

ZEEK INTRUSION DETECTION SERIES

Lab 1: Introduction to the Capabilities of Zeek

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics The Cyber Center for Security and Analytics

Lab 1: Introduction to the Capabilities of Zeek

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to Zeek ... 4

1.1 The Zeek event engine ... 5

1.1.1 State management .. 5

1.1.2 Transport layer analyzers .. 5

1.1.3 Application layer analyzers ... 5

1.1.4 Infrastructure .. 5

1.2 The Zeek policy script interpreter .. 6

1.3 Zeek analyzers .. 6

1.4 Signatures ... 6

1.5 ZeekControl .. 7

2 Using ZeekControl to update the status of Zeek .. 7

2.1 Starting a new instance of Zeek ... 9

2.2 Stopping the active instance of Zeek ... 10

3 Introduction to Zeek’s traffic analysis capabilities ... 10

3.1 Processing offline packet capture files .. 11

3.1.1 Command format for processing packet capture files 11

3.1.2 Leveraging a script to detect brute force attacks present in a pcap file 11

3.2 Launching Mininet .. 12

3.3 Generating and analyzing live network traffic capture 15

3.3.1 Leveraging the Tcpdump command utility ... 16

3.3.2 Capturing live network traffic ... 16

3.3.3 Analyzing the newly captured network traffic ... 18

References .. 20

Lab 1: Introduction to the Capabilities of Zeek

 Page 3

Overview

This lab introduces Zeek, an open-source network analysis framework primarily used in
security monitoring and traffic analysis. The primary focus of this lab is to explain Zeek’s
layered architecture while demonstrating Zeek’s capabilities towards performing network
traffic analysis.

Objectives

By the end of this lab, students should be able to:

1. Understand Zeek’s layered architecture.
2. Start and manage a Zeek instance using the ZeekControl utility.
3. Use Zeek to process packet captures files.
4. Generate and analyze live network traffic in Zeek.

Lab topology

Figure 1 displays the topology of the lab. This lab utilizes the Client machine to host and
configure the Zeek IDS. The zeek1 and zeek2 virtual machines will be used to generate
and collect network traffic.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Lab 1: Introduction to the Capabilities of Zeek

 Page 4

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Zeek.
2. Section 2: Using ZeekControl to update the status of Zeek.
3. Section 3: Introduction to Zeek’s traffic analysis capabilities.

1 Introduction to Zeek

Zeek is a passive, open-source network traffic analyzer. It is primarily used as a security
monitor that inspects all traffic on a network link for signs of suspicious activity1. It can
run on commodity hardware with standard UNIX-based systems and can be used as a
passive network monitoring tool.

Setting Zeek as a node with an assigned IP address on the monitored network is not
mandatory. Figure 2 shows Zeek’s layered architecture. Once Zeek receives packets, its
event engine converts them into events. The events are then forwarded to the policy
script interpreter, which generates logs, notifications, and/or actions.

Figure 2. Zeek’s architecture.

Lab 1: Introduction to the Capabilities of Zeek

 Page 5

Zeek uses the standard libpcap library for capturing packets to be used in network
monitoring and analysis.

1.1 The Zeek event engine

The event engine layer performs low-level network packets analysis. It receives raw
packets from the network layer (packet capture), sorts them by connection, reassembles
data streams, and decodes application layer protocols. Whenever it encounters
something potentially relevant to the policy layer, it generates an event.

The event engine consists of several analyzers responsible for well-defined tasks. Typical
tasks include decoding a specific protocol, performing signature-matching, identifying
backdoors, etc. Usually, an analyzer is accompanied by a default script which implements
some general policy adjustable to the local environment. The event engine can be divided
into four major parts.

1.1.1 State management

Zeek’s main data structure is a connection which follows typical flow identification
mechanisms, such as 5-tuple approaches. The 5-tuple structure consists of the source IP
address/port number, destination IP address/port number, and the protocol in use. For a
connection-oriented protocol like TCP, the definition of a connection is more clear-cut,
however for others such as UDP and ICMP, Zeek implements a flow-like abstraction to
aggregate packets. Each packet belongs to exactly one connection.

1.1.2 Transport layer analyzers

On the transport layer, Zeek analyzes TCP, UDP packets. In TCP, Zeek’s associated analyzer
closely follows the various state changes, keeps track of acknowledgments, handles
retransmissions and much more.

1.1.3 Application layer analyzers

The analysis of the application layer data of a connection depends on the service. There
are analyzers for a wide variety of different protocols, e.g. HTTP, SMTP or DNS, that
generally conduct detailed analysis of the data stream.

1.1.4 Infrastructure

The general infrastructure of Zeek includes the event and timer management
components, the script interpreter, and data structures.

Lab 1: Introduction to the Capabilities of Zeek

 Page 6

1.2 The Zeek policy script interpreter

While the event engine itself is policy-neutral, the top layer of Zeek defines the
environment-specific network security policy. By writing handlers for events that may be
raised by the event engine, the user can precisely define the constraints within the given
network. If a security breach is detected, the policy layer generates an alert.

New event handlers can be created in Zeek’s own scripting language. While providing all
expected convenience of a powerful scripting language, it has been designed with
network intrusion detection in mind. While it is expected that additional policy scripts are
written by the user, there are nevertheless several default scripts included with the initial
installation of Zeek. These default scripts already perform a wide range of analyses and
are easily customizable.

1.3 Zeek analyzers

The majority of Zeek’s analyzers are in its event engine with accompanying policy scripts
that can be customized by the user. Sometimes, however, the analyzer is just a policy
script implementing multiple event handlers. The analyzers perform application layer
decoding, anomaly detection, signature matching and connection analysis. Zeek has been
designed so that it is easy to add additional analyzers.

1.4 Signatures

Most network intrusion detection systems (NIDS) match a large set of signatures against
the network traffic. Here, a signature is a pattern of bytes that the NIDS tries to locate in
the payload of network packets. As soon as a match is found, the system generates an
alert.

A well-known IDS system is Snort; conversely, Zeek’s general approach to intrusion
detection has a much broader scope than traditional signature-matching, yet still contains
a signature engine providing a functionality that is similar to that of other systems.
Furthermore, while Zeek implements its own flexible signature language, there exists a
converter which directly translates Snort’s signatures into Zeek’s syntax, as shown below:

Lab 1: Introduction to the Capabilities of Zeek

 Page 7

Figure 3. Example of signature conversion1. (a) Snort’s signature. (b) Zeek’s signature.

1.5 ZeekControl

ZeekControl, formerly known as BroControl, is an interactive shell for easily operating
and managing Zeek installations on a single system or across multiple systems in a traffic-
monitoring cluster.

Figure 4. ZeekControl scheme.

2 Using ZeekControl to update the status of Zeek

Lab 1: Introduction to the Capabilities of Zeek

 Page 8

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Step 3. Using the Terminal, input the following command to enter the ZeekControl
directory. To type capital letters, it is recommended to hold the Shift key while typing
rather than using the Caps key.

cd $ZEEK_INSTALL/bin/

The active directory will change, as seen on the second line of the Terminal. Note that
$ZEEK_INSTALL variable was substituted by its value (/usr/local/zeek) listed in Table 2.

Step 4. Use the following command to view the contents of the active directory.

ls

The directory contents will be displayed. The green file name portrays an executable file.

Step 5. Use the following command to launch the ZeekControl tool. When prompted
for a password, type password and hit Enter.

Lab 1: Introduction to the Capabilities of Zeek

 Page 9

sudo ./zeekctl

Once active, the ZeekControl prompt will be displayed within the Terminal. The help
command will display additional information regarding ZeekControl.

2.1 Starting a new instance of Zeek

Step 1. To initialize Zeek, enter the following command into the ZeekControl prompt.

start

Step 2. Use the following command to view the status of the currently active Zeek
instance to ensure that it is active.

status

The running status indicates that Zeek is currently active and functioning properly. The
output of the status command includes other useful parameters:

• Name: the name of the Zeek instance.

• Type: the type of the instance (standalone in our case).

• Host: the hostname (localhost).

• Pid: the process ID. This ID can be used with other tools like kill to send a signal
to the process.

• Started: the starting date and time of the instance.

Lab 1: Introduction to the Capabilities of Zeek

 Page 10

2.2 Stopping the active instance of Zeek

Step 1. To stop Zeek, enter the following command into the ZeekControl prompt.

stop

Step 2. Use the following command to verify the exit status of Zeek.

status

The stopped status indicates that Zeek is currently stopped.

Step 3. To restart Zeek, enter the following command into the ZeekControl prompt.

start

Step 4. Use the following command to exit ZeekControl.

exit

Note that exiting the ZeekControl tool does not stop Zeek. Zeek is only stopped by
explicitly using the stop command in the ZeekControl prompt.

3 Introduction to Zeek’s traffic analysis capabilities

Lab 1: Introduction to the Capabilities of Zeek

 Page 11

Zeek’s broad range of traffic analysis capabilities makes it an exceptional intrusion
detection system (IDS) and network analysis framework. Zeek is proficient in processing
packet capture (pcap) files and logging traffic on a given network interface.

3.1 Processing offline packet capture files

Linux-based systems process packet capture (pcap) files using the libpcap library. In Zeek,
it is possible to capture live traffic and analyze trace files. In the following example, we
analyze a pcap file using a premade script that detects brute force attacks.

3.1.1 Command format for processing packet capture files

The general format for initializing offline packet capture analysis is as follows:

zeek -r <pcap_file_location> <script_location>

• zeek: command to invoke Zeek.

• -r: option signifies to Zeek that it will be reading from an offline file.

• <pcap_file_location>: indicates the pcap file location.

• <script_location>: indicates the script location.

3.1.2 Leveraging a script to detect brute force attacks present in a pcap file

Zeek installs a number of default scripts and trace files that can be used for testing
purposes. In this section, we use the bruteforce.pcap as the input packet capture file and
ZeekBruteforceDetection.zeek as the detection script. The packet capture file contains
network traffic of a brute force password attack, while the script defines the brute forcing
event for the Zeek event engine.

Step 1. Enter the lab workspace directory. To type capital letters, it is recommended to
hold the Shift key while typing rather than using the Caps key.

cd Zeek-Labs/

Step 2. Initialize Zeek offline packet parsing on the packet capture file. It is possible to use
the tab key to autocomplete the longer paths.

zeek -C -r Sample-PCAP/bruteforce.pcap Lab-Scripts/ZeekDetectBruteForce.zeek

Lab 1: Introduction to the Capabilities of Zeek

 Page 12

The -C option is included to prevent Zeek from displaying specific warnings.

Step 3. After running the command, if a brute forcing attack was found, it will be logged
in the notice.log output log file. We will use the cat command to view the file.

cat notice.log

Examining the proceeding image, a possible brute force attack was detected. The log file
shows that the IP address 192.168.56.1 had 20 or more failed login attempts on the
hosted FTP server.

3.2 Launching Mininet

Mininet is a network emulator that creates a network topology consisting of virtual hosts,
switches, controllers, and links. Within the Zeek lab series, we will be leveraging Mininet
to generate and capture network traffic.

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type password and hit
Enter. The MiniEdit editor will now launch.

Lab 1: Introduction to the Capabilities of Zeek

 Page 13

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. The image below shows the default MiniEdit display.

Step 3. A premade topology has already been created for this lab series. To load the
correct topology, begin by clicking the Open button within the File tab on the top left
of the MiniEdit editor.

Step 4. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the Open button.

Lab 1: Introduction to the Capabilities of Zeek

 Page 14

Step 5. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the Open button.

Step 6. The lab topology will contain two virtual machines – zeek1 and zeek2, which are
able to connect and communicate with one another through the s1 switch, as seen in
the image below.

Lab 1: Introduction to the Capabilities of Zeek

 Page 15

Step 7. To begin running the virtual machines, navigate to the Run button, found on the
bottom left of the Miniedit editor, and select the Run button, as seen in the image
below.

Step 8. To access either the zeek1 or zeek2 terminals for subsequent steps, hold the
right mouse button on the desired machine, which will then display a Terminal button.
Drag the cursor to the Terminal button to launch the terminal, as seen in the image
below.

With the Mininet lab topology loaded, we can now begin to generate and analyze live
network traffic capture.

3.3 Generating and analyzing live network traffic capture

The tcpdump command utility is a famous network packet analyzing tool that is used to
display TCP/IP and other network packets being transmitted over the network4.

Lab 1: Introduction to the Capabilities of Zeek

 Page 16

3.3.1 Leveraging the Tcpdump command utility

The general format for tcpdump is the following command:

sudo tcpdump -i <interface_name> -s <num> -w <pcap_file_location>

• sudo: option to enable higher level privileges.

• tcpdump: program for capturing live network traffic.

• -i: option used to specify a network interface.

• <interface_name>: denotes the interface name.

• -s: option used to specify number of packets to capture.

• <num>: denotes the number of packets to capture. 0 equals infinite.

• -w: option used to specify that we will be writing to a new file.

• <pcap_file_location>: indicates the file location.

3.3.2 Capturing live network traffic

The zeek2 machine will be used to capture live network traffic, while the zeek1 machine
will be used to generate live network traffic.

Step 1. Open the zeek2 Terminal by hold the right mouse button on the desired
machine, which will then display a Terminal button. Drag the cursor to the the
Terminal button to launch the terminal, as seen in the image below.

Step 2. Navigate to the TCP-Traffic directory. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd Zeek-Labs/TCP-Traffic/

Lab 1: Introduction to the Capabilities of Zeek

 Page 17

Step 3. Use the following command to begin live packet capture. If the Terminal session
has not been terminated or closed, you may not be prompted to enter the password. If
prompted for a password, type password and hit Enter. Live packet capture will start on
interface zeek2-eth0.

tcpdump -i zeek2-eth0 -s 0 -w ntraffic.pcap

Step 4. Minimize the zeek2 Terminal and open the zeek1 Terminal. If necessary, right
click within the Miniedit editor to activate your cursor.

Step 5. Generate traffic by using the ping utility. Ping operates by sending Internet
Control Message Protocol (ICMP) echo request packets to the target host and waiting for
an ICMP echo reply. Issue the following command on the newly opened zeek1 Terminal.

ping –c 3 10.0.0.2

The -c option is used to indicate the number of packets to send – in this example, 3
packets.

Step 5. Minimize the zeek1 Terminal and open the zeek2 Terminal using the navigation
bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Step 6. Use the Ctrl+c key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 14 packets were recorded by the interface, which
were then captured and stored in the new ntraffic.pcap file.

Lab 1: Introduction to the Capabilities of Zeek

 Page 18

Step 7. Stop the current Mininet session by clicking the Stop button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the x on the top right of
the editor.

We will now return to the Client machine to process and analyze the newly generated
network traffic.

3.3.3 Analyzing the newly captured network traffic

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Step 2. Navigate to the TCP-Traffic directory to find the ntraffic.pcap file. To type capital
letters, it is recommended to hold the Shift key while typing rather than using the
Caps key.

cd Zeek-Labs/TCP-Traffic/

Step 3. View the file contents of the TCP-Traffic directory.

Lab 1: Introduction to the Capabilities of Zeek

 Page 19

ls

We can see the ntraffic.pcap file that was generated by the zeek2 machine is now
accessible.

Step 4. Initialize Zeek offline packet parsing on the packet capture file. The -r option is
used to read from a given pcap file, and the -C option is used to disable checksums
validation.

zeek -C -r ntraffic.pcap

Step 5. View the newly generated Zeek log files.

ls

The generated log files will contain important information regarding the network traffic.
For instance, the conn.log file will contain connection-based information, specifically the
hosts communicating, their IP addresses, protocols and ports. The following labs will
offer in-depth insight and examples towards understanding these Zeek log files.

Step 6. Viewing the conn.log connection-based log file with the cat command, we can
see that the IP address 10.0.0.1 was detected to generate the captured traffic,
corresponding to the zeek1 virtual machine.

cat conn.log

Lab 1: Introduction to the Capabilities of Zeek

 Page 20

Step 7. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

The above command navigates to Zeek’s installation directory and executes the stop
command in zeekctl.

Concluding this lab, we have reviewed Zeek’s architecture and event-based engine, as
well as introduced both offline and live network traffic capture.

References

1. “Zeek documentation”, [Online]. Available:
https://docs.zeek.org/en/stable/intro/index.html

2. Sommer, Robin, and Vern Paxson, “Enhancing byte-level network intrusion
detection signatures with context,” In Proceedings of the 10th ACM conference
on Computer and communications security, pp. 262-271. ACM, 2003.

3. “Signature-based intrusion detection”, [Online]. Available:
http://www.cs.unc.edu/~jeffay/courses/nidsS05/slides/6-Sig-based
Detection.pdf.

4. Joseph, D. A., Paxson, V., & Kim, S. (2006). tcpdump Tutorial. University of
California, EE122 Fall.

ZEEK INSTRUSION DETECTION SERIES

Lab 2: An Overview of Zeek Logs

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics The Cyber Center for Security and Analytics

Lab 2: An Overview of Zeek Logs

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to Zeek Logs ... 4

1.1 Zeek Logs generated by packet analysis .. 4

1.2 Zeek Logs generated by recurrent network analysis ... 4

1.3 Typical uses of Zeek Logs ... 5

2 Starting a new instance of Zeek .. 5

3 Parsing packet capture files into Zeek log files ... 6

3.1 Overview of Zeek command options ... 7

3.2 Using Zeek to process offline packet capture files .. 7

3.3 Understanding Zeek log files .. 8

3.4 Basic viewing of Zeek logs .. 9

4 Analyzing Zeek log files ... 10

4.1 Leveraging zeek-cut for a more refined view of log files 10

4.1.1 Using zeek-cut in conjunction with cat and head command utilities 10

4.1.2 Printing the output of zeek-cut to a text file .. 12

4.1.3 Printing the output of zeek-cut to a csv file ... 12

4.2 Closing the current instance of Zeek .. 13

References .. 14

Lab 2: An Overview of Zeek Logs

 Page 3

Overview

This lab covers Zeek’s logging files. Zeek’s event-based engine will generate log files based
on signatures or events found during network traffic analysis. The focus in this lab is on
explaining each logging file and introducing some basic analytic functions and tools.

Objectives

By the end of this lab, students should be able to:

1. Generate Zeek log files.
2. Use Linux Terminal tools combined with Zeek’s zeek-cut utility to customize the

output of logs files for analysis.

Lab topology

Figure 1 displays the topology of the lab. This lab will primarily use the Client machine for
offline packet capture processing and analysis.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Lab 2: An Overview of Zeek Logs

 Page 4

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Zeek logs.
2. Section 2: Starting a new instance of Zeek.
3. Section 3: Parsing packet capture files into Zeek log files.
4. Section 4: Analyzing Zeek log files.

1 Introduction to Zeek Logs

Zeek’s generated log files include a comprehensive record of every connection seen on
the wire; this includes application-layer protocols and fields (e.g., Hyper-Text Transfer
Protocol (HTTP) sessions, Uniform Resource Locator (URL), key headers, Multi-Purpose
Internet Mail Extensions (MIME) types, server responses, etc.), Domain Name Server
(DNS) requests and responses, Secure Socket Layer (SSL) certificates, key content of
Simple Mail Transfer Protocol (SMTP) sessions, and others.

1.1 Zeek Logs generated by packet analysis

A Zeek log is a stream of high-level entries that correspond to network activities, such as
a login to SSH or an email sent using SMTP. In Zeek, each event stream has a dedicated
file with its own set of features, fields, or columns.

During capture or analysis, Zeek generates a log determined by the protocol type. Due to
this architecture, a Session Initiation Protocol (SIP) log for instance, does not contain any
other protocols’ packets information like HTTP. Furthermore, each log file contains case-
relative fields (e.g., from and subject fields in an SMTP log). Some of these log files are
large and contain entries that can be either benign or malicious, whereas others are
smaller and contain more actionable information.

1.2 Zeek Logs generated by recurrent network analysis

Lab 2: An Overview of Zeek Logs

 Page 5

With every session of packet analysis, either through live packet analysis or the parsing of
an offline packet capture file, Zeek generates session-specific log files. In addition to these
session-based log files, Zeek creates network-reliant log files as well. These network-
reliant files are continually generated and updated when a new session is initialized and
started.

