UTSA.

The University of Texas at San Antonio™
The Cyber Center for Security and Analytics

ZEEK INTRUSION DETECTION SERIES

Lab 1: Introduction to the Capabilities of Zeek

Document Version: 03-13-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 1: Introduction to the Capabilities of Zeek

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
[IE2] o 38 o o Yo] [o =4 V2 PP UPPRRUPPRPR 3
(1Y Y=Y T = PSP UPPRRUPTPPR 3
(I Y o o - o [4= T TSP 4
1 INTrOdUCHION 1O ZEEK ..veeiieiiiie ettt e e e s nrrae e 4
1.1 The Zeek eVENT ENEGINE ...uviiiiiiiiie ittt e s s e s st e e s naaaee s 5
1.1.1 State mManagemMeENT. e 5
1.1.2 Transport layer analyzZers.......cccoueeeiieiiiee et e e aae e s 5
1.1.3 Application [ayer analyzerscccccueeiieiiieiieiiieeecee e 5
00 I S 1o = Y 4 0 ot (U OO TPRRTP 5
1.2 The Zeek policy script iNTerpreter... e 6
1.3 ZEEK ANAIYZEIS coveeeee et e e e e e et r e e e e e e eanns 6
Y P LT L U1 = 6
1.5 ZEEKCONTIOl ...eiiiiiiiiiee ettt e e st e e e s 7
2 Using ZeekControl to update the status of Zeekccccvveeieiiiiiiciciiie e, 7
2.1 Starting a new instance Of ZeeKccuveeieciiie i 9
2.2 Stopping the active instance of ZEeeKcccveeveiiieiiciiiee e, 10
3 Introduction to Zeek’s traffic analysis capabilitiescccceeeeiiieeeciieee e, 10
3.1 Processing offline packet capture filescccooveoiiiiiee i, 11
3.1.1 Command format for processing packet capture files..........ccceovvereeennen.. 11
3.1.2 Leveraging a script to detect brute force attacks present in a pcap file 11
3.2 Launching MININEt ... e e e e e s naraer e e e e 12
3.3 Generating and analyzing live network traffic capturecccoceeeeiiiiicciiinnnnn. 15
3.3.1 Leveraging the Tcpdump command utilityccccoveeeeeeeiiiiiiiieeeeeeee e, 16
3.3.2 Capturing live network traffiC.......cccooveeeeiiiiieiciireee e 16
3.3.3 Analyzing the newly captured network trafficccccccccoevevivvreeneeeeeiicnnnee, 18
RETEIENCES ...ttt st e s e s it e s bt e e s bt e e sneeesanee 20

Page 2

Lab 1: Introduction to the Capabilities of Zeek

Overview

This lab introduces Zeek, an open-source network analysis framework primarily used in
security monitoring and traffic analysis. The primary focus of this lab is to explain Zeek'’s
layered architecture while demonstrating Zeek’s capabilities towards performing network

traffic analysis.

Objectives

By the end of this lab, students should be able to:

PwnPE

Lab topology

Understand Zeek’s layered architecture.
Start and manage a Zeek instance using the ZeekControl utility.
Use Zeek to process packet captures files.

Generate and analyze live network traffic in Zeek.

Figure 1 displays the topology of the lab. This lab utilizes the Client machine to host and
configure the Zeek IDS. The zeekl and zeek2 virtual machines will be used to generate
and collect network traffic.

Mininet Emulated Network

Lab settings

Figure 1. Lab topology.

Hardware Network

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device

Account

Password

Client

admin

password

Page 3

Lab 1: Introduction to the Capabilities of Zeek

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path
$ZEEK INSTALL lusr/local/zeek
$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap
This lab is organized as follows:

1. Section 1: Introduction to Zeek.
2. Section 2: Using ZeekControl to update the status of Zeek.
3. Section 3: Introduction to Zeek’s traffic analysis capabilities.

1 Introduction to Zeek

Zeek is a passive, open-source network traffic analyzer. It is primarily used as a security
monitor that inspects all traffic on a network link for signs of suspicious activity®. It can
run on commodity hardware with standard UNIX-based systems and can be used as a
passive network monitoring tool.

Setting Zeek as a node with an assigned IP address on the monitored network is not
mandatory. Figure 2 shows Zeek’s layered architecture. Once Zeek receives packets, its
event engine converts them into events. The events are then forwarded to the policy
script interpreter, which generates logs, notifications, and/or actions.

Logs T T Notifications
User Interface

Analysis Logic Policy Script Interpreter

Events T

Protocol Decoding Event Engine

Pockets

Figure 2. Zeek’s architecture.

Page 4

Lab 1: Introduction to the Capabilities of Zeek

Zeek uses the standard library for capturing packets to be used in network
monitoring and analysis.

1.1 The Zeek event engine

The event engine layer performs low-level network packets analysis. It receives raw
packets from the network layer (packet capture), sorts them by connection, reassembles
data streams, and decodes application layer protocols. Whenever it encounters
something potentially relevant to the policy layer, it generates an event.

The event engine consists of several analyzers responsible for well-defined tasks. Typical
tasks include decoding a specific protocol, performing signature-matching, identifying
backdoors, etc. Usually, an analyzer is accompanied by a default script which implements
some general policy adjustable to the local environment. The event engine can be divided
into four major parts.

1.1.1 State management

Zeek’s main data structure is a connection which follows typical flow identification
mechanisms, such as 5-tuple approaches. The 5-tuple structure consists of the source IP
address/port number, destination IP address/port number, and the protocol in use. For a
connection-oriented protocol like TCP, the definition of a connection is more clear-cut,
however for others such as UDP and ICMP, Zeek implements a flow-like abstraction to
aggregate packets. Each packet belongs to exactly one connection.

1.1.2 Transport layer analyzers

On the transport layer, Zeek analyzes TCP, UDP packets. In TCP, Zeek’s associated analyzer
closely follows the various state changes, keeps track of acknowledgments, handles
retransmissions and much more.

1.1.3 Application layer analyzers

The analysis of the application layer data of a connection depends on the service. There
are analyzers for a wide variety of different protocols, e.g. HTTP, SMTP or DNS, that
generally conduct detailed analysis of the data stream.

1.1.4 Infrastructure

The general infrastructure of Zeek includes the event and timer management
components, the script interpreter, and data structures.

Page 5

Lab 1: Introduction to the Capabilities of Zeek

1.2 The Zeek policy script interpreter

While the event engine itself is policy-neutral, the top layer of Zeek defines the
environment-specific network security policy. By writing handlers for events that may be
raised by the event engine, the user can precisely define the constraints within the given
network. If a security breach is detected, the policy layer generates an alert.

New event handlers can be created in Zeek’s own scripting language. While providing all
expected convenience of a powerful scripting language, it has been designed with
network intrusion detection in mind. While it is expected that additional policy scripts are
written by the user, there are nevertheless several default scripts included with the initial
installation of Zeek. These default scripts already perform a wide range of analyses and
are easily customizable.

1.3 Zeek analyzers

The majority of Zeek’s analyzers are in its event engine with accompanying policy scripts
that can be customized by the user. Sometimes, however, the analyzer is just a policy
script implementing multiple event handlers. The analyzers perform application layer
decoding, anomaly detection, signature matching and connection analysis. Zeek has been
designed so that it is easy to add additional analyzers.

1.4 Signatures

Most network intrusion detection systems (NIDS) match a large set of signatures against
the network traffic. Here, a signature is a pattern of bytes that the NIDS tries to locate in
the payload of network packets. As soon as a match is found, the system generates an
alert.

A well-known IDS system is Snort; conversely, Zeek’s general approach to intrusion
detection has a much broader scope than traditional signature-matching, yet still contains
a signature engine providing a functionality that is similar to that of other systems.
Furthermore, while Zeek implements its own flexible signature language, there exists a
converter which directly translates Snort’s signatures into Zeek’s syntax, as shown below:

Page 6

Lab 1: Introduction to the Capabilities of Zeek

alert tcp any any -> [a.b.0.0/16,c.d.e.0/24] 80
(msg:"WEB-ATTACKS conf/httpd.conf attempt";
nocase; sid:1373; flow:to_server,established;
content:"conf/httpd.conf"; [...])

(a) Snort
signature sid-1373 {
ip-proto == tcp
dst-ip == a.b.0.0/16,c.d.e.0/24
dst-port == 80

The payload below is actually generated in a
case-insensitive format, which we omit here
for clarity.

payload /.*conf\/httpd\.conf/

tcp-state established,originator

event "WEB-ATTACKS conf/httpd.conf attempt"

(b) Zeek

o®

}

Figure 3. Example of signature conversion?. (a) Snort’s signature. (b) Zeek’s signature.

1.5 ZeekControl

ZeekControl], formerly known as[BroControl], is an interactive shell for easily operating

and managing Zeek installations on a single system or across multiple systems in a traffic-
monitoring cluster.

Tap

Network
Control

Zeek

Control Insert

ZeekControl

Figure 4. ZeekControl scheme.

2 Using ZeekControl to update the status of Zeek

Page 7

Lab 1: Introduction to the Capabilities of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

PRELLL Ve & Content | l»” Status | O Client =

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Miniedit

E_
Y=

[XTerminal

Step 3. Using the Terminal, input the following command to enter the ZeekControl
directory. To type capital letters, it is recommended to hold the key while typing

rather than using the key.

cd $ZEEK INSTALL/bin/

kd zeek@admin: /usr/local/zeek/bin - + X

File Edit Tabs Help
zeek@admin:~$ |cd $ZEEK_INSTALL/bin/

zeek@admin: /usr/Tocal/zeek/bins |

The active directory will change, as seen on the second line of the Terminal. Note that
SZEEK_INSTALL variable was substituted by its value (/usr/local/zeek) listed in Table 2.

Step 4. Use the following command to view the contents of the active directory.

1s

kd zeek@admin: /usr/local/zeek/bin = 4 X

File Edit Tabs Help
zeek@admin: /usr/local/zeek/bins |1s
bifcl bro-config capstats zeek zeek-cut

binpac broctl paraglob-test zeek-config zeek-wrapper
bro bro-cut trace-summary zeekctl
zeek@admin: /usr/local/zeek/bins |J

The directory contents will be displayed. The green file name portrays an executable file.

Step 5. Use the following command to launch the tool. When prompted
for a password, type and hit Enter].

Page 8

Lab 1: Introduction to the Capabilities of Zeek

sudo ./zeekctl

zeek@admin: /usr/local/zeek/bin -+ X

File Edit Tabs Help
zeek@admin: /usr/local/zeek/bin$ |sudo ./zeekctl
[sudo] password for zeek:

Welcome to ZeekControl 2.0.0-25

Type "help" for help.

[ZeekControl] > i

Once active, the prompt will be displayed within the Terminal. The
command will display additional information regarding [zeekControl].

2.1 Starting a new instance of Zeek

Step 1. To initialize Zeek, enter the following command into the prompt.

start

zeek@admin: fusr/local/zeek/bin -+ X

File Edit Tabs Help
[ZeekControl] = |start
starting zeek ...

[ZeekControl] > |}

Step 2. Use the following command to view the status of the currently active Zeek
instance to ensure that it is active.

zeek@admin: /usr/local/zeek/bin - + X

[ZeekControl] > |[status
Type Host Status Pid Started

standalone localhost running 1268 08 Jan 15:01:52
[ZeekControl] > [}

The status indicates that Zeek is currently active and functioning properly. The
output of the command includes other useful parameters:

e [Name]: the name of the Zeek instance.

e [Type|: the type of the instance (standalone in our case).

e [Host]: the hostname (localhost).

e [pid}: the process ID. This ID can be used with other tools like ki11]to send a signal
to the process.

e [Started]: the starting date and time of the instance.

Page 9

Lab 1: Introduction to the Capabilities of Zeek

2.2 Stopping the active instance of Zeek

Step 1. To stop Zeek, enter the following command into the prompt.

stop

zeek@admin: /usr/local/zeek/bin - + x

File Edit Tabs Help
[ZeekControl] = |stop

stopping zeek .
[ZeekControl] >]

Step 2. Use the following command to verify the exit status of Zeek.

status

zeek@admin: /usr/local/zeek/bin -+ x

File Edit Tabs Help

[ZeekControl] = |status
Type Host Status Pid Started

standalone localhost stopped
[ZeekControl] > |}

The status indicates that Zeek is currently stopped.

Step 3. To restart Zeek, enter the following command into the prompt.

start

zeek@admin: /usr/local/zeek/bin -+ X

File Edit Tabs Help
[ZeekControl] = |start
starting zeek ...

