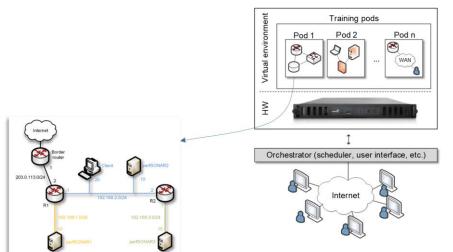
AT HOME WITH ENGINEERING EDUCATION JUNE 22 - 26, 2020

Asee's Virtual Conference

#ASEEVC

Training and Teaching Students and IT Professionals on High-throughput Networking and Cybersecurity using a Private Cloud

- Jorge Crichigno¹
- Elias Bou-Harb²
- Elie Kfoury¹
- Jose Gomez¹
- Antonio Mangino²


¹University of South Carolina ²University of Texas at San Antonio

Training and Teaching Students and IT Professionals on Highthroughput Networking and Cybersecurity using a Private Cloud

Jorge Crichigno¹, Elias Bou-Harb², Elie Kfoury¹, Jose Gomez¹, Antonio Mangino²

¹University of South Carolina, ²University of Texas at San Antonio

- Building a private cloud
- Virtual labs on high-speed networks and cybersecurity
- Real protocol stacks and live traffic experimentation
- Rates of 50 Gbps, professional tools
- Scalable platform, hundreds of users simultaneously

Agenda

Introduction

Motivation

Private cloud

Virtual labs

Comparison private vs public clouds

Conclusion

Introduction

General-purpose enterprise networks can transport basic data, e.g., emails, multimedia, and web content

However, these networks face many challenges when moving terabytes (TB) of scientific data, e.g., genomic, climate, imaging, and high-energy physics

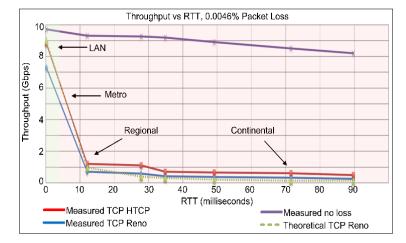
As the popularity of high-speed networks (e.g., Science DMZs) moving data at tens / hundreds of terabits per seconds surges, there is a need for teaching material

The need for trained engineers with the skills to condition these high-performance cyberinfrastructures (CIs) has increased tremendously

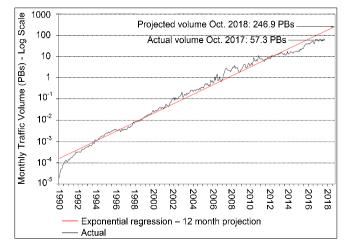
Introduction

Concerns raised during the 2017's NSF Campus Cyberinfrastructure PIs meeting

#	Concerns by PIs, Co-PIs, and attendees of 2017 NSF CC* meeting
1	"Very difficult to find, or nonexistent - difficult to retain (CI engineers)"
2	"Largest challenge was in the area of time to hire ended up taking 10 months (difficult to find
	CI engineers with the right skills)"
3	"Candidates should have hands-on knowledge of networking, at least bachelor degree, and
	certifications in networking and security"
4	"Combination of education and experience"
5	"At least one tour of duty as an intern or apprentice"
6	"System & network engineering, user support experience, good communication (written and
	presentation)"
7	"Training in routing and switching (e.g., Juniper, Cisco), a minimal knowledge and/or training in
	security (e.g., Palo Alto or similar), cabling"
8	"Working knowledge of theory and practice underlying VLAN/LAN/WAN network operations"
9	"Working with researchers to identify areas where their research can benefit from high-end
	technologies such as HPC, Science DMZ, Data Transfer Node (DTN), Big Data platforms"
10	Difficult to find, preferred qualification: combination of "Bachelor degree" and "certifications in
	networking and security"


http://www.thequilt.net/wp-content/uploads/NSF-2017-PI-Workshop-CI-Engineer-Survey_v4.pdf

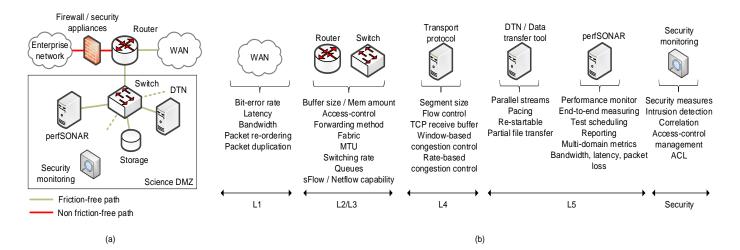
#ASEEVC


ASEE'S VIRTUAL CONFERENCE

Motivation

Performance of enterprise devices

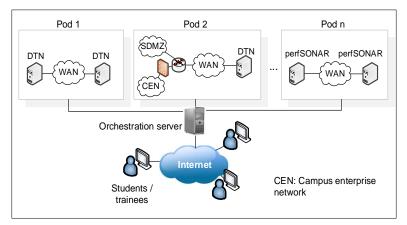
Throughput vs RTT, two devices connected via a 10 Gbps path



Monthly average traffic volume, ESnet

Motivation

Elements of a high-speed network (science DMZs) to transfer data across a wide are network (WAN)



Private Cloud

The project relies on a private cloud

The framework used to develop and run virtual labs is NETLAB, from the Network Development Group (NDG)¹

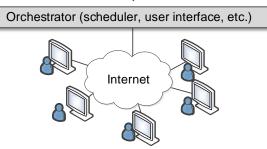
¹www.netdevgroup.com

Private Cloud

The private cloud used relies on physical servers

The physical resources can be classified in compute capability (CPU cores), storage (non-volatile memory), and RAM memory

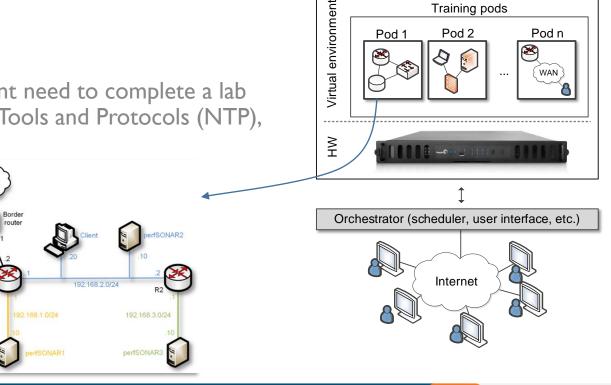
Device	Cores	Storage (TBs)	RAM (GB)	Notes
Server 1 (management server)	20	4.8	128	Hosts orchestration server
Server 2 (hosting vLabs pods)	32	4.8	512	Hosts pods' VMs
Server 3 (hosting vLabs pods)	32	1.92	768	Hosts pods' VMs
Server 4 (hosting vLabs pods)	32	1.92	768	Hosts pods' VMs
Total	116	8.08	2,176	



Virtual Labs

Multiple pod types

A pod is a set of equipment need to complete a lab experiment: (1) Network Tools and Protocols (NTP), (2) perfSONAR, (3) Zeek



Virtual Labs

Multiple pod types

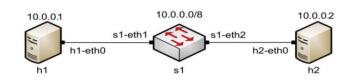
A pod is a set of equipment need to complete a lab experiment: (1) Network Tools and Protocols (NTP), (2) perfSONAR, (3) Zeek

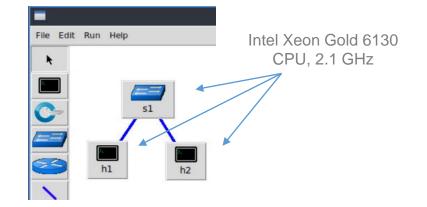
203.0.113.0/24

Training pods

Virtual Labs: NTP

The lab series provides learners an emulated WAN infrastructure operating at high speeds, up to 50 Gbps, and devices running real protocol


- Lab I: Introduction to Mininet
- Lab 2: Introduction to iPerf
- Lab 3: WANs with latency, Jitter
- Lab 4: WANs with Packet Loss, Duplication, Reordering, and Corruption
- Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)
- Lab 6: Traditional TCP Congestion Control (HTCP, Cubic, Reno)
- Lab 7: Rate-based TCP Congestion Control (BBR)
- Lab 8: Bandwidth-delay Product and TCP Buffer Size
- Lab 9: Enhancing TCP Throughput with Parallel Streams
- Lab 10: Measuring TCP Fairness
- Lab II: Router's Buffer Size

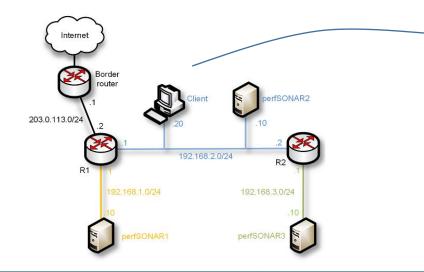

- Lab 12: TCP Rate Control with Pacing
- Lab 13: Impact of Maximum Segment Size on Throughput
- Lab 14: Router's Bufferbloat
- Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance
- Lab 16: Random Early Detection
- Lab 17: Stochastic Fair Queueing
- Lab 18: Controlled Delay (CoDel) Active Queue Management
- Lab 19: Proportional Integral Controller-Enhanced (PIE)
- Lab 20: Classifying TCP traffic using Hierarchical Token Bucket (HTB)

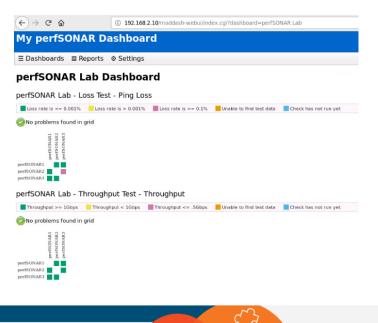
Virtual Labs: NTP

For the Network Tools and Protocols lab series, pods are embedded into Mininet

Virtual Labs: perfSONAR

perfSONAR is a network measurement app. designed to monitor end-to-end paths The lab series enables users to learn perfSONAR on a multi-domain internetwork


- Lab I: Configuring Admin. Information Using perfSONAR Toolkit GUI
- Lab 2: PerfSONAR Metrics and Tools
- Lab 3: Configuring Regular Tests Using perfSONAR GUI
- Lab 4: Configuring Regular Tests Using pScheduler CLI Part I
- Lab 5: Configuring Regular Tests Using pScheduler CLI Part II
- Lab 6: Bandwidth-delay Product and TCP Buffer Size
- Lab 7: Configuring Regular Tests Using a pSConfig Template
- Lab 8: perfSONAR Monitoring and Debugging Dashboard
- Lab 9: pSConfig Web Administrator
- Lab 10: Configuring pScheduler Limits



Virtual Labs: perfSONAR

POD with multiple networks and live traffic to the Internet

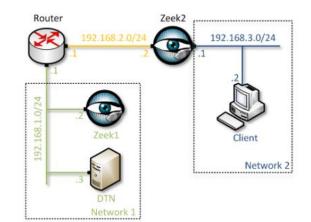
Devices running real protocol stack

#ASFFVC

ASEE'S VIRTUAL CONFERENCE

Virtual Labs: Zeek

The Zeek lab series enables users to conduct cyberattacks in a controlled environment, and secure networks using techniques suitable for high speeds


- Lab I: Introduction to the Capabilities of Zeek
- Lab 2: An Overview of Zeek Logs
- Lab 3: Parsing, Reading and Organizing Zeek
- Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic
- Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic
- Lab 6: Introduction to Zeek Scripting
- Lab 7: Introduction to Zeek Signatures
- Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection
- Lab 9: Profiling and Performance Metrics of Zeek
- Lab 10: Application of the Zeek IDS for Real-Time Advanced IDS Protection
- Lab II: Preprocessing of Zeek Output Logs for Machine Learning
- Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

Virtual Labs: Zeek

Labs use routers, end devices, and Zeek nodes used as intrusion detection system and intrusion prevention system

Experiments include capturing and analyzing network attacks such as scanner traffic, DoS and DDoS, and more

Virtual Labs: Platform Use

Use of the platform – January I 2019 – December 31 2019

Admin > Usage > Community Usage > List Image: Community Usage Search							
ID 🔷	Name	*	Reservations Made $\stackrel{\diamondsuit}{=}$	Labs Attended $\stackrel{\scriptscriptstyle \oplus}{=}$	Hours Reserved $\stackrel{\scriptscriptstyle \oplus}{=}$	Hours Attended	
1	default		4690	4483	73739.17	23863.83	
		Page Total: Table Total:	4690 4690	4483 4483	73739.17 73739.17	23863.83 23863.83	

Comparison Private and Public Cloud

Feature	Private Cloud	Public Cloud	
Granularity to allocate		Not granular (access to the physical	
physical resources	Very granular	resources requires additional fees)	
		More difficult; hard to design complex	
Easy to create custom pods	Easy	topologies	
		Cost effective for individual / small virtual	
		machines; costly for large virtual machines	
Cost	Cost effective when used extensively	over time	
IT Staff	Higher cost	Lower cost	
Application layer for			
pedagogy and presentation		Not flexible; limited to providers' interface,	
of virtual scenarios	Very flexible	e.g., command-line interface	
	The owner controls who can access	Cloud provider controls who can access	
Time-sharing compute	resources. Easy to implement time-sharing	resources (typically, a fee is required per	
resources	policies	user accessing resources)	

Conclusion

This presentation describes a project that implemented a private cloud

Virtual labs running on the private cloud are developed for teaching, training, and research on high-speed networks and cybersecurity

The platform supports customized pod and lab designs that emulate complex internetworks operating at up to 50 Gbps

The scalability of the platform permits the simultaneous on-demand deployment of hundreds of emulated WANs / LANs, serving hundreds of users at the same time

The material and platform have been used to support academic courses, self-pace training of professional IT staff, and workshops across the country (30+ states)