The following Zeek log files are updated daily:

• known_hosts.log: Log file containing information for hosts that completed TCP
handshakes.

• known_services.log: Log file containing a list of services running on hosts.

• known_certs.log: Log file containing a list of Secure Socket Layer (SSL) certificates.

• software.log: Log file containing information about Software being used on the
network.

Additionally, a list of detection-based log files is created during each session. The log files
relevant to this lab are:

• notice.log (Zeek notices): When Zeek detects an anomaly, a corresponding notice
will be raised in this file.

• intel.log (Intelligence data matches): When Zeek detects traffic flagged with
known malicious indicators, a corresponding reference will be logged in this file.

• signatures.log (Signature matches): When Zeek detects traffic flagged with known
malicious or faulty packet signatures, a corresponding reference will be logged in
this file.

1.3 Typical uses of Zeek Logs

By default, Zeek logs all information into well-structured, tab-separated text files suitable
for postprocessing. Users can also choose from a set of alternative output formats and
backends such as external databases.

The Zeek-native zeek-cut utility can be leveraged to further specify and parse the
information within the generated log files.

2 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Lab 2: An Overview of Zeek Logs

 Page 6

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes Zeekctl tool to start a new
instance. When prompted for a password, type password and hit Enter. To type capital
letters, it is recommended to hold the Shift key while typing rather than using the Caps
key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

3 Parsing packet capture files into Zeek log files

In this section we introduce Zeek’s capability of generating and viewing log files. Packet
capture files used in this lab are preloaded onto the Client machine, and can be found
with the following path:

Zeek-Labs/Sample-PCAP/

These packet capture files were downloaded from Tcpreplay’s sample capture
collection. To access the following link, users must have access to an external computer
connected to the Internet, because the Zeek Lab topology does not have an active
Internet connection.

http://tcpreplay.appneta.com/wiki/captures.html

Lab 2: An Overview of Zeek Logs

 Page 7

Tcpreplay is a suite of free Open Source utilities for editing and replaying previously
captured network traffic and can be used to test transmissions and network health.

3.1 Overview of Zeek command options

When using Zeek, the user specifies a running state option. In this lab, three primarily
options are used:

• -C: specifies to ignore checksum warnings, specifically to avoid redundancy since
we are focusing on TCP traffic only.

• -r: specifies offline packet capture file analysis.

• -w: specifies live network capture.

Additional Zeek options can be found by passing the -help option to the zeek command:

zeek -help

3.2 Using Zeek to process offline packet capture files

In this subsection we will use Zeek to process the existing offline packet capture file
smallFlows.pcap. By specifying the -r option and the directory path to the pcap file, Zeek
can generate the corresponding log files.

Lab 2: An Overview of Zeek Logs

 Page 8

Step 1. Navigate to the lab workspace directory. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd Zeek-Labs/TCP-Traffic/

Step 2. Use the following command to process the smallFlows.pcap file. It is possible to
use the tab key to autocomplete the longer paths.

zeek –C -r ../Sample-PCAP/smallFlows.pcap

After Zeek finishes processing the packet capture file, it will generate a number of log files.

Step 3. Use the following command to list the generated log files.

ls

3.3 Understanding Zeek log files

Zeek’s generated log files can be summarized as follows:

• conn.log: A file containing information pertaining to all TCP/UDP/ICMP

connections, this file contains most of the information gathered from the

packet capture.

• files.log: A file consisting of analytic results of packets’ counts and sessions’

durations.

• packet_filter.log: A file listing the active filters applied to Zeek upon reading

the packet capture file.

• x509.log: A file containing public key certificates used by protocols.

Lab 2: An Overview of Zeek Logs

 Page 9

• weird.log: A file containing packet data non-conformant with standard

protocols. It also contains packets with possibly corrupted or damaged packet

header fields.

• (protocol).log (dns.log, dhcp.log, http.log, snmp.log): These are files containing

information for packets found in each respective protocol. For instance,

dns.log will only contain information generated by Domain Name Service

(DNS) packets.

More information regarding log files is available in the Zeek official documentation, which
can be viewed online using an external Internet-connected machine through this link:

https://docs.zeek.org/en/stable/script-reference/log-files.html

3.4 Basic viewing of Zeek logs

In this subsection we examine the generated log files and their contents.

Step 1. Use the following command to display the contents of the conn.log file using the
head command.

head conn.log

The topmost rows within the conn.log file will be displayed in the Terminal; however, the
current formatting wraps around multiple lines, making it unclear and hard to understand.
In the following section we introduce the zeek-cut utility for enhancing the output of
these log files.

https://docs.zeek.org/en/stable/script-reference/log-files.html
https://docs.zeek.org/en/stable/script-reference/log-files.html

Lab 2: An Overview of Zeek Logs

 Page 10

4 Analyzing Zeek log files

In this section, we review the utilities that help in displaying log files with well-formatted
outputs, as well as saving output to text files.

4.1 Leveraging zeek-cut for a more refined view of log files

Although the produced log file is tab delimited, it is difficult to visualize and parse
information from the terminal. The zeek-cut utility can be used to parse the log files by
specifying which column data to be displayed in a more organized output.

4.1.1 Using zeek-cut in conjunction with cat and head command utilities

Generally, the zeek-cut utility is typically coupled with cat using the pipe | command.
In Linux, the pipe command sends the output of one command as input to another.
Essentially, the output of the left command is passed as input to that on its right, and
multiple commands can be chained together.

Step 1. Use the following command to pipe the contents of cat into zeek-cut.

cat conn.log | zeek-cut id.orig_h id.orig_p id.resp_h id.resp_p

The options passed into the zeek-cut utility represent the column headers to be
extracted from the log file:

https://docs.zeek.org/en/stable/script-reference/log-files.html

Lab 2: An Overview of Zeek Logs

 Page 11

• id.orig_h: Column containing the source IP address.

• id.orig_p: Column containing the source port.

• id.resp_h: Column containing the destination IP address.

• id.resp_p: Column containing the destination port.

Alternatively, instead of using the cat command, the head command can be used to
display the topmost rows of the log file, which can be very useful to view a large file’s
contents.

Step 2. Use the following command to pipe the contents of head into zeek-cut.

head conn.log | zeek-cut id.orig_h id.orig_p id.resp_h id.resp_p

Notice that only two records are shown. This is caused by the head command taking the
10 topmost rows of conn.log, regardless of what that entails, and passing it as input to
zeek-cut.

Since the log file contains 8 lines of header padding used for displaying the file’s format,
we will have to specify the first 18 rows of file in order to succesfully display the first 10
packets of the log file.

Step 3. Use the following command to pipe the contents of head into zeek-cut.

head -n 18 conn.log | zeek-cut id.orig_h id.orig_p id.resp_h id.resp_p

The -n option can be passed to the head utility to specify the desired number of rows.

https://docs.zeek.org/en/stable/script-reference/log-files.html
https://docs.zeek.org/en/stable/script-reference/log-files.html

Lab 2: An Overview of Zeek Logs

 Page 12

4.1.2 Printing the output of zeek-cut to a text file

While the results displayed in the Terminal after using the zeek-cut utility can be easily
viewed for smaller datasets, it is often necessary to save the output into a separate file.
Using the > character, we can send the output to a new file for further processing by other
applications.

Step 1. Use the following command to change the output location of zeek-cut.

cat conn.log | zeek-cut id.orig_h id.orig_p id.resp_h id.resp_p > output.txt

By including the file extension in output.txt, we are choosing to print the output into a
plain text file.

Step 2. We can display the topmost contents of the new output.txt file by using the head
command.

head output.txt

The output.txt file contains the same tab-delimited format as shown in previous zeek-
cut examples.

4.1.3 Printing the output of zeek-cut to a csv file

Lab 2: An Overview of Zeek Logs

 Page 13

In some situations, it is helpful to save the output of zeek-cut in a csv file. In a csv file,
data may be imported into other applications, such as databases or machine learning
classifiers.

Step 1. The exported output file by zeek-cut is tab-delimited due to the default zeek-
cut settings. To export a file with another delimiter, the -F option is used.

cat conn.log | zeek-cut -F ‘,’ id.orig_h id.orig_p id.resp_h id.resp_p >

output.csv

Step 4. We can now display the topmost contents of the output.csv file.

head output.csv

As shown in the image, the output.csv file is in a comma-delimited format, rather than
the previous tab-delimited format.

In conclusion, zeek-cut is a flexible tool that can be called to format Zeek log files
depending on the user’s needs. The zeek-cut utility can be utilized with more advanced
commands to further increase customization.

4.2 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,

Lab 2: An Overview of Zeek Logs

 Page 14

you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Concluding this lab, we have reviewed Zeek’s output log files in more depth while
introducing some of the more relevant network-based log files and introduced some basic
utilities to view these log files.

References

1. “Log files”, Zeek user manual, [Online]. Available: Zeek,
docs.zeek.org/en/stable/script-reference/log-files.html.

2. “Sample captures”, Tcpreplay, [Online]. Available:
tcpreplay.appneta.com/wiki/captures.html

ZEEK INSTRUSION DETECTION

Lab 3: Parsing, Reading and Organizing Zeek Log
Files

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to shell scripts .. 4

1.1 Ubuntu Linux text editors .. 4

1.2 Creating a shell script ... 5

2 Advanced zeek-cut log file analysis .. 7

2.1 Example 1 ... 8

2.2 Example 2 ... 9

2.3 Example 3 ... 10

2.4 Example 4 ... 12

3 Incorporating the AWK scripting language for log file analysis 13

3.1 Example 1 ... 13

3.2 Example 2 ... 15

3.3 Example 3 ... 16

3.4 Closing the current instance of Zeek .. 18

References .. 18

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 3

Overview

This lab explains how to format and organize Zeek’s log files by combining zeek-cut utility
with basic Linux shell commands. Utilities and tools introduced in this lab provide practical
examples for logs customization in a real network environment.

Objectives

By the end of this lab, students should be able to:

1. Use Linux tools and commands for text files processing.
2. Practice Linux shell scripts and the AWK scripting language.
3. Incorporate AWK with zeek-cut to provide formatted logs.

Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the Client machine for
offline packet capture processing and analysis.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials to access the
machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 4

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to shell scripts.
2. Section 2: Advanced zeek-cut log file analysis.
3. Section 3: Incorporating the AWK scripting language for log file analysis.

1 Introduction to shell scripts

A shell script is a text file containing commands to be executed by the Unix command-line
interpreter. Shell scripts provide a convenient way to manipulate files and automate
programs’ executions. Selection and repetition are incorporated into scripts to branch
control based on conditioning and looping statements. Running a shell script can
immensely save time and prevent manually entering repetitive commands in recurrent
tasks.

1.1 Ubuntu Linux text editors

Linux-based distributions include pre-installed text editors like nano, vi, vim, gedit, etc.
nano is a keyboard-oriented lightweight text editor with a simple Command Line Interface
(CLI). Other editors such as vi and vim are highly customizable and extensible, making
them attractive for users that demand a large amount of control and flexibility over their
text editing environment. Alternatively, the Graphical User Interface (GUI) text editor
gedit can be used to visually work outside of the terminal. More information on these
text editors can be found on the Ubuntu help pages. To access the following links, users
must have access to an external computer connected to the Internet, because the Zeek
Lab topology does not have an active Internet connection.

• Nano – https://help.ubuntu.com/community/Nano

• Vim – https://help.ubuntu.com/community/VimHowto

• Gedit – https://help.ubuntu.com/community/gedit

For simplicity, in this lab we use nano text editor to view, create and edit text files.

https://help.ubuntu.com/community/Nano
https://help.ubuntu.com/community/VimHowto
https://help.ubuntu.com/community/gedit

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 5

1.2 Creating a shell script

Shell scripts are effective in executing repetitive terminal commands. Unlike executing
commands manually in the terminal, scripts can be saved and executed whenever needed
simple by invoking their names. We will begin this lab by writing some basic shell scripts.

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

Step 4: In the Linux terminal, navigate to the lab workspace directory by typing the
following command:

cd Zeek-Labs/

Step 3: Use the Nano text editor to create the lab3script.sh file.

sudo nano lab3script.sh

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 6

Step 4: Edit the lab3script.sh file contents.

Once the text editor has opened, we will be able to enter the following commands. Each
new line will denote a new Terminal command being passed. To type capital letters, it is
recommended to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin

sudo ./zeekctl start

cd Zeek-Labs/TCP-Traffic/

zeek –C -r ../Sample-PCAP/smallFlows.pcap

The file’s content is explained as follows:

• Line 1: changes the current directory to the Zeek’s installation directory.

• Line 2: starts a new instance of Zeek through zeekctl.

• Line 3: changes the current directory to the lab workspace.

• Line 4: invokes the zeek command with the -r option to begin processing the
smallFlows.pcap capture file located in the Sample-PCAP directory.

Step 5: When using Nano, the following keyboard shortcuts are used to save a file and
then exit the workspace.

• CTRL + o – save the file

• CTRL + x – save and exit the file, return to terminal

After completing Step 4 and adding the correct commands with proper formatting, we
will save and exit the text editor. Press CTRL + o and hit Enter to save the file’s contents,
then CTRL + x to exit nano and return to the terminal.

Step 6: Use the following command to modify the permissions of the script file to make it
executable. When prompted for a password, type password and hit Enter.

sudo chmod +x lab3script.sh

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 7

Step 7: Execute the lab3script.sh shell script by typing the following command.

./lab3script.sh

Step 8: Navigate to the lab workspace directory.

cd Zeek-Labs/TCP-Traffic/

Step 9: Verify that the smallFlows.pcap file was processed successfully.

ls

The above output shows the list of log files generated by Zeek’s processing, verifying that
the script executed without errors.

2 Advanced zeek-cut log file analysis

This section introduces more advanced zeek-cut functionality to analyze packet capture
statistics. These statistics can be used for planning and anomaly analysis. For instance, if
a single port has been targeted and received a large number of network traffic, it may
highlight a possible vulnerability. We can use the zeek-cut utility to determine if a host
sends an abnormal number of packets to a specific destination and further analyze this
event.

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 8

2.1 Example 1

Example 1: Show the 10 source IP addresses that generated the most network traffic,
organized in descending order.

To solve this example, we will be looking at the id.orig_h column because it contains
the source IP addresses from the packet capture file.

Step 1: Open the lab3script.sh file with nano text editor.

nano lab3script.sh

Step 2: Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

zeek-cut id.orig_h < conn.log | sort | uniq -c | sort -rn | head –n 10

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x to exit nano and
return to the terminal. The above command is explained as follows:

• zeek-cut id.orig_h < conn.log: selects the id.orig_h column from the
conn.log file.

• | sort: uses the sort command to organize the rows in alphabetical order.

• | uniq -c: uses the uniq command with the -c option to remove duplicates
while returning unique instances and their counts.

• | sort -rn: uses the sort command with the -rn option to organize the rows
in reverse numerical order.

• | head –n 10: uses the head command with the -n option to display the 10
topmost values.

Step 3: Execute the modified shell script.

./lab3script.sh

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 9

The number of duplicates is seen in the left column, while the matching source IP address
is seen in the right column. Only 8 unique source addresses were found, and each was
returned. From this output, we can conclude that the majority of network traffic was
generated by the top 3 source IP addresses.

2.2 Example 2

Example 2: Show the 10 destination ports that received the most network traffic,
organized in descending order.

To solve this example, we will be looking at the id.resp_p column because it contains
the destination ports from the packet capture file.

Step 1: Open the lab3script.sh file with nano text editor.

nano lab3script.sh

Step 2: Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

zeek-cut id.resp_p < conn.log | sort | uniq -c | sort -rn | head –n 10

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 10

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x to exit nano and
return to the terminal. The above command is explained as follows:

• zeek-cut id.resp_p < conn.log: selects the id.resp_p column from the
conn.log file.

• | sort: uses the sort command to organize the rows in alphabetical order.

• | uniq -c: uses the uniq command with the -c option to remove duplicates
while returning unique instances and their counts.

• | sort -rn: uses the sort command with the -rn option to organize the rows
in reverse numerical order.

• | head –n 10: uses the head command with the -n option to display the 10
topmost values.

Step 3: Execute the modified shell script.

./lab3script.sh

The number of duplicates is seen in the left column, while the matching destination port
is seen in the right column. More than 10 unique destination ports were found, so only
the top 10 were returned. From this output we can conclude that port 80 received the
most traffic.

2.3 Example 3

Example 3: Show the number of connections per protocol service.

To solve this example, we will be looking at the service column because it contains the
destination ports from the packet capture file.

Step 1: Open the lab3script.sh file with nano text editor.

nano lab3script.sh

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 11

Step 2: Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

zeek-cut service < conn.log | sort | uniq -c | sort -n

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x to exit nano and
return to the terminal. The above command is explained as follows:

• zeek-cut service < conn.log: selects the service column from the conn.log
file.

• | sort: uses the sort command to organize the rows in alphabetical order.

• | uniq -c: uses the uniq command with the -c option to remove duplicates
while returning unique instances and their counts.

• | sort -n: uses the sort command with the -n option to organize the rows in
numerical order.

Step 3: Execute the modified shell script.

./lab3script.sh

The number of duplicates is seen in the left column, while the matching destination port
is seen in the right column. From this output we can see that 331 packets did not have a
marked protocol. This can be caused by a number of anomalies and is an example of how
you can use the zeek-cut utility to return anomalies that require further identification.

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 12

2.4 Example 4

Example 4: Print the distinct browsers used by the hosts in this packet capture file to a
separate file.

To solve this example, we will be looking at the user_agent column because it contains
the browser and connection-related information from the packet capture file.

Step 1: Open the lab3script.sh file with nano text editor.

nano lab3script.sh

Step 2: Modify the script file’s contents.

cd TCP-Traffic/

zeek-cut user_agent < http.log | sort -u > browser.txt

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x to exit nano and
return to the terminal. The above command is explained as follows:

• zeek-cut user_agent < http.log selects the user_agent column from the
http.log file.

• | sort -u > browser.txt uses the sort command to sort the lines in the file
and the -u option checks for strict ordering. The output is then saved into the
browser.txt file.

Step 3: Execute the modified shell script.

./lab3script.sh

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 13

Step 4: Use a text editor to view the contents of the browser.txt file.

nano TCP-Traffic/browser.txt

Step 5: View the distinct browser information.

Each browser found within the packet capture file is printed with related information
extracted from the traffic by Zeek.

3 Incorporating the AWK scripting language for log file analysis

AWK is a terminal scripting language used to parse, filter and modify text files. AWK is
specifically useful when processing rows and columns found in a Comma Separated Value
(CSV) file. Additionally, AWK’s integrated string manipulation functions allow for the
searching and modifying of specific output.

Like cat and head commands, AWK output can be piped into the zeek-cut utility,
allowing more advanced parsing and formatting options. AWK reads each column in a file
through its position. The first input column is accessed using $1 while the second column
is accessed using $2 and so on. AWK also allows creating simple variables to store and
read script values. AWK reads the input data as a loop, starting from the top of the file
and finishing at the end of the file. Each row is considered an instance within the script.

3.1 Example 1

Example 1: Find the source and destination IP address of all UDP and TCP connections
that lasted more than one minute.

Step 1: Open the lab3script.sh file with nano text editor.

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 14

nano lab3script.sh

Step 2: Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

awk ‘$9 > 60’ conn.log | zeek-cut id.orig_h id.resp_h

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x to exit nano
and return to the terminal. The above command is explained as follows:

• awk ‘$9 > 60’ conn.log selects the rows that have their 9th column value
greater than 60 from the conn.log file. The 9th field represents the connection
duration, and we are checking if the value is greater than 60 seconds (or 1 minute).

• | zeek-cut id.orig_h id.resp_h returns the source and destination IP
addresses.

Step 3: Execute the modified shell script.

./lab3script.sh

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 15

The source IP address is seen in the left column, while the matching destination IP address
is seen in the right column. The pairs will only be displayed if the connection lasted at
least one minute.