[ZeekControl] > ||

Step 4. Use the following command to exit [ZeekControl].

exit

zeek@admin: /usr/local/zeek/bin -+ X

File Edit Tabs Help
[ZeekControl] =|exit

zeek@admin: /usr/local/zeek/bins [

Note that exiting the tool does not stop Zeek. Zeek is only stopped by
explicitly using the command in the prompt.

3 Introduction to Zeek’s traffic analysis capabilities

Page 10

Lab 1: Introduction to the Capabilities of Zeek

Zeek’s broad range of traffic analysis capabilities makes it an exceptional intrusion
detection system (IDS) and network analysis framework. Zeek is proficient in processing
packet capture (pcap) files and logging traffic on a given network interface.

3.1 Processing offline packet capture files

Linux-based systems process packet capture (pcap) files using the library. In Zeek,
it is possible to capture live traffic and analyze trace files. In the following example, we
analyze a pcap file using a premade script that detects brute force attacks.

3.1.1 Command format for processing packet capture files

The general format for initializing offline packet capture analysis is as follows:
zeek -r <pcap file location> <script location>

e [zeek: command to invoke Zeek.

e [-1]: option signifies to Zeek that it will be reading from an offline file.
e [pcap file location>| indicates the pcap file location.

e [script location>] indicates the script location.

3.1.2 Leveraging a script to detect brute force attacks present in a pcap file

Zeek installs a number of default scripts and trace files that can be used for testing
purposes. In this section, we use the bruteforce.pcap as the input packet capture file and
ZeekBruteforceDetection.zeek as the detection script. The packet capture file contains
network traffic of a brute force password attack, while the script defines the brute forcing
event for the Zeek event engine.

Step 1. Enter the lab workspace directory. To type capital letters, it is recommended to
hold the key while typing rather than using the key.

cd Zeek-Labs/
kd zeek@admin: ~/Zeek-Labs - + X

File Edit Tabs Help
zeek@admin:~% [cd Zeek-Labs/

zeek@admin:~/Zeek-Labss]

Step 2. Initialize Zeek offline packet parsing on the packet capture file. It is possible to use
the key to autocomplete the longer paths.

zeek -C -r Sample-PCAP/bruteforce.pcap Lab-Scripts/ZeekDetectBruteForce.zeek

Page 11

Lab 1: Introduction to the Capabilities of Zeek

kd zeek@admin: ~/Zeek-Labs -+ X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs$ |zeek -C -r Sample-PCAP/bruteforce.pcap Lab-Scripts/ZeekD
etectBruteforce. zeek

zeek@admin:~/Zeek-Labss$ |J
The [-d option is included to prevent Zeek from displaying specific warnings.

Step 3. After running the command, if a brute forcing attack was found, it will be logged
in the notice.log output log file. We will use the command to view the file.

cat notice.log

(] zeek@admin: ~/Zeek-Labs - + X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs$ [cat notice.log

#separator \x09

#set separator ,

#fempty field (empty)

funset field -
notice
2020-01-08-15-06-29
ts uid id.orig h id.orig p id.resp h id.resp
fuid file mime type file desc proto note msg sub s
dst p n peer descr actions suppress for remote 1
.country_ code remote location.region remote location.city remote 1
.latitude remote location.longitude
time string addr port addr port string string string e
enum string string addr addr port count string set[enum
interval string string string double double

1389721084.522861 - - - - - - - -
FTP::Bruteforcing 192.168.56.1 had 20 failed logins| on 1 FTP serve

Om37s - 192.168.56.1 - - - - Notice::

ACTION LOG 3600.000000 - - - - -

#close 2020-01-08-15-06-29

zeek@admin:~/Zeek-Labss]

Examining the proceeding image, a possible brute force attack was detected. The log file
shows that the IP address 192.168.56.1 had 20 or more failed login attempts on the
hosted FTP server.

3.2 Launching Mininet
Mininet is a network emulator that creates a network topology consisting of virtual hosts,
switches, controllers, and links. Within the Zeek lab series, we will be leveraging Mininet

to generate and capture network traffic.

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type and hit
Enter]. The MiniEdit editor will now launch.

Page 12

Lab 1: Introduction to the Capabilities of Zeek

[XTerminal

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. The image below shows the default MiniEdit display.

= MiniEdit - + X

File Edit Run Help

Run |

|
Stop]

Step 3. A premade topology has already been created for this lab series. To load the
correct topology, begin by clicking the button within the tab on the top left
of the MiniEdit editor.

File | Edit Rum Help

MNew

Save
Export Level 2 Script

Quit

Step 4. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the button.

Page 13

Lab 1: Introduction to the Capabilities of Zeek

- Open =3¢

Directory: /home/zeek — \ B ‘

& .presage mininet zeek

& .thumbnails oflops Zeek-Labs

5 .wireshark oftest E Zeek-Topologies|

&) Desktop openflow

& Documents pox

& Downloads Public

Kl I
File name: | Open

Files of type: Mininet Topology (*.mn) — Cancel

Step 5. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the button.

Gl Open - + X

Directory: /homejzeek/Zeek-Topologies = | @ ‘

[| Topology.mn

ET ¥

File name: | Open

Files of type: Mininet Topology (*.mn) — Cancel

Step 6. The lab topology will contain two virtual machines — zeek1 and zeek2, which are
able to connect and communicate with one another through the s1 switch, as seen in
the image below.

Page 14

Lab 1: Introduction to the Capabilities of Zeek

e
LN
=

zeekl zeek?

Step 7. To begin running the virtual machines, navigate to the button, found on the
bottom left of the Miniedit editor, and select the button, as seen in the image
below.

Run

Stop lr

Step 8. To access either the zeek1 or zeek2 terminals for subsequent steps, hold the
right mouse button on the desired machine, which will then display a button.

Drag the cursor to the button to launch the terminal, as seen in the image
below.

sl

Z X
[[]

7aal zeek2
Host Options

Terminal

With the Mininet lab topology loaded, we can now begin to generate and analyze live
network traffic capture.

3.3 Generating and analyzing live network traffic capture
The command utility is a famous network packet analyzing tool that is used to

display TCP/IP and other network packets being transmitted over the network®.

Page 15

Lab 1: Introduction to the Capabilities of Zeek

3.3.1 Leveraging the Tcpdump command utility

The general format for is the following command:

sudo tcpdump -i <interface name> -s <num> -w <pcap file location>

e [sudd]: option to enable higher level privileges.

e [tcpdump]: program for capturing live network traffic.

e [-i]: option used to specify a network interface.

e [Kinterface name>:|denotes the interface name.

e [-s|: option used to specify number of packets to capture.

e [<num>: denotes the number of packets to capture. 0 equals infinite.
e [-w: option used to specify that we will be writing to a new file.

e [pcap file location>| indicates the file location.

3.3.2 Capturing live network traffic

The zeek2 machine will be used to capture live network traffic, while the zeek1 machine
will be used to generate live network traffic.

Step 1. Open the zeek2 Terminal by hold the right mouse button on the desired
machine, which will then display a button. Drag the cursor to the the
button to launch the terminal, as seen in the image below.

sl

f %
()

Zeek l Zaal? -
| Host Options

Terminal

Step 2. Navigate to the TCP-Traffic directory. To type capital letters, it is recommended
to hold the key while typing rather than using the key.

cd Zeek-Labs/TCP-Traffic/

"Host: zeek2" = 56

Page 16

Lab 1: Introduction to the Capabilities of Zeek

Step 3. Use the following command to begin live packet capture. If the Terminal session
has not been terminated or closed, you may not be prompted to enter the password. If

prompted for a password, type and hit Entex]. Live packet capture will start on
interface zeek2-eth0.

tcpdump -i zeek2-eth0 -s 0 -w ntraffic.pcap

b 5 "Host: zeek2" - + X

dump -1

Step 4. Minimize the zeek2 and open the zeek1 [Terminall. If necessary, right

click within the Miniedit editor to activate your cursor.

hm"'\. - | . Ellsudo s MiniEdit I_Z["H“t: zeek1"]] 7 [Host: zeek2']

Step 5. Generate traffic by using the utility. operates by sending Internet
Control Message Protocol (ICMP) echo request packets to the target host and waiting for
an ICMP echo reply. Issue the following command on the newly opened zeek1 Terminal.

ping -c¢ 3 10.0.0.2

X "Host: zeekl1" - + X

rootiadming

The |- option is used to indicate the number of packets to send —in this example, 3
packets.

Step 5. Minimize the zeek1 and open the zeek2 using the navigation

bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Step 6. Use the key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 14 packets were recorded by the interface, which
were then captured and stored in the new ntraffic.pcap file.

@l sudo | mm MiniEdit | X ["Host: zeek1"] | 7L ["Host: zeek2"]

Page 17

Lab 1: Introduction to the Capabilities of Zeek

 w "Host: zeek2" - + x

Jred

ed by filter

el

Step 7. Stop the current Mininet session by clicking the button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the [] on the top right of
the editor.

Run

e

We will now return to the Client machine to process and analyze the newly generated
network traffic.

3.3.3 Analyzing the newly captured network traffic

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Miniedit

CXTerminal

Step 2. Navigate to the TCP-Traffic directory to find the ntraffic.pcap file. To type capital
letters, it is recommended to hold the key while typing rather than using the

Capd key.
cd Zeek-Labs/TCP-Traffic/
kd zeek@admin: ~/Zeek-Labs/TCP-Traffic = X

File Edit Tabs Help
zeek@admin:~$ cd Zeek-Labs/TCP-Traffic/

zeek@admin:~/Zeek-Labs/TCP-Traffics |

Step 3. View the file contents of the TCP-Traffic directory.

Page 18

Lab 1: Introduction to the Capabilities of Zeek

1s

[zeek@admin: ~/Zeek-Labs/TCP-Traffic =R

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffics$ [1s

ntraffic.pcap
zeek@admin:~/Zeek-Labs/TCP-Traffics |

We can see the ntraffic.pcap file that was generated by the zeek2 machine is now
accessible.

Step 4. Initialize Zeek offline packet parsing on the packet capture file. The [-1] option is
used to read from a given pcap file, and the option is used to disable checksums
validation.

zeek -C -r ntraffic.pcap
zeek@admin: ~/Zeek-Labs/TCP-Traffic =k X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |zeek -C -r ntraffic.pcap

zeek@admin:~/Zeek-Labs/TCP-Traffics |}

Step 5. View the newly generated Zeek log files.
1s

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffics |ls
conn.log i P et filter.log

s/TCP-Traffics JJ

The generated log files will contain important information regarding the network traffic.
For instance, the conn.log file will contain connection-based information, specifically the
hosts communicating, their IP addresses, protocols and ports. The following labs will
offer in-depth insight and examples towards understanding these Zeek log files.

Step 6. Viewing the conn.log connection-based log file with the command, we can

see that the IP address 10.0.0.1 was detected to generate the captured traffic,
corresponding to the zeek1 virtual machine.

cat conn.log

Page 19

Lab 1: Introduction to the Capabilities of Zeek

zeek@admin: ~/Zeek-Labs/TCP-Traffic SSh S
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |cat conn.log
fseparator \x09
#set separator

4 ~ conn
#open 2020-01-08-15-14-09
#fields ts uid id.orig h id.orig p id.resp h id.resp_

p proto service duration orig bytes resp bytes conn_sta
te local orig local resp missed bytes history orig pkts 0
rig ip bytes resp pkts resp ip bytes tunnel parents

ftypes time string addr port addr port enum string interval
count count string bool bool count string count count count c
ount set[string]

1578514297.655355 CIGSlc4sxnBAyFxfcd 10.0.0.1 8 10.0.0.2
0 icmp - 2.054924 168 168 OTH - - 0
- 3 252 3 252 -

Step 7. Stop Zeek by entering the following command on the terminal. If required, type
as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended

to hold the key while typing rather than using the key.

cd $ZEEK INSTALL/bin && sudo ./zeekctl stop

Ed zeek@admin: /usr/local/zeek/bin - + X

File Edit Tabs Help
zeek@admin:~$ [cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop
[sudo] password for zeek:

r/local/zeek/bin$ [|

The above command navigates to Zeek’s installation directory and executes the stop
command in zeekctl.

Concluding this lab, we have reviewed Zeek’s architecture and event-based engine, as
well as introduced both offline and live network traffic capture.

