TCP IN LARGE DATA TRANSFERS

Jorge Crichigno, Elie Kfoury Department of Integrated Information Technology University of South Carolina

> NTU Technical Workshop July 31 – August 1, 2019

Agenda

- Enterprise network limitations
- Science DMZs
- TCP considerations
 - Congestion control algorithms
 - > Parallel streams
 - Maximum Segment Size (MSS)
 - Pacing, fairness, TCP buffers, router's buffers, ... (discussed in labs)

Enterprise Network Limitations

- Security appliances (IPS, firewalls, etc.) are CPU-intensive
- Inability of small-buffer routers/switches to absorb traffic bursts
- End devices incapable of sending/receiving data at high rates
- Many of the issues above relate to TCP

Enterprise Network Limitations

• Effect of packet loss and latency on TCP throughput

E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, "The science dmz: a network design pattern for data-intensive science," *International Conference on High Performance Computing, Networking, Storage and Analysis*, Nov. 2013.

Science DMZ

- The Science DMZ is a network designed for big science data
- Main elements
 - > High throughput, friction free WAN paths
 - Data Transfer Nodes (DTNs)
 - > End-to-end monitoring = perfSONAR
 - Security tailored for high speeds

Science DMZ

- The Science DMZ is a network designed for big science data
- Main elements
 - > High throughput, friction free WAN paths
 - Data Transfer Nodes (DTNs)
 - End-to-end monitoring = perfSONAR
 - Security tailored for high speeds

perfSONAR Security Router Switch DTN WAN Segment size Performance monitor Buffer size Access-control list Connectivity to Flow control End-to-end metrics Forwarding method Intrusion detection backbone Fabric, MTU TCP buffer (bandwidth, latency, Correlation Bit-error rate Parallel streams packet loss) Memory amount Access-control Latency Pacing Test scheduling Switching rate management Bandwidth Congestion control Queues Reporting Netflow, sFlow File transfer tools L1 L2-L3 L4-L5L5 L3-L5

Friction-induced low-latency LAN path

Science DMZ Needs

• USC

Researchers	Topic	Current support	Requirements	
Gothe	Experimental	NSF: 1505615 (\$1.2M), 1614773 (\$610K), 1812382	100 Gbps throughput to PSI, JLab.	
Ilieva	nuclear	(\$350K); Brookhaven National Laboratory (BNL) 218624	High throughput to other	
Strauch	physics (ENP)	(\$15K); Jefferson Science Associates / DOE (\$11K)	collaborators (Brookhaven, Argonne)	
Heyden	Chemical	NSF: 1254352 (\$400K), 1534260 (\$840K), 1565964	High throughput (at least 10 Gbps) to	
Lauterbach	engineering	(\$300K), 1832809 (\$160K), 1632824 (\$3M), 1805307 (\$75K)	XSEDE (SDSC, TACC), PNNL	
Bayoumi	Aerospace,	Siemens (\$628M in-kind [44]), Boeing (\$5M [45]), DOD	High throughput with encryption (10	
	predictive	hq017-17-c-7110 (\$240K), Missile Def. Ag. HQ0147-16-C-	Gbps) to internal and external HPCs,	
	maintenance	7606 (\$35K), Boeing SSOW-BRT-W0915-0001 (\$275K)	XSEDE, SDSC, TACC	
Baalousha	Environment	NSF: 1828055 (\$635K), 1738340 (\$286K), 1655926 (4K),	High throughput (5 Gbps) connection	
Lead	nanoscience	1553909 (\$510K), 1437307 (\$300K), 1508931 (\$390K),	from TOF-ICP-MS instrument to	
		1834638 (\$380K); DOD 450388-19545 (\$380K); NIEH	Internet2	
		1P01ES028942-01 (\$6M), NIH R03ES027406-01 (\$144K).		
Sutton	Digital image	NASA C15-2A38-USC (\$1.2M), NSF 1537776 (\$165K),	High throughput from USC's DIC	
Xiaomin	correlation	Boeing SSOW-BRT-W0915-0003 (\$140K)	laboratory to HPCs (SDSC, TACC)	
Kidane	(DIC)		running ABAQUS, ANSYS	
Porter	Ntl. Estuarine	NOAA: NA18NOS4200120 (\$760K), NA17NOS4200104	High throughput from NOAA's	
	Research	(\$980K), OOS.16 (028)USC.DP.MOD.1 (\$100K), U. Mich.	NERRS repository (located at USC)	
	Reserve	3003300692 (\$340K), FL Env. Protection CM08P (\$92K),	to Internet2 (large datasets downloads	
	System	NIEHS 1P01ES028942-01 (\$6M), USDA (\$43K).	worldwide)	
Avignone	Particle	NSF 1614611 (\$900K), NSF 1307204 (\$1M), NSF 1808426	100 Gbps connection to	
Guiseppe	astrophysics	(\$306K)	MAJORANA (SD), CUORE (Italy),	
cuiseppe	a		NERSC (CA)	
Chandra	Semiconductor	NSF: 1810116 (\$371K), 1711322 (\$370K), 1553634	High throughput (at least 10 Gbps)	
	material	(\$695K); NIBIB 1R03EB026813-01 (\$136K), DOD	from X-ray photoelectron	
		W911NF-18-1-0029 ($\$285K$), SKNL/DUE UC150 ($\$24K$),	spectroscopy instrument and storage	
		DUE DE-SCUU19360 (\$666K), KCSA 23976 (\$100K)	to Internet2 (SKNL, INL, Sandia,	
			other institutions)	

Science DMZ Needs

• USC

Chandra	Semiconductor	NSF: 1810116 (\$371K), 1711322 (\$370K), 1553634	High throughput (at least 10 Gbps)		
Shustova	material	(\$695K); NIBIB 1R03EB026813-01 (\$136K), DOD	from X-ray photoelectron		
		W911NF-18-1-0029 (\$585K), SRNL/DOE UC150 (\$24K),	spectroscopy instrument and storage		
		DOE DE-SC0019360 (\$666K), RCSA 23976 (\$100K)	to Internet2 (SRNL, INL, Sandia,		
			other institutions)		
Richardson	Phytoplankton	NSF 1542555 (\$2M) and DXP Supply Chain Services	High throughput (10 Gbps) from		
Myrick	spectroscopy	(\$40K)	image photometer, storage to internal		
			and external HPC		
Norman	Genomics data mining	NSF 1149447 (\$850K), NIEH 1P01ES028942-01 (\$6M),	100 Gbps throughput from genomics		
		NSF SC EPSCoR 2031-231-2022570 (\$100K)	seq. instrument/storage to USC's		
			HPC; 10+ Gbps connection to		
			Frederick, Argonne, Oak Ridge Ntl.		
			Laboratories, XSEDE resources		
Pinckney	Estuarine	NSF 1736557 (\$1M), NOAA R/ER-49 (\$130K), NSF	High throughput from USC's		
Benitez	ecology	1829519 (\$265K), NSF 1458416 (\$593K), NSF 1433313	estuarine database to HPCs and		
Beintez		(\$362K), NASA 23175500 (\$167K)	Internet2 (datasets downloads)		
Dudycha	Genomics,	NSF 1556645 (\$1.2M), SC Sea Grant	100 Gbps connection to USC's HPC;		
	aquatic	Consortium/NOAA/DOC N250 (\$40K), DOD	10+ Gbps connection to transport		
	biology	W81XWH1810088 (\$287K)	DNA / RNA-seq. datasets to XSEDE		
Vasquez	Math, genome	NSF: 1751339 (\$290K), 1410047 (\$210K)	100 Gbps connection from genomics		
	dynamics		laboratory to USC's HPC, XSEDE		
Brooks	Mathematical	SC Department of Commerce (\$300K), Duke Endowment	100 Gbps connection from		
Hikmet	models for	Child Care Division 19/1-SP (\$646K), American Cancer	engineering storage to USC's HPC		
Schooley	patient	Society IRG-17-179-04 (\$30K), Patient-Centered Outcomes			
	treatment	Research Institute ME-1303-6011 (\$960K)			
Ramstad	Other USC	NOAA/DOC NA18NMF4330239 (\$503K), NOAA/DOC	10 Gbps connection to move datasets		
Shervette	campuses,	NA18NMF4270203 (\$230K), NOAA NA17NMF4540137	between USC Aiken - Internet2		
Ghoshroy	genomics	(\$153K), NOAA 719583-712683 (\$189K), NOAA			
a		NA15NMF4330157 (\$466K).			
Crichigno	Cyberinfrast.	NSF 1822567 (\$420K), NSF 1829698 (\$500K)	100 Gbps programmable network		

TCP Traditional Congestion Control (CC)

- The CC algorithm determines the sending rate
- Traditional CC algorithms follow an additive-increase multiplicative-decrease (AIMD) form of congestion control

TCP Traditional Congestion Control (CC)

- The CC algorithm determines the sending rate
- Traditional CC algorithms follow an additive-increase multiplicative-decrease (AIMD) form of congestion control

TCP Traditional Congestion Control (CC)

- The CC algorithm determines the sending rate
- Traditional CC algorithms follow an additive-increase multiplicative-decrease (AIMD) form of congestion control

BBR: Rate-based CC

- TCP Bottleneck Bandwidth and RTT (BBR) is a rate-based congestion-control algorithm
- At any time, a TCP connection has one slowest link or bottleneck bandwidth (btlbw)

- 1. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, "BBR: congestion-based congestion control," *Communications of the ACM*, vol 60, no. 2, pp. 58-66, Feb. 2017.
- 2. https://www.thequilt.net/wp-content/uploads/BBR-TCP-Opportunities.pdf

BBR: Rate-based CC

- TCP Bottleneck Bandwidth and RTT (BBR) is a rate-based congestion-control algorithm
- At any time, a TCP connection has one slowest link or bottleneck bandwidth (btlbw)
- BBR tries to find btlbw and set the sending rate to that value
 - > The sending rate is independent of current packet losses; no AIMD rule

1. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, "BBR: congestion-based congestion control," *Communications of the ACM*, vol 60, no. 2, pp. 58-66, Feb. 2017.

2. https://www.thequilt.net/wp-content/uploads/BBR-TCP-Opportunities.pdf

Parallel Streams

 Conventional file transfer protocols use a control channel and a (single) data channel (FTP model)

Legend: CP: Control process DP: Data process

FTP model

Parallel Streams

- Conventional file transfer protocols use a control channel and a (single) data channel (FTP model)
- gridFTP is an extension of the FTP protocol
- A feature of gridFTP is the use of parallel streams

gridFTP model

Advantages of Parallel Streams

Combat random packet loss not due congestion¹

> Parallel streams increase the recovery speed after the multiplicative decrease

^{1.} T. Hacker, B. Athey, B. Noble, "The end-to-end performance effects of parallel TCP sockets on a lossy wide-area network," in Proceedings of the Parallel and Distributed Processing Symposium, Apr. 2001.

Advantages of Parallel Streams

- Combat random packet loss not due congestion¹
 - > Parallel streams increase the recovery speed after the multiplicative decrease
- Mitigate TCP round-trip time (RTT) bias²
 - > A low-RTT flow gets a higher share of the bandwidth than that of a high-RTT flow
 - Increase bandwidth allocated to big science flows

^{1.} T. Hacker, B. Athey, B. Noble, "The end-to-end performance effects of parallel TCP sockets on a lossy wide-area network," in Proceedings of the Parallel and Distributed Processing Symposium, Apr. 2001.

^{2.} M. Mathis, J. Semke, J. Mahdavi, T. Ott, "The macroscopic behavior of the TCP congestion avoidance algorithm," ACM Computer Communication Review, vol. 27, no 3, pp. 67-82, Jul. 1997.

Advantages of Parallel Streams

- Combat random packet loss not due congestion¹
 - > Parallel streams increase the recovery speed after the multiplicative decrease
- Mitigate TCP round-trip time (RTT) bias²
 - > A low-RTT flow gets a higher share of the bandwidth than that of a high-RTT flow
 - Increase bandwidth allocated to big science flows
- Overcome TCP buffer limitations
 - > An application opening K parallel connections creates a virtual large buffer size on the aggregate connection that is K times the buffer size of a single connection

- 1. T. Hacker, B. Athey, B. Noble, "The end-to-end performance effects of parallel TCP sockets on a lossy wide-area network," in Proceedings of the Parallel and Distributed Processing Symposium, Apr. 2001.
- 2. M. Mathis, J. Semke, J. Mahdavi, T. Ott, "The macroscopic behavior of the TCP congestion avoidance algorithm," ACM Computer Communication Review, vol. 27, no 3, pp. 67-82, Jul. 1997.

Maximum Segment Size (MSS)

- TCP receives data from application layer and places it in send buffer
- Data is typically broken into MSS units
- A typical MSS is 1,500 bytes, but it can be as large as 9,000 bytes

Advantages of Large MSS

- Less overhead
- The recovery after a packet loss is proportional to the MSS
 - During the additive increase phase, TCP increases the congestion window by approximately one MSS every RTT
 - > By using a 9,000-byte MSS instead of a 1,500-byte MSS, the throughput increases six times faster

Results on a 10 Gbps Network

- 70-second experiments (first 10 seconds not considered)
- Ten experiments conducted and the average throughput is reported
- Impact of MSS and parallel streams on BBR, Reno, HTCP, Cubic

^{1.} J. Crichigno, Z. Csibi, E. Bou-Harb, N. Ghani, "Impact of segment size and parallel streams on TCP BBR," IEEE Telecommunications and Signal Processing Conference (TSP), Athens, Greece, July 2018.

Results on a 10 Gbps Network

1. J. Crichigno, Z. Csibi, E. Bou-Harb, N. Ghani, "Impact of segment size and parallel streams on TCP BBR," IEEE Telecommunications and Signal Processing Conference (TSP), Athens, Greece, July 2018.

Results on a 10 Gbps Network

1. J. Crichigno, Z. Csibi, E. Bou-Harb, N. Ghani, "Impact of segment size and parallel streams on TCP BBR," IEEE Telecommunications and Signal Processing Conference (TSP), Athens, Greece, July 2018.

DEMO END-HOSTS TUNING IN HIGH SPEED NETWORKS

Demo activities are described in Lab 6, 8, 13 ("Network Tools and Protocols")

Lab Information

https://netlab.cec.sc.edu/

URL of the virtual lab platform

Username: lastname (lowercase letters) Password: nsf2019

Labs Series: Networks Tools and Protocols

- Lab 1: Introduction to Mininet
- Lab 2: Introduction to iPerf
- Lab 3: Emulating WAN with NETEM I Latency, Jitter
- Lab 4: Emulating WAN with NETEM II Packet Loss, Duplication, Reordering, and Corruption
- Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)
- Lab 6: Understanding Traditional TCP Congestion Control (HTCP, Cubic, Reno)
- Lab 7: Understanding Rate-based TCP Congestion Control (BBR)
- Lab 8: Bandwidth-delay Product and TCP Buffer Size
- Lab 9: Enhancing TCP Throughput with Parallel Streams
- Lab 10: Measuring TCP Fairness
- Lab 11: Router's Buffer Size
- Lab 12: TCP Rate Control with Pacing
- Lab 13: Impact of Maximum Segment Size on Throughput
- Lab 14: Router's Bufferbloat

Organization of Lab Manuals

- Each lab starts with a section Overview
 - > Objectives
 - Lab settings: passwords, device names
 - Roadmap: organization of the lab
- Section 1
 - Background information of the topic being covered (e.g., fundamentals of TCP congestion control)
 - Section 1 is optional (i.e., the reader can skip this section and move to lab directions)
- Section 2... n
 - Step-by-step directions

LAB 1: INTRODUCTION TO MININET

What is Mininet?

- A virtual testbed capable of recreating realistic scenarios
- It enables the development, testing of network protocols
- Inexpensive solution, real protocol stack, reasonably accurate

What is Mininet?

- Mininet nodes are network namespaces
 - > Each node has different / separate virtual interface, routing tables
- Nodes use the underlying protocol stack of the host device
- Nodes are connected via virtual Ethernet (veth) links, which behave as Ethernet links

What is Mininet?

	MiniEdit		- 0	×
File Edit Run Help				
S1 S1 Host Options Properties	Properties VLAN Interfaces Hostname: h2 IP Address: 10.0.0.2/8 Default Route: Amount CPU: Cores: Start Command: Stop Command: OK Cancel	MiniEdit External Interfaces hos	Private Directories	

sysctl

- sysctl is a tool for reading and modifying attributes of the system kernel
 - > TCP buffer size (send and receive buffers)
 - Congestion control algorithm
 - IP forwarding and others
- Modify TCP read and write buffers

sysctl -w net.ipv4.tcp_rmem='10240 87380 52428800'

sysctl -w net.ipv4.tcp wmem='10240 87380 52428800'

Modify TCP congestion control algorithm

sysctl -w net.ipv4.tcp_congestion_control=bbr

Check current values

sysctl net.ipv4.tcp_congestion_control

Experiment 1: TCP Buffer Size

- Lab 5 topology
- 10 Gbps, 20ms link s1-s2
- Measure throughput h1 > h2
- Modify TCP buffers at h1 and h2
 - Case 1: Small buffer size = 16,777,216 [bytes] (default in Linux)
 - Case 2: 2 · BDP = 2 · (10 · 10⁹) · (20 · 10⁻³) [bits] = 50,000,000 [bytes]

Experiment 2: TCP Congestion Control

- Lab 5 topology
- 10 Gbps, 0.1% loss, 20ms link s1-s2
- Measure throughput h1 > h2
 - Case 1: CUBIC as congestion control algorithm
 - Case 2: BBR as congestion control algorithm

Experiment 3: TCP Congestion Control

- Lab 5 topology
- 10 Gbps, 0.1% loss, 20ms. link s1-s2
- Increase buffer size to several BDPs (8 BDPs)
 - Buffer size = 200,000,000 [bytes]
- Measure throughput h1 > h2
 - Case 1: CUBIC as congestion control algorithm
 - Case 2: BBR as congestion control algorithm

LAB 14: ROUTER'S BUFFERBLOAT

- Routers and switches must have enough memory allocated to hold packets momentarily (buffering)
- Rule of thumb:
 - Buffer size = RTT · bottleneck bandwidth^{1, 2}

C. Villamizar, C. Song, "High performance TCP in ansnet," ACM Computer Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.
R. Bush, D. Meyer, "Some internet architectural guidelines and philosophy," Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online]. Available: https://www.ietf.org/rfc/rfc3439.txt.

 Bufferbloat is a condition that occurs when the router buffers too much data, leading to excessive delays

 Bufferbloat is a condition that occurs when the router buffers too much data, leading to excessive delays

---- Additive increase

Sending rate

— Multiplicative decrease

 Bufferbloat is a condition that occurs when the router buffers too much data, leading to excessive delays

1. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, "BBR: congestion-based congestion control," *Communications of the ACM*, vol 60, no. 2, pp. 58-66, Feb. 2017.

- Topology Lab 14
- 1 Gbps, 20ms link s1-h3
 - > Measure RTT and throughput h1 > h3
 - Modify buffer size at s1 (interface s1-eth2)
 - ✓ Case 1: buffer size = $(1 \cdot 10^9) \cdot (20 \cdot 10^{-3})$ [bits] = 2,500,000 [bytes]
 - ✓ Case 2: buffer size = 25,000,000 [bytes]

Buffer size = 1 BDP

Buffer size = 10 BDP

Summary

- There are many aspects of TCP / transport protocol that are essential to consider for high-performance networks
 - > Parallel streams
 - ≻ MSS
 - > TCP buffers
 - Router's buffers, and others
- Still there is a need for applied research; e.g.,
 - Performance studies of new congestion control algorithms
 - > TCP pacing
 - > Application of programmable switches