30. Verifying VPLS configuration.

The output of the figure above shows that VPLS1 is associated with hosts h1 and h3. No
encapsulation is used, and the state indicates that the interfaces were added successfully.
VPLS2 is associated with hosts h2 and h4, the configuration is the same as VPLS1.

4 Verifying connectivity between end-hosts

Step 1. Test the connectivity between host h1 and host h3 using the ping command. On
host h1 terminal, type the command specified below.

ping 10.0.0.3

Figure 31. Connectivity test between hosts h1 and h3

To stop the test, press Ctrl+c. The result in the figure above shows a successful
connectivity test.

Step 2. Test the connectivity between host h1 and host h4 using the ping command. On
host h1 terminal, type the command specified below.

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 17

ping 10.0.0.4

Figure 32. Connectivity test between hosts h1 and h4.

To stop the test, press Ctrl+c. The result in the figure above shows an unsuccessful
connectivity test.

Step 3. Hold right-click on h2 and select Terminal.

Figure 33. Opening host h2 terminal.

Step 4. Test the connectivity between host h2 and host h4 using the ping command. On
host h2 terminal, type the command specified below.

ping 10.0.0.4

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 18

Figure 34. Connectivity test between hosts h2 and h4.

To stop the test, press Ctrl+c. The result in the figure above shows a successful
connectivity test.

Step 5. Test the connectivity between host h2 and host h3 using the ping command. On
host h2 terminal, type the command specified below.

ping 10.0.0.3

Figure 35. Connectivity test between hosts h2 and h3.

To stop the test, press Ctrl+c. The result in the figure above shows an unsuccessful
connectivity test.

Step 6. On the ONOS terminal, issue the following command to display the flows of switch
s1.

flows added of:0000000000000001

Figure 36. Displaying the added flows on switch s1.

Lab 9: Configuring Virtual Private LAN Service (VPLS)

 Page 19

Figure 37. Displaying the added flows on switch s1.

Consider the above two figures. There are 10 flow rules installed on switch s1. For
simplicity, we only show some of the rules related to VPLS. The first highlighted rule
matches against incoming packets at port s1-eth1 (IN_PORT:1) with MAC destination
address of host h3 (ETH_DST:00:00:00:00:00:03), and forwards them out of port s1-
eth3 (OUTPUT:3). The second highlighted rule matches against packets from host h3 to
h1. Similarly, flow rules for hosts h2 and h4 can be inspected. Furthermore, the flow table
of switch s2 contains flow rules similar to those in switch s1.

This concludes Lab 9. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. K. Kompella and Y. Rekhter. “RFC 4761: Virtual Private LAN Service (VPLS) Using BGP
for Auto-Discovery and Signaling”, 2007.

2. L. De Ghein, “MPLS Fundamentals”, Cisco Press, CCIE No. 1897, 2016.
3. A. Tanenbaum, D. Wetherall, “Computer networks”, 5th Edition, Pearson, 2012.
4. P. Goransson, C. Black, T. Culver. “Software defined networks: a comprehensive

approach”. Morgan Kaufmann, 2016.
5. P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-Shabibi, K.C. Wang,

J. Bi. “Seamless interworking of SDN and IP”, In Proceedings of the ACM SIGCOMM
2013 conference on SIGCOMM (pp. 475-476). 2013.

6. ONOS project. “SDN-IP”. [Online]. Available:
https://wiki.onosproject.org/display/ONOS/SDN-IP.

SOFTWARE DEFINED NETWORKING

Lab 10: Applying Equal-cost Multi-path Protocol
(ECMP) within SDN networks

Document Version: 07-03-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 2

Contents

Overview ... 3
Objectives.. 3
Lab settings ... 3
Lab roadmap ... 3
1 Introduction .. 3

1.1 Load-balancing via ECMP .. 3
2 Lab topology.. 4

2.1 Lab settings ... 5
2.2 Loading the topology .. 6
2.3 Run the emulation .. 9

3 Launching the sFlow tool .. 11
4 Starting the ONOS controller .. 14
5 Applying load-balancing within the SDN network. ... 16

5.1 Activating the segmentrouting application .. 17
5.2 Verifying the loaded configuration ... 20

6 Testing the load balancer within the SDN network .. 21
References .. 25

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 3

Overview

This lab is an introduction to Equal-cost Multi-path Protocol routing (ECMP) within
Software Defined Networking (SDN). The focus in this lab is to apply load balancing within
the SDN network so that the traffic is distributed across the links efficiently. Load
balancing is achieved via ECMP and is activated via the segmentrouting application.

Objectives

By the end of this lab, you should be able to:

1. Understand and apply ECMP.
2. Utilize the sFlow tool and interact with its components.
3. Apply load balancing within the SDN network.
4. Visualize flows through the sFlow dashboard.

Lab settings

The information in Table 1 provides the credentials to access the Client virtual machine.

Table 1. Credentials to access the Client virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Launching the sFlow tool.
4. Section 4: Starting the ONOS controller.
5. Section 5: Applying load-balancing within the SDN network.
6. Section 6: Testing the load balancer within the SDN network.

1 Introduction

1.1 Load-balancing via ECMP

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 4

Generally, network engineers seek to make use of their available resources and increase
the bandwidth of their networks as much as possible. A simple solution for increasing the
bandwidth is to upgrade existing infrastructure with better quality; for instance, replacing
a 1 Gbps Ethernet link with 10 Gbps. However, this solution is costly and often unwanted
when there are cheaper alternatives. Nowadays, it is very common to use parallel links to
increase bandwidth. This technique splits network traffic among multiple links to balance
the load (i.e., load balancing technique). There are various ways to make the decision on
which packet traverses which link. The simplest approach is per-packet load-balancing,
where packet 1 is transmitted over link A, packet 2 over link B, and so on alternating
between the available links. However, this approach might suffer from several drawbacks,
such as degrading the network performance by resending unordered packets often
marked as dropped2.

Equal-cost multi-path routing (ECMP) is a routing technique for forwarding packets along
multiple paths of equal cost3. One method of selecting which next-hop to use is the hash-
threshold approach. In such an approach, the traffic is forwarded based on the hash
values of some header fields that remain the same within a traffic flow (e.g., the tuple
source IP, destination IP, source port, destination port).

Consider Figure 1. Switch s1 implements load-balancing capability through ECMP. In the
forwarding table of switch s1, there are multiple paths to the same destination; for
instance, switch s1 can reach host h1 via s1 -> s2 -> h1 or s1 -> s3 -> h1. To balance the
load, switch s1 computes the hash of some of the packet’s header fields and forwards the
packet accordingly. The selected field values of packets of a given traffic flow are always
the same. Consequently, packets of a given traffic flow will always take the same path,
even when multiple paths are available.

s1

s2 s3

h1 h2

H(header1)=m

hn

H(header2)=m

... ...

Figure 1. Load-balancing using ECMP.

2 Lab topology

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 5

Consider Figure 2. The topology consists of four OpenFlow switches, four hosts, and one
ONOS controller managing the switches. Hosts h1 and h2 are within the network
10.1.1.0/24, whereas hosts h3 and h4 are within the network 10.1.2.0/24. There are two
paths from network 1 to network 2. The goal is to configure the segmentrouting
application on the switches, where they will balance the load among the hosts in the two
networks.

c0

s1 s2

s3 s4

h1 h2 h3 h4

h1-eth0 h2-eth0 h3-eth0 h4-eth0

127.0.0.1

10.1.1.1/24 10.1.1.2/24 10.1.2.1/24 10.1.2.2/24

s3-eth1

s3-eth2

s1-eth1
s2-

eth1

s4-eth1

s1-
eth2

s4-eth2

s2-eth2

s3-eth3 s3-eth4 s4-eth3 s4-eth4

Figure 2. Lab topology.

2.1 Lab settings

The devices are already configured according to Table 2.

Table 2. Topology information.

Device Interface IP Address Subnet Default
gateway

Host h1 h1-eth0 10.1.1.1 /24 10.1.1.254

Host h2 h2-eth0 10.1.1.2 /24 10.1.1.254

Host h3 h3-eth0 10.1.2.1 /24 10.1.2.254

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 6

Host h4 h4-eth0 10.1.2.2 /24 10.1.2.254

c0 N/A 127.0.01 /32 N/A

2.2 Loading the topology

In this section, you will open MiniEdit and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet. This tool has additional capabilities such as: configuring network
elements (i.e IP addresses, default gateway), saving the topologies, and exporting layer 2
models.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the Lab10.mn topology file stored in the default directory, /home/sdn/SDN_Labs /lab10
and click on Open.

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 7

Figure 4. Opening topology.

Figure 5. MiniEdit’s topology.

Step 3. On MiniEdit’s menu bar, click on Edit>Preferences to view OpenFlow enabled
version in our topology.

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 8

Figure 6. Opening MiniEdit preferences

Step 4. Validate that the OpenFlow 1.0, OpenFlow 1.1, OpenFlow 1.2, OpenFlow 1.3, and
OpenFlow 1.4 version are enabled in this topology, i.e., the Open vSwitches s1, s2, s3, and
s4 support these versions.

Figure 7. Opening MiniEdit preferences.

Consider Figure 7. For this lab, we have enabled OpenFlow 1.0, OpenFlow 1.1, OpenFlow
1.2, OpenFlow 1.3, and OpenFlow 1.4 so that the controller can communicate with the
switches and instruct them to perform load balancing in later stages. The target of sFlow
is set to the IP address 127.0.0.1, as sFlow is running locally. sFlow is an application used
to monitor the traffic flowing across a switch5.

Step 5. Click on Cancel to close the pop-up window without modifying any field.

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 9

Figure 8. Exiting the pop-up window.

2.3 Run the emulation

In this section, you will run the emulation and check the links and interfaces that connect
the devices in the given topology. Additionally, you will verify the IP addresses listed in
Table 2.

Step 1. At this point hosts h1, h2, h3, and h4 are configured. To proceed with the
emulation, click on the Run button located on the lower left-hand side.

Figure 9. Starting the emulation.

Step 2. Issue the following command on Mininet terminal to display the interface names
and connections.

links

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 10

Figure 10. Displaying network interfaces.

In the figure above, the link displayed within the gray box indicates that interface eth1 of
switch s3 connects to interface eth1 of switch s1 (i.e., s3-eth1<->s1-eth1).

Step 3. Hold right-click on host h1 and select Terminal. This opens the terminal of host h1
and allows the execution of commands on that host.

Figure 11. Opening a terminal on host h1.

Step 4. On host h1 terminal, type the command shown below to verify that the IP address
was assigned successfully. You will corroborate that host h1 has two interfaces, h1-eth0
and lo. The interface h1-eth0 is configured with the IP address 10.1.1.1 and the subnet
mask 255.255.255.0. The interface lo is configured with the IP address of 127.0.0.1 and
the subnet mask of 255.0.0.0.

ifconfig

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 11

Figure 12. Output of ifconfig command.

Step 5. On host h1 terminal, type the command shown below to verify that the default
gateway IP address is 10.1.1.254.

route

Figure 13. Output of route command.

Step 6. In order to verify the IP address and default gateway of other hosts, proceed
similarly by repeating steps 3 to 5 on the host’s terminal. Similar results should be
observed.

3 Launching the sFlow tool

In this section, you will launch sFlow, a tool for monitoring network traffic, to see how the
traffic is balanced between the links in later sections.

Step 1. Go to the opened Linux terminal.

Figure 14. Opening Linux terminal.

Step 2. Click on File>New Tab to open an additional tab in the Linux terminal. Alternatively,
you may press Ctrl+Shift+T.

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 12

Figure 15. Opening an additional tab.

Step 3. Issue the following command to start sFlow.

./sflow-rt/start.sh

Figure 16. Starting sFlow tool.

Consider Figure 16. After you execute the command above, sFlow will be running in the
background. In the next steps, you will visualize some of sFlow capabilities using its
dashboard that is accessible through a browser.

Step 4. Click on the Firefox button to start the browser.

Figure 17. Opening Firefox browser.

Step 5. sFlow runs locally and includes a dashboard. In order to launch the dashboard,
navigate to the following URL.

127.0.0.1:8008

• 127.0.0.1: loopback IP address, also referred to as the localhost.

• 8008: port number through which sFlow dashboard is accessed.

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 13

Figure 18. Navigating to sFlow dashboard.

Note that once you write the URL 127.0.0.1:8008, it will automatically be redirected to
127.0.0.1:8008/html/index. The numbers displayed regarding sFlow Agents, Bytes, and
Packets fluctuates based on the monitored traffic.

Step 6. Click on the Apps tab to go to the available sFlow applications. From there, click
on mininet-dashboard application button.

Figure 19. Navigating to mininet-dashboard application.

Figure 20. Mininet-dashboard application.

Consider Figure 20. The mininet-dashboard application displays statistics about the
current running topology in Mininet. Currently, Mininet is not attached to sFlow. Thus, no
information will be displayed. In later sections, you will attach Mininet to sFlow and
visualize the network traffic.

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 14

4 Starting the ONOS controller

In this section, you will start the ONOS controller and activate the OpenFlow application
so that the controller discovers the devices, hosts, and links in the topology.

Step 1. Go back to the Linux terminal.

Figure 21. Opening Linux terminal.

Step 2. Click on File>New Tab to open an additional tab in the Linux terminal. Alternatively,
you may press Ctrl+Shift+T.

Figure 22. Opening an additional tab.

Step 3. Navigate into SDN_Labs/lab10 directory by issuing the following command.

cd SDN_Labs/lab10

Figure 23. Entering the SDN_Labs/lab10 directory.

Step 4. Issue the command below to execute programs with the security privileges of the
superuser (root). When prompted for a password, type password.

sudo su

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 15

Figure 24. Switching to root mode.

Step 5. A script was written to run ONOS and enter its Command Line Interface (CLI). In
order to run the script, issue the following command.

./run_onos

Figure 25. Starting the ONOS controller.

Once the script finishes executing and ONOS is ready, you will be able to execute
commands on ONOS CLI as shown in the figure below. Note that this script may take a
couple of minutes.

Figure 26. ONOS CLI.

Step 6. In the ONOS terminal, issue the following command to activate the OpenFlow
application.

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 16

app activate org.onosproject.openflow

Figure 27. Activating OpenFlow application.

Note that when you activate any ONOS application, you may have to wait few seconds so
that the application gives the correct output.

Step 7. To display the list of all currently known devices (OVS switches), type the following
command.

devices

Figure 28. Displaying the currently known devices (switches).

Step 8. To display the list of all currently known links, type the following command.

links

Figure 29. Displaying the currently known links.

5 Applying load-balancing within the SDN network.

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 17

5.1 Activating the segmentrouting application

In this section, you will activate the segmentrouting application along with two
applications it depends on, namely, netcfghostprovider and netcfglinksprovider. The latter
two applications are used to configure host and link information in ONOS.

Step 1. Before activating the segmentrouting application you must start the
netcfghostprovider application. In order to activate it, type the following command.

app activate org.onosproject.netcfghostprovider

Figure 30. Activating ONOS netcfghostprovider application.

Step 2. The segmentrouting application also depends on another application, namely,
netcfglinksprovider. In order to activate it, type the following command.

app activate org.onosproject.netcfglinksprovider

Figure 31. Activating ONOS netcfglinksprovider application.

Step 3. Type the following command to activate the segmentrouting application.

app activate org.onosproject.segmentrouting

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 18

Figure 32. Activating ONOS segmentrouting application.

Step 4. Type the following command to view a summary of ONOS and the current
topology.

summary

Figure 33. Summary of ONOS and the current topology.

Consider Figure 33. ONOS shows that there is currently a total of 12 flows inserted in the
switches. When segmentrouting application takes effect in later steps, it will insert more
flows to the switches to achieve its capabilities.

Step 5. In the same Linux terminal, Click on File>New Tab to open an additional tab in the
Linux terminal. Alternatively, you can press Ctrl+Shift+T.

Figure 34. Opening an additional tab.

Step 6. Navigate into SDN_Labs/lab10 directory by issuing the following command.

cd SDN_Labs/lab10

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 19

Figure 35. Entering the SDN_Labs/lab10 directory.

Step 7. Issue the command below to execute programs with the security privileges of the
superuser (root). When prompted for a password, type password.

sudo su

Figure 36. Switching to root mode.

Step 8. A script was written to perform two tasks. First, to load the network configuration
needed for the segmentrouting application. Second, to connect the current topology with
sFlow and visualize network traffic. In order to run the script, issue the following
command.

python netconf-script.py

Figure 37. Executing the script to load the configuration and connect to sFlow.

Step 9. Close the current tab by clicking on x as indicated in the figure below.

Figure 38. Closing a tab in the Linux terminal.

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 20

5.2 Verifying the loaded configuration

In this section, you will verify the flows inserted by the segmentrouting application and
test some of its available commands.

Step 1. In the ONOS terminal, write the following command to view a summary of ONOS
and the current topology.

summary

Figure 39. Summary of ONOS and the current topology.

Consider Figure 39. After loading the network configuration into ONOS, the
segmentrouting application takes effect and the flows are inserted into the switches.

Step 2. The segmentrouting application offers a number of commands. To view these
commands, type the following command followed by TAB.

sr-

Figure 40. Displaying the commands offered by segmentrouting application.

Step 3. To confirm displaying all 31 possibilities, click the TAB key one more time. This will
display all ONOS commands that start with sr- on the left-hand side of the CLI, as well as

their explanation on the right-hand side of the CLI.

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 21

Figure 41. Displaying the commands offered by segmentrouting application.

Step 4. To view a list of all possible paths between the switches, type the following
command.

sr-ecmp-spg

Figure 42. Displaying a list of all possible paths between the switches.

Consider Figure 42. The command displays the ID of all the visible switches in the topology,
i.e., switches s1, s2, s3, and s4, for each one, it displays all possible paths with other
switches. For instance, switch s3 is connected to switch s4 via two different paths, and to
switches s1 and s2 via one path.

6 Testing the load balancer within the SDN network

In this section, you will verify the load balancing feature supported by the segmentrouting
application. In particular, you will launch several flows between two hosts and visualize
(using sFlow) how these flows are balanced between the available links. To do that, you
will use iPerf3, a tool for active measurements. iPer3 supports various features, such as
establishing a Transmission Control Protocol (TCP) or User Datagram Protocol (UDP),
specifying the sending rate, and launching parallel flows4.

Step 1. Click on the opened Firefox browser.

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 22

Figure 43. Opening Firefox browser.

Step 2. In sFlow dashboard, click on the Topology tab to display the current Mininet
topology.

Figure 44. Visualizing the topology using sFlow.

Consider Figure 44. After running the script netconf-script.py, sFlow will recognize the
topology in Mininet. As a result, the four switches will be displayed with the links
connecting them.

Step 3. Go back to MiniEdit.

Figure 45. Opening MiniEdit.

Step 4. Hold right-click on host h3 and select Terminal. This opens the terminal of host h3
and allows the execution of commands on that host.

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 23

Figure 46. Opening a terminal on host h3.

Step 5. To launch iPerf3 in server mode, run the command iperf3 -s on host h3 terminal
as shown in the figure below.

iperf3 -s

Figure 47. Running iPerf3 server on host h3.

Consider Figure 47. The parameter -s in the command indicates that the host is
configured as a server. Now, the server is listening on port 5201 waiting for incoming
connections.

Step 6. Open host h1 terminal as shown in the below figure.

Figure 48. Opening host h1 terminal.

Step 7. To launch iPerf3 in client mode, run the command iperf3 -c on host h1 terminal
as shown in the figure below.

iperf3 -c 10.1.2.1 -u -t 120 -b 10gbits

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 24

Figure 49. Running iPerf3 client on host h1.

Consider Figure 49. The parameter -c in the command above indicates that the host is
configured as a client. The parameter 10.1.2.1 is the server’s (host h3) IP address. The
parameter -u is to specify UDP traffic. The parameter -t specifies the time interval (in
seconds) of the iPerf3 test. The parameter -b sets the bandwidth (sending rate).

Step 8. Click on the opened Firefox browser.

Figure 50. Opening Firefox browser.

Step 9. Visualize the traffic in Mininet using sFlow.

Figure 51. Visualizing the traffic using sFlow.

Consider Figure 51. Traffic passing from host h1 to host h3 will take the path s3 -> s1 ->
s4 and finally reach host h3 (thick blue line). There is no load balancing since there is only
one active flow.

Note that you can interrupt the iPerf3 test on host h1 terminal by pressing Ctrl+c, or
wait until it is done.

Step 10. On host h1 terminal, perform the same iPerf3 test as in step 8 while increasing
the number of parallel flows. The segmentrouting application will apply per-flow load
balancing.

iperf3 -c 10.1.2.1 -u -t 120 -b 10gbits -P 20

Lab 10: Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

 Page 25

Figure 52. Running iPerf3 client on host h1.

Consider Figure 52. The parameter -P specifies the number of parallel client threads.

Step 11. Click on the opened Firefox browser to view sFlow dashboard.

Figure 53. Visualizing the traffic using sFlow.

Consider Figure 53. The 20 parallel flows are running between hosts h1 and h3. This
requires the segmentrouting application to balance the traffic (per-flow) between all the
paths from switch s3 to switch s4. On average, half of the flows will follow one path, while
the other half will follow the other path. Thus, traffic will flow in two directions, 1- s3 ->
s1 -> s4, and 2- s3 -> s2 -> s4.

This concludes Lab 10. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. A. Tanenbaum, D. Wetherall, “Computer networks”, 5th Edition, Pearson, 2012.
2. Noction, “BGP and equal-cost multipath (ECMP)”. [Online]. Available:

https://www.noction.com/blog/equal-cost-multipath-ecmp
3. C. Hopps, “Analysis of an equal-cost multi-path algorithm”. RFC 2992, 2000. [Online].

Available: https://www.hjp.at/doc/rfc/rfc2992.html
4. iPerf, “iPerf - The ultimate speed test tool for TCP, UDP and SCTP”. [Online].

Available: https://iperf.fr/
5. sFlow, “About sFlow”. [Online]. Available: https://sflow.org/about/index.php

	Cover
	Contents
	Lab 1 - Introduction to Mininet
	Lab 2- Legacy Networks BGP Example as a Distributed System and Autonomous Forwarding Decisions
	Lab 3 - Early efforts of SDN-MPLS example of a control plane that establishes semi-static forwarding paths
	Lab 4 - Introduction to SDN
	Exercise 1 - SDN Network Configuration
	Lab 5 -Configuring VXLAN to Provide Network Traffic Isolation
	Exercise 2 - Configuring VXLAN
	Lab 6 - Introduction to OpenFlow
	Exercise 3 - OpenFlow Protocol Management
	Lab 7 - SDN-Routing within an SDN network
	Lab 8 -Interconnection between legacy networks and SDN networks - Copy
	Exercise 4 - Incremental Deployment of SDN Networks within Legacy Networks
	Lab 9 - Configuring Virtual Private LAN Service (VPLS)
	Lab 10 - Applying Equal-cost Multi-path Protocol (ECMP) within SDN networks