References

1. “Zeek documentation”, [Online]. Available:
https://docs.zeek.org/en/stable/intro/index.htmi

2. Sommer, Robin, and Vern Paxson, “Enhancing byte-level network intrusion
detection signatures with context,” In Proceedings of the 10th ACM conference
on Computer and communications security, pp. 262-271. ACM, 2003.

3. “Signature-based intrusion detection”, [Online]. Available:
http://www.cs.unc.edu/~jeffay/courses/nidsS05/slides/6-Sig-based
Detection.pdf.

4. Joseph, D. A., Paxson, V., & Kim, S. (2006). tcpdump Tutorial. University of
California, EE122 Fall.

Page 20

UTSA.

The University of Texas at San Antonio™
The Cyber Center for Security and Analytics

ZEEK INSTRUSION DETECTION SERIES

Lab 2: An Overview of Zeek Logs

Document Version: 03-13-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 2: An Overview of Zeek Logs

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
[IE2] o 38 o o Yo] [o =4 V2 PP UPPRRUPPRPR 3
(1Y Y=Y T = PP PUPPRRUPTPPR 3
(I Y o o - o [4= T TSP 4
1 INtroduction tO ZEEK LOES ...vvviiiiiiiieieiiee ettt ettt e st e e s e e s ssnaaeeeenes 4
1.1 Zeek Logs generated by packet analysisccccoccvveiiiriiiiiiniiiiee e 4
1.2 Zeek Logs generated by recurrent network analysiscccceeeveiveeeiniciieeeenineenn, 4
1.3 Typical USES Of ZEEK LOES ..eeeevuriieeiiiieeieiiiiee sttt ettt e e e e s st e e e naaee s 5
2 Starting @ New iNStaNCe Of ZEEK......ciivouiieiiiiiiecece e 5
3 Parsing packet capture files into Zeek 10g files......ccuveeeeeeieiccciieeee e, 6
3.1 Overview of Zeek command OPLIONSceeeeeiieicciiiiieiee e e 7
3.2 Using Zeek to process offline packet capture filescccoeeieeeiriiiieiecciieeee, 7
3.3 Understanding Zeek l0g fil@S........oueieiuiieieiiiiie e 8
3.4 Basic VieWing Of ZeeK [08Scccivuiiieieieiee e 9
4 ANalyzing Zeek [0g fil@S ...uueee i 10
4.1 Leveraging zeek-cut for a more refined view of log files.......cccooeverrcinieennnenn. 10
4.1.1 Using zeek-cut in conjunction with cat and head command utilities......... 10
4.1.2 Printing the output of zeek-cut to a text filecccceeeeecieeiiciiieeeeee e, 12
4.1.3 Printing the output of zeek-cut to a csvfilecccoveieicciiiiiiieeeee, 12
4.2 Closing the current instance of Zeek........cccoocviieiiciiiii e, 13
REFEIENCES ...ttt e e sttt e e s st e e e sttt e e e sareeeeseanreeeeaan 14

Page 2

Lab 2: An Overview of Zeek Logs

Overview
This lab covers Zeek’s logging files. Zeek’s event-based engine will generate log files based
on signatures or events found during network traffic analysis. The focus in this lab is on
explaining each logging file and introducing some basic analytic functions and tools.
Objectives
By the end of this lab, students should be able to:

1. Generate Zeek log files.

2. Use Linux Terminal tools combined with Zeek’s zeek-cut utility to customize the
output of logs files for analysis.

Lab topology

Figure 1 displays the topology of the lab. This lab will primarily use the Client machine for
offline packet capture processing and analysis.

S end

Mininet Emulated Network Hardware Network
Figure 1. Lab topology.
Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Page 3

Lab 2: An Overview of Zeek Logs

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path
$ZEEK INSTALL lusr/local/zeek
$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Zeek logs.
2. Section 2: Starting a new instance of Zeek.
3. Section 3: Parsing packet capture files into Zeek log files.
4. Section 4: Analyzing Zeek log files.
1 Introduction to Zeek Logs

Zeek’s generated log files include a comprehensive record of every connection seen on
the wire; this includes application-layer protocols and fields (e.g., Hyper-Text Transfer
Protocol (HTTP) sessions, Uniform Resource Locator (URL), key headers, Multi-Purpose
Internet Mail Extensions (MIME) types, server responses, etc.), Domain Name Server
(DNS) requests and responses, Secure Socket Layer (SSL) certificates, key content of
Simple Mail Transfer Protocol (SMTP) sessions, and others.

1.1 Zeek Logs generated by packet analysis

A Zeek log is a stream of high-level entries that correspond to network activities, such as
a login to SSH or an email sent using SMTP. In Zeek, each event stream has a dedicated
file with its own set of features, fields, or columns.

During capture or analysis, Zeek generates a log determined by the protocol type. Due to
this architecture, a Session Initiation Protocol (SIP) log for instance, does not contain any
other protocols’ packets information like HTTP. Furthermore, each log file contains case-
relative fields (e.g., from and subject fields in an SMTP log). Some of these log files are
large and contain entries that can be either benign or malicious, whereas others are
smaller and contain more actionable information.

1.2 Zeek Logs generated by recurrent network analysis

Page 4

Lab 2: An Overview of Zeek Logs

With every session of packet analysis, either through live packet analysis or the parsing of
an offline packet capture file, Zeek generates session-specific log files. In addition to these
session-based log files, Zeek creates network-reliant log files as well. These network-
reliant files are continually generated and updated when a new session is initialized and
started.

The following Zeek log files are updated daily:

e known_hosts.log: Log file containing information for hosts that completed TCP
handshakes.

e known_services.log: Log file containing a list of services running on hosts.

e known_certs.log: Log file containing a list of Secure Socket Layer (SSL) certificates.

e software.log: Log file containing information about Software being used on the
network.

Additionally, a list of detection-based log files is created during each session. The log files
relevant to this lab are:

e notice.log (Zeek notices): When Zeek detects an anomaly, a corresponding notice
will be raised in this file.

e intel.log (Intelligence data matches): When Zeek detects traffic flagged with
known malicious indicators, a corresponding reference will be logged in this file.

e signatures.log (Signature matches): When Zeek detects traffic flagged with known
malicious or faulty packet signatures, a corresponding reference will be logged in
this file.

1.3 Typical uses of Zeek Logs
By default, Zeek logs all information into well-structured, tab-separated text files suitable
for postprocessing. Users can also choose from a set of alternative output formats and

backends such as external databases.

The Zeek-native utility can be leveraged to further specify and parse the
information within the generated log files.

2 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

FRLLLIGLVE & Content | |+ Status | O Client =

Page 5

Lab 2: An Overview of Zeek Logs

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Miniedit

[
o

LXTermimeal

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes tool to start a new
instance. When prompted for a password, type and hit Entex] To type capital
letters, it is recommended to hold the key while typing rather than using the
key.

cd $ZEEK INSTALL/bin && sudo ./zeekctl start

%] zeek@admin: /usr/local/zeek/bin - + X

File Edit Tabs Help
zeek@admin:~$ |cd $ZEEK INSTALL/bin && sudo ./zeekctl start
password Tor

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

3 Parsing packet capture files into Zeek log files

In this section we introduce Zeek’s capability of generating and viewing log files. Packet
capture files used in this lab are preloaded onto the Client machine, and can be found
with the following path:

Zeek-Labs/Sample-PCAP/

These packet capture files were downloaded from [Tcpreplay’s| sample capture
collection. To access the following link, users must have access to an external computer

connected to the Internet, because the Zeek Lab topology does not have an active
Internet connection.

http://tcpreplay.appneta.com/wiki/captures.html

Page 6

Lab 2: An Overview of Zeek Logs

is a suite of free Open Source utilities for editing and replaying previously
captured network traffic and can be used to test transmissions and network health.

3.1 Overview of Zeek command options

When using Zeek, the user specifies a running state option. In this lab, three primarily

options are used:

e [-C|: specifies to ignore checksum warnings, specifically to avoid redundancy since
we are focusing on TCP traffic only.

e [-1]: specifies offline packet capture file analysis.

e [-u]: specifies live network capture.

Additional Zeek options can be found by passing the option to the command:

zeek -help

File Edit Tabs Help

zeek@admin:~$ |zeek -help
zeek version 3.1.0-dev.314
usage: zeek [options] [file

usage: zeek --test [doctest-options

<file>

-a|--parse-only

-b| --bare-mode

-d| - -debug-policy

-e| --exec <zeek code>
-f|--filter <filter>
-h|--help

-i|--iface <interface>
-p|--prefix <prefix>
-r|--readfile <readfile>
-s|--rulefile <rulefile>
-t|--tracefile <tracefile>
-v|--version
-w|--writefile <writefile>
-C|]--no-checksums
-F|--force-dns
-G|--load-seeds <file>

-H| - -save-seeds <file>
-I|--print-id <ID name>
-N|--print-plugins

zeek@admin: ~ - 4+ X

-- [options] [file ...]

policy file, or read stdin

exit immediately after parsing scripts
don't load scripts from the base/ directory
activate policy file debugging

augment loaded policies by given code
tcpdump filter

command line help

read from given interface

add given prefix to policy file resolution
read from given tcpdump file

read rules from given file

activate execution tracing

print version and exit

write to given tcpdump file

ignore checksums

force DNS

load seeds from given file

save seeds to given file

print out given ID

print available plugins and exit (-NN for v

3.2 Using Zeek to process offline packet capture files
In this subsection we will use Zeek to process the existing offline packet capture file

smallFlows.pcap. By specifying the [-r] option and the directory path to the pcap file, Zeek
can generate the corresponding log files.

Page 7

Lab 2: An Overview of Zeek Logs

Step 1. Navigate to the lab workspace directory. To type capital letters, it is recommended
to hold the key while typing rather than using the key.

cd Zeek-Labs/TCP-Traffic/

zeek@admin: ~/Zeek-Labs/TCP-Traffic o o

File Edit Tabs Help
zeek@admin:~$ cd Zeek-Labs/TCP-Traffic/

zeek@admin:~/Zeek-Labs/TCP-Traffics |

Step 2. Use the following command to process the smallFlows.pcap file. It is possible to
use the key to autocomplete the longer paths.

zeek —-C -r ../Sample-PCAP/smallFlows.pcap

[zeek@admin: ~/Zeek-Labs/TCP-Traffic =

File Edit Tabs Help

After Zeek finishes processing the packet capture file, it will generate a number of log files.

Step 3. Use the following command to list the generated log files.

1s

led zeek@admin: ~/Zeek-Labs/TCP-Traffic o

File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |ls
conn.log dns.log files.log packet filter.log ssl.log x509.1o0g

dhcp.log dpd.log http.log snmp. log weird.log
zeek@admin:~/Zeek-Labs/TCP-Traffics |

3.3 Understanding Zeek log files

Zeek’s generated log files can be summarized as follows:

e conn.log: A file containing information pertaining to all TCP/UDP/ICMP
connections, this file contains most of the information gathered from the
packet capture.

e files.log: A file consisting of analytic results of packets’ counts and sessions’
durations.

e packet_filter.log: A file listing the active filters applied to Zeek upon reading
the packet capture file.

e x509.log: A file containing public key certificates used by protocols.

Page 8

Lab 2: An Overview of Zeek Logs

e weird.log: A file containing packet data non-conformant with standard
protocols. It also contains packets with possibly corrupted or damaged packet
header fields.

e (protocol).log (dns.log, dhcp.log, http.log, snmp.log): These are files containing
information for packets found in each respective protocol. For instance,
dns.log will only contain information generated by Domain Name Service
(DNS) packets.

More information regarding log files is available in the Zeek official documentation, which
can be viewed online using an external Internet-connected machine through this link:

https://docs.zeek.org/en/stable/script-reference/log-files.html

3.4 Basic viewing of Zeek logs
In this subsection we examine the generated log files and their contents.

Step 1. Use the following command to display the contents of the conn.log file using the

fhead command.

head conn.log

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic - 4+ X
File Edit Tabs Help

#separator \x09

#set separator ,

fempty field (empty)

funset field -

#path conn

#open 2020-01-09-13-38-32

#fields ts uid id.orig h id.orig p id.resp h id.resp
proto service duration orig bytes resp bytes conn sta
local orig local resp missed bytes history orig pkts 0

rig ip bytes resp pkts resp_ip bytes tunnel parents

ftypes time string addr port addr port enum string interval

count count string bool bool count string count count count c
set[string]

1295981542.708292 CM7bcbyHQL130ZbLk 192.168.3.131 55950 72.14.21

3.102 80 tcp http 0.058485 944 487 SF - -

0 ShADFadRf 5 1156 4 659 -

1295981543.461968 CMST3C3alo3H4adNsf 192.168.3.131 55955 207.46.1

48.38 80 tcp http 0.028620 448 279 SF - -

0 ShADfFa 5 660 3 407 -

zeek@admin:~/Zeek-Labs/TCP-Traffics [

The topmost rows within the conn.log file will be displayed in the Terminal; however, the
current formatting wraps around multiple lines, making it unclear and hard to understand.
In the following section we introduce the utility for enhancing the output of
these log files.

Page 9

https://docs.zeek.org/en/stable/script-reference/log-files.html
https://docs.zeek.org/en/stable/script-reference/log-files.html

Lab 2: An Overview of Zeek Logs

4 Analyzing Zeek log files

In this section, we review the utilities that help in displaying log files with well-formatted
outputs, as well as saving output to text files.

4.1 Leveraging zeek-cut for a more refined view of log files

Although the produced log file is tab delimited, it is difficult to visualize and parse
information from the terminal. The utility can be used to parse the log files by
specifying which column data to be displayed in a more organized output.

4.1.1 Using zeek-cut in conjunction with cat and head command utilities

Generally, the utility is typically coupled with using the command.

In Linux, the command sends the output of one command as input to another.
Essentially, the output of the left command is passed as input to that on its right, and
multiple commands can be chained together.

Step 1. Use the following command to pipe the contents of [cat]into [zeek-cut].

cat conn.log | zeek-cut id.orig h id.orig p id.resp h id.resp p

[zeek@admin: ~/Zeek-Labs/TCP-Traffic =i
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |cat conn.log | zeek-cut id.orig h id.orig p
1d.resp h id.resp p
2.168.3.131 55950 72.14.213.102 80
.168.3.131 55955 207.46.148.38 80
.168.3.131 55954 65.55.17..37 80
.168.3.131 58264 208.82.236.129 80
.168.3.131 58265 208.82.236.129 80
.168.3.131 57721 72.14.213.105 443
.168.3.131 58272 208.82.236.129 80
.168.3.131 55963 65.54.95.140 80
.168.3.131 55973 65.54.95.142 80
.168.3.131 55960 206.108.207.139 80
.168.3.131 57038 .217.50.10 80
.168.3.131 52201 .14.213.102 443
.168.3.131 52203 142130102 443
.168.3.131 52204 .14.213.102 443
.168.3.131 52205 .14.213.102 443
.168.3.131 52206 .14.213.102 443
.168. 52207 .14.213.102 443
52209 .14.213.102 443
52208 .14.213.102 443
52211 .14.213.102 443
52210 .14.213.102 443

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2B
et
o 2
34

The options passed into the utility represent the column headers to be
extracted from the log file:

Page 10

https://docs.zeek.org/en/stable/script-reference/log-files.html

Lab 2: An Overview of Zeek Logs

e [id.orig hl Column containing the source IP address.

e [id.orig p Column containing the source port.

e [id.resp h| Column containing the destination IP address.
® [id.resp p| Column containing the destination port.

Alternatively, instead of using the command, the command can be used to
display the topmost rows of the log file, which can be very useful to view a large file’s
contents.

Step 2. Use the following command to pipe the contents of head into [zeek-cut].

head conn.log | zeek-cut id.orig h id.orig p id.resp h id.resp p

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic 5
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |head conn.log | zeek-cut id.orig h id.orig p

1d.resp h id.resp p
197.168.3.131 55950 72.14.213.102 80

192.168.3.131 55955 207.46.148.38 80
zeek@admin:~/Zeek-Labs/TCP-Traffics [

Notice that only two records are shown. This is caused by the command taking the
10 topmost rows of conn.log, regardless of what that entails, and passing it as input to

Eeek-cut|

Since the log file contains 8 lines of header padding used for displaying the file’s format,
we will have to specify the first 18 rows of file in order to succesfully display the first 10
packets of the log file.

Step 3. Use the following command to pipe the contents of head| into [zeek-cut].

head -n 18 conn.log | zeek-cut id.orig h id.orig p id.resp h id.resp p

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |head -n 18 conn.log | zeek-cut id.orig h id.
orig p id.resp h id.resp p

192, .3.131 55950 72.14.213.102 80
192. .131 55955 207.46.148.38 80
192. -131. 55954 65.55.17.37 80
.131 58264 208.82.236.129 80
.131 58265 208.82.236.129 80
.131 57721 72.14.213.105 443
.131 58272 208.82.236.129 80
.131 55963 65.54.95.140 80
.131 55973 65.54.95.142 80

.168.
.168.
.168.
.168.3.131 55960 206.108.207.139 80
zeek@admin:~/Zeek-Labs/TCP-Traffics |

Wwwwwwww

The [-n] option can be passed to the utility to specify the desired number of rows.

Page 11

https://docs.zeek.org/en/stable/script-reference/log-files.html
https://docs.zeek.org/en/stable/script-reference/log-files.html

Lab 2: An Overview of Zeek Logs

4.1.2 Printing the output of zeek-cut to a text file

While the results displayed in the Terminal after using the utility can be easily
viewed for smaller datasets, it is often necessary to save the output into a separate file.
Using the [>] character, we can send the output to a new file for further processing by other
applications.

Step 1. Use the following command to change the output location of [zeek-cut]

cat conn.log | zeek-cut id.orig h id.orig p id.resp h id.resp p > output.txt

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |cat conn.log | zeek-cut id.orig h id.orig p
id.resp h id.resp p > output.txt

zeek@admin:~/Zeek-Labs/TCP-Traffics JJ

By including the file extension in output.txt, we are choosing to print the output into a
plain text file.

Step 2. We can display the topmost contents of the new output.txt file by using the
command.

head output.txt

zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ lhead output.txt
.168.3.131 55950 72.14.213.102 80
.168.3.131 55955 207.46.148.38 80
.168.3.131 55954 65.55.17.37 t10)
.168.3.131 58264 208.82.236.129 80
.168.3.131 58265 208.82.236.129 80

131 57721 72.14.213.105 443

.131 58272 208.82.236.129 80

o i § 55963 65.54.95.140 t10)

.131 55973 65.54.95.142 80

.168.
.168.
.168.
.168.
.168.3.131 55960 206.108.207.139 80
zeek@admin:~/Zeek-Labs/TCP-Traffics |]

Wwwwwwww

The output.txt file contains the same tab-delimited format as shown in previous
[cut Jexamples.

4.1.3 Printing the output of zeek-cut to a csv file

Page 12

Lab 2: An Overview of Zeek Logs

In some situations, it is helpful to save the output of in a csv file. In a csv file,
data may be imported into other applications, such as databases or machine learning
classifiers.

Step 1. The exported output file by is tab-delimited due to the default
settings. To export a file with another delimiter, the [-F option is used.

cat conn.log | zeek-cut -F ',’ id.orig h id.orig p id.resp h id.resp p >
output.csv

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic -+ X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ [cat conn.log | zeek-cut -F ',' id.orig h id.
orig p id.resp h id.resp p > output

zeek@admin:~/Zeek-Labs/TCP-Traffics |j

Step 4. We can now display the topmost contents of the output.csv file.
head output.csv

zeek@admin: ~/Zeek-Labs/TCP-Traffic - + x

File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |lhead output.csv
.168.3.131,55950,72.14.213.102,80
.168.3.131,55955,207.46.148.38,80
.168.3.131,55954,65.55.17.37,80
.168.3.131,58264,208.82.236.129,80
.168.3.131,58265,208.82.236.129,80
.131,57721,72.14.213.105,443
.131,58272,208.82.236.129,80
.131,55963,65.54.95.140,80
.168.3.131,55973,65.54.95.142,80
.168.3.131,55960,206.108.207.139,80
zeek@admin:~/Zeek-Labs/TCP-Traffics I

.168.
.168.
.168.

Wwwwwwwww

As shown in the image, the output.csv file is in a comma-delimited format, rather than
the previous tab-delimited format.

In conclusion, is a flexible tool that can be called to format Zeek log files
depending on the user’s needs. The utility can be utilized with more advanced
commands to further increase customization.

4.2 Closing the current instance of Zeek
After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to

shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
as the password. If the Terminal session has not been terminated or closed,

Page 13

Lab 2: An Overview of Zeek Logs

you may not be prompted to enter a password. To type capital letters, it is recommended

to hold the key while typing rather than using the key.

cd $ZEEK INSTALL/bin && sudo ./zeekctl stop

[zeek@admin: /usr/local/zeek/bin

File Edit Tabs Help
zeek@admin:~$ |cd $ZEEK INSTALL/bin &&% sudo ./zeekctl stop
ord for zeek:

/local/zeek/bins]

Concluding this lab, we have reviewed Zeek’s output log files in more depth while
introducing some of the more relevant network-based log files and introduced some basic

utilities to view these log files.

References

1. “Log files”, Zeek user manual, [Online]. Available: Zeek,
docs.zeek.org/en/stable/script-reference/log-files.html.

2. “Sample captures”, Tcpreplay, [Online]. Available:
tcpreplay.appneta.com/wiki/captures.html

Page 14

UTSA.

The University of Texas at San Antonio™
The Cyber Center for Security and Analytics

ZEEK INSTRUSION DETECTION

Lab 3: Parsing, Reading and Organizing Zeek Log
Files

Document Version: 03-13-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 3: Parsing, Reading and Organizing Zeek Log Files

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
[IE2] o 38 o o Yo] [o =4 V2 PP UPPRRUPPRPR 3
(1Y Y=Y T = PP PUPPRRUPTPPR 3
(I Y o o - o [4= T TSP 4
1 Introduction to Shell SCrPLScoiiiii it e e 4
1.1 Ubuntu LiNUX teXt @ditOrsS ..uiiiciiiiiiiiiee et e 4
1.2 Creating @ Shell SCriPt.....uviii i saaee s 5
2 Advanced zeek-cut 10g file analysisccueeiiriiiieiiiiiic 7
D R =TT 2 Yo L= Tt PP PPPRR 8
D =% 12 11 o] [0 AU 9
. T =% 12 11 o] (TG TP 10
D % 10 1Y o] [S 12
3 Incorporating the AWK scripting language for log file analysis..........ccccocovvveeennneenn. 13
K J A % 1 2 Y] [0 R 13
K I % 12 11 o] [0 AR 15
T T =% 12 1] (TG TP 16
3.4 Closing the current instance of ZeeK.........ccuveeeiiiieeiciiiie e 18
REFEIENCES ...ttt e e e sttt e e s st e e e sttt e e e saraeeessnreeesaans 18

Page 2

Lab 3: Parsing, Reading and Organizing Zeek Log Files

Overview
This lab explains how to format and organize Zeek’s log files by combining zeek-cut utility

with basic Linux shell commands. Utilities and tools introduced in this lab provide practical
examples for logs customization in a real network environment.

Objectives
By the end of this lab, students should be able to:
1. Use Linux tools and commands for text files processing.
2. Practice Linux shell scripts and the AWK scripting language.
3. Incorporate AWK with zeek-cut to provide formatted logs.
Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the Client machine for
offline packet capture processing and analysis.

Mininet Emulated Network Hardware Network

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials to access the
machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Page 3

Lab 3: Parsing, Reading and Organizing Zeek Log Files

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path
$ZEEK_INSTALL lusr/local/zeek
$ZEEK _TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap
This lab is organized as follows:

1. Section 1: Introduction to shell scripts.
2. Section 2: Advanced zeek-cut log file analysis.
3. Section 3: Incorporating the AWK scripting language for log file analysis.

1 Introduction to shell scripts

A shell script is a text file containing commands to be executed by the Unix command-line
interpreter. Shell scripts provide a convenient way to manipulate files and automate
programs’ executions. Selection and repetition are incorporated into scripts to branch
control based on conditioning and looping statements. Running a shell script can
immensely save time and prevent manually entering repetitive commands in recurrent
tasks.

1.1 Ubuntu Linux text editors

Linux-based distributions include pre-installed text editors like fhand), [vi], [vin), [gedit], etc.
is a keyboard-oriented lightweight text editor with a simple Command Line Interface
(CLI). Other editors such as and are highly customizable and extensible, making
them attractive for users that demand a large amount of control and flexibility over their
text editing environment. Alternatively, the Graphical User Interface (GUI) text editor
can be used to visually work outside of the terminal. More information on these
text editors can be found on the Ubuntu help pages. To access the following links, users
must have access to an external computer connected to the Internet, because the Zeek
Lab topology does not have an active Internet connection.

® [Nano|—|https://help.ubuntu.com/community/Nano

e [Vim—fhttps://help.ubuntu.com/community/VimHowtd|

e [Gedit|—|https://help.ubuntu.com/community/gedit

For simplicity, in this lab we use text editor to view, create and edit text files.

Page 4

https://help.ubuntu.com/community/Nano
https://help.ubuntu.com/community/VimHowto
https://help.ubuntu.com/community/gedit

Lab 3: Parsing, Reading and Organizing Zeek Log Files

1.2 Creating a shell script
Shell scripts are effective in executing repetitive terminal commands. Unlike executing
commands manually in the terminal, scripts can be saved and executed whenever needed

simple by invoking their names. We will begin this lab by writing some basic shell scripts.

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

PRELLLVE & Content | l»” Status | O Client =

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Miniedit

[—
>

LXTermimal

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

Step 4: In the Linux terminal, navigate to the lab workspace directory by typing the
following command:

cd Zeek-Labs/
kd zeek@admin: ~/Zeek-Labs - 4+ x

File Edit Tabs Help
admin:~$% |c

dadmin:~/

Step 3: Use the text editor to create the lab3script.sh file.

sudo nano lab3script.sh

Page 5

Lab 3: Parsing, Reading and Organizing Zeek Log Files

zeek@admin: ~/Zeek-Labs - + X

File Edit Tabs Help

zeek@admin:~/Zeek-Labs$ [sudo nano lab3script.sh
[sudo] password for zeek:

zeek@admin:~/Zeek-Labss$ |

Step 4: Edit the lab3script.sh file contents.

Once the text editor has opened, we will be able to enter the following commands. Each
new line will denote a new Terminal command being passed. To type capital letters, it is
recommended to hold the key while typing rather than using the key.

cd $ZEEK INSTALL/bin

sudo ./zeekctl start

cd Zeek-Labs/TCP-Traffic/

zeek —-C -r ../Sample-PCAP/smallFlows.pcap

bl zeek@admin: ~/Zeek-Labs - + x

File Edit Tabs Help
GNU nano 2.9.3 lab3script.sh

cd /bin
sudo ./zeekctl start

cd Zeek-Labs/TCP-Traffic/
zeek -C ../Sample-PCAP/smallFlows.pcap

The file’s content is explained as follows:

e Line 1: changes the current directory to the Zeek’s installation directory.

e Line 2: starts a new instance of Zeek through [zeekct1].

e Line 3: changes the current directory to the lab workspace.

e Line 4: invokes the command with the option to begin processing the
smallFlows.pcap capture file located in the Sample-PCAP directory.

Step 5: When using [Nand], the following keyboard shortcuts are used to save a file and
then exit the workspace.

J —save the file
e [CTRL + x|—save and exit the file, return to terminal

After completing Step 4 and adding the correct commands with proper formatting, we
will save and exit the text editor. Press and hit to save the file’s contents,

then to exit and return to the terminal.

Step 6: Use the following command to modify the permissions of the script file to make it

executable. When prompted for a password, type and hit Enter].

sudo chmod +x lab3script.sh

Page 6

Lab 3: Parsing, Reading and Organizing Zeek Log Files

b zeek@admin: ~/Zeek-Labs - + x

File Edit Tabs Help
zeek@admin:~/Zeek-Labs$ |[sudo chmod +x lab3script.sh
[sudo] password for zeek:

zeek@admin:~/Zeek-Labss]

Step 7: Execute the lab3script.sh shell script by typing the following command.
./lab3script.sh

kd zeek@admin: ~/Zeek-Labs - + x

File Edit Tabs Help
zeek@admin:~/Zeek-Labss$ |./lab3script.sh
starting .

zeek@admin:~/Zeek-Labss |

Step 8: Navigate to the lab workspace directory.

cd Zeek-Labs/TCP-Traffic/

zeek@admin: ~/Zeek-Labs/TCP-Traffic =k X
File Edit Tabs Help
zeek@admin:~$ |cd Zeek-Labs/TCP-Traffic/

zeek@admin:~/Zeek-Labs/TCP-Traffics [

Step 9: Verify that the smallFlows.pcap file was processed successfully.
1s

zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |ls
conn.log dns.log files.log packet filter.log ssl.log x509.1o0g

dhcp.log dpd.log http.log snmp. log weird.log
zeek@admin:~/Zeek-Labs/TCP-Traffics |

The above output shows the list of log files generated by Zeek’s processing, verifying that
the script executed without errors.

2 Advanced zeek-cut log file analysis

This section introduces more advanced functionality to analyze packet capture
statistics. These statistics can be used for planning and anomaly analysis. For instance, if
a single port has been targeted and received a large number of network traffic, it may
highlight a possible vulnerability. We can use the utility to determine if a host
sends an abnormal number of packets to a specific destination and further analyze this
event.

Page 7

Lab 3: Parsing, Reading and Organizing Zeek Log Files

2.1 Example 1

Example 1: Show the 10 source IP addresses that generated the most network traffic,
organized in descending order.

To solve this example, we will be looking at the column because it contains
the source IP addresses from the packet capture file.

Step 1: Open the lab3script.sh file with text editor.

nano lab3script.sh

kad zeek@admin: ~/Zeek-Labs - + x
File Edit Tabs Help
in:~/Zeek-Labss$ [nano lab3script.sh

/Zeek-Labs$ |}

Step 2: Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

zeek-cut id.orig h < conn.log | sort | unig -c | sort -rn | head -n 10
kd zeek@admin: ~/Zeek-Labs =
File Edit Tabs Help

GNU nano 2.9.3 lab3script.sh

conn. log sort unig -c sort -rn head 10

Press and hit to save the file’s contents, then to exit and

return to the terminal. The above command is explained as follows:

® [zeek-cut id.orig h < conn.log| selects the column from the
conn.log file.

e |[| sort] usesthe command to organize the rows in alphabetical order.
e [unig -dJ uses the command with the [-d option to remove duplicates

while returning unique instances and their counts.

e [| sort -rnf: usesthe command with the option to organize the rows

in reverse numerical order.
e [| head -n 10 uses the command with the [-n] option to display the 10
topmost values.

Step 3: Execute the modified shell script.

./lab3script.sh

Page 8

Lab 3: Parsing, Reading and Organizing Zeek Log Files

zeek@admin: ~/Zeek-Labs - + X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs$ |./lab3script.sh
397 192.168.3.131
201 172.16.255.1
92 10.0.2.15
2 19,022

1 66.209.190.254

1. 65.55.:57.251

L 65.55.25.60

1 174.36.30.111
zeek@admin:~/Zeek-Labss [

The number of duplicates is seen in the left column, while the matching source IP address
is seen in the right column. Only 8 unique source addresses were found, and each was
returned. From this output, we can conclude that the majority of network traffic was
generated by the top 3 source IP addresses.

2.2 Example 2

Example 2: Show the 10 destination ports that received the most network traffic,
organized in descending order.

To solve this example, we will be looking at the column because it contains
the destination ports from the packet capture file.

Step 1: Open the lab3script.sh file with text editor.

nano lab3script.sh

zeek@admin: ~/Zeek-Labs - + X
File Edit Tabs Help
-/Zeek-Labs$ |[nano lab3script.sh

/Zeek-Labss |}

Step 2: Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/
zeek-cut id.resp p < conn.log | sort | unig -c | sort -rn | head -n 10

zeek@admin: ~/Zeek-Labs - + x
File Edit Tabs Help
GNU nano 2.9.3 lab3script.sh

cd TCP-Traffic/

zeek-cut id.resp p conn.log sort uniq -c sort -rn head 10
-

Page 9

Lab 3: Parsing, Reading and Organizing Zeek Log Files

Press and hit to save the file’s contents, then to exit and

return to the terminal. The above command is explained as follows:

® [zeek-cut id.resp p < conn.log selects the column from the
conn.log file.

e |[| sort] usesthe command to organize the rows in alphabetical order.
e [unig -dJ uses the command with the [-d| option to remove duplicates

while returning unique instances and their counts.

e [| sort -rn|: usesthe command with the option to organize the rows

in reverse numerical order.
e [| head -n 10 uses the command with the [-1] option to display the 10
topmost values.

Step 3: Execute the modified shell script.
./lab3script.sh

zeek@admin: ~/Zeek-Labs o
File Edit Tabs Help

zeek@admin:~/Zeek-Labs$ |./lab3script.sh
354 80
78 443
5480
53
8443

7001

1900

12350

54900

50023
zeek@admin:~/Zeek-Labss |j

The number of duplicates is seen in the left column, while the matching destination port
is seen in the right column. More than 10 unique destination ports were found, so only
the top 10 were returned. From this output we can conclude that port 80 received the
most traffic.

2.3 Example 3
Example 3: Show the number of connections per protocol service.

To solve this example, we will be looking at the column because it contains the
destination ports from the packet capture file.

Step 1: Open the lab3script.sh file with text editor.

nano lab3script.sh

Page 10

Lab 3: Parsing, Reading and Organizing Zeek Log Files

zeek@admin: ~/Zeek-Labs - + X
File Edit Tabs Help
Zeek-Labs$ |[nano lab3script.sh

/Zeek-Labss |}

Step 2: Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

zeek-cut service < conn.log | sort | unig -c | sort -n
zeek@admin: ~/Zeek-Labs - + X
File Edit Tabs Help

GNU nano 2.9.3 lab3script.sh

cd TCP-Traffic/

zeek-cut service conn. log sort uniqg -c sort
-

Press and hit to save the file’s contents, then to exit and

return to the terminal. The above command is explained as follows:

® [zeek-cut service < conn.log: selectsthe column from the conn.log
file.

e |[| sort] usesthe command to organize the rows in alphabetical order.
e [unig -dJ uses the command with the [-d| option to remove duplicates

while returning unique instances and their counts.

e [| sort -nf: usesthe command with the [-n] option to organize the rows in

numerical order.

Step 3: Execute the modified shell script.
./lab3script.sh

& zeek@admin: ~/Zeek-Labs - + X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs$ |./lab3script.sh
snmp
smb
dhcp
38 dns

57. ssl
264 http
331 -
zeek@admin:~/Zeek-Labs$ |]

The number of duplicates is seen in the left column, while the matching destination port
is seen in the right column. From this output we can see that 331 packets did not have a
marked protocol. This can be caused by a number of anomalies and is an example of how
you can use the utility to return anomalies that require further identification.

Page 11

Lab 3: Parsing, Reading and Organizing Zeek Log Files

2.4 Example 4

Example 4: Print the distinct browsers used by the hosts in this packet capture file to a
separate file.

To solve this example, we will be looking at the column because it contains
the browser and connection-related information from the packet capture file.

Step 1: Open the lab3script.sh file with text editor.

nano lab3script.sh

kd zeek@admin: ~/Zeek-Labs - + x
File Edit Tabs Help

Step 2: Modify the script file’s contents.

cd TCP-Traffic/
zeek-cut user agent < http.log | sort -u > browser.txt

kd zeek@admin: ~/Zeek-Labs - + x
File Edit Tabs Help
GNU nano 2.9.3 lab3script.sh

http.log sort browser.txt

Press and hit to save the file’s contents, then to exit and

return to the terminal. The above command is explained as follows:

® [zeek-cut user agent < http.log selects the column from the
http.log file.

e [| sort -u > browser.txt]usesthe command to sort the lines in the file
and the option checks for strict ordering. The output is then saved into the
browser.txt file.

Step 3: Execute the modified shell script.
./lab3script.sh
kad zeek@admin: ~/Zeek-Labs - + x

File Edit Tabs Help
zeek@admin:~/Zeek-Labs$ |./lab3script.sh

zeek@admin:~/Zeek-Lahss]

Page 12

Lab 3: Parsing, Reading and Organizing Zeek Log Files

Step 4: Use a text editor to view the contents of the browser.txt file.

nano TCP-Traffic/browser.txt

zeek@admin: ~/Zeek-Labs o oy S
File Edit Tabs Help
zeek@admin:~/Zeek-Labs$ [nano TCP-Traffic/browser.txt

zeek@admin:~/Zeek-Labs$ i

Step 5: View the distinct browser information.

zeek@admin: ~/Zeek-Labs - 4+ X
File Edit Tabs Help
GNU nano 2.9.3 TCP-Traffic/browser. txt

Internet Explorer
Microsoft-CryptoAPI/6.1

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; .NET$
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .$
(Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.10 (KHTML, like$

Each browser found within the packet capture file is printed with related information
extracted from the traffic by Zeek.

3 Incorporating the AWK scripting language for log file analysis

AWK is a terminal scripting language used to parse, filter and modify text files. AWK is
specifically useful when processing rows and columns found in a Comma Separated Value
(CSv) file. Additionally, AWK's integrated string manipulation functions allow for the
searching and modifying of specific output.

Like [cat] and [head commands, AWK output can be piped into the utility,
allowing more advanced parsing and formatting options. AWK reads each column in a file
through its position. The first input column is accessed using S1 while the second column
is accessed using $2 and so on. AWK also allows creating simple variables to store and
read script values. AWK reads the input data as a loop, starting from the top of the file
and finishing at the end of the file. Each row is considered an instance within the script.

3.1 Example 1

Example 1: Find the source and destination IP address of all UDP and TCP connections
that lasted more than one minute.

Step 1: Open the lab3script.sh file with text editor.

Page 13

Lab 3: Parsing, Reading and Organizing Zeek Log Files

nano lab3script.sh

zeek@admin: ~/Zeek-Labs - + x
File Edit Tabs Help
:~/Zeek-Labs$ |[nano lab3script.sh

-/Zeek-Labss |}

Step 2: Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/
awk ‘$9 > 60’ conn.log | zeek-cut id.orig h id.resp h

zeek@admin: ~/Zeek-Labs - 4+ x
File Edit Tabs Help
GNU nano 2.9.3

lab3script.sh

cd TCP-Traffic/

awk '$9 > 60' conn.log zeek-cut id.orig h id.resp h

Press CTRL + o and hit to save the file’s contents, then [CTRL + x| to exit

and return to the terminal. The above command is explained as follows:

e [awk ‘59 > 60’ conn.log selects the rows that have their 9 column value
greater than 60 from the conn.log file. The 9*" field represents the connection
duration, and we are checking if the value is greater than 60 seconds (or 1 minute).

e [| zeek-cut id.orig h id.resp h returns the source and destination IP
addresses.

Step 3: Execute the modified shell script.
./lab3script.sh

zeek@admin: ~/Zeek-Labs - + X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs$ |./lab3script.sh
192.168.3.131 72.14.213.101
.168.3.131 65.55.118.107
.168.3.131 207.46.0.109
.168.3.131 63.215.202.48
.168.3.131 206.108.207.163

.131 206.108.207.155

.131 63.215.202.49
204.9.163.184
65.54.189.173
66.220.149.32

194.192.199.252

Page 14

Lab 3: Parsing, Reading and Organizing Zeek Log Files

The source IP address is seen in the left column, while the matching destination IP address
is seen in the right column. The pairs will only be displayed if the connection lasted at
least one minute.

3.2

Example 2

Example 2: Show the top source host addresses in terms of total traffic (in bytes) sent in
descending order.

The Lab-Scripts directory contains an AWK script named /ab3_sec3-2.awk that can be
viewed with the following command:

nl Lab-Scripts/lab3 sec3-2.awk

zeek@admin: ~/Zeek-Labs = £ X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs$ |nl Lab-Scripts/lab3 sec3-2.awk

1
2
3
4
5
6
7
8
9
0

{
if (host !'= $1) {
if (size != 0)
print $1, size;
host $1
size 0

size += $2;

}

END {
if (size != 0)
print $1, size;

}
zeek@admin:~/Zeek-Labs$ |

The script is explained as follows. Each number represents the respective line number:

1. The [{] character is used to begin nested statements. This instance is the main

2.

3.

4.

functionality of the script.

The host variable, which will be used to store the source IP addresses found in the
first column (S1), is checked against the current data entry in the column. If it is
not equal, we will enter the next statement. Because we only want one instance
of each source IP address, but the summed value of bytes sent, we will use this
check to prevent duplicate entries.

This line contains a check to make sure the current packet is not empty and does
contain a payload. If the current packet contains a payload of more than 0 bytes,
we will proceed to line 4.

The current source IP address and its byte payload will be printed or returned to
the next statements.

Page 15

Lab 3: Parsing, Reading and Organizing Zeek Log Files

5. Now that we know the current source IP address is not yet stored in the host
variable, we will create a new entry into the variable.

6. The size variable is reset back to zero

7. The [}] character is used to end nested statements. Therefore, the first case of a
source IP address not being contained in host is complete.

8. If the host variable contains the current data entry, we will proceed to line 9.

9. Here we will sum the unique source IP address’ total bytes by adding the payload
from the second column ($2).

10. The [}] character is used to end nested statements. This is the ending of the main
functionality of the script.

11.The statement denotes what the script will do once it has reached the end of
the file, and there are no more input data rows to be read.

12.If a source IP address contains a total payload of more than 0 bytes, we will
proceed to line 13.

13. AWK will return the source IP address found in the first column, as well as the size
variable, containing the total payload in relation to that source IP address.

Step 1: Input the following command.

zeek-cut id.orig h orig bytes < TCP-Traffic/conn.log | sort | awk -f Lab-
Scripts/lab3_sec3—2.awk | sort -k 2 | head -n 10

%] zeek@admin: ~/Zeek-Labs - + X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs$ [zeek-cut id.orig h orig bytes < TCP-Traffic/conn.log | s
awk -T Lab-Scripts/lab3 sec3-2.awk | sort -k 2 | head -n 10
.ol 1062064
). 111 128479

5.1 16065
76751

® [zeek-cut id.orig h orig bytes < conn.log selects the and

orig bytes|columns from the conn.log file.
e |[| sort] usesthe command to organize the rows in alphabetical order.

e |[| awk -f 1ab3 sec3-2.awk]: will execute awk with the [-f] option to denote using
the script find within the lab3_sec3-2.awk file.

e [| sort -k 2 usesthe command with the [-k option to organize the rows
based on the values found in the second column — the total number of bytes.

e [| head -n 10 uses the command with the [-n] option to display the 10
topmost values.

The left column contains the source IP address, while the right column contains the
number of bytes produced by the paired source IP address.

3.3 Example 3

Page 16

Lab 3: Parsing, Reading and Organizing Zeek Log Files

Example 3: Are there any web servers operating on non-standardized ports?

To solve this example, we will be looking at the column to view the packets using
the Hyper Text Transport Protocol (HTTP) protocol. The standard ports for the HTTP
protocol are 80 and 8080, so we will be searching for the network traffic that does not
reach those ports.

Step 1: Open the lab3script.sh file with text editor.

nano lab3script.sh

kd zeek@admin: ~/Zeek-Labs - + x
File Edit Tabs Help
zeek@admin:~/Zeek-Labs$ [nano lab3script.sh

zeek@admin:~/Zeek-Labs$ ||

Step 2: Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

zeek-cut service id.resp p id.resp h < conn.log \
| awk '$1 == “http” && ! ($2 == 80 || $2 == 8080) {print $3}’ \
| sort -u
[zeek@admin: ~/Zeek-Labs - + x
File Edit Tabs Help
GNU nano 2.9.3 lab3script.sh

cd TCP-Traffic/
eek-cut se ce id.resp_p id.resp_h conn. log

'$1 == "http" && ! ($2 == 80 || $2 == 8080) {print $3}'

Press and hit to save the file’s contents, then to exit and

return to the terminal. The above command is explained as follows:

® [zeek-cut service id.resp p id.resp h < conn.log| selects the [service]
[id.resp pland[id.resp hlcolumns from the conn.log file.
e [| awk: passes the input into the following AWK command:

o [§1 == “http”| performs a check on the first column to make sure the
active data entry is running on the http service.
o [es& ! (82 == 80 || $2 == 8080)] performs a second check if the first

check is successfully passed. The ports will be checked and if they are not
equal to either of the standard http ports (80 and 8080), they will be
passed to the print statement

o [{print $3}]: printsthe destination IP address of any host that passes both
of the previous checks.

Page 17

Lab 3: Parsing, Reading and Organizing Zeek Log Files

e [| sort -u:usesthe command to sort the lines in the file and the [-u] option

checks for strict ordering.

Step 3: Execute the modified shell script.
./lab3script.sh

kd zeek@admin: ~/Zeek-Labs - + X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs$ |./lab3script.sh
198.104.200.146
207 .46.105.186

.46.96.145

.55.116.184

.55.15.244

.37.129.32

.37.129.34

.103.140.2

.17.8.49
zeek@admin:~/Zeek-Labss]

The destination IP addresses that received traffic on non-standardized ports are displayed.

3.4 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended

to hold the key while typing rather than using the key.
cd $ZEEK INSTALL/bin && sudo ./zeekctl stop

kd zeek@admin: /usr/local/zeek/bin - + x

File Edit Tabs Help
zeek@admin:~$ jcd $ZEEK INSTALL/bin && sudo ./zeekctl stop
[sudo] password Tor zeek:

stopping zee¢ i
zeek@admin: /usr/local/zeek/bin$ I

Concluding this lab, we have reviewed the process of creating shell scripts to be used for
network analysis. We introduced more complex commands for the [zeek-contro]] utility,
as well as used the AWK scripting language to retrieve information from Zeek log files.

References

Page 18

Lab 3: Parsing, Reading and Organizing Zeek Log Files

1. “Logging”, Zeek user manual, [Online], Available:

docs.zeek.org/en/stable/examples/logs.
2. “Exercise: understanding and examining bro logs”, Zeek user manual, [Online],
Available: https://www.zeek.org/bro-workshop-2011/solutions/logs/index.html.

Page 19

UTSA.

The University of Texas at San Antonio™
The Cyber Center for Security and Analytics

ZEEK INSTRUSION DETECTION SERIES

Lab 4. Generating, Capturing and Analyzing
Network Scanner Traffic

Document Version: 03-13-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

Page 2

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 4
(0] o) 1101 4 V7= PSPPI 4
[IE2] o 38 o o Yo] [o =4 V2 PP UPPRRUPPRPR 4
(1Y Y=Y T = PP PUPPRRUPTPPR 4
(I Y o o - o [4= T TSP 5
1 Introduction to Internet scanning and pProbingccccecueeiiiiiiieiiniiiee e 5
2 Generating real time NetWOrk SCANS.......cciiviiiiiiiiiiiec e 5
2.1 Starting a new instance Of ZeeKoovuveeiiiiiiiii i 6
2.2 Launching MiININEt......coiiiiiiiiee e et e e baa e e e s ares 6
2.3 Setting up the zeek2 virtual machine for live network capturecccccuvvveeeee..n. 8
2.4 Using the zeekl virtual machine for network scanning activitiesccceee..... 9
D 35 N 114 g =T o o] o1 4 (o] o YRR 10
2.4.2 TCP SYN SCANS .t s e e s e e s e 10
2.4.3 TCP CONNECE SCANS ... s e e s s e s e s e e e e e e s e 11
244 TCP NULL SCANS 1. s 11
245 TCP XMAS SCANS . e s e s s s e s s 12
2.4.6 Terminating live network capturecccccvvv oo, 13
3 Analyzing collected network trafficccoeoiieeeccie e, 13
K J0 A % T2 Y o] (T T 1T o R 15
I % 101 o] (I O LU 1T o AR 15
3.3 Closing the current instance of ZeeK.........cccueeeeciieeeiciiiie e 16
REFEIENCES ...ttt e e sttt e e s st e e e sttt e e e sareeeeseanreeeeaan 17

Page 3

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

Overview
This lab is designed to provide an in-depth guide to scanning and probing network traffic.
The lab demonstrates the generation of scan-based traffic and uses Zeek to process the
collected traffic.
Objective
By the end of this lab, students should be able to:

1. Perform Internet scanning and probing events.

2. Utilize the Nmap software.
3. Generate and collect scan traffic.

Lab topology
Figure 1 shows the lab workspace topology. This lab primarily uses the zeek1 virtual

machine to generate scan-based traffic, and the zeek2 virtual machine to perform live
network capture.

Mininet Emulated Network Hardware Network
Figure 1. Lab topology.
Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Page 4

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path
$ZEEK INSTALL lusr/local/zeek
$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Internet scanning and probing.

2. Section 2: Generating real time network scans.

3. Section 3: Analyzing collected network traffic.

4. Section 4: Detailing the importance of the Zeek interface topology.
1 Introduction to Internet scanning and probing

Internet scanning is the process of generating crafted traffic used to identify active
devices on a network. A variety of software utilities and tools are used to replicate scan-
related traffic for testing purposes. These crafted packets can be both stealthy and
versatile. It is hard to determine scan-like activities when scanning traffic follows
protocols’ standards and specifications.

Malicious scanning is a reconnaissance technique used to collect information about a
target’s machine or network to facilitate an attack against it. Scanning is used by attackers
to discover what ports are open, what services are running and identify system software,
all to enable an attacker to more easily detect and exploit known vulnerabilities within a
target machine?.

This lab uses nmap], and its documentation can be found on the website. To access
the following link, users must have access to an external computer connected to the

Internet, because the Zeek Lab topology does not have an active Internet connection.

https://www.nmap.org/

has a wide array of scan-related functionalities such as the customization of a scan’s
transport protocol, ports, IP ranges, etc.

2 Generating real time network scans

Page 5

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

Zeek’s default packet capture processing generates log files containing organized network
traffic statistics. By leveraging the zeek1 virtual machine to scan the zeek2 virtual machine,
we can better define and understand the steps it takes to both generate and capture scan
traffic.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

PRGLLIGLVE & Content | |+ Status | O Client =

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Miniedit

[—
=

[XTerminal

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes tool to start a new
instance. To type capital letters, it is recommended to hold the key while typing

rather than using the key. When prompted for a password, type and hit
Ented.

cd $ZEEK INSTALL/bin && sudo ./zeekctl start

kd zeek@admin: /usr/local/zeek/bin - + X

File Edit Tabs Help
zeek@admin:~$ |cd $ZEEK INSTALL/bin && sudo ./zeekctl start
[sudo] password for zeek:

starting zeek ...
zeek@admin: /usr/local/zeek/bins |

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Launching Mininet

Page 6

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type and hit
Enter]. The MiniEdit editor will now launch.

XTermimal

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the button within the tab
on the top left of the MiniEdit editor.

File | Edit Rum Help

MNew

Save
Export Level 2 Script

Quit

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the button.

- Open =i

Directory: /home/zeek — \ 74} ‘

& .presage mininet zeek

& .thumbnails oflops Zeek-Labs

5 .wireshark oftest E Zeek-Topologies|

& Desktop [openflow

& Documents pox

& Downloads [Public

Kl O
File name: | Open

Files of type: Mininet Topology (*.mn) — Cancel

Page 7

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by clicking
the button.

— Open - + X

Directory: /home/zeek/Zeek-Topologies = | @ ‘

[~ | Topology.mn

K [H

File name: | Open

Files of type: Mininet Topology (*.mn) _|| Cancel

Step 5. To begin running the virtual machines, navigate to the button, found on the
bottom left of the Miniedit editor, and select the button, as seen in the image below.

Run

Stop lr

2.3 Setting up the zeek?2 virtual machine for live network capture

Step 1. Launch the zeek2 terminal by holding the right mouse button on the desired
machine, and clicking the button.

sl
/ \
(] (]
zeekl e
Host Options

Terminal

Page 8

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

Step 2. From the zeek2 terminal, navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

T "Host: zeek2" - + X
root@adming # l Labz/TCP-Traf fics

rootRadmin:™ s E LP-Trattick

Step 3. Start live packet capture on interface zeek2-ethO and save the output to a file
named scantraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w scantraffic.pcap

L o "Host: zeek2" - + X

root@admint ™/ Zeek-Labz/TCP-Traffic# topdump -i ze ethll —= 0 -w zcantraffic.p
i
topdump: listening on zeekZ-eth(, link-type EM1OME (Ethernet), capture size 2621

The zeek2 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek1 machine to generate scan-based network traffic.

2.4 Using the zeekl virtual machine for network scanning activities

Step 1. Minimize the zeek2 and open the zeekl by following the

previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

7aal zeek?2
Host Options _

Terminal

Step 2. On a machine running Linux, is executed through the Terminal. Verify that
is functioning properly by viewing the currently installed version.

nmap -version

Page 9

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

T "Host: zeekl" - + x

root@admin:™# [nmap —wersion

engines: epoll poll zelect

The figure above shows that the currently installed version of nmap is 7.60. With both the
zeek2 and zeek1 virtual machines configured correctly, we can proceed with the exercises.

2.4.1 nmap options

is used to discover hosts and services on a computer network by sending packets
and analyzing the responses. command has a list of options for every scan type and
covers several protocols. This lab focuses on TCP scans with their default settings. Two
additional options that can be used during this lab are:

e [-A: enables operating system and version detection.
e [-T4]: faster execution, can strain the initiator’s machine on larger scans.

More information is available on the following documentation page:

https://nmap.org/book/man-briefoptions.html

2.4.2 TCP SYN scans

TCP SYN scans are one of the most common types of scans used for vulnerability detection.
During SYN scanning, the initiating host sends a single TCP SYN packet to the destination.
The receiving host interprets the request as a new TCP connection where the standard
three-way TCP handshake is to be established. If a SYN/ACK packet is sent back, the
initiator can infer that the port is open. The initiator can then send an RST (reset) packet
to terminate the established connection.

Step 1. Use the following command to conduct a TCP SYN scan.

nmap -sS 10.0.0.2

The option is used to indicate a TCP SYN scan.

Page 10

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

o "Host: zeekl" - + X

rootidadmin: ™4 nmap —=

1-10 12:4E EST

After the scan is completed, produces a report on the performed scan. This includes
the scan starting time, the number of ports, the total time, etc. We can see here the TCP
SYN scan took 14.61 seconds, and none of the scanned ports were open.

2.4.3 TCP connect scans

TCP Connect scans are an alternative to TCP SYN scans. Rather than starting a TCP
handshake, the initiator’s operating system attempts to establish a connection with the
target victim through a system call. If a connection is successfully created, the initiator
can infer that the receiver is open.

Step 1. Use the following command to conduct a TCP connect scan.

nmap —-sT 10.0.0.2

The option is used to indicate a TCP Connect scan.

x "Host: zeekl1" - + X

r"|:||:|t|3.a|:|r|'|iﬁ:”# rimap -=T '_1_I:|+|::|+|:I +E

1-10 13:47 EST

The report in the above figure shows that the scan was completed in 13.34 seconds, and
none of the scanned ports were open.

2.4.4 TCP NULL scans

TCP NULL scans are another form of TCP scanning. In general, all TCP packets contain flags.

Firewalls are configured to drop packets containing certain flags. The TCP NULL scan
attempts to bypass these firewalls by excluding the header. With a sequence number of

Page 11

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic
0, packets in a TCP NULL scan will have no flags and can potentially infiltrate a network’s
firewall.
Step 1. Use the following command to conduct a TCP NULL scan.
nmap -sN 10.0.0.2
The option is used to indicate a TCP NULL scan.

X "Host: zeekl" - + X

rootidadming “# nmap —sM 10

Mmap done: 1 IP add
root@admin: “#]

The report in the above figure shows that the scan was completed in 14.61 seconds, and
none of the scanned ports were open.

245 TCP XMAS scans

TCP Xmas scans, also known as Christmas tree scans, have their name derived from their
set flags. In TCP Xmas scans, the PSH, URG and FIN flags are all set in the TCP header. This
combination of flags is used in an attempt to infiltrate a strict network’s firewall.

Step 1. Use the following command to conduct a TCP XMAS scan.

nmap -sX 10.0.0.2

The option is used to indicate a TCP XMAS scan.

x "Host: zeek1" - + X

rootBadming “#[nmap -s¥ 10,0,0,2

map.org) 3 =10 13:48 EST

Mmap dore: 1 IP add
root@admin: “#]

The report in the above figure shows that the scan was completed in 14.60 seconds, and
none of the scanned ports were open or vulnerable.

Page 12

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

2.4.6 Terminating live network capture

Step 1. Minimize the zeek1 and open the zeek2 using the navigation

bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Step 2. Use the key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 8035 packets were recorded by the interface, which
were then captured and stored in the new scantraffic.pcap file.

gl sudo | X ["Host: zeek1"] | 7K ["Host: zeek2"]|

x "Host: zeek2" - + X
k-Labs/ TCP-Traffic# topdump —-i zeekZ-ethl -z 0 -w scantraffic.p

dump: liztening on z —eth(, link-type EM1OME (Ethernet),. capture si

red
by filter

Step 3. Stop the current Mininet session by clicking the button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the [x] on the top right of
the editor.

We will now return to the Client machine to process and analyze the newly generated
network traffic.

3 Analyzing collected network traffic

After successfully conducting a number of TCP-based scans, the scanpackets.pcap packet
capture file now contains the required network traffic. In this section we analyze the

collected network traffic using Zeek.

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Page 13

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

Miniedit

R
==

CXTerminal

Step 2. Navigate to the TCP-Traffic directory to find the scantraffic.pcap file.
cd Zeek-Labs/TCP-Traffic/
%] zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help
zeek@admin:~$ lcd Zeek-Labs/TCP-Traffic/

zeek@admin:~/Zeek-Labs/TCP-Traffics [

Step 3. View the file contents of the TCP-Traffic directory to ensure that the
scantraffic.pcap file was successfully saved.

1s

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic = b
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffics |Ls

scantraffic.pcap

zeek@admin:~/Zeek-Labs/TCP-Traffic$ I

Step 4. Use the following Zeek command to process the packet capture file.
zeek -C -r scantraffic.pcap

(] zeek@admin: ~/Zeek-Labs/TCP-Traffic =i 3
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |zeek -C -r scantraffic.pcap

zeek@admin:~/Zeek-Labs/TCP-Traffics |

Similarly to the previous labs, Zeek will process the scantraffic.pcap file and generate
resulting log files based off of the default Zeek configurations.

Step 5. List the generated Zeek log files.

1s

Page 14

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

[zeek@admin: ~/Zeek-Labs/TCP-Traffic = X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |ls
conn.log packet filter.log reporter.log scantraffic.pcap

zeek@admin:~/Zeek-Labs/TCP-Traffic$ I

With the log files generated, we can now use the utility for further analysis.

3.1 Example Query 1

Example 1: Show the source IP addresses that generated the most network traffic,
organized in descending order.

Step 1. Enter the following command.

zeek-cut id.orig h < conn.log | sort | unig -c | sort -rn | head -n 10

The above command is explained as follows:

® [zeek-cut id.orig h < conn.log selects the column from the
conn.log file.

e |[| sort] usesthe command to organize the rows in alphabetical order.
e [unig -dJ uses the command with the [-d| option to remove duplicates

while returning unique instances and their counts.

e [| sort -rn| usesthe command with the option to organize the rows

in reverse numerical order.
e [| head -n 10 uses the command with the [-n] option to display the 10
topmost values.

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic =i
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |zeek-cut id.orig h < conn.log | sort | uni
q -c | sort -rn | head -n 10
4003 10.0.0.1
3 fe80::2809:bff:fee3:47e2

2 feB0::e89b:c7ff:fe34:d52c
2 fe80::8ca5:cbff:fe0@4:7190
zeek@admin:~/Zeek-Labs/TCP-Traffics [

We can see the majority of the packets were received from the zeek1 machine denoted
by the IP address 10.0.0.1.

3.2 Example Query 2

Example 2: Show the 10 destination ports that received the most network traffic,
organized in descending order.

Page 15

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

Step 1. Enter the following command.

zeek-cut id.resp p < conn.log | sort | unig -c | sort -rn | head -n 10

The above command is explained as follows:

® [zeek-cut id.orig h < conn.log: selects the column from the
conn.log file.

e |[| sort] usesthe command to organize the rows in alphabetical order.
e [unig -dJ uses the command with the [-d| option to remove duplicates

while returning unique instances and their counts.

e [| sort -rn usesthe command with the option to organize the rows

in reverse numerical order.
e [| head -n 10 uses the command with the [-n] option to display the 10
topmost values.

zeek@admin: ~/Zeek-Labs/TCP-Traffic i
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |zeek-cut id.resp p < conn.log | sort | uni
q -c | sort -rn | head -n 10

134

8888

7007

113

9999

9998

999

9968

995

9944
zeek@admin:~/Zeek-Labs/TCP-Traffics I

/
5
5
)
4
4
4
4
4
4

The number of duplicates is seen in the left column, while the matching destination port
is seen in the right column. More than 10 unique destination ports were found, so only
the top 10 were returned. These destination ports may be variable due to
scanning configurations.

3.3 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended

to hold the key while typing rather than using the key.

