UNIVERSITY OF

SOUTH CAROLINA

CC* Cyberinfrastructure Topics
Introduction to Science DMZ

Jorge Crichigno
University of South Carolina
http://ce.sc.edu/cyberinfra

Minority Serving - Cyberinfrastructure Consortium (MS-CC)
University of South Carolina (USC)

Claflin University
Orangeburg, SC
March 22", 2023

MINORITY SERVING- o

CONSORTIUM




Workshop on Networking Topics

« Webpage with PowerPoint presentations:
http://ce.sc.edu/cyberinfra/workshop 2023 claflin.html

« Hands-on sessions: to access labs for the hands-on sessions, use the following link:
https://netlab.cec.sc.edu/

* Credentials are provided on site




Motivation for a High-Speed Science Architecture

« Science and engineering applications are generating data at an unprecedented rate
 Instruments produce hundreds of terabytes in short time periods (“big science data”)

« Data must be typically transferred across high-bandwidth high-latency Wide Area
Networks (VWWANS)
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The Energy Science Network (ESnet) is the backbone connecting U.S. national laboratories and research centers




Enterprise Network Limitations

« Security appliances (IPS, firewalls,
etc.) are CPU-intensive

* Inability of small-buffer
routers/switches to absorb traffic
b ursts Datacenter

 End devices incapable of
sending/receiving data at high rates

» Lack of data transfer applications to
exploit available bandwidth

« Many of the issues above relate to
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Enterprise Network Limitations

 Effect of packet loss and latency on TCP throughput

Throughput vs RTT, 0.0046% Packet Loss
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E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, “The science dmz: a network design pattern for data-intensive science,”
International Conference on High Performance Computing, Networking, Storage and Analysis, Nov. 2013.




Science DMZ

« The Science DMZ is a network designed for big science data
* Main elements
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Science DMZ

« The Science DMZ is a network designed for big science data

* Main elements

» High throughput, friction free WAN paths
» Data Transfer Nodes (DTNSs)

» End-to-end monitoring = perfSONAR

» Security tailored for high speeds
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cience DMZ

Science DMZ deployments, U.S.
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TCP Traditional Congestion Control

« The principles of window-based CC were described in the 1980s’

 Traditional CC algorithms follow the additive-increase multiplicative-decrease (AIMD)
form of congestion control

(e] f o Packet loss

Additive increase
Multiplicative decrease

Sending rate

1. V. Jacobson, M. Karels, Congestion avoidance and control, ACM SIGCOMM Computer Communication Review 18 (4) (1988).
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TCP Traditional Congestion Control

« The principles of window-based CC were described in the 1980s’

 Traditional CC algorithms follow the additive-increase multiplicative-decrease (AIMD)
form of congestion control
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TCP Traditional Congestion Control

« The principles of window-based CC were described in the 1980s’
 Traditional CC algorithms follow the additive-increase multiplicative-decrease (AIMD)

form of congestion control
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BBR: Model-based CC

- TCP Bottleneck Bandwidth and RTT (BBR) is a rate-based congestion-control
algorithm’

* BBR represented a disruption to the traditional CC algorithms:
» is not governed by AIMD control law

» does not use packet loss as a signal of congestion

« At any time, a TCP connection has one slowest link bottleneck bandwidth (btlbow)

Sender Router Receiver

> |:| " BottleneCkﬁ‘

4 (btlbw)

Output port buffer

1. N. Cardwell et al. "BBR v2, A Model-based Congestion Control." IETF 104, March 2019.
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BBR: Model-based CC

- TCP Bottleneck Bandwidth and RTT (BBR) is a rate-based congestion-control

algorithm’

* BBR represented a disruption to the traditional CC algorithms:

» is not governed by AIMD control law

» does not use packet loss as a signal of congestion
« At any time, a TCP connection has one slowest link bottleneck bandwidth (btlbow)
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Parallel Streams

« Conventional file transfer protocols use a control channel and a (single) data channel
(FTP model)
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Parallel Streams

« Conventional file transfer protocols use a control channel and a (single) data channel

(FTP model)

« gridFTP is an extension of the FTP protocol
« Afeature of gridF TP is the use of parallel streams
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Advantages of Parallel Streams

« Combat random packet loss not due congestion
» Parallel streams increase the recovery speed after the multiplicative decrease

16




Advantages of Parallel Streams

« Combat random packet loss not due congestion
» Parallel streams increase the recovery speed after the multiplicative decrease

« Mitigate TCP round-trip time (RTT) bias

» Alow-RTT flow gets a higher share of the bandwidth than that of a high-RTT flow
» Increase bandwidth allocated to big science flows
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Advantages of Parallel Streams

« Combat random packet loss not due congestion
» Parallel streams increase the recovery speed after the multiplicative decrease

« Mitigate TCP round-trip time (RTT) bias

» Alow-RTT flow gets a higher share of the bandwidth than that of a high-RTT flow
» Increase bandwidth allocated to big science flows

« Overcome TCP buffer limitations

» An application opening K parallel connections creates a virtual large buffer size on the aggregate
connection that is K times the buffer size of a single connection

Sender Receiver
From To application
application layer layer
Spare TCP datain s TCP data
room buffer j EE— ! pare room in buffer
1 I I TolP Frr:)m L T I
TCP send buffer TCP receive buffer
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Maximum Segment Size (MSS)

« TCP receives data from application layer and places it in send buffer
« Data is typically broken into MSS units
« Atypical MSS is 1,500 bytes, but it can be as large as 9,000 bytes

Application Application
Segments
! ; !
TCP send MSS || MSS TC.P
receive

buffer — buffer




Advantages of Large MSS

 Less overhead

* The recovery after a packet loss is proportional to the MSS

» During the additive increase phase, TCP increases the congestion window by approximately one MSS
every RTT

» By using a 9,000-byte MSS instead of a 1,500-byte MSS, the throughput increases six times faster

Slope proportional

A Additive increase to MSS

Multiplicative

decrease MSS,; =6 MSS;

- MSS; =1 unit

o Packet loss (rate
decreases by half)

Sending rate

» Time




TCP Buffer Size

* In many WANSs, the round-trip time (RTT) is dominated by the propagation delay
« To keep the sender busy while ACKs are received, the TCP buffer must be:

Traditional congestion controls: TCP buffer size = 2BDP

BBRv1 and BBRvZ: TCP buffer size must be considerable larger than 2BDP

g2 h2

h1 s1
1Gbps
h1-ethO s1-eth1 s1-eth2 s2-eth2 s2-eth1 h2-ethO

10.0.01 10.00.2
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Summary

« There are many aspects of TCP / transport protocol that are essential to consider for
high-performance networks

» Parallel streams
> MSS
» TCP buffers

» Router’s buffers, and others

 Still there is a need for applied research; e.qg.,

» Performance studies of new congestion control algorithms
» TCP pacing
» Application of programmable switches
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Additional Slides

« BBR performance on FABRIC

« Performance measurements for a single flow, 0.0046% packet loss rate
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Additional Slides

« BBR performance on FABRIC
« Performance measurements for a single flow, 0.0046% packet loss rate
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BDP

« Bandwidth = 1Gbps

« RTT =30ms

- BDP (bytes) = 3,750,000 bytes
 BDP (MB) = 3.57MB
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