3.2 Example 2

Example 2: Show the top source host addresses in terms of total traffic (in bytes) sent in
descending order.

The Lab-Scripts directory contains an AWK script named lab3_sec3-2.awk that can be
viewed with the following command:

nl Lab-Scripts/lab3_sec3-2.awk

The script is explained as follows. Each number represents the respective line number:

1. The { character is used to begin nested statements. This instance is the main
functionality of the script.

2. The host variable, which will be used to store the source IP addresses found in the
first column ($1), is checked against the current data entry in the column. If it is
not equal, we will enter the next statement. Because we only want one instance
of each source IP address, but the summed value of bytes sent, we will use this
check to prevent duplicate entries.

3. This line contains a check to make sure the current packet is not empty and does
contain a payload. If the current packet contains a payload of more than 0 bytes,
we will proceed to line 4.

4. The current source IP address and its byte payload will be printed or returned to
the next statements.

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 16

5. Now that we know the current source IP address is not yet stored in the host
variable, we will create a new entry into the variable.

6. The size variable is reset back to zero
7. The } character is used to end nested statements. Therefore, the first case of a

source IP address not being contained in host is complete.
8. If the host variable contains the current data entry, we will proceed to line 9.
9. Here we will sum the unique source IP address’ total bytes by adding the payload

from the second column ($2).
10. The } character is used to end nested statements. This is the ending of the main

functionality of the script.
11. The END statement denotes what the script will do once it has reached the end of

the file, and there are no more input data rows to be read.
12. If a source IP address contains a total payload of more than 0 bytes, we will

proceed to line 13.
13. AWK will return the source IP address found in the first column, as well as the size

variable, containing the total payload in relation to that source IP address.

Step 1: Input the following command.

zeek-cut id.orig_h orig_bytes < TCP-Traffic/conn.log | sort | awk -f Lab-

Scripts/lab3_sec3-2.awk | sort -k 2 | head -n 10

• zeek-cut id.orig_h orig_bytes < conn.log: selects the id.orig_h and
orig_bytes columns from the conn.log file.

• | sort: uses the sort command to organize the rows in alphabetical order.

• | awk -f lab3_sec3-2.awk: will execute awk with the -f option to denote using
the script find within the lab3_sec3-2.awk file.

• | sort -k 2: uses the sort command with the -k option to organize the rows
based on the values found in the second column – the total number of bytes.

• | head –n 10: uses the head command with the -n option to display the 10
topmost values.

The left column contains the source IP address, while the right column contains the
number of bytes produced by the paired source IP address.

3.3 Example 3

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 17

Example 3: Are there any web servers operating on non-standardized ports?

To solve this example, we will be looking at the service column to view the packets using
the Hyper Text Transport Protocol (HTTP) protocol. The standard ports for the HTTP
protocol are 80 and 8080, so we will be searching for the network traffic that does not
reach those ports.

Step 1: Open the lab3script.sh file with nano text editor.

nano lab3script.sh

Step 2: Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

zeek-cut service id.resp_p id.resp_h < conn.log \

 | awk ‘$1 == “http” && ! ($2 == 80 || $2 == 8080) {print $3}’ \

 | sort -u

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x to exit nano and
return to the terminal. The above command is explained as follows:

• zeek-cut service id.resp_p id.resp_h < conn.log: selects the service,
id.resp_p and id.resp_h columns from the conn.log file.

• | awk: passes the input into the following AWK command:
o $1 == “http”: performs a check on the first column to make sure the

active data entry is running on the http service.
o && ! ($2 == 80 || $2 == 8080): performs a second check if the first

check is successfully passed. The ports will be checked and if they are not
equal to either of the standard http ports (80 and 8080), they will be
passed to the print statement

o {print $3}: prints the destination IP address of any host that passes both
of the previous checks.

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 18

• | sort -u: uses the sort command to sort the lines in the file and the -u option
checks for strict ordering.

Step 3: Execute the modified shell script.

./lab3script.sh

The destination IP addresses that received traffic on non-standardized ports are displayed.

3.4 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Concluding this lab, we have reviewed the process of creating shell scripts to be used for
network analysis. We introduced more complex commands for the zeek-control utility,
as well as used the AWK scripting language to retrieve information from Zeek log files.

References

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 19

1. “Logging”, Zeek user manual, [Online], Available:

docs.zeek.org/en/stable/examples/logs.
2. “Exercise: understanding and examining bro logs”, Zeek user manual, [Online],

Available: https://www.zeek.org/bro-workshop-2011/solutions/logs/index.html.

ZEEK INSTRUSION DETECTION SERIES

Lab 4: Generating, Capturing and Analyzing
Network Scanner Traffic

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 2

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 3

Contents

Overview ... 4

Objective ... 4

Lab topology.. 4

Lab settings ... 4

Lab roadmap ... 5

1 Introduction to Internet scanning and probing .. 5

2 Generating real time network scans ... 5

2.1 Starting a new instance of Zeek ... 6

2.2 Launching Mininet .. 6

2.3 Setting up the zeek2 virtual machine for live network capture 8

2.4 Using the zeek1 virtual machine for network scanning activities 9

2.4.1 nmap options .. 10

2.4.2 TCP SYN scans ... 10

2.4.3 TCP connect scans ... 11

2.4.4 TCP NULL scans ... 11

2.4.5 TCP XMAS scans .. 12

2.4.6 Terminating live network capture .. 13

3 Analyzing collected network traffic .. 13

3.1 Example Query 1 .. 15

3.2 Example Query 2 .. 15

3.3 Closing the current instance of Zeek .. 16

References .. 17

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 4

Overview

This lab is designed to provide an in-depth guide to scanning and probing network traffic.
The lab demonstrates the generation of scan-based traffic and uses Zeek to process the
collected traffic.

Objective

By the end of this lab, students should be able to:

1. Perform Internet scanning and probing events.
2. Utilize the Nmap software.
3. Generate and collect scan traffic.

Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the zeek1 virtual
machine to generate scan-based traffic, and the zeek2 virtual machine to perform live
network capture.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 5

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Internet scanning and probing.
2. Section 2: Generating real time network scans.
3. Section 3: Analyzing collected network traffic.
4. Section 4: Detailing the importance of the Zeek interface topology.

1 Introduction to Internet scanning and probing

Internet scanning is the process of generating crafted traffic used to identify active
devices on a network. A variety of software utilities and tools are used to replicate scan-
related traffic for testing purposes. These crafted packets can be both stealthy and
versatile. It is hard to determine scan-like activities when scanning traffic follows
protocols’ standards and specifications.

Malicious scanning is a reconnaissance technique used to collect information about a
target’s machine or network to facilitate an attack against it. Scanning is used by attackers
to discover what ports are open, what services are running and identify system software,
all to enable an attacker to more easily detect and exploit known vulnerabilities within a
target machine1.

This lab uses nmap, and its documentation can be found on the nmap website. To access
the following link, users must have access to an external computer connected to the
Internet, because the Zeek Lab topology does not have an active Internet connection.

https://www.nmap.org/

nmap has a wide array of scan-related functionalities such as the customization of a scan’s
transport protocol, ports, IP ranges, etc.

2 Generating real time network scans

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 6

Zeek’s default packet capture processing generates log files containing organized network
traffic statistics. By leveraging the zeek1 virtual machine to scan the zeek2 virtual machine,
we can better define and understand the steps it takes to both generate and capture scan
traffic.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes Zeekctl tool to start a new
instance. To type capital letters, it is recommended to hold the Shift key while typing
rather than using the Caps key. When prompted for a password, type password and hit
Enter.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Launching Mininet

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 7

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type password and hit
Enter. The MiniEdit editor will now launch.

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the Open button within the File tab
on the top left of the MiniEdit editor.

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the Open button.

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 8

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by clicking
the Open button.

Step 5. To begin running the virtual machines, navigate to the Run button, found on the
bottom left of the Miniedit editor, and select the Run button, as seen in the image below.

2.3 Setting up the zeek2 virtual machine for live network capture

Step 1. Launch the zeek2 terminal by holding the right mouse button on the desired
machine, and clicking the Terminal button.

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 9

Step 2. From the zeek2 terminal, navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

Step 3. Start live packet capture on interface zeek2-eth0 and save the output to a file
named scantraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w scantraffic.pcap

The zeek2 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek1 machine to generate scan-based network traffic.

2.4 Using the zeek1 virtual machine for network scanning activities

Step 1. Minimize the zeek2 Terminal and open the zeek1 Terminal by following the
previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

Step 2. On a machine running Linux, nmap is executed through the Terminal. Verify that
nmap is functioning properly by viewing the currently installed version.

nmap -version

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 10

The figure above shows that the currently installed version of nmap is 7.60. With both the
zeek2 and zeek1 virtual machines configured correctly, we can proceed with the exercises.

2.4.1 nmap options

nmap is used to discover hosts and services on a computer network by sending packets
and analyzing the responses. nmap command has a list of options for every scan type and
covers several protocols. This lab focuses on TCP scans with their default settings. Two
additional options that can be used during this lab are:

• -A: enables operating system and version detection.

• -T4: faster execution, can strain the initiator’s machine on larger scans.

More information is available on the following nmap documentation page:

https://nmap.org/book/man-briefoptions.html

2.4.2 TCP SYN scans

TCP SYN scans are one of the most common types of scans used for vulnerability detection.
During SYN scanning, the initiating host sends a single TCP SYN packet to the destination.
The receiving host interprets the request as a new TCP connection where the standard
three-way TCP handshake is to be established. If a SYN/ACK packet is sent back, the
initiator can infer that the port is open. The initiator can then send an RST (reset) packet
to terminate the established connection.

Step 1. Use the following command to conduct a TCP SYN scan.

nmap -sS 10.0.0.2

The -sS option is used to indicate a TCP SYN scan.

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 11

After the scan is completed, nmap produces a report on the performed scan. This includes
the scan starting time, the number of ports, the total time, etc. We can see here the TCP
SYN scan took 14.61 seconds, and none of the scanned ports were open.

2.4.3 TCP connect scans

TCP Connect scans are an alternative to TCP SYN scans. Rather than starting a TCP
handshake, the initiator’s operating system attempts to establish a connection with the
target victim through a system call. If a connection is successfully created, the initiator
can infer that the receiver is open.

Step 1. Use the following command to conduct a TCP connect scan.

nmap –sT 10.0.0.2

The -sT option is used to indicate a TCP Connect scan.

The report in the above figure shows that the scan was completed in 13.34 seconds, and
none of the scanned ports were open.

2.4.4 TCP NULL scans

TCP NULL scans are another form of TCP scanning. In general, all TCP packets contain flags.
Firewalls are configured to drop packets containing certain flags. The TCP NULL scan
attempts to bypass these firewalls by excluding the header. With a sequence number of

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 12

0, packets in a TCP NULL scan will have no flags and can potentially infiltrate a network’s
firewall.

Step 1. Use the following command to conduct a TCP NULL scan.

nmap –sN 10.0.0.2

The -sN option is used to indicate a TCP NULL scan.

The report in the above figure shows that the scan was completed in 14.61 seconds, and
none of the scanned ports were open.

2.4.5 TCP XMAS scans

TCP Xmas scans, also known as Christmas tree scans, have their name derived from their
set flags. In TCP Xmas scans, the PSH, URG and FIN flags are all set in the TCP header. This
combination of flags is used in an attempt to infiltrate a strict network’s firewall.

Step 1. Use the following command to conduct a TCP XMAS scan.

nmap –sX 10.0.0.2

The -sX option is used to indicate a TCP XMAS scan.

The report in the above figure shows that the scan was completed in 14.60 seconds, and
none of the scanned ports were open or vulnerable.

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 13

2.4.6 Terminating live network capture

Step 1. Minimize the zeek1 Terminal and open the zeek2 Terminal using the navigation
bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Step 2. Use the Ctrl+c key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 8035 packets were recorded by the interface, which
were then captured and stored in the new scantraffic.pcap file.

Step 3. Stop the current Mininet session by clicking the Stop button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the x on the top right of
the editor.

We will now return to the Client machine to process and analyze the newly generated
network traffic.

3 Analyzing collected network traffic

After successfully conducting a number of TCP-based scans, the scanpackets.pcap packet
capture file now contains the required network traffic. In this section we analyze the
collected network traffic using Zeek.

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 14

Step 2. Navigate to the TCP-Traffic directory to find the scantraffic.pcap file.

cd Zeek-Labs/TCP-Traffic/

Step 3. View the file contents of the TCP-Traffic directory to ensure that the
scantraffic.pcap file was successfully saved.

ls

Step 4. Use the following Zeek command to process the packet capture file.

zeek –C -r scantraffic.pcap

Similarly to the previous labs, Zeek will process the scantraffic.pcap file and generate
resulting log files based off of the default Zeek configurations.

Step 5. List the generated Zeek log files.

ls

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 15

With the log files generated, we can now use the zeek-cut utility for further analysis.

3.1 Example Query 1

Example 1: Show the source IP addresses that generated the most network traffic,
organized in descending order.

Step 1. Enter the following command.

zeek-cut id.orig_h < conn.log | sort | uniq -c | sort -rn | head -n 10

The above command is explained as follows:

• zeek-cut id.orig_h < conn.log: selects the id.orig_h column from the
conn.log file.

• | sort: uses the sort command to organize the rows in alphabetical order.

• | uniq -c: uses the uniq command with the -c option to remove duplicates
while returning unique instances and their counts.

• | sort -rn: uses the sort command with the -rn option to organize the rows
in reverse numerical order.

• | head –n 10: uses the head command with the -n option to display the 10
topmost values.

We can see the majority of the packets were received from the zeek1 machine denoted
by the IP address 10.0.0.1.

3.2 Example Query 2

Example 2: Show the 10 destination ports that received the most network traffic,
organized in descending order.

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 16

Step 1. Enter the following command.

zeek-cut id.resp_p < conn.log | sort | uniq -c | sort -rn | head -n 10

The above command is explained as follows:

• zeek-cut id.orig_h < conn.log: selects the id.orig_h column from the
conn.log file.

• | sort: uses the sort command to organize the rows in alphabetical order.

• | uniq -c: uses the uniq command with the -c option to remove duplicates
while returning unique instances and their counts.

• | sort -rn: uses the sort command with the -rn option to organize the rows
in reverse numerical order.

• | head –n 10: uses the head command with the -n option to display the 10
topmost values.

The number of duplicates is seen in the left column, while the matching destination port
is seen in the right column. More than 10 unique destination ports were found, so only
the top 10 were returned. These destination ports may be variable due to nmap’s
scanning configurations.

3.3 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

 Page 17

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Concluding this lab, we have reviewed the steps required to generate scan traffic as well
as enable live traffic capture using Zeek. Once collected, the trace files can be studied,
and empirical data can be investigated regarding the current state of a network and its
devices.

References

1. Bou-Harb, Elias, Mourad Debbabi, and Chadi Assi. "A systematic approach for
detecting and clustering distributed cyber scanning." Computer Networks 57.18
(2013): 3826-3839.

2. Pour, Morteza Safaei, and Elias Bou-Harb. "Implications of theoretic derivations
on empirical passive measurements for effective cyber threat intelligence
generation." 2018 IEEE International Conference on Communications (ICC). IEEE,
2018.

3. “Options summary”, nmap, [Online], Available: nmap,
https://nmap.org/book/man-briefoptions.html.

4. “Port scanning techniques”, nmap, [Online], Available: nmap,
https://nmap.org/book/man-port-scanning-techniques.html.

ZEEK INSTRUSION DETECTION SERIES

Lab 5: Generating, Capturing and Analyzing DoS
and DDoS-centric Network Traffic

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 2

Contents

Overview ... 3

Objective ... 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to DoS and DDoS activity ... 4

1.1 DoS attack characteristics .. 4

1.2 DDoS attack characteristics .. 5

2 Generating real-time DoS traffic ... 5

2.1 Starting a new instance of Zeek ... 5

2.2 Launching Mininet .. 6

2.3 Setting up the zeek2 machine for live network capture 8

2.4 Launching LOIC ... 9

2.5 Using the zeek1 virtual machine to launch a TCP-based DoS attack 11

2.6 Using the zeek1 virtual machine to launch a UDP-based DoS attack 12

3 Analyzing collected network traffic .. 14

3.1 Analyzing TCP-based traffic .. 14

3.1.1 TCP Example Query 1 .. 15

3.1.2 TCP Example Query 2 .. 15

3.2 Analyzing UDP-based traffic ... 16

3.2.1 UDP Example Query 1 ... 17

3.3 Closing the current instance of Zeek .. 18

References .. 19

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 3

Overview

This lab covers Denial of Service (DoS)-based network traffic. The lab introduces the
generation of DoS-based traffic for testing purposes and uses Zeek to process the
collected traffic.

Objective

By the end of this lab, students should be able to:

1. Generate real-time DoS and DDoS traffic.
2. Experiment with the Low Orbit Ion Canon (LOIC) software.
3. Analyze collected DDoS traffic.

Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the zeek1 virtual
machine to generate DoS-based traffic, and the zeek2 virtual machine to perform live
network capture.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 4

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to DoS and DDoS activity.
2. Section 2: Generating real-time DoS traffic.
3. Section 3: Analyzing collected network traffic.

1 Introduction to DoS and DDoS activity

Denial-of-Service (DoS) is an attack launched by a malicious user to render a target
machine or network resource unavailable to its intended users. Distributed Denial-of-
Service (DDoS) is an attack originated from different sources to flood the victim’s
resources. A DDoS attack is more effective than a normal DoS and is harder to mitigate
since unlike DoS, it is impossible to stop the attack simply by blocking a single source.

The different types of DoS attacks can be grouped by the traffic they generate, the
bandwidth they consume, the services they disrupt, etc. Traffic-based DoS attacks aim at
flooding the target with a large volume unsolicited traffic. Bandwidth-based DoS attacks
involve transmitting a massive amount of junk data to overload the victim and render its
network equipment congested.

1.1 DoS attack characteristics

DoS attacks generally involve flooding a targeted victim with network traffic to cause a
crash and make it unavailable to benign users. In this lab we explore two common DoS
attacks:

• SYN flood: an attacker attempts to overwhelm the server machine by sending a
constant stream of TCP connection requests, forcing the server to allocate
resources for each new connection until all resources are exhausted1.

• ICMP flood: the attacker abuses ICMP Ping and floods the victim computer with
Echo Request messages. When a computer receives an ICMP Echo Request
message it responds with an ICMP Echo Reply message2.

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 5

1.2 DDoS attack characteristics

DDoS attacks involve using a large number of devices to flood a victim. With an increased
number of exploited machines, the amount of resources available to the attacker is far
higher. Some relevant DDoS attacks are:

• HTTP flood: simple attack but requires a large number of resources. An attacker
who controls several devices (botnet) can continually flood a server with HTTP
requests until the server becomes unavailable and unable to respond to additional
incoming requests.

• SYN flood: similar to the DoS SYN flood, a botnet initiates several sessions
without completing a TCP handshake, causing the victim to consume its available
resources.

• Amplification attack: attackers abuse UDP-based network protocols to launch
DDoS attacks that exceed hundreds of Gbps in traffic volume. This is achieved via
reflective DDoS attacks where an attacker does not directly send traffic to the
victim but sends spoofed network packets to a large number of systems that
reflect the traffic to the victim3. Domain Name System (DNS) and Network Time
Protocol (NTP) are examples of application-layer protocols that act as potential
amplification attack vectors.

DoS and DDoS attacks can cause catastrophic fallout and monetary losses to a victim.

2 Generating real-time DoS traffic

This lab uses the Low Orbit Ion Canon (LOIC), open-source network stress testing and DoS
attack generator. LOIC can be found in the following Github repository. To access the
following link, users must have access to an external computer connected to the Internet,
because the Zeek Lab topology does not have an active Internet connection.

https://github.com/NewEraCracker/LOIC

Similar to the nmap utility, LOIC can be used to replicate DoS or DDoS activity for testing
purposes. LOIC has a Graphical User Interface (GUI), which facilitates the attack’s
customization.

In this lab, Zeek’s default packet capture processing will generate log files containing
organized network traffic statistics. In this section, zeek2 virtual machine is used for live
capture and zeek1 virtual machine is used to generate DoS-related traffic.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 6

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes Zeekctl tool to start a new
instance. To type capital letters, it is recommended to hold the Shift key while typing
rather than using the Caps key. When prompted for a password, type password and hit
Enter.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Launching Mininet

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type password and hit

Enter. The MiniEdit editor will now launch.

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 7

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the Open button within the File
tab on the top left of the MiniEdit editor.

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the Open button.

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the Open button.

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 8

Step 5. To begin running the virtual machines, navigate to the Run button, found on the
bottom left of the Miniedit editor, and select the Run button, as seen in the image
below.

2.3 Setting up the zeek2 machine for live network capture

Step 1. Launch the zeek2 terminal by holding the right mouse button on the desired
machine, and clicking the Terminal button.

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 9

Step 2. From the zeek2 terminal, navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

Step 3. Start live packet capture on interface zeek2-eth0 and save the output to a file
named tcptraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w tcptraffic.pcap

The zeek2 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek1 machine to generate scan-based network traffic.

2.4 Launching LOIC

Step 1. Minimize the zeek2 Terminal and open the zeek1 Terminal by following the
previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

Step 2. Navigate to the Zeek-Labs/Lab-Tools/LOIC directory.

cd Zeek-Labs/Lab-Tools/LOIC

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 10

Step 3. Execute the loic.sh shell script by entering the following command in the terminal.

./loic.sh run

Step 4. View the LOIC GUI. If necessary, scale the GUI to a smaller size to fit on the zeek1
virtual machine’s display.

The figure above shows the LOIC interface. Important features highlighted with colored
boxes are explained as follows:

1. Red Box: target IP address. After entering an IP address, clicking the Lock on
button will select the IP as the target destination address.

2. Green Box: target port. Can be changed depending on which method is used to
launch the DoS attack.

3. Yellow Box: target method. Can be changed to define which protocol is used to
launch the DoS attack.

4. Blue Box: number of threads. Indicates the amount of resources LOIC will allocate
on the host machine.

5. Purple Box: number of sockets per thread. Increasing the number of sockets per
thread will exponentially increase the speed of the DoS attack; however, it also
requires more resources on the host machine.

6. Brown Box: packet payload. Used to define what each packet will contain as
payload.

7. Orange Box: start button. After customizing a desired attack, this button is used
to launch the attack.

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 11

2.5 Using the zeek1 virtual machine to launch a TCP-based DoS attack

Step 1: Customize the DoS attack by entering the following values in their respective input
boxes.

IP: 10.0.0.2

Port: 80

Method: TCP

Threads: 20

Sockets: 25

Payload: TCP TEST

Step 2. Click the Lock on button to save the current configurations. Click the Start (IMMA
CHARGIN MAH LAZER) button to begin the DoS attack. Wait roughly 10 seconds and click
the Stop (Stop flooding) button to stop the DoS attack.

Step 3. Minimize the zeek1 Terminal and open the zeek2 Terminal using the navigation
bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Step 4. Use the Ctrl+c key combination to stop live traffic capture. Statistics of the
capture session will we be displayed with network packets being stored in the new
tcptraffic.pcap file.

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 12

Within the 10 seconds timeframe, 1,741,757 packets were generated and collected. This
number of packets verifies that DoS attacks generate an immense amount of network
traffic and can be compared against the much smaller number of packets generated
during the previous scan events.

2.6 Using the zeek1 virtual machine to launch a UDP-based DoS attack

Step 1. Using the zeek2 virtual machine, navigate to the lab workspace directory and enter
the UDP-Traffic directory.

cd Zeek-Labs/UDP-Traffic/

Step 2. Start live packet capture on interface zeek2-eth0 and save the output to a file
named udptraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w udptraffic.pcap

Step 3. Minimize the zeek2 Terminal and open the LOIC GUI using the navigation bar at
the bottom of the screen. If necessary, right click within the Miniedit editor to activate
your cursor.

Step 4. Customize the DoS attack by entering the following values in their respective input
boxes.

IP: 10.0.0.2

Port: 20

Method: UDP

Threads: 20

Sockets: 25

Payload: UDP TEST (Must be changed before updating Method feature)

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 13

Step 4. Click the Lock on button to save the current configurations. Click the Start (IMMA
CHARGIN MAH LAZER) button to begin the DoS attack. Wait for 10 seconds and click the
Stop (Stop flooding) button to stop the DoS attack.

Step 5. Minimize the zeek1 Terminal and open the zeek2 Terminal using the navigation
bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Step 6. Use the Ctrl+c key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 15,164 packets were recorded by the interface,
which were then captured and stored in the new tcptraffic.pcap file.

While the UDP-based DoS attack did not generate as much network traffic as the TCP-
based DoS attack, heavy amounts of traffic were generated by a single machine. Scaled
to a large-scale attack, DoS attacks are extremely debilitating.

Step 7. Stop the current Mininet session by clicking the Stop button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the x on the top right of
the editor.

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 14

We will now return to the Client machine to process and analyze the newly generated
network traffic.

3 Analyzing collected network traffic

After successfully conducting both a TCP-based and UDP-based DoS attack, we can begin
to analyze the collected network traffic using Zeek and the zeek-cut utility commands
to display the capture traffic.

3.1 Analyzing TCP-based traffic

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Step 2. Navigate to the TCP-Traffic directory to find the tcptraffic.pcap file.

cd Zeek-Labs/TCP-Traffic/

Step 3. View the file contents of the TCP-Traffic directory to ensure that the
tcptraffic.pcap file was successfully saved.

ls

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 15

Step 4. Use the following Zeek command to process the packet capture file.

zeek –C -r tcptraffic.pcap

Step 5. List the generated Zeek log files.

ls

3.1.1 TCP Example Query 1

Example 1: Show the source IP addresses that generated the most network traffic,
organized in descending order.

zeek-cut id.resp_p < conn.log | sort | uniq -c | sort -rn | head -n 10

The zeek2 virtual machine received 870,871 TCP packets. This command, or a similar
one, can be useful in real-world environments to detect vulnerable hosts within a
network – allowing for the process of securing and mitigating possible threats.

3.1.2 TCP Example Query 2

Example 1: Show the destination ports that received the most traffic, organized in
descending order.

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 16

zeek-cut id.resp_p < conn.log | sort | uniq -c | sort -rn | head -n 10

We can see that 870,871 packets were received by the zeek2 virtual machine on port 80,
which is the port we specified for the zeek1 virtual machine to target. Additional ports
may be discovered during processing, slightly variable due to LOIC attempting to establish
connections; however, it is clear the most targeted port is the one we specified in the DoS
attack.

3.2 Analyzing UDP-based traffic

Step 1. Navigate to the UDP-Traffic directory to find the udptraffic.pcap file.

cd Zeek-Labs/UDP-Traffic/

Step 3. View the file contents of the TCP-Traffic directory to ensure that the
udptraffic.pcap file was successfully saved.

ls

Step 4. Use the following Zeek command to process the packet capture file.

zeek –C -r udptraffic.pcap

Step 5. List the generated Zeek log files.

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 17

ls

3.2.1 UDP Example Query 1

Example 1: Show the list of ports that received any amount of network traffic.

Step 1. Navigate to the lab workspace directory and enter the UDP-Traffic directory.

cd $ZEEK_LABS/UDP-Traffic

Step 2. Process the udptraffic.pcap packet capture file using Zeek. The -r option indicates
that Zeek will be reading from an offline pcap file, and the -C is used to disable checksum
verification.

zeek -C -r udptraffic.pcap

Step 3. Show the list of ports that received network traffic.

cat conn.log | zeek-cut id.resp_p

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 18

We can see that despite the large number of packets collected, very few were recorded
by Zeek’s event-based engine. We specified port 20 as the targeted port during our DoS
attack; however, the number of identified packets is significantly lower than expected.

The primary cause of the decreased packet count is due to the number of UDP packets
being dropped. Primarily due to firewalls, UDP packets may be traced on the interface,
but may not reach the target destination. Furthermore, the default Zeek customization is
primarily focused on TCP traffic, and is not designed to handle UDP traffic in such an in-
depth maner, requiring additional scripts and policies that will be introduced in later labs.

3.3 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

 Page 19

Concluding this lab, we have introduced DoS and DDoS events, as well as generated and
captured DoS traffic in the lab workspace environment. Networks require some form of
denial-of-service mitigation or prevention tools since attacks can devastate unsecured
networks.

References

1. Lemon, Jonathan, “Resisting SYN flood DoS attacks with a SYN cache,” In BSDCon,
vol. 2002, pp. 89-97. 2002.

2. Junior, R. B., & Kumar, S. (2014), “Apple’s lion vs microsoft’s windows 7: comparing
built-In protection against ICMP flood attacks,” Journal of information security,
5(03), 123.

3. Kührer, M., Hupperich, T., Rossow, C., & Holz, T. (2014). “Exit from hell? reducing
the impact of amplification DDoS attacks,”. In 23rd {USENIX} Security symposium
({USENIX} Security 14) (pp. 111-125).

4. Fachkha, Claude, Elias Bou-Harb, and Mourad Debbabi. "Fingerprinting internet
DNS amplification DDoS activities." 2014 6th International Conference on New
Technologies, Mobility and Security (NTMS). IEEE, 2014.

5. Fachkha, Claude, Elias Bou-Harb, and Mourad Debbabi. "Towards a forecasting
model for distributed denial of service activities." 2013 IEEE 12th International
Symposium on Network Computing and Applications. IEEE, 2013.

ZEEK INSTRUSION DETECTION SERIES

Lab 6: Introduction to Zeek Scripting

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 6: Introduction to Zeek Scripting

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to scripting with Zeek .. 4

1.1 Zeek script events ... 4

1.2 Zeek module workspace .. 5

1.3 Zeek log streams .. 5

2 Log file analysis using Zeek scripts .. 6

2.1 Starting a new instance of Zeek ... 6

2.2 Executing a UDP Zeek script ... 7

2.3 Executing a TCP Zeek script .. 8

3 Modifying Zeek log streams .. 10

3.1 Renaming the conn.log stream .. 10

3.2 Updating the conn.log stream ... 12

3.3 Closing the current instance of Zeek .. 13

References .. 14

Lab 6: Introduction to Zeek Scripting

 Page 3

Overview

This lab covers Zeek’s scripting language. It introduces the major keywords and
components required in a Zeek script. The lab then uses these scripts to analyze processed
log files.

Objectives

By the end of this lab, students should be able to:

1. Develop scripts using Zeek’s scripting language.
2. Analyze processed log files using Zeek scripts.
3. Modify log streams for creating additional events and notices.

Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the Client machine for
offline Zeek script development and offline packet capture processing and analysis.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Table 2. Shell variables and their corresponding absolute paths.

Lab 6: Introduction to Zeek Scripting

 Page 4

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to scripting with Zeek.
2. Section 2: Log file analysis using Zeek scripts.
3. Section 3: Modifying Zeek log streams.

1 Introduction to scripting with Zeek

Zeek includes its own event-driven scripting language which provides the primary means
for an organization to extend and customize Zeek’s functionality. By modifying Zeek’s log
streams, a more in-depth analysis can be performed on network events.

Since Zeek’s scripting language is event-driven, we define which events we need Zeek to
respond to when encountered during network traffic analysis.

1.1 Zeek script events

The script below shows events that will be explored during this lab. When developing a
Zeek script, the script’s functionalities are wrapped within respective events.

• zeek_init event: activated when Zeek is first initialized.

• zeek_done event: activated before Zeek is terminated.

• tcp_packet event: activated when a packet containing a TCP header is processed.

Lab 6: Introduction to Zeek Scripting

 Page 5

• udp_request event: activated when a packet containing a UDP request header is
processed.

• udp_reply event: activated when a packet containing a UDP reply header is
processed.

Additional events and their required parameters are outlined and explained in Zeek’s
official documentation. To access the following link, users must have access to an external
computer connected to the Internet, because the Zeek Lab topology does not have an
active Internet connection.

https://docs.zeek.org/en/current/examples/scripting/

1.2 Zeek module workspace

The script below uses the module keyword which assigns the script to a namespace. Codes
from other scripts can be accessed by including a matching module. The export keyword
is used to export the code entered in its block with the module workspace.

• module ZeekScript: changes the module workspace to ZeekScript.

• export block: code entered here will be exported with the module workspace.

Exporting code with a module workspace allows more advanced scripts to be built on top
of other scripts.

1.3 Zeek log streams

The script below shows the log stream functionality. When developing a Zeek script, all
processed outputs will be sent to a specific log stream. These log streams will contain the
format of the corresponding log file output. We can create new streams, modify original
streams or append additional parameters to existing streams.

• connection_established event: activated when a host makes a connection to a
receiver.

• Log::create_stream: creates a new log stream, will a name, format structure and
path.

Lab 6: Introduction to Zeek Scripting

 Page 6

• Log::write: writes included data to the specified log stream.

Additional log stream commands are explained in detail in Zeek’s official documentation.

2 Log file analysis using Zeek scripts

With Zeek’s event-driven scripting language, we can create specific event-based filters to
be applied during packet capture analysis. This section shows example scripts for network
analysis.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes Zeekctl tool to start a new
instance. To type capital letters, it is recommended to hold the Shift key while typing
rather than using the Caps key. When prompted for a password, type password and hit
Enter.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

Lab 6: Introduction to Zeek Scripting

 Page 7

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Executing a UDP Zeek script

This lab series includes a Lab-Scripts directory, containing all of the relevant Zeek scripts
that will be used during the labs.

Step 1. Navigate to the Lab-Scripts directory.

cd Zeek-Labs/Lab-Scripts/

Within this directory, all lab scripts can be accessed, viewed, and modified.

Step 2. Display the content of the lab6_sec2-2.zeek Zeek script using nl command. nl
shows the line numbers in the file.

nl lab6_sec2-2.zeek

The script is explained as follows. Each number represents the respective line number:

1. Event udp_request is activated when a packet containing a UDP Request header
is processed. The related packet header information is stored in the connection
data structure passed to the function through the u variable.

2. Prints the specified string. %s is a format specifier for strings with fmt. It indicates
the position of the corresponding variable’s information in the string.
uidresp_h retrieves the destination IP address from the UDP packet.

3. End of the udp_request event.
4. Event udp_reply activated when a packet containing a UDP Reply header is

processed. The related packet header information is stored in the connection data
structure passed to the function through the u variable.

Lab 6: Introduction to Zeek Scripting

 Page 8

5. Prints the specified string. uidresp_h retrieves the destination IP address from
the UDP packet.

6. End of the udp_reply event.

Step 3. Navigate to the UDP-Traffic workspace directory.

cd Zeek-Labs/UDP-Traffic/

Step 4. Process a packet capture file using the Zeek script. It is possible to use the tab
key to autocomplete the longer paths.

zeek –C –r ../Sample-PCAP/smallFlows.pcap ../Lab-Scripts/lab6_sec2-2.zeek

The packet capture file is processed into output log files. Since we did not create a new
log stream, the script’s output is displayed on the standard output (the screen). When
udp_request or udp_reply events are triggered, the resulting packet information is
displayed.

2.3 Executing a TCP Zeek script

Step 1. Display the content of the lab6_sec2-3.zeek Zeek script using nl command. nl
shows the line numbers in the file. It is possible to use the tab key to autocomplete the
longer paths.

Lab 6: Introduction to Zeek Scripting

 Page 9

nl ../Lab-Scripts/lab6_sec2-3.zeek

The script is explained as follows. Each number represents the respective line number:

1. Event tcp_packet is activated when a packet containing a TCP header is
processed. The related packet header information is stored in the connection data
structure passed to the function through the u variable. Additional TCP-related
information is passed in a similar manner.

2. Prints the specified string. %s is a format specifier for strings with fmt. It indicates
the position of the corresponding variable’s information in the string.
uidresp_h retrieves the destination IP address from the TCP packet.

3. End of the tcp_packet event.

Step 2. Process a packet capture file using the Zeek script. It is possible to use the tab
key to autocomplete the longer paths.

zeek –C -r ../Sample-PCAP/smallFlows.pcap ../Lab-Scripts/lab6_sec2-3.zeek

The following output is produced:

Lab 6: Introduction to Zeek Scripting

 Page 10

When the tcp_packet event is triggered, the resulting packet information is displayed.
Highlighted is an example of Port 8443 and Port 80 traffic.

These examples highlight Zeek’s capabilities of tracking specific traffic. For instance, a
script can be designed to collect all Port 80 traffic daily and to export it to a log file. In the
following section we introduce log streams.

3 Modifying Zeek log streams

Zeek log streams determine where an event’s output will be returned, as well as how it is
formatted. It is possible to append new streams, modify default streams, or remove
streams.

Before continuing, we must clear the lab workspace directory.

Step 1. Display the contents of the lab_clean.sh shell script using nl command.

nl ../Lab-Scripts/lab_clean.sh

The shell script removes a list of files expected to be generated by Zeek’s processing using
default log streams. Executing this shell script will clear the directory of log files generated
previously. Output messages from running this script as nore displayed in the Terminal,
instead the code > /dev/null 2>&1 will set errors and notices to be sent to a null folder,
effectively eliminating them.

Step 2. Execute the lab_clean.sh shell script. It is possible to use the tab key to
autocomplete the longer paths. If required, type password as the password.

./../Lab-Scripts/lab_clean.sh

With the workspace directory cleared, we can move to the next section.

3.1 Renaming the conn.log stream

Lab 6: Introduction to Zeek Scripting

 Page 11

In this example, we will rename the conn.log file to be UpdatedConn.log. Renaming log
streams can help with files organization, especially if a log file has been modified from its
original functionality.

Step 1: Display the contents of the lab6_sec3-1.zeek Zeek script using the nl command.
It is possible to use the tab key to autocomplete the longer paths.

nl ../Lab-Scripts/lab6_sec3-1.zeek

The script is explained as follows. Each number represents the respective line number:

1. Event zeek_init is activated when Zeek is first initialized.
3. Creates a local variable update initialized to the default Conn::LOG filter.
4. Sets the update variable’s path to UpdatedConn.log.
5. Appends the new filter to the active log streams.
6. End of the zeek_init event.

Step 2. Process a packet capture file using the Zeek script. It is possible to use the tab
key to autocomplete the longer paths.

zeek –C -r ../Sample-PCAP/smallFlows.pcap ../Lab-Scripts/lab6_sec3-1.zeek

Step 3. List the generated log files in the current directory.

ls

Lab 6: Introduction to Zeek Scripting

 Page 12

Note the UpdatedConn.log, highlighted by the orange box. Since we did not change any
formatting, it is an exact replica of the original conn.log file.

3.2 Updating the conn.log stream

In this example, we modify the conn.log file to generate an additional conn-http.log file.
This modification will split the conn.log contents between two log files, which is useful
when organizing specific events – such as splitting UDP traffic from TCP traffic, or reply
messages from requests.

Step 1. Execute the included lab_clean.sh shell script. If required, type password as the
password. It is possible to use the tab key to autocomplete the longer paths.

./../Lab-Scripts/lab_clean.sh

Step 2. Display the contents of lab6_sec3-1.zeek Zeek script using the nl command.

nl ../Lab-Scripts/lab6_sec3-2.zeek

The script is explained as follows. Each number represents the respective line number:

1. Boolean function that has the parameter rec, an instance of Conn::Info.
3. Returns True if the service stored in rec is the HTTP protocol.
4. End of the function.
5. Event zeek_init is activated when Zeek is first initialized.
6. Creates a local filter with http related naming and pathing.

Lab 6: Introduction to Zeek Scripting

 Page 13

7. Appends the new filter to the active log streams.
8. End of the zeek_init event.

Step 2: Process a packet capture file using the Zeek script. It is possible to use the tab
key to autocomplete the longer paths.

zeek –C -r ../Sample-PCAP/ smallFlows.pcap ../Lab-Scripts/lab6_sec3-2.zeek

Step 3: List the the generated log files in the current directory.

ls

Note the conn-http.log file in the first column. This file will have the same formatting as
the conn.log file; however, it will only contain HTTP traffic. These files are highlighted by
the orange box in the proceeding image.

3.3 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Lab 6: Introduction to Zeek Scripting

 Page 14

Concluding this lab, we have introduced the Zeek scripting language. Using event-driven
functionality, Zeek scripts can be used to customize the output log streams. Besides
renaming existing files, you can also split the files to generate a more protocol or event-
specific log file. Zeek scripts are the backbone of creating an organized workspace for
storing and parsing generated log files.

References

1. “Logging framework”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/frameworks/logging.html#streams

2. “Monitoring HTTP traffic”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/examples/httpmonitor/

3. “Writing scripts”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/examples/scripting/#the-event-queue-and-
event-handlers.

ZEEK INSTRUSION DETECTION SERIES

Lab 7: Introduction to Zeek Signatures

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 7: Introduction to Zeek Signatures

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to Zeek signatures .. 4

1.1 Zeek signature format .. 5

1.2 Creating and using Zeek signatures ... 5

1.3 Zeek’s default signature framework .. 6

2 Log file analysis using Zeek signatures .. 8

2.1 Starting a new instance of Zeek ... 8

2.2 Viewing a premade Zeek signature file .. 9

2.3 Executing the premade Zeek signature file.. 10

3 Executing Zeek signature matching for network traffic analysis 12

3.1 Modifying the premade Zeek signature file ... 12

3.2 Executing the updated Zeek signature file ... 13

3.3 Closing the current instance of Zeek .. 15

References .. 16

Lab 7: Introduction to Zeek Signatures

 Page 3

Overview

This lab covers Zeek’s signature framework language. It introduces what network traffic
signatures are and how they are matched to identify specific network events. This lab
then reviews premade signature files and provides example usage for analysis.

Objectives

By the end of this lab, students should be able to:

1. Develop signatures using Zeek’s signature framework.
2. Analyze processed log files using Zeek signatures.
3. Modify log streams for creating additional events and notices based on

signatures.

Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the Client machine for
offline Zeek script development and offline packet capture processing and analysis.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Lab 7: Introduction to Zeek Signatures

 Page 4

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Zeek signatures.
2. Section 2: Log file analysis using Zeek signatures.
3. Section 3: Modifying Zeek signatures for advanced pattern matching.

1 Introduction to Zeek signatures

Following the introduction of developing and implementing basic Zeek scripts, we can
now begin generating Zeek signatures. Introduced in the beginning of this lab series, the
Zeek event-based engine is the primary architecture for running Zeek as an efficient
intrusion detection system. The Zeek event-based engine predominantly utilizes the
extensive scripting language to develop policies in order to define the steps and
notifications necessary to handle anomalies and exceptions.

However, oftentimes it is simpler to create a predetermined string, known as a signature,
and parse packet capture files for the specific signature. Because signatures are used for
low-level pattern matching, the Zeek signature framework does not provide the same in-
depth functionality as the Zeek scripting language for its event-based engine. Zeek
signatures are used to quickly aggregate related network packets through signature
matching before analysts can perform further, in-depth analysis on such traffic.

It is important to understand and be familiar with signatures due to their widespread
usage across many related Intrusion Detection Systems and application-level firewalls.
Separate from Zeek, many alternative IDS, such as the popular Snort, rely on signature-
based pattern matching for anomaly and malicious event detection. Therefore, in
operational cybersecurity environments that analyze network traffic to mitigate and
prevent malicious events, understanding Zeek’s signature framework adds an additional
tool for developing a comprehensive IDS.

This lab will begin by introducing Zeek signatures, detailing their unique file type, how to
load them into the Zeek event-based engine, and include a number of examples of
leveraging signature matching for log file analysis.

Lab 7: Introduction to Zeek Signatures

 Page 5

1.1 Zeek signature format

The signature below depicts a basic network traffic signature. Depending on their usage,
signatures can either include stricter requirements, or be more lax to encompass a larger
portion of the processed data.

1. This line defines a new signature object, with the name HTTP-sig.
2. Defines the desired match’s transport protocol to be TCP.
3. Defines the desired match’s destination port to be 80.
4. Defines the desired match’s payload to contain the regular expression equivalent to

‘POST’.
5. Defines an event if the match is found. Currently, the event will post a “HTTP Packet

Found!” message; however, these events can be developed with a more complex
functionality if the need arises.

This signature can be loaded into the Zeek signature framework during network traffic
analysis, in which Zeek will attempt to match packets with the signature’s details. While
each individual packet can only be matched one time, multiple signatures can be

Additional signatures and their included variables are outlined and explained in Zeek’s
official documentation. To access the following link, users must have access to an external
computer connected to the Internet, because the Zeek Lab topology does not have an
active Internet connection.

https://docs.zeek.org/en/current/frameworks/signatures.html

1.2 Creating and using Zeek signatures

Similar to Zeek’s policy scripting framework, Zeek signatures are saved in separate files
denoted by the .sig file extension. There are three ways to initialize Zeek for network

traffic analysis while leveraging the Zeek signature framework:

1. When initializing Zeek from the terminal, include the additional –s option:

zeek -r <pcap_file_location> -s <signature_file_location>

• zeek: command to invoke Zeek.

• -r: option signifies to Zeek that it will be reading from an offline file.

• <pcap_file_location>: indicates the pcap file location.

• -s: option signifies to Zeek that the next file contains signatures.

Lab 7: Introduction to Zeek Signatures

 Page 6

• <script_location>: indicates the script location.

2. When creating a Zeek policy script, include the @load-sigs directive:

3. When creating a Zeek policy script, extend the Zeek global signature_files

variable by appending the += operator followed by the signature file:

1.3 Zeek’s default signature framework

This section introduces the default Zeek signature file that is compiled and included after
Zeek has been installed.

While this default Zeek script includes scan-based detection, it will not correctly identify
every unique anomaly that may be encountered. However, it does provide a
comprehensive starter code that can be reviewed and customized to understand the Zeek
signature framework.

The default Zeek signature file is named main.zeek. More information on this script can
be found in Zeek’s documentation pages. To access the following link, users must have
access to an external computer connected to the Internet, because the Zeek Lab topology
does not have an active Internet connection.

https://docs.zeek.org/en/current/scripts/base/frameworks/signatures/main.zeek.h

tml

The file has been copied into the Zeek lab workspace directory and renamed to
ZeekSignatureFramework.zeek for ease of access and name-reference clarity.

Lab 7: Introduction to Zeek Signatures

 Page 7

The figure above shows the options for signature match events within the
ZeekSignatureFramework.zeek file. The options are explained as follows. Each number
represents the respective line number:

4. SIG_IGNORE: if a signature is matched, do not write to the logging stream.
8. SIG_QUIET: if a signature is matched, process the included events but do not
write to the logging stream.
10. SIG_LOG: if a signature is matched, generate a notice.
13. SIG_FILE_BUT_NO_SCAN: if a signature is matched and does not meet scan
thresholds, write to the logging stream.
15. SIG_ALARM: if a signature is matched, generate a notice and set an alarm.
17. SIG_ALARM_PER_ORIG: if a signature is matched, generate a notice and set an
alarm once per host that triggered the match.
19. SIG_ALARM_ONCE: if a signature is matched, generate a notice and set an alarm
only one time, no matter the number of matches.
23. SIG_COUNT_PER_RESP: if a signature is matched, create a running count per
responder host to compare against developed thresholds to identify and exclude
scan traffic.
23. SIG_SUMMARY: generate a summary of all matched signatures based on the
unique hosts that triggered a signature match.

Additional options and signature-specific events can be created using the Zeek scripting
framework. Furthermore, Lab 8 of this series will enumerate upon the aforementioned
scan thresholds and how Zeek determines if a host is probing a network.

Lab 7: Introduction to Zeek Signatures

 Page 8

The figure above shows the variables that store signature-specific packet information
accessed in the ZeekSignatureFramework.zeek file. These variables can be accessed to
extract the stored information for notifications and warnings. Furthermore, each variable
can be printed to the logging stream, following the Zeek log file format reviewed in
previous labs. Each variable is explained by its proceeding comments, denoted by the #
character.

2 Log file analysis using Zeek signatures

With Zeek’s signature framework, we can create specific pattern-based signature filters
to be applied during packet capture analysis. This section shows example signatures and
their usage for network analysis.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Lab 7: Introduction to Zeek Signatures

 Page 9

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes Zeekctl tool to start a new
instance. To type capital letters, it is recommended to hold the Shift key while typing
rather than using the Caps key. When prompted for a password, type password and hit
Enter.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Viewing a premade Zeek signature file

Step 1. Navigate to the Lab-Scripts directory.

cd Zeek-Labs/Lab-Scripts/

Step 2: Display the contents of the lab7_sec2-2.sig file using nl.

nl lab7_sec2-2.sig

Lab 7: Introduction to Zeek Signatures

 Page 10

This signature file contains two signatures to be matched during network traffic analysis
and is explained as follows. Each number represents the respective line number:

1. This line defines a new signature object, with the name HTTP-POST-sig.
2. Defines the desired match’s transport protocol to be TCP.
3. Defines the desired match’s destination port to be 80.
4. Defines the desired match’s payload to contain the regular expression equivalent to

‘POST’.
5. Defines an event if the match is found. Currently, the event will post a “Found HTTP

Post” message.

7. This line defines a new signature object, with the name HTTP-GET-sig.
8. Defines the desired match’s transport protocol to be TCP.
9. Defines the desired match’s destination port to be 80.
10. Defines the desired match’s payload to contain the regular expression equivalent to

‘GET’.
11. Defines an event if the match is found. Currently, the event will post a “Found HTTP

Request” message.

2.3 Executing the premade Zeek signature file

Step 1. Navigate to the TCP-Traffic directory.

cd ../TCP-Traffic/

Step 2. Process the smallFlows.pcap packet capture file using the signature file lab7_sec2-
2.sig. It is possible to use the tab key to autocomplete the longer paths.

Lab 7: Introduction to Zeek Signatures

 Page 11

zeek –r ../Sample-PCAP/smallFlows.pcap –s ../Lab-Scripts/lab7_sec2-2.sig

Step 3: List the generated log files in the current directory.

ls

A new log file that has not been previously introduced is now displayed: signatures.log.
This log file will contain all signature matches and their corresponding events and notices.

Step 4: View the contents of the signatures.log file using the gedit text editor.

gedit signatures.log

Lab 7: Introduction to Zeek Signatures

 Page 12

The file is explained as follows:

• The red box indicates the name of the signature that was matched.

• The orange box indicates the event or message that was included when defining
the signature.

• The blue box indicates the packet payload that was matched against the input
signatures.

Step 6: Clear the contents of the TCP-Traffic directory.

./../Lab-Scripts/lab_clean.sh

3 Executing Zeek signature matching for network traffic analysis

This section modifies the existing signature file to generate additional signature events
and notices. We will be modifying the previous signatures from TCP-based HTTP messages
to UDP-based SNMP and DNS messages.

3.1 Modifying the premade Zeek signature file

Step 1: View the contents of the lab7_sec3-1.sig file using nl.

nl ../Lab-Scripts/lab7_sec3-1.sig

Step 2: Open the lab7_sec3-1.sig file with the gedit text editor.

gedit ../Lab-Scripts/lab7_sec3-1.sig

Lab 7: Introduction to Zeek Signatures

 Page 13

Step 3: Update the lab7_sec3-1.sig file to include the following signatures.

signature SNMP-REQUEST-sig{

 ip-proto == udp

 dst-port == 161

 event “Found SNMP Request”

}

signature SNMP-RESPONSE-sig{

 ip-proto == udp

 dst-port == 52400

 event “Found SNMP Response”

}

signature DNS-REQUEST-sig{

 ip-proto == udp

 dst-port == 53

 event “Found DNS Request”

}

3.2 Executing the updated Zeek signature file

Step 1. Process the smallFlows.pcap packet capture file using the signature file lab7_sec3-
1.sig. It is possible to use the tab key to autocomplete the longer paths.

zeek –r ../Sample-PCAP/smallFlows.pcap –s ../Lab-Scripts/lab7_sec3-1.sig

Lab 7: Introduction to Zeek Signatures

 Page 14

Step 2: List the generated log files in the current directory.

ls

The signatures.log file has been recreated and will contain the newly updated signature
matches.

Step 3: View the contents of the signatures.log file using the gedit text editor.

gedit signatures.log

Lab 7: Introduction to Zeek Signatures

 Page 15

The file is explained as follows:

• The red box indicates the DNS-REQUEST-sig signature match as well as the
triggered IP address and event message.

• The orange box indicates the SNMP-REQUEST-sig signature match as well as the
triggered IP address and event message.

• The blue box indicates the SNMP-RESPONSE-sig signature match as well as the
triggered IP address and event message.

3.3 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Lab 7: Introduction to Zeek Signatures

 Page 16

Concluding this lab, we have introduced the Zeek signature framework. Leveraging
pattern matching, Zeek signatures can be used to quickly discover packets that follow
predetermined formats, while employing a low-level framework for generating warnings
and notifications.

References

1. “Signature framework”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/frameworks/signatures.html

2. “Logging framework”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/frameworks/logging.html#streams

3. “Monitoring HTTP traffic”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/examples/httpmonitor/

4. “Writing scripts”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/examples/scripting/#the-event-queue-and-
event-handlers.

ZEEK INSTRUSION DETECTION SERIES

Lab 8: Advanced Zeek Scripting for Anomaly and
Malicious Event Detection

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Zeek’s default anomaly detection scripts ... 4

1.1 Zeek scan-event.. 4

1.2 Zeek bruteforce-event ... 6

2 Generating customized malicious network traffic.. 7

2.1 Starting a new instance of Zeek ... 7

2.2 Launching Mininet .. 8

2.3 Setting up the zeek2 virtual machine for live network capture 10

2.4 Using the zeek1 virtual machine for network scanning activities 11

2.4.1 Terminating live network capture .. 12

3 Applying Zeek scripts to filter network traffic .. 13

3.1 Applying the ZeekDetectScans filter .. 13

3.2 Applying the ScanFilter filter .. 15

3.3 Closing the current instance of Zeek .. 20

References .. 21

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 3

Overview

This lab covers Zeek’s scripting language and introduces more advanced scripting
capabilities. This lab simulates a new zero-day scanning technique and explains a Zeek
script that captures this new event. The lab is designed to further highlight the
customization properties of Zeek scripting.

Objectives

By the end of this lab, students should be able to:

1. Use precompiled Zeek scripts for identifying network traffic anomalies.
2. Develop a Zeek script for identifying and organizing specific malicious traffic

events.
3. Generate customized malicious traffic to be used for testing purposes.

Lab topology

Figure 1 shows the lab workspace topology. The Client machine will be used for offline
Zeek script development, while the zeek1 and zeek2 virtual machines will generate and
collect network traffic.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 4

Client admin password

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Zeek’s default anomaly detection scripts.
2. Section 2: Generating customized malicious network traffic.
3. Section 3: Applying Zeek scripts to filter network traffic.

1 Zeek’s default anomaly detection scripts

Zeek’s scripting language can be used to identify and report network anomalies by using
event-driven functions. This section introduces two default Zeek script filters that are
installed by default after Zeek installation.

While these default Zeek scripts might not correctly identify every unique anomaly, they
provide a comprehensive starter code that can be customized further for anomaly-based
detection.

1.1 Zeek scan-event

The first default Zeek script is the scan.zeek script. More information on this script can be
found in Zeek’s documentation pages. To access the following link, users must have access
to an external computer connected to the Internet, because the Zeek Lab topology does
not have an active Internet connection.

https://docs.zeek.org/en/latest/scripts/policy/misc/scan.zeek.html

The file has been copied into the Zeek lab workspace directory and renamed to
ZeekDetectScans.zeek for ease of access and name-reference clarity.

This Zeek script is used to identify scan-related traffic. Internet scanning can be split into
three main categories:

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 5

1. Vertical Scanning: an attacker scans many ports on a single destination host
address.

2. Horizontal Scanning: an attacker scans a single port on many destination host
addresses.

3. Block Scanning: an attacker interweaves vertical and horizontal scanning
techniques to increase complexity and become harder to track.

The script shown in the figure below list the first few lines of the ZeekScanDetection.zeek
file.

As shown in the figure above, loading other scripts is done through the @load statement
with the following format:

@load <zeekscriptfile>

Lines 5, 6 and 7 include the functionalities found within the export blocks of the
respectively included Zeek scripts.

The script leverages thresholds to determine if scan-like activities are present when
processing network capture. If all the thresholds are exceeded, traffic is inferred to be
scan-related.

For real time deployment, these thresholds will need to be modified dependent on the
network size. For instance, a smaller network containing less IP addresses will need a
lower threshold of scan packets to identify a scan-event. However, modifying these
thresholds may result in an increase of false positives and true negatives, so it highly
recommended to simulate and test network traffic before modification.

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 6

The figure above shows the thresholds in the ZeekScanDetection.zeek file. The thresholds
are explained as follows. Each number represents the respective line number:

28. const addr_scan_interval: threshold to check a source IP address for varying
destination IP address scan-related traffic. The default interval is 5 minutes.

32. const port_scan_interval: threshold to check a source IP address for varying
destination port scan-related traffic. The default interval is 5 minutes.

35. const addr_scan_threshold: threshold of unique destination IP addresses that
a single host attempts to contact. The default threshold is 25 unique destination
IP addresses.

38. const port_scan_threshold: threshold of unique destination ports that a single
host attempts to contact. The default threshold is 15 unique destination ports.

1.2 Zeek bruteforce-event

The second default Zeek script is the detect-bruteforcing.zeek script. More information
on this script can be found in Zeek’s documentation pages. To access the following link,
users must have access to an external computer connected to the Internet, because the
Zeek Lab topology does not have an active Internet connection.

https://docs.zeek.org/en/stable/scripts/policy/protocols/ssh/detect-

bruteforcing.zeek.html

The file has been copied into the Zeek lab workspace directory and renamed to
ZeekDetectBruteForce.zeek for ease of access and name-reference clarity.

This Zeek script is used to identify brute-force password attacks. Brute-force attacks can
be identified by several failed login attempts. This denotes that an attacker is attempting
to systematically submit credentials until the correct credentials are found. The
motivation behind this attack is to gain authorized access to an account, machine or
server.

The script leverages the following thresholds to determine if scan-like activities are
present when processing network capture. During real time deployment, these
thresholds should be modified depending on the network size. The number of failed login
attempts (or duration) should be modified to increase the script’s accuracy.

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 7

The thresholds are explained as follows. Each number represents the respective line
number:

15. const bruteforce_threshold: threshold for the number of failed
authentications attempts a source IP address can make. The default value is 20
failed attempts within the related time interval threshold.

18. const bruteforce_measurement_interval: threshold for the time to check a
source IP address for failed authentication attempts. The default interval is 15
minutes.

2 Generating customized malicious network traffic

This section introduces creating and using a new Zeek script, tailored to react to more
specific events.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 8

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes Zeekctl tool to start a new
instance. To type capital letters, it is recommended to hold the Shift key while typing
rather than using the Caps key. When prompted for a password, type password and hit

Enter.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Launching Mininet

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type password and hit
Enter. The MiniEdit editor will now launch.

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the Open button within the File
tab on the top left of the MiniEdit editor.

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 9

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the Open button.

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the Open button.

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 10

Step 5. To begin running the virtual machines, navigate to the Run button, found on the
bottom left of the Miniedit editor, and select the Run button, as seen in the image
below.

2.3 Setting up the zeek2 virtual machine for live network capture

Step 1. Launch the zeek2 terminal by holding the right mouse button on the desired
machine, and clicking the Terminal button.

Step 2. Using the zeek2 terminal, navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

Step 3. Start live packet capture on interface zeek2-eth0 and save the output to a file
named scantraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w scantraffic.pcap

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 11

The zeek2 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek1 machine to generate scan-based network traffic.

2.4 Using the zeek1 virtual machine for network scanning activities

Step 1. Minimize the zeek2 Terminal and open the zeek1 Terminal by following the
previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

Step 2. Launch a TCP connect scan against the zeek2 machine.

nmap -sT 10.0.0.2

Step 3. Launch a scan against the zeek2 machine with the SYN, FIN and RST flags set. We
will label this scan as Case1.

nmap --scanflags SYN,FIN,RST 10.0.0.2

By specifying the --scanflags option, we can control which TCP flags are included in
the packet header.

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 12

Step 5. Launch a scan against the zeek2 machine with the SYN, RST and ACK flags set. We
will label this scan as Case2.

nmap –-scanflags SYN,RST,ACK 10.0.0.2

2.4.1 Terminating live network capture

Step 1. Minimize the zeek1 Terminal and open the zeek2 Terminal using the navigation
bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Step 2. Use the Ctrl+c key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 6014 packets were recorded by the interface, which
were then captured and stored in the new scantraffic.pcap file.

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 13

Step 3. Stop the current Mininet session by clicking the Stop button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the x on the top right of
the editor.

3 Applying Zeek scripts to filter network traffic

Now that we have collected traffic containing the zero-day exploits, we will process the
packet capture file using Zeek.

3.1 Applying the ZeekDetectScans filter

After successfully conducting a number of TCP-based scans, the scanpackets.pcap packet
capture file now contains the required traffic. In this section we analyze the collected
network traffic using Zeek.

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Step 2. Navigate to the TCP-Traffic directory to find the scantraffic.pcap file.

cd Zeek-Labs/TCP-Traffic/

Step 3. View the file contents of the TCP-Traffic directory to ensure that the
scantraffic.pcap file was successfully saved.

ls

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 14

Step 4. Process the scantraffic.pcap packet capture file using ZeekScanDetection.zeek. It
is possible to use the tab key to autocomplete the longer paths.

zeek –C -r scantraffic.pcap ../Lab-Scripts/ZeekDetectScans.zeek

Step 2: Display the contents of the notice.log file using the cat command.

cat notice.log

Within the notice.log file, we can see the zeek1 machine has been identified for creating
scan-based network traffic and exceeding the 15-ports threshold configured earlier.

Step 3: Display the contents of the conn.log file using the following command.

head -n 25 conn.log | zeek-cut ts id.orig_h id.orig_p id.resp_h id.resp_p

history

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 15

The Terminal command is explained as follows:

• head -n 25 conn.log: returns the top 25 rows of the conn.log file, specified
by the -n option.

• | zeek-cut ts id.orig_h id.orig_p id.resp_h id.resp_p history:
uses the zeek-cut utility to return the specified columns and remove padding.

The history column (last column in the figure above) contains information regarding
which TCP flags were found within a packet header:

• s: SYN flag.

• h: SYN+ACK flags.

• a: ACK flag.

• f: FIN flag.

• r: RST flag.

• u: URG flag.

• q: Multiple flags set.

The event is attributed to the host when the flag letter is uppercase; otherwise, it is
attributed to the receiver. In this example, the capital S and lowercase r denotes the SYN
flag sent from the host, while the receiver responded with a RST flag.

3.2 Applying the ScanFilter filter

Step 1: Display the contents of the ScanFilter.zeek file using nl.

nl ../Lab-Scripts/ZeekFilter.zeek

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 16

The script is explained as follows. Each number represents the respective line number:

1. Declares a new module workspace.
2. Export block allows code to be accessed outside the current module

workspace.
3. Creates and appends the CASE1LOG to the list of Log files.
4. Creates and appends the CASE2LOG to the list of Log files.
6. Block that includes all the columns and features to be included in these new

log files. Each will contain a variable type and output location:

• ts: time that the packet was received.

• id: packet identification number.

• orig_h: source IP address.

• orig_p: source port.

• resp_h: destination IP address.

• resp_p: destination port.

• history: string of flag characters.

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 17

16. Initialization event.
17. Creates a new log stream using the previously introduced CASE1LOG LOG ID,

outputFormat column formatting and a file name path.
18. Creates a new log stream using the previously introduced CASE2LOG LOG ID,

outputFormat column formatting and a file name path.
20. Event triggered when a TCP packet is processed.
21. Creates a local variable rec to store the column-related information, using the

current packet data, accessed with the cid<column> format.
22. Checks if the SFR flag combination is present in the packet. This relates to the

history column, containing SYN-FIN-RST flags.
23. If the SFR flag combination is present, the packet will be written to the

CASE1LOG log stream with the packet information passed through the local
variable rec.

24. Checks if the SRA flag combination is present in the packet. This relates to the
history column, containing SYN-RST-ACK flags.

25. If the SRA flag combination is present, the packet will be written to the
CASE2LOG log stream with the packet information passed through the local
variable rec.

Step 2. Execute the lab_clean.sh shell script to clear the directory. If required, type
password as the password.

./../Lab-Scripts/lab_clean.sh

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 18

Step 3: Process the scantraffic.pcap packet capture file using ScanFilter.zeek. It is
possible to use the tab key to autocomplete the longer paths.

zeek –C –r scantraffic.pcap ../Lab-Scripts/ScanFilter.zeek

Step 4: List the generated log files in the current directory.

ls

Note the Case1.log and Case2.log files, highlighted by the orange box, generated by
including the ScanFilter.zeek filter during processing.

Step 5: View the contents of the Case1.log file.

head -n 25 Case1.log | zeek-cut ts id.orig_h id.orig_p id.resp_h id.resp_p

history

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 19

The Terminal command is explained as follows:

• head -n 25 Case1.log: returns the top 25 rows of the conn.log file, specified
by the -n option.

• | zeek-cut ts id.orig_h id.orig_p id.resp_h id.resp_p history:
uses the zeek-cut utility to only return the specified columns, and removes
padding.

Unlike the default example, we can see the history column contains the exact same flag.
Our filter was successful in organizing the traffic related to the Case1 exploit.

Step 6: Display the contents of the Case2.log file.

head -n 25 Case2.log | zeek-cut ts id.orig_h id.orig_p id.resp_h id.resp_p

history

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 20

The Terminal command is explained as follows:

• head -n 25 Case2.log: returns the top 25 rows of the conn.log file, specified
by the -n option.

• | zeek-cut ts id.orig_h id.orig_p id.resp_h id.resp_p history:
uses the zeek-cut utility to only return the specified columns, and removes
padding.

Unlike the default example, we can see the history column contains the exact same flag.
Our filter was successful in organizing the traffic related to the Case2 exploit.

3.3 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

 Page 21

Concluding this lab, we introduced default frameworks for anomaly-detection scripts. We
generated malicious network traffic to simulate a zero-day exploit, and then processed
the traffic using a customized a Zeek script. With the resulting Zeek log files, these exploits
can be studied for additional analysis and mitigation.

References

1. Bilge, Leyla, and Tudor Dumitraş. "Before we knew it: an empirical study of zero-
day attacks in the real world." Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012.

2. “Writing scripts”, Zeek user manual, [Online], Available: Zeek,
https://docs.zeek.org/en/stable/examples/scripting/#the-event-queue-and-
event-handlers.

ZEEK INSTRUSION DETECTION SERIES

Lab 9: Profiling and Performance Metrics of Zeek

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 9: Profiling and Performance Metrics of Zeek

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to Zeek profiling ... 4

2 Generating customized malicious network traffic.. 5

2.1 Starting a new instance of Zeek ... 5

2.2 Launching Mininet .. 6

2.3 Setting up the zeek2 virtual machine for live network capture 7

2.4 Using the zeek1 virtual machine for network scanning activities 8

2.4.1 Terminating live network capture .. 10

3 Generating and viewing Zeek profiling log files .. 11

3.1 Applying the profiling filter .. 11

4 Implementing tools to test Zeek’s performance .. 14

4.1 Using sysstat sar utility ... 14

4.2 Using the top utility .. 16

4.3 Viewing the resource consumption of Zeek .. 16

4.4 Closing the current instance of Zeek .. 17

References .. 18

Lab 9: Profiling and Performance Metrics of Zeek

 Page 3

Overview

With Zeek’s event-based framework, anomalies can be detected, processed and analyzed
with external software. In this lab, we explain Zeek’s profiling log stream and Zeek’s
resource consumption.

Objectives

By the end of this lab, students should be able to:

1. Enable Zeek’s profiling log stream for session-based statistics.
2. Generate customized traffic to be captured by Zeek’s profiling.
3. Implement tools necessary for testing Zeek’s resource consumption.

Lab topology

Figure 1 shows the lab workspace topology. The Client machine will be used for offline
Zeek script development, while the zeek1 and zeek2 virtual machines will generate and
collect network traffic.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Lab 9: Profiling and Performance Metrics of Zeek

 Page 4

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Zeek profiling.
2. Section 2: Generating customized malicious network traffic.
3. Section 3: Generating and viewing Zeek profiling log files.
4. Section 4: Implementing tools to test Zeek’s performance.

1 Introduction to Zeek profiling

Zeek includes the option of enabling profiling. When profiling is enabled, a new log stream
will be created to store session-related statistics. The Profile log file will contain a large
variety of information, including but not limited to running time, memory usage,
connection information and packet protocol statistics.

To enable profiling while using Zeek for offline packet capture file processing, you will
need to implement the following functionality in a Zeek script.

The script is explained as follows. Each number represents the respective line number:

1. Sets the module workspace as Profiling.
3. Specifies the name of the new profiling log file, as well as determines the format

based off an input log stream.
4. Specifies the time interval for Zeek to record empirical information. In this

example the time interval is 3 seconds.

Lab 9: Profiling and Performance Metrics of Zeek

 Page 5

5. Specifies the number of profiling intervals defined in Line 5. In this example, the
profiling interval is 5 instances.

7. Initialization event.
8. Appends the new log stream information.
9. End of initialization event.

Profiling is enabled by calling the Zeek script during packet processing, as reviewed in the
previous labs.

zeek -r <packet capture file> <Profiling Script>

• <packet capture file>: denotes the input packet capture file.

• <Profiling Script>: denotes the Zeek script to be run during packet processing.

In the following section we generate customized malicious traffic to be viewed within a
Zeek profiling log.

2 Generating customized malicious network traffic

This section introduces creating and using a Zeek profiling script, which will enable
session-based statistics for Zeek packet capture file processing.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes Zeekctl tool to start a new
instance. To type capital letters, it is recommended to hold the Shift key while typing

Lab 9: Profiling and Performance Metrics of Zeek

 Page 6

rather than using the Caps key. When prompted for a password, type password and hit
Enter.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Launching Mininet

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type password and hit
Enter. The MiniEdit editor will now launch.

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the Open button within the File
tab on the top left of the MiniEdit editor.

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the Open button.

Lab 9: Profiling and Performance Metrics of Zeek

 Page 7

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the Open button.

Step 5. To begin running the virtual machines, navigate to the Run button, found on the
bottom left of the Miniedit editor, and select the Run button, as seen in the image
below.

2.3 Setting up the zeek2 virtual machine for live network capture

Lab 9: Profiling and Performance Metrics of Zeek

 Page 8

Step 1. Launch the zeek2 terminal by holding the right mouse button on the desired
machine, and clicking the Terminal button.

Step 2. Navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

Step 3. Start live packet capture on interface zeek2-eth0 and save the output to a file
named scantraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w scantraffic.pcap

The zeek2 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek1 machine to generate scan-based network traffic.

2.4 Using the zeek1 virtual machine for network scanning activities

In this section we use the nmap software to generate TCP-based scan traffic.

This section introduces two new options for the nmap software.

• -f: specifies to send packet fragments. By fragmenting packets, a scanner can
attempt to bypass firewalls that check for entire packet signatures.

Lab 9: Profiling and Performance Metrics of Zeek

 Page 9

• -mtu <num>: specifies the max number of bytes to be sent in a fragmented packet.
The number variable must be a multiple of 8.

Step 1. Minimize the zeek2 Terminal and open the zeek1 Terminal by following the
previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

Step 2. Launch a fragmented TCP SYN scan against the zeek2 machine.

nmap -sS -f 10.0.0.2

Step 3. Launch a fragmented TCP SYN scan with a packet size of 8 bytes against the zeek2
machine.

nmap -sS -mtu 8 10.0.0.2

Lab 9: Profiling and Performance Metrics of Zeek

 Page 10

Step 5. Launch a fragmented TCP SYN scan with a packet size of 64 bytes against the Bro2
machine.

nmap –sS -mtu 64 10.0.0.2

2.4.1 Terminating live network capture

Step 1. Minimize the zeek1 Terminal and open the zeek2 Terminal using the navigation
bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Step 2. Use the Ctrl+c key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 10,033 packets were recorded by the interface,
which were then captured and stored in the new scantraffic.pcap file.

Step 3. Stop the current Mininet session by clicking the Stop button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the x on the top right of
the editor.

Lab 9: Profiling and Performance Metrics of Zeek

 Page 11

3 Generating and viewing Zeek profiling log files

Now that we have collected fragmented traffic, we can begin processing the packet
capture file with Zeek.

3.1 Applying the profiling filter

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Step 2. Navigate to the Lab-Scripts directory.

cd Zeek-Labs/Lab-Scripts/

Step 3. View the EnableProfiling.zeek Zeek script.

nl EnableProfiling.zeek

Lab 9: Profiling and Performance Metrics of Zeek

 Page 12

Similar to the example in the introduction, the EnableProfiling.zeek Zeek script is used to
create a new log file named Statistics.log containing Zeek profiling statistics. The script
enables the intervals to be 15 seconds apart, with 20 total intervals.

Step 4. Navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

Step 5. Process the ntraffic.pcap packet capture file.

zeek –C -r ntraffic.pcap EnableProfiling.zeek

Step 6. Display the contents of the Statistics.log file.

nano prof.log

Lab 9: Profiling and Performance Metrics of Zeek

 Page 13

The prof.log file will be displayed.

Viewing the Statistics.log file, each profiling_interval will be displayed between a line
separator made by dashes ---.

Within the Statistics.log file, we can see the total memory used while processing the
packet capture file, the Run-time, as well as a number of TCP flags, connections and
Triggers. Within the first iteration of profiling_interval we see that no TCP packet flags
have been recorded.

Step 6. Go to the next iteration of profiling_interval within the Statistics.log file.

Lab 9: Profiling and Performance Metrics of Zeek

 Page 14

By scrolling through the prof.log file, we can see information found in the next iteration
of a profiling_interval. We can see the total number of TCP-States:Syn has updated
multiple parameters, with additional Triggers being been included. This includes the total
memory usage, displayed towards the bottom of the image.

Zeek profiling is a great tool for generating more detailed session-based statistics while
processing packet capture files with Zeek.

4 Implementing tools to test Zeek’s performance

While Zeek profiling will display the resulting statistics after processing a packet capture
file, it is important to monitor Zeek resource consumption during network traffic analysis.

A number of Linux-based software utilities can be used to track system resource
consumption in real time.

4.1 Using sysstat sar utility

The sar command can be used to display a number of system resources over specific time
intervals. The following steps will highlight the ways to enable sar resource tracking.

Step 1. Launch the sar utility to track CPU consumption.

sar 2 30

• sar: calls the sar utility, belonging to the syystat packages.

Lab 9: Profiling and Performance Metrics of Zeek

 Page 15

• 2: indicates each iteration of CPU statistics is separated by a 2 second time interval.

• 30: indicates that a total of 30 iterations of CPU statistics should be displayed.

Use the CTRL + C keyboard combination to terminate the sar utility and return to the
terminal.

Step 2. Launch the sar utility to track memory consumption.

sar -r 3 25

• sar: calls the sar utility, belonging to the syystat packages.

• -r: indicates memory consumption in kilobytes.

• 3: indicates each iteration of memory statistics is seperated by a 3 second time
interval.

• 25: indicates that a total of 25 iterations of memory statistics should be displayed.

Use the CTRL + C keyboard combination to terminate the sar utility and return to the
terminal.

Lab 9: Profiling and Performance Metrics of Zeek

 Page 16

4.2 Using the top utility

Alternative to the syystat sar utility, the top utility can be used to display the resource
consumption of every active process.

Step 1. Launch the top utility to track resource consumption.

top -i

• top: calls the top utility.

• -i: toggles idle processes off, so that only active processes will be displayed.

After entering the command, the Terminal will display the resource consumption.

Each row will belong to a unique process and display the related CPU and memory
resource usage.

4.3 Viewing the resource consumption of Zeek

Step 1. Using the File drop down options, create a New Tab within the Terminal.

Step 2. In the second tab, begin packet capture file processing of the bigFlows.pcap file
using Zeek.

zeek –C -r ../Sample-PCAP/bigFlows.pcap

Lab 9: Profiling and Performance Metrics of Zeek

 Page 17

Step 3. Return to the first Terminal tab and view the active processes.

Use the CTRL + C keyboard combination to terminate the sar utility and return to the
terminal.

4.4 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Concluding this lab, we introduced Zeek’s profiling capabilities and generated fragmented
traffic to be processed into a profiling log file. Lastly, we introduced Terminal utilities that
can be used to track Zeek’s resource consumption per process. Regular checking of Zeek
profiling and resource consumption is necessary to ensure the IDS is working optimally in
a real-time environment.

Lab 9: Profiling and Performance Metrics of Zeek

 Page 18

Furthermore, we have concluded introducing Zeek’s capabilities as an IDS. The remaining
labs within this series will focus on further processing Zeek log files for advanced analysis.

References

1. “Profiling”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/scripts/policy/misc/profiling.zeek.html

ZEEK INSTRUSION DETECTION SERIES

Lab 10: Application of the Zeek IDS for Real-Time
Network Protection

Document Version: 03-15-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to real-time network traffic analysis using Zeek 4

1.1 Starting a new instance of Zeek ... 4

1.2 Launching Mininet .. 5

1.3 Setting up the zeek1 virtual machine for live network capture 7

1.4 Using the zeek2 virtual machine for network scanning activities 8

1.4.1 Terminating live network capture .. 9

1.5 Analyzing the generated Zeek log files .. 9

2 Introduction to the Zeek NetControl framework ... 11

2.1 Viewing Zeek NetControl within a script file .. 11

2.2 Executing Zeek NetControl within a script file ... 15

3 Identifying SSH attacks by leveraging the Zeek NetControl framework 18

3.1 Closing the current instance of Zeek .. 21

References .. 21

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 3

Overview

This lab introduces Zeek’s real-time packet analysis for intrusion prevention. By
combining the various Zeek-specific events that were introduced and reviewed in
previous labs, we are able to identify and mitigate malicious traffic in real-time.

Objectives

By the end of this lab, students should be able to:

1. Run Zeek in live mode to process network traffic on the wire.
2. Understand the Zeek NetControl framework.
3. Leverage advanced Zeek scripts for anomaly event detection.

Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the zeek2 virtual
machine to generate scan-based traffic, and the zeek1 virtual machine to perform live
network capture.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 4

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to real-time network traffic analysis using Zeek.
2. Section 2: Introduction to the Zeek NetControl framework.
3. Section 3: Identifying SSH attacks by leveraging the Zeek NetControl

framework.

1 Introduction to real-time network traffic analysis using Zeek

The previous labs within this lab series have leveraged the tcpdump terminal utility for
capturing network traffic and generating packet capture files. However, Zeek is capable
of collecting and analyzing such network traffic in real-time, with the ability to apply
signature-matching and event-based Zeek scripts for malicious event detection.

This section will introduce leveraging Zeek for real-time network traffic analysis, without
needing to save the packets captured by the receiving interface.

In contrast to the previous -r terminal option used for offline packet analysis, this lab
will be using the -i terminal option to indicate the receiving interface for real-time
network traffic analysis.

1.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 5

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes Zeekctl tool to start a new
instance. To type capital letters, it is recommended to hold the Shift key while typing
rather than using the Caps key. When prompted for a password, type password and hit

Enter.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

1.2 Launching Mininet

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type password and hit
Enter. The MiniEdit editor will now launch.

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the Open button within the File
tab on the top left of the MiniEdit editor.

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 6

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the Open button.

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the Open button.

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 7

Step 5. To begin running the virtual machines, navigate to the Run button, found on the
bottom left of the Miniedit editor, and select the Run button, as seen in the image
below.

1.3 Setting up the zeek1 virtual machine for live network capture

Step 1. Launch the zeek1 terminal by holding the right mouse button on the desired
machine, and clicking the Terminal button.

Step 2. Navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

Step 3. Start an instance of Zeek live packet capture on interface zeek1-eth0 while
applying the advanced Zeek script ZeekDetectScans.zeek. It is possible to use the tab key
to autocomplete the longer paths.

zeek –C –i zeek1-eth0 ../Lab-Scripts/ZeekDetectScans.zeek

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 8

The ZeekDetectScans.zeek scripting file was introduced in Lab 8 of this lab series and will
be used by the Zeek event-based engine to identify scan-based traffic. During live network
traffic analysis, alternative scripts and signature files can be leveraged to identify specific
anomalies and malicious attacks.

The zeek1 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek2 machine to generate scan-based network traffic.

1.4 Using the zeek2 virtual machine for network scanning activities

In this section we use the nmap software to generate TCP-based scan traffic in order to
trigger Zeek’s logging notices.

Step 1. Minimize the zeek1 Terminal and open the zeek2 Terminal by following the
previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

Step 2. Launch a fragmented TCP scan against the zeek1 machine.

nmap –sT 10.0.0.1

Now that we have generated scan-based traffic, we can verify that Zeek was able to
identify such malicious events in real-time, while generating corresponding log files.

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 9

1.4.1 Terminating live network capture

Step 1. Minimize the zeek2 Terminal and open the zeek1 Terminal using the navigation
bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Step 2. Use the Ctrl+c key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 2002 packets were recorded by the interface, which
were continually analyzed by the Zeek event-based engine.

Within the previous image, the red box denotes the live capture command while the
orange box indicates the number of packets received on the zeek1-eth0 interface. 2002
packets were generated by the zeek2 virtual machine, and no packets were dropped
during analysis.

Step 3. Stop the current Mininet session by clicking the Stop button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the x on the top right of
the editor.

1.5 Analyzing the generated Zeek log files

To verify the success of our real time application of Zeek’s event-based engine, we will
return to the Client machine.

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 10

Step 2. Navigate to the TCP-Traffic directory to find the scantraffic.pcap file.

cd Zeek-Labs/TCP-Traffic/

Step 3. View the file contents of the TCP-Traffic directory to ensure that Zeek generated
log files based on the real-time network traffic analysis.

ls

A number of log files have been generated, specifically, the notice.log file which will
contain the event’s triggered by the ZeekDetectScans.zeek script file.

Step 3. View the file contents of the notice.log file to verify scan-based traffic was
correctly identified and recorded by the Zeek event-based engine.

Head notice.log

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 11

Within the previous image, the red box denotes the terminal command while the orange
box indicates the resulting notice generated by Zeek due to the ZeekDetectScans.zeek
script file. The zeek2 virtual machine, with an IP address of 10.0.0.2, was recorded to have
scanned at least 15 unique ports on the zeek1 virtual machine.

Concluding this section, we have reviewed the capabilities of Zeek for conducting packet
analysis during live network traffic capture. The signature and script files reviewed in
previous labs can be leveraged during such real-time analysis, allowing for Zeek to
monitor and protect a network in real-time.

In the following section, we will review Zeek’s NetControl framework, which is used to
create a backend communication channel with application firewalls and related
monitoring systems.

2 Introduction to the Zeek NetControl framework

The Zeek NetControl framework is used to create a flexible, unified interface for active
mitigation and response against anomalous traffic. The framework allows for connectivity
between a large number of devices, removing the heterogeneity of such configurations
through creating a task-oriented API. This API is developed using the Zeek scripting
language, consisting of a number of high-level calls and lower-level rule syntax. This
section will introduce and review basic Zeek NetControl calls and their implementation
for network traffic analysis in real-time.

2.1 Viewing Zeek NetControl within a script file

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 12

Step 2. Navigate to the Lab-Scripts directory.

cd Zeek-Labs/Lab-Scripts/

Step 3. View the contents of the lab10_sec2-1.zeek file using nl.

nl Zeek-Labs/Lab-Scripts/

The script is explained as follows. Each number represents the respective line number:

1. Initializes the NetControl API framework.
2. Creates a local variable to contain debug information.
3. Uses the NetControl API to activate debugging and display notifications and/or

error messages.
5. Zeek event in which a connection between a source and destination is formed.

This can be initialized by the TCP handshake or a series of UDP Request and
Reply packets.

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 13

7. Checks if a NetControl rule already exists based on the source address
requesting a connection.

8. Prints a debug error message if the rule exists.
9. Exits the function and begins checking for the next connection within the

packet stream.
11. If a rule has not been created, add a rule to drop any connections made by the

current source address that lasts over 20 seconds.
12. Prints a debug message that a new rule was created.

This script is relatively basic and straightforward, yet shows the steps necessary to
initialize the NetControl API. Without calling its initialization function, Zeek will be unable
to communicate to various hardware devices through its backend.

Step 3. View the contents of the ZeekDetectSSHAttacks.zeek file using nl.

This script is very similar to the ZeekDetectScans.zeek default script reviewed in Lab 8 of
this lab series. The following images will briefly review the file contents, while the Zeek
documentation and previous lab provide a more in-depth analysis of this Zeek script. To
access the following link, users must have access to an external computer connected to
the Internet, because the Zeek Lab topology does not have an active Internet connection.

https://docs.zeek.org/en/master/scripts/policy/protocols/ssh/detect-

bruteforcing.zeek.html

Command:
nl ZeekDetectSSHAttacks.zeek

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 14

The script is explained as follows. Each number represents the respective line number:

3-6. Zeek pre-directives to load SSH, summary and notice-specific script
functionality.
7. Sets the module namespace to SSH.
8-17. Creates the export block to define the variables used throughout this
script, specifically, the Password_Guessing variable on line 13 that will store the
number of failed SSH password attempts.

Scroll down on the Terminal to view more of the script. Each number represents the
respective line number:

25. Variable named password_guesses_limit that stores a numerical threshold
for total number of failed SSH connections before marking a host as launching a
brute-force attack.
28. Variable named guessing_timeout that stores a time-based threshold
before resetting the password_guesses_limit variable back to 0.
29. Variable named ignore_guessers that stores a table of IP addresses
identified to be launching SSH brute-force attacks. These addresses can be blocked
or partially filtered.

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 15

Scroll down on the Terminal to view more of the script. Each number represents the
respective line number:

79. Initializes the NetControl API framework.
80. Creates a local variable to contain debug information.
81. Uses the NetControl API to activate debugging and display notifications
and/or error messages.
83. Zeek hook to the Notice logging stream so that we can append new information
with default information.
84. Checks the Password_Guessing variable to determine if the current source
address has been identified to be launching SSH brute-force attacks.
85. If the current source address was launching SSH brute-force attacks, create
a new rule that will drop all network traffic from this source for the next 30
minutes.

Now that we have reviewed both scripts that will be used within the remainder of the lab,
we can see the value of Zeek’s NetControl framework. By leveraging Zeek scripts we are
able to identify anomalous network traffic events, detect malicious sources and finally
leverage NetControl to mitigate their attacks. The remainder of this lab will include
examples of executing the aforementioned Zeek scripts.

2.2 Executing Zeek NetControl within a script file

Step 1. Navigate to the TCP-Traffic directory.

cd ../TCP-Traffic/

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 16

Step 2. Process the smallFlows.pcap packet capture file using the lab10_sec2-1.zeek
script. To type capital letters, it is recommended to hold the Shift key while typing
rather than using the Caps key. It is possible to use the tab key to autocomplete the
longer paths.

zeek –C –r ../Sample-PCAP/smallFlows.pcap ../Lab-Scripts/lab10_sec2-1.zeek >

terminal.log

Because we have NetControl debugging enabled, we are going to save all error messages
and notifications to the file terminal.log. By saving these notifications to a separate file, it
is easier to view them in an organized fashion.

Step 3. View the file contents of the terminal.log file using head.

head terminal.log

Reviewing this image, the red box indicates the terminal command used to view the file.
The orange box indicates the NetControl debug message that it has been initialized. The
blue box indicates that a new rule has been created to drop all packets from the specified
IP address for passing the connection-length threshold. The dark blue box indicates the
Zeek event message that the rule was created successfully, while the yellow box indicates
the Zeek event message that the rule already existed and a duplicate was not created.

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 17

Step 4. View the contents of the TCP-Traffic directory using ls.

ls

The two log files are interested in are the netcontrol.log and netcontrol_drop.log files. The
netcontrol.log file will contain all information related to adding and removing rules, while
the netcontrol_drop.log file will contain information regarding to when each rule was
triggered and by which source address.

Step 5. View the file contents of the netcontrol.log file using gedit.

gedit netcontrol.log

Reviewing this image, the red box indicates that a Connection request was made by the
source address 192.168.3.131 to the destination address 72.14.213.102. The orange box
indicates that the connection was established while the blue box indicates that the
connection was dropped and forced to time-out because of NetControl filtering packets
from this source destination.

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 18

Step 6. View the file contents of the netcontrol_drop.log file using gedit.

gedit netcontrol_drop.log

Reviewing this image, the red box indicates that a source address attempted to create a
connection, breaking the NetControl rule we had previously implemented. Therefore, all
packets were dropped from this source host during the time-out interval we declared
within the lab10_sec2-1.zeek script.

Step 7. Clear the TCP-Traffic directory by using the lab_clean.sh shell script.

./../Lab-Scripts/lab_clean.sh

3 Identifying SSH attacks by leveraging the Zeek NetControl framework

Now that we have reviewed a basic implementation of the NetControl framework,
creating a connection-based rule and identifying source addresses that broke the rule, we
will conduct a more in-depth analysis on SSH brute-force password attacks.

Step 1. Process the sshguess.pcap packet capture file using ZeekDetectSSHAttacks.zeek.
To type capital letters, it is recommended to hold the Shift key while typing rather
than using the Caps key. It is possible to use the tab key to autocomplete the longer
paths.

zeek –C –r ../Sample-PCAP/sshguess.pcap ../Lab-

Scripts/ZeekDetectSSHAttacks.zeek

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 19

Similar to the previous section, we can see the NetControl debug messages including its
initialization and creation of a new rule.

Step 2. View the contents of the TCP-Traffic directory using ls.

ls

We can see that the netcontrol.log, netcontrol_drop.log and notice.log files were created
during packet capture analysis.

Step 3. View the file contents of the netcontrollog file using gedit.

gedit netcontrol.log

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 20

Reviewing the previous image, the red box indicates that a new rule was created due to
the address 192.168.56.1 surpassing the incorrect SSH password guessing threshold.

Step 4. View the file contents of the netcontrol_drop.log file using gedit.

gedit netcontrol_drop.log

Reviewing the previous image, the red box indicates which addresses were discovered to
break the NetControl rules. In this example, only one address was discovered,
192.168.56.1.

Step 4. View the file contents of the notice.log file using gedit.

gedit notice.log

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

 Page 21

Recall that the notice.log file is generated by the ZeekDetectSSHAttacks.zeek script. The
red box indicates which IP address was logged to have broken the SSH password guessing
threshold.

3.1 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Concluding this lab, we have introduced the Zeek NetControl framework and Zeek’s live
processing of real-time network traffic. While the NetControl examples were performed
on offline packet capture files, by combining Zeek’s live analysis from Section 1 with the
examples from Section 2 and 3, active measures can be taken for identifying malicious
network traffic and blocking such sources.

References

1. “NetControl Framework”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/frameworks/netcontrol.html

2. “Logging framework”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/frameworks/logging.html

3. “Writing scripts”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/examples/scripting/#the-event-queue-and-
event-handlers

4. “Quick start Guide”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/current/quickstart

ZEEK INSTRUSION DETECTION SERIES

Lab 11: Preprocessing of Zeek Output Logs for
Machine Learning

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 2

Contents

Overview ... 3

Objective ... 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to machine learning in network security ... 4

1.1 ARFF file format .. 5

2 Aggregating network capture datasets .. 6

2.1 Starting a new instance of Zeek ... 6

2.2 Launching Mininet .. 7

2.3 Setting up the zeek2 virtual machine for live network capture 8

2.4 Using the zeek1 virtual machine for network scanning activities 9

2.4.1 Terminating live network capture .. 10

3 Preprocessing of Zeek log files .. 11

3.1 Preprocessing the malicious dataset ... 11

3.2 Preprocessing of the benign dataset ... 15

3.3 Creation of the test and training datasets ... 16

3.4 Adding the .arff file headers .. 18

3.5 Closing the current instance of Zeek .. 19

References .. 20

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 3

Overview

This lab introduces the application of machine learning in the network security field. After
using Zeek’s scripting language to generate anomaly-based output files, it is necessary to
format these datasets to be used by machine learning classifiers.

Objective

By the end of this lab, students should be able to:

1. Explain the benefits of leveraging machine learning for network analysis.
2. Understand Attribute-Relation File Format (ARFF).
3. Aggregate and preprocess a dataset to be used by a machine learning classifier.

Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the Bro2 machine for
offline Zeek log file processing and reformatting.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Table 2. Shell variables and their corresponding absolute paths.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 4

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to machine learning in network security.
2. Section 2: Aggregating network capture datasets.
3. Section 3: Preprocessing of Zeek log files.

1 Introduction to machine learning in network security

Machine learning is programming computers to optimize a performance criterion using
example data or past experience1. Machine learning is particularly useful for computing
empirical correlations, and in cases where it is difficult to write a computer program to
solve a given problem. In recent years, technological advances in machine learning have
propelled its application on various domains and sectors. Cyber-security is a critical area
in which machine learning (ML) is increasingly becoming significant.

By using Zeek and text processing languages, it is possible to identify the presence of an
anomaly. Once an anomaly is detected, Zeek’s scripts can be implemented to extract
relevant fields and build a dataset.

In this lab series, we will train machine learning classifiers using these anomaly-based
datasets in order to build a model that can be used for future predictions.

This lab focuses on reformatting Zeek log files into Attribute-Relation File Format (ARFF)
files, to be used by Weka software. Weka is a workbench for machine learning that is
intended to help in the application of machine learning techniques to a variety of real-
world problems2.

Supervised learning is a common approach used in machine learning. Supervised learning
consists of a target / outcome variable (or dependent variable) which is to be predicted
from a given set of predictors (independent variables). When training a machine learning
classifier using supervised learning, it is important to include both a training and test
dataset:

• Training dataset: dataset used by the classifier to “learn” correlations and
feature weights. Data should include instances of both variable and control group,
while containing a classification label.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 5

• Testing dataset: dataset used by the classifier to test accuracy. If the classifier
is able to accurately predict labels for the training dataset but not for the testing
dataset, then it is necessary to adjust and retrain the classifier.

1.1 ARFF file format

The Weka software contains a variety of different machine learning algorithms to train a
number of classifiers. Each classifier will require different datasets; for instance, decision
trees can only handle numeric or nominal values, and strings cannot be used as an input
without being listed nominally.

The majority of machine learning classifiers accept numeric data inputs. Therefore, we
will need to preprocess our log file datasets to contain only numeric and nominal data.
Additionally, Weka requires each input dataset to be formatted in an .arff file format.

ARFF files contain comma-separated values and additional headers and labels. Below is a
sample of a properly formatted .arff file that we will be developing in this lab.

The ARFF file headers can be summarized as follows:

• @RELATION: name of the dataset.

• @ATTRIBUTE: specifies the label and the data type for each column:

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 6

o NUMERIC: integer data type.
o NOMINAL: values match entries defined within the brackets {}.

• @DATA: lists the input data.

Now that we have introduced ARFF files and understand what an input dataset should
look like, we can start aggregating and preprocessing a dataset using Zeek.

2 Aggregating network capture datasets

To create our dataset, we need to make sure there is a certain level of entropy in the data
to guarantee that the machine learning classifier will learn properly. Therefore, we need
to combine both benign and malicious datasets.

In this lab, we use the smallFlows.pcap file as the control group, identified as benign traffic
with a class label of 0. We then generate a new scantraffic.pcap file to be used as the
variable group, identified as malicious traffic with a class label of 1.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes Zeekctl tool to start a new
instance. When prompted for a password, type password and hit Enter.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 7

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Launching Mininet

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type password and hit
Enter. The MiniEdit editor will now launch.

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the Open button within the File
tab on the top left of the MiniEdit editor.

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the Open button.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 8

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the Open button.

Step 5. To begin running the virtual machines, navigate to the Run button, found on the
bottom left of the Miniedit editor, and select the Run button, as seen in the image
below.

2.3 Setting up the zeek2 virtual machine for live network capture

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 9

Step 1. Launch the zeek2 terminal by holding the right mouse button on the desired
machine, and clicking the Terminal button.

Step 2. Navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

Step 3. Start live packet capture on interface zeek2-eth0 and save the output to a file
named scantraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w scantraffic.pcap

The zeek2 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek1 machine to generate scan-based network traffic.

2.4 Using the zeek1 virtual machine for network scanning activities

In this section we use the nmap software to generate TCP-based scan traffic.

Step 1. Minimize the zeek2 Terminal and open the zeek1 Terminal by following the
previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 10

Step 2. Launch a TCP SYN scan against the zeek2 machine.

nmap -sS 10.0.0.2

2.4.1 Terminating live network capture

Step 1. Minimize the zeek1 Terminal and open the zeek2 Terminal using the navigation
bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Step 2. Use the Ctrl+c key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 2,014 packets were recorded by the interface, which
were then captured and stored in the new scantraffic.pcap file.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 11

Step 3. Stop the current Mininet session by clicking the Stop button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the x on the top right of
the editor.

We now have our malicious dataset, and because the smallFlows.pcap file is already
downloaded, we already have our control group, the benign dataset. In the following
section we will begin formatting our datasets into ARFF files.

3 Preprocessing of Zeek log files

To generate ARFF files, we first need to process our packet capture files using Zeek’s
default configuration.

In a real-time environment, at this stage you may include anomaly-specific scripts. Once
an anomaly has been processed by Zeek, the resulting log files will need to be reformatted.

Afterwards, we need to select which features we wish to extract from the Zeek log files
to be used in our training and testing datasets. It is important to carefully select the
relevant features when training a classifier. If features are not strategically selected,
classifiers may create unreliable correlations which may lead to poor accuracy in the
detection process. In this lab we extract a small number of general packet features.

3.1 Preprocessing the malicious dataset

Step 3. Navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

Step 1. Process the scantraffic.pcap file.

zeek –C –r scantraffic.pcap

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 12

Step 2. Display the contents of the conn.log file.

column -s, -t conn.log | less -#2 -N -S

Examining the previous command:

• column -s, -t conn.log: calls the column utility to read and columnize the file
contents of the conn.log file. The -s option specifies the separator and the -t
option enables the output to be created as a table.

• | less -#2 -N -S: accepts the output of the column utility and calls the less
utility. The -#2 specifies the default number of positions to scroll horizontally in
the RIGHTARROW and LEFTARROW keys, the -N option marks each row with a line
number and the -S option causes the display to remove any data that would not
fit on the current Terminal screen rather than overflowing to a new line.

The previous command results in the following output.

We can see in the previous image that the conn.log file is nowhere near the .arff file
format. We will need to remove the Zeek padding, column names, change the tab
delimiter and remove excess column features.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 13

Press the q key on your keyboard to exit and return to the Terminal.

Step 3: Display the contents of lab11_malicious.sh shell script using the nl command.

nl ../Lab-Scripts/lab11_malicious.sh

The script is explained as follows. Each number represents the respective line number:

1. Using the cat utility, the contents of the conn.log file will be passed into the zeek-
cut utility to remove the log file header and only include the specified columns.
The output of the zeek-cut utility will be saved to a new file named packet.csv.
The feature columns we will be using to train our example machine learning
classifier are:

• ts: time the packet was received.

• id.orig_h: source IP address.

• id.resp_h: destination IP address.

• id.orig_p: source port.

• id.resp_h: destination port.

• proto: transport protocol.

• duration: connection or session length.

2. Using the cat utility, the contents of the packet.csv file will be passed into the tr
utility. The tr utility will replace the packet.csv file’s tab-delimited structure with
a comma-delimited structure, and the output will be saved to a new file named
packet2.csv.

3. Using the sed utility, all instances of a period . will be removed. This will allow for
the IP addresses to be input as a numeric data type rather than a string, and the
output will be saved to a new file named packet3.csv.

4. Using the sed utility, all instances of a dash - will be replaced by ?. Currently,
when a column is empty, Zeek writes a dash -. However, Weka reads question
marks ? as an empty column. The output will be saved to a new file named
packet4.csv.

5. Using the awk utility, every row will have an additional ,1 appended to the end of
the row. This will represent the class label; we used 1 to denote the malicious
traffic. The output will be saved to a new file named malicious.csv.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 14

6. The file contents of malicious.csv will be displayed. This command is introduced in
the Step 1 of this subsection.

Step 4: Execute the lab11_malicious.sh shell script. If prompted for a password, type
password and hit Enter.

./../Lab-Scripts/lab11_malicious.sh

After executing all commands in the script, the malicious.csv file contents will be
displayed on the Terminal as shown in the figure below.

We can see from the above image that the malicious.csv file is now properly formatted to
fit in the @DATA section of an ARFF file. Each row contains an equal number of comma-
delimited columns with only numeric characters.

Press the q key on your keyboard to exit and return to the Terminal.

Now that we have our malicious dataset created, we can begin formatting our benign
dataset.

Step 5: Execute the lab_clean.sh shell script to clear the directory. If required, type
password as the password.

./../Lab-Scripts/lab_clean.sh

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 15

3.2 Preprocessing of the benign dataset

Step 1: Process the smallFlows.pcap file using the zeek -r command.

zeek –C -r ../Sample-PCAP/smallFlows.pcap

Step 2: Display the contents lab11_benign.sh shell script using the nl command.

nl ../Lab-Scripts/lab11_benign.sh

With the exception of Line 5, the script is exactly the same as the one explained in Step
3 of the previous section.

Line 5 has been modified to append ,0 to the end of each row. This value represents the
benign class label. The output will be saved to a new file named benign.csv.

Step 3: Execute the lab11_benign.sh shell script.

./../Lab-Scripts/lab1_benign.sh

After executing all commands in the script, the benign.csv file contents will be displayed
on the Terminal as shown in the figure below.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 16

We can see from the above image that the benign.csv file is now properly formatted to
fit in the @DATA section of an ARFF file. Each row contains an equal number of comma-
delimited columns with only numeric characters.

Press the q key on your keyboard to exit and return to the Terminal.

Now that we have our both of our datasets created, we are ready to combine them into
the training and test input datasets.

3.3 Creation of the test and training datasets

Step 1: Combine the malicious.csv and benign.csv files into the dataset.csv file.

cat malicious.csv benign.csv > dataset.csv

The dataset.csv file will now contain the benign.csv rows appended to the end of the
malicious.csv rows. We now need to randomize the file contents and apply further
formatting by executing the lab11_create_sets.sh shell script.

 Step 2: Display the contents of lab11_create_sets.sh shell script using the nl command.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 17

nl ../Lab-Scripts/lab11_create_sets.sh

The script is explained as follows. Each number represents the respective line number:

1. Using the shuf utility, the contents of the dataset.csv file will be shuffled, and the
output will be saved to a new file named randomized.csv.

2. Using the head utility, the top 300 rows from the randomized.csv file were saved
to a new file named test.csv.

3. Using the sed utility, rows 1-300 are removed from the randomized.csv file and
the output is saved to the new trainset.arff file.

4. Using the sed utility, the last column of the test.csv file is removed. We are
removing the label of each instance of the test dataset so that we can have the
classifier attempt to predict these labels. The output is saved to the new
testset.arff file.

5. Using the wc utility, the number of rows within the testset.arff file are displayed.
We can compare this value against the value found in Line 8 to make sure no
packet data was lost.

6. Using the wc utility, the number of rows within the trainset.arff file are displayed.
We can compare this value against the value found in Line 7 to make sure no
packet data was lost.

Step 3: Execute the lab11_create_sets.sh shell script.

./../Lab-Scripts/lab11_create_sets.sh

The figure above shows the line count of the testset.arff and trainset.arff files. The
testset.arff file contains 300 rows while the trainset.arff file contains 1400 rows. The
trainset.arff file size may be variable due to the number of packets generated during the
original TCP SYN scans; however, the testset.arff file should always be equal to 300 rows
due to the executed script.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 18

Now that we have generated our testing and training .arff files, the final step for
preprocessing the Zeek datasets is to add the .arff file headers to each file.

3.4 Adding the .arff file headers

Step 1: Using the nano text editor, open the trainset.arff file for editing.

nano trainset.arff

Step 2: Prepend the following headers to the trainset.arff file. To type capital letters, it is
recommended to hold the Shift key while typing rather than using the Caps key.

@RELATION networktraffic

@ATTRIBUTE time NUMERIC

@ATTRIBUTE sourceip NUMERIC

@ATTRIBUTE destip NUMERIC

@ATTRIBUTE sourceport NUMERIC

@ATTRIBUTE destport NUMERIC

@ATTRIBUTE protocol {tcp, udp, icmp}

@ATTRIBUTE duration NUMERIC

@ATTRIBUTE class {1,0}

@DATA

The input training dataset is now a properly formatted .arff file and can be input into a
machine learning algorithm to train a classifier.

Step 3: Using the nano text editor, open the testset.arff file for editing.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 19

nano testset.arff

Step 2: Prepend the following headers to the testset.arff file. To type capital letters, it is
recommended to hold the Shift key while typing rather than using the Caps key.

The headers are the same as those added to the trainset.arff file, so they can be copied
and pasted directly into the testset.arff file.

@RELATION networktraffic

@ATTRIBUTE time NUMERIC

@ATTRIBUTE sourceip NUMERIC

@ATTRIBUTE destip NUMERIC

@ATTRIBUTE sourceport NUMERIC

@ATTRIBUTE destport NUMERIC

@ATTRIBUTE protocol {tcp, udp, icmp}

@ATTRIBUTE duration NUMERIC

@ATTRIBUTE class {1,0}

@DATA

The input test dataset is now a properly formatted .arff file and can be input into a
machine learning classifier to test the classifier’s accuracy.

3.5 Closing the current instance of Zeek

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 20

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

References

1. Alpaydin, E., “Introduction to machine learning,” MIT press (2009).
2. Holmes, G., Donkin, A., & Witten, I. H. (1994). Weka: A machine learning

workbench.
3. “Attribute-relation file format”, The university of waikato, [Online], Available:

https://www.cs.waikato.ac.nz/~ml/weka/arff.html

ZEEK INSTRUSION DETECTION SERIES

Lab 12: Developing Machine Learning Classifiers
for Anomaly Inference and Classification

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to Weka .. 4

1.1 Starting Weka ... 4

2 Importing a dataset into Weka ... 6

2.1 Loading the training dataset .. 7

2.2 Filtering the training dataset .. 9

2.3 Training a decision table classifier ... 13

2.4 Training a decision tree classifier ... 15

2.4.1 Updating the decision tree classifier .. 17

3 Reviewing the classifier’s predictions on a test dataset ... 22

3.1 Saving the decision table .. 22

3.2 Using the classifier to predict labels for the test dataset 24

3.3 Viewing the predicted labels for the testdataset .. 26

References .. 29

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 3

Overview

This lab introduces the application of machine learning in the network security field. The
lab explains how to generate a decision table and decision tree to infer scan-related
network traffic. The lab is designed to train and test a machine learning classifier using
network traffic dataset.

Objectives

By the end of this lab, students should be able to:

1. Train a decision table to classify scan-related network traffic.
2. Train a decision tree to classify scan-related network traffic.
3. Test and modify the trained classifiers and review their output classifications on a

test dataset.

Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the Client machine for
offline Zeek log file processing and reformatting.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 4

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Weka.
2. Section 2: Building a decision classifier with Weka.
3. Section 3: Reviewing the classifier’s predictions on a test dataset.

1 Introduction to Weka

After formatting Zeek output logs into the ARFF files, Weka is now able to process them.
Weka contains the algorithms necessary to develop a number of machine learning
classifiers. More information on the Weka software can be found on their documentation
pages. To access the following link, users must have access to an external computer
connected to the Internet, because the Zeek Lab topology does not have an active
Internet connection.

https://www.cs.waikato.ac.nz/ml/weka/documentation.html

In the following sections, we train a DecisionTable and a J48 Decision Tree classifier.

1.1 Starting Weka

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 5

Step 3. Navigate to the Weka workspace directory.

cd Zeek-Labs/Lab-Tools/weka

Step 4. Using Java, launch the Weka software.

java -jar weka.jar

Step 5. Once Weka has been loaded, a notification containing Weka related information
will be displayed. Select the OK button to continue to the Weka GUI Chooser panel.

The Weka GUI Chooser panel will look similar to the following image.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 6

Step 6. For this lab, we will be using the Explorer application. Click the Explorer button to
launch the application.

Weka has been successfully launched and we can proceed to the next section.

2 Importing a dataset into Weka

Once the Explorer application opens, a new GUI window will be displayed. Initially, this
window has all options greyed out, indicating that we have not yet opened or loaded a
dataset.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 7

The Explorer panel contains a Menu Bar located at the top of the GUI window. There is a
total of 6 additional panels, which contain related information necessary to train, test and
visualize classifiers developed while using Weka. By default, the Preprocess panel will be
selected.

The Preprocess panel is used to import a training dataset to be used for training a machine
learning classifier. Features can be removed, randomized or appended within this panel.

2.1 Loading the training dataset

Step 1. On the top left of the Preprocess window the Open file button can be found. Click
the Open file button to load the training dataset.

Step 2. Enter the path to the trainset.arff file. Alternatively, use the GUI to navigate to the
lab workspace directory to select the file. Use the Open button to load the trainset.arff
file into Weka.

/home/zeek/Zeek-Labs/Sample-PCAP/trainset.arff

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 8

After click the Open button, the Preprocess panel will be updated to contain the
trainset.arff file statistics.

Each section header has been highlighted with a red box. We can see that the Current
relation, Attributes and Selected attribute sections have been updated to contain
trainset.arff file data.

Step 3. Within the Attributes section, click the class feature to change the active attribute.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 9

By selecting the class feature within the Attributes section, the Explorer panel will be
updated to display the active feature.

Within the Current relation section, our dataset’s name, networktraffic, is displayed.
Additionally, it is shown that the dataset contains 1401 unique data objects (instances).

Within the Selected attribute section, the class labels added to the dataset in the previous
lab are counted. The trainset.arff dataset contains 831 data objects labeled with a 1,
belonging to the malicious class, while 570 data objects are labeled with a 0, belonging to
the benign class.

At this point, trainset.arff dataset has been successfully loaded into Weka and we can
begin filtering the data before training a machine learning classifier.

2.2 Filtering the training dataset

The majority of machine learning classifiers are unable to handle string attributes. For
network analysts, source and destination IP addresses are valuable features that are often
necessary for traffic analysis. However, these IP addresses are unable to be stored as
string values when training a classifier.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 10

There is a number of ways to address this issue. If a network analyst were to know all of
the unique IP addresses, when generating their ARFF dataset, they can create the nominal
values similar to how we created the nominal protocol values.

Because Internet-scale traffic contains a very large number of unique IP addresses, the
aforementioned process may not be feasible. Therefore, in the previous lab, we
converted our source and destination IP addresses into numerical values. In this section,
we will be using all unique iterations of the numerical values to generate a nominal list.
By reformatting the IP addresses into numeric values using Terminal utilities, the Weka
software will be able to select all unique IP addresses and convert them into a nominal
feature set.

Step 1. Within the Preprocess tab, under the Filter section, click the Choose button.

Step 2. Under the unsupervised option, select the attribute option to display a list of
attribute-based filters.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 11

Step 3. Scroll to the NumericToNominal filter and double click to select it.

Step 4. Within the Filter section, click the first-last description to modify the filter.

Step 5. Update the Indexes of the Attributes to be filtered. Click the Apply button to edit
the indexes.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 12

Step 6. On the right side of the Filter section, click the Apply button to apply the modified
filter.

The source and destination IP addresses will now be converted to the Nominal feature
type.

Step 7. Within the Attributes section, click the sourceip feature to change the active
attribute.

By selecting the sourceip feature within the Attributes section, the Explorer panel will be
updated to display the active feature.

Within the Selected attribute section, the sourceip feature will now display the Nominal
data objects. In the following image, the highlighted sourceip related to the scanning
machine’s IP address (192.168.1.3), displays 831 unique instances being recorded.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 13

Additionally, the Selected attribute section will be updated to show new statistics for each
feature. The updated Selected attribute section is displayed in the previous image.

2.3 Training a decision table classifier

Step 1. Within the Explorer panel, click the Classify tab located at the top of the Explorer
panel to switch to the Classify panel.

Step 2. Once the Classify panel has loaded, click the Choose button within the Classifier
section to select which machine learning classifier we are developing.

Step 3. Under the rules collection, double-click with your mouse to select the
DecisionTable classifier.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 14

Step 4. Under the Test options section, click the Start button to begin training the classifier.
Notice the Classifier section has been updated to display the DecisionTable classifier.

Step 4. See the Decision Table classifier’s results.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 15

Within the Result list section we can see our new Decision Table that has been trained
with the transet.arff dataset. Within the Classifier output section, we can see the
prediction results for the Decision Table classifier. The Confusion Matrix depicts that the
classifier had a 100% accuracy when predicting labels after being trained.

2.4 Training a decision tree classifier

Step 1. Click the Choose button within the Classifier section to select which machine
learning classifier we are developing.

Step 2. Under the trees collection, double-click with your mouse to select the J48 decision
tree classifier.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 16

Step 3. Under the Test options section, click the Start button to begin training the classifier.
Notice the Classifier section has been updated to display the J48 classifier.

Step 4. See the J48 Decision Tree classifier’s results.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 17

Within the Result list section we can see our new J48 Decision Tree that has been trained
with the transet.arff dataset. Within the Classifier output section, we can view the
prediction results for the Decision Tree classifier. The Confusion Matrix depicts that the
classifier did not have a 100% accuracy when predicting labels after being trained and
misclassified a single malicious data packet as benign.

2.4.1 Updating the decision tree classifier

Because our J48 Decision Tree has made an error in predicted a label, we can attempt to
remove or add additional features to increase the classifier’s accuracy.

Step 1. Right click the J48 Decision Tree under the Result list section to display more
options. Click to Visualize the J48 Decision Tree.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 18

Step 2. View the Visualized J48 Decision Tree.

We can see the time feature column was the only decision node within the tree. For the
purposes of this lab, the datasets were collected at varying times; therefore, the decision
tree had an over reliance on the time feature to determine when the malicious and benign
events took place.

Step 3. Within the Explorer panel, click the Preprocess tab located at the top of the
Explorer panel to switch to the Preprocess panel.

Step 4. Once the Preprocess tab has loaded, click the time feature within the Attributes
section and select the Remove button.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 19

With the time feature removed, we can retrain our decision tree to view the new accuracy.

Step 5. Within the Explorer panel, click the Classify tab located at the top of the Explorer
panel to switch to the Classify panel.

Step 6. The J48 Decision Tree should still be selected. Under the Test options section, click
the Start button to begin training the classifier. Notice the Classifier section has been
updated to display the new J48 classifier.

Step 7. See the J48 Decision Tree classifier’s results.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 20

Within the Result list section we can see our new J48 Decision Tree that has been trained
with the transet.arff dataset. Within the Classifier output section, we can view the
prediction results for the Decision Tree classifier. The Confusion Matrix depicts that the
classifier actually had a worse accuracy than the previously trained J48 Decision Tree.

In this example, we highlight the importance of choosing the best fit features when
training a classifier. In a real-time network environment, it may take multiple tests before
discovering which features are necessary for classifying a specific anomaly.

Step 6. Right click the newest J48 Decision Tree under the Result list section to display
more options. Click to Visualize the J48 Decision Tree.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 21

Step 7. View the Visualized J48 Decision Tree.

Because the Decision Tree has a larger number of nodes, we are unable to see some of
the decision thresholds. The following steps will explain how to scale the Visualized tree.

Step 8. Right click on the Visualized J48 Decision Tree and select the Auto Scale option.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 22

Step 8. View the Visualized J48 Decision Tree.

Here we can see the new J48 Decision Tree has multiple layers and decision nodes. The
duration feature has replaced the time feature as the root node, and the sourceip feature
is used to further classify the dataset. However, because this tree has reduced accuracy,
we will be continuing the lab by using the Decision Table created initially.

3 Reviewing the classifier’s predictions on a test dataset

Now that we have determined that the Decision Table was a more accurate classifier, we
can begin testing the classifier’s accuracy using the test dataset.

3.1 Saving the decision table

It is possible to save a trained classifier to be reused in future instances of testing and
classification. This section will introduce how to save a trained classifier.

Step 1. Under the Result list section, right click on the Decision Table and select Save
model.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 23

Step 2. Navigate to the Lab workspace directory and save the Decision Table. Alternatively,
use the GUI to navigate to the lab workspace directory to select the file. Use the Save
button to save the new DecisionTable file into Weka.

/home/zeek/Zeek-Labs/Sample-PCAP/DecisionTable

Once saved, we can proceed to testing the classifier’s accuracy on predicting labels for
the test dataset.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 24

3.2 Using the classifier to predict labels for the test dataset

Step 1. Under the Test options section, select the Set button to load the test dataset.
Within the Test Instances window, click the Open file button.

Step 2. Select the testset.arff file and click the Open button to load the test dataset.

Step 3. Under the Test options section, select the More options button to configure the
classifier to match the following image then, click on OK.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 25

Step 4. Under the Result list section, right click on the Decision Table and select Re-
evaluate model on current test set.

Step 5. After filtering the sourceip and destip features into Nominal attributes, the
testset.arff file will not be properly formatted. Weka will need to update the testset.arff
dataset to be used by the classifier. Select the Yes button on the ClassifierPanel pop-up
panel.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 26

The classifier will generate new predictions, which can be viewed by saving the
resulting .arff file.

3.3 Viewing the predicted labels for the testdataset

To save the resulting .arff file,

Step 1. Within the Explorer panel, click the Visualize tab located at the top of the Explorer
panel to switch to the Visualize panel .

Displayed will be resulting graphs from attribute correlations solved by the machine
learning classifier.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 27

Step 2. Select the duration x duration graph, found in the sixth column (duration) and
second row (duration).

Step 3. Click the Save button.

Step 3. Navigate to the Lab workspace directory and save the DecisionTableResults.
Alternatively, use the GUI to navigate to the lab workspace directory to select the file. Use
the Save button to save the new DecisionTableResults file into Weka.

/home/zeek/Zeek-Labs/Sample-PCAP/DecisionTsuableResults

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 28

Step 4. Close all of the Weka tabs with the orange x on the top right corner of each panel.

Step 5. Return to the Terminal and navigate to the lab workspace directory.

cd $ZEEK_LABS

Step 5. Using a text editor, view the DecisionTableResults.arff file.

gedit DecisionTableResults.arff

The file will be opened, and each data object will contain a new classification label.

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

 Page 29

Traffic found in the first row of data was labeled with a 1, as malicious traffic. Traffic found
in the second row of data was labeled with a 0, as benign traffic.

Concluding this lab, we have introduced the capabilities of implementing a machine
learning classifier to detect specific anomalies or events. Multiple classifiers can be used
for training network security classifiers, and the features within each training dataset can
have a profound impact on the classifier’s accuracy. By removing, modifying or adding
new features you can test the accuracy of a classifier. In this lab, we generated a Decision
Table that was capable of labeling malicious and benign traffic.

References

1. “Attribute-relation file format”, The university of waikato, [Online], Available:
https://www.cs.waikato.ac.nz/~ml/weka/arff.html