Page 16

Lab 4: Generating, Capturing and Analyzing Network Scanner Traffic

cd $SZEEK_INSTALL/bin && sudo ./zeekctl stop

kd zeek@admin: /usr/local/zeek/bin - + X

File Edit Tabs Help
in:~$ jcd $ZEEK INSTALL/bin && sudo ./zeekctl stop

:/usr/local/zeek/bins]

Concluding this lab, we have reviewed the steps required to generate scan traffic as well
as enable live traffic capture using Zeek. Once collected, the trace files can be studied,
and empirical data can be investigated regarding the current state of a network and its
devices.

References

1. Bou-Harb, Elias, Mourad Debbabi, and Chadi Assi. "A systematic approach for
detecting and clustering distributed cyber scanning." Computer Networks 57.18
(2013): 3826-38309.

2. Pour, Morteza Safaei, and Elias Bou-Harb. "Implications of theoretic derivations
on empirical passive measurements for effective cyber threat intelligence
generation." 2018 IEEE International Conference on Communications (ICC). IEEE,
2018.

3. “Options summary”, nmap, [Online], Available: nmap,
https://nmap.org/book/man-briefoptions.html.

4. “Port scanning techniques”, nmap, [Online], Available: nmap,
https://nmap.org/book/man-port-scanning-techniques.html.

Page 17

UTSA.

The University of Texas at San Antonio™
The Cyber Center for Security and Analytics

ZEEK INSTRUSION DETECTION SERIES

Lab 5: Generating, Capturing and Analyzing DoS
and DDoS-centric Network Traffic

Document Version: 03-13-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSPPI 3
[IE2] o 38 o o Yo] [o =4 V2 PP UPPRRUPPRPR 3
(1Y Y=Y T = PP PUPPRRUPTPPR 3
(I Y o o - o [4= T TSP 4
1 Introduction to DoS and DDOS aCtiVItyccccuveieiriiiieeiiiiiiee et s 4
1.1 DoS attack CharaCteriStiCscuouuiiiiriiieeieiiiee et 4
1.2 DDo0S attack CharaCteriStiCS.....cuuuiiiriiiieiiiiiee sttt 5
2 Generating real-time DOS traffiC......coovieiiniiiieie 5
2.1 Starting a new instance Of ZeeKcocuveeiiviiiiii i 5
D A - YUY o 1ol o 11 =8 Y 1T 1 = SRR 6
2.3 Setting up the zeek2 machine for live network capture.........ccccoeecveeeeciieeeeennee, 8
B - YUY o 1ol o 1 V=8 1] U 9
2.5 Using the zeekl virtual machine to launch a TCP-based DoS attack................. 11
2.6 Using the zeekl virtual machine to launch a UDP-based DoS attack................ 12
3 Analyzing collected network trafficccoooieeeeccii e, 14
3.1 Analyzing TCP-based traffiC.....cccccoeccciiiieee e 14
3.1.1 TCP EXamPle QUEIY L.ttt ettt e e e e nraee e e e e e e s e 15
3.1.2 TCP EXamPle QUEIY 2...eeeeiiiieeeee ettt e e e e stree e e e e e e s e snraenee e e s e s e e snnnenees 15
3.2 Analyzing UDP-based traffiC........ccccocuiiiiieiiiie e 16
3.2.1 UDPEXample QUENY L....eeeiiieeiee ettt e e eecttree e e e e e e s cnnaen e e e e s e s e e snnnenees 17
3.3 Closing the current instance of ZeeK.........cccueeeeiiiieicciiiee e 18
REFEIENCES ...ttt e e st e e s st e e e s bt ee e e sabaeeesenraeeeenns 19

Page 2

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

Overview
This lab covers Denial of Service (DoS)-based network traffic. The lab introduces the
generation of DoS-based traffic for testing purposes and uses Zeek to process the
collected traffic.
Objective
By the end of this lab, students should be able to:

1. Generate real-time DoS and DDoS traffic.

2. Experiment with the Low Orbit lon Canon (LOIC) software.
3. Analyze collected DDoS traffic.

Lab topology
Figure 1 shows the lab workspace topology. This lab primarily uses the zeek1 virtual

machine to generate DoS-based traffic, and the zeek2 virtual machine to perform live
network capture.

Mininet Emulated Network Hardware Network
Figure 1. Lab topology.
Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Page 3

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path
$ZEEK INSTALL lusr/local/zeek
$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap
This lab is organized as follows:

1. Section 1: Introduction to DoS and DDoS activity.
2. Section 2: Generating real-time DoS traffic.
3. Section 3: Analyzing collected network traffic.

1 Introduction to DoS and DDoS activity

Denial-of-Service (DoS) is an attack launched by a malicious user to render a target
machine or network resource unavailable to its intended users. Distributed Denial-of-
Service (DDoS) is an attack originated from different sources to flood the victim’s
resources. A DDoS attack is more effective than a normal DoS and is harder to mitigate
since unlike DoS, it is impossible to stop the attack simply by blocking a single source.

The different types of DoS attacks can be grouped by the traffic they generate, the
bandwidth they consume, the services they disrupt, etc. Traffic-based DoS attacks aim at
flooding the target with a large volume unsolicited traffic. Bandwidth-based DoS attacks
involve transmitting a massive amount of junk data to overload the victim and render its
network equipment congested.

1.1 DoS attack characteristics

DoS attacks generally involve flooding a targeted victim with network traffic to cause a
crash and make it unavailable to benign users. In this lab we explore two common DoS
attacks:

e [SYN flood|: an attacker attempts to overwhelm the server machine by sending a
constant stream of TCP connection requests, forcing the server to allocate
resources for each new connection until all resources are exhausted?.

e [ICMP flood] the attacker abuses ICMP and floods the victim computer with
Echo Request messages. When a computer receives an ICMP Echo Request
message it responds with an ICMP Echo Reply message?.

Page 4

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

1.2 DDoS attack characteristics

DDoS attacks involve using a large number of devices to flood a victim. With an increased
number of exploited machines, the amount of resources available to the attacker is far
higher. Some relevant DDoS attacks are:

e [HTTP flood| simple attack but requires a large number of resources. An attacker
who controls several devices (botnet) can continually flood a server with HTTP
requests until the server becomes unavailable and unable to respond to additional
incoming requests.

e [SYN flood]: similar to the DoS SYN flood, a botnet initiates several sessions
without completing a TCP handshake, causing the victim to consume its available
resources.

e [mplification attack]: attackers abuse UDP-based network protocols to launch
DDoS attacks that exceed hundreds of Gbps in traffic volume. This is achieved via
reflective DDoS attacks where an attacker does not directly send traffic to the
victim but sends spoofed network packets to a large number of systems that
reflect the traffic to the victim3. Domain Name System (DNS) and Network Time
Protocol (NTP) are examples of application-layer protocols that act as potential
amplification attack vectors.

DoS and DDoS attacks can cause catastrophic fallout and monetary losses to a victim.

2 Generating real-time DoS traffic

This lab uses the Low Orbit lon Canon (LOIC), open-source network stress testing and DoS
attack generator. LOIC can be found in the following Github repository. To access the
following link, users must have access to an external computer connected to the Internet,
because the Zeek Lab topology does not have an active Internet connection.

https://github.com/NewEraCracker/LOIC

Similar to the utility, can be used to replicate DoS or DDoS activity for testing
purposes. has a Graphical User Interface (GUI), which facilitates the attack’s
customization.

In this lab, Zeek’s default packet capture processing will generate log files containing
organized network traffic statistics. In this section, zeek2 virtual machine is used for live
capture and zeek1 virtual machine is used to generate DoS-related traffic.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Page 5

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

PRELELVE & Content | |#” Status | O Client =

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Miniedit

[—
>

LXTermimal

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes tool to start a new
instance. To type capital letters, it is recommended to hold the key while typing
rather than using the key. When prompted for a password, type and hit
Entex)

cd $ZEEK INSTALL/bin && sudo ./zeekctl start

bd zeek@admin: /usr/local/zeek/bin - + X

File Edit Tabs Help
zeek@admin:~$ |cd $ZEEK INSTALL/bin && sudo ./zeekctl
[sudo] password Tor zeek:

zeek@admin: /usr/local/zeek/bins |

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Launching Mininet

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type and hit
Enter]. The MiniEdit editor will now launch.

Miniedik
E —
>

XTermimal

Page 6

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the button within the
tab on the top left of the MiniEdit editor.

File | Edit Rum Help

MNew

Save
Export Level 2 Script

Quit

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the button.

- Open - + X

Directory: /home/zeek =a l B l

i:] .presage mininet [zeek

i@ .thumbnails & oflops [Zeek-Labs

i: .wireshark oftest E Zeek-Topologies|

[Desktop [openflow

‘5 Documents & pox

i:| Downloads [Public

[« ¥
File name: | Open

Files of type: Mininet Topology (*.mn) — Cancel

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the button.

Page 7

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

Open

Directory: /home/zeek/Zeek-Topologies

- + X

~| &

[| Topology.mn

EI

File name: |

Files of type: Mininet Topology (*.mn) —||

Open

Cancel

Step 5. To begin running the virtual machines, navigate to the button, found on the

bottom left of the Miniedit editor, and select the button, as seen in the image

below.

Run

Stop I”“Ji

2.3 Setting up the zeek2 machine for live network capture

Step 1. Launch the zeek2 terminal by holding the right mouse button on the desired

machine, and clicking the button.

sl
/ \
(] (]
zeekl e
Host Options

Terminal

Page 8

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

Step 2. From the zeek2 terminal, navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

T "Host: zeek2" - + X
root@adming # l Labz/TCP-Traf fics

rootRadmin:™ s E LP-Trattick

Step 3. Start live packet capture on interface zeek2-ethO and save the output to a file
named tcptraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w tcptraffic.pcap

X "Host: zeek2" - + X

root@adming ™y i-Labz/TCP-Traffic# bopdump -i ze h) —= 0 —w toptraffic,pc
._=.|Fl
topdunp: listening on zeekZ-ethl, link-type EM1OME (Ethernet), capture size 2621

44 buytes
i

The zeek2 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek1 machine to generate scan-based network traffic.

2.4 Launching LOIC

Step 1. Minimize the zeek2 and open the zeekl by following the

previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

7aal1 | zeek?2
Host Options — 1

Terminal

Step 2. Navigate to the Zeek-Labs/Lab-Tools/LOIC directory.

cd Zeek-Labs/Lab-Tools/LOIC

X "Host: zeekl" - + X
rooti@admin: ™4 lcd fesk-Labs/lab-ToolsLO0IC

root@admin: ™/ feek-Labs: E.IEI_TI:II:I]_E..I [|

Page 9

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

Step 3. Execute the loic.sh shell script by entering the following command in the terminal.

./loic.sh run

X "Host: zeek1" - + X

Badming ™ Zeek-Labs/Lab-ToolsLO0IC# |, /loic,sh run
Sbindmono

Step 4. View the LOIC GUI. If necessary, scale the GUI to a smaller size to fit on the zeek1
virtual machine’s display.

Low Orbit lon Cannon | When harpoons, air strikes and nukes Ffail | v. 2.9.9.99

6667

v I ecte

Lock on

— IMMA CHARGIN MAH LAZER
ock on

NONE!

The figure above shows the LOIC interface. Important features highlighted with colored
boxes are explained as follows:

1. Red Box|: target IP address. After entering an IP address, clicking the Lock on
button will select the IP as the target destination address.

2. [Green Box]: target port. Can be changed depending on which method is used to
launch the DoS attack.

3. [Yellow Box|: target method. Can be changed to define which protocol is used to
launch the DoS attack.

4. [Blue Box|: number of threads. Indicates the amount of resources LOIC will allocate
on the host machine.

5. [Purple Box]: number of sockets per thread. Increasing the number of sockets per
thread will exponentially increase the speed of the DoS attack; however, it also
requires more resources on the host machine.

6. Brown Box|: packet payload. Used to define what each packet will contain as
payload.

7. [orange Box]: start button. After customizing a desired attack, this button is used
to launch the attack.

Page 10

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

2.5 Using the zeekl virtual machine to launch a TCP-based DoS attack

Step 1: Customize the DoS attack by entering the following values in their respective input
boxes.

IP: 10.0.0.2
Port: 80
Method: TCP
Threads: 20
Sockets: 25
Payload: TCP TEST

Low Orbit lon Cannon | When harpoons, air strikes and nukes fail | v. 2.9.9.99

IMMA CHARGIN MAH LAZER

10.0.0.2

TCP TEST

Step 2. Click the Lock on button to save the current configurations. Click the (IMMA
CHARGIN MAH LAZER) button to begin the DoS attack. Wait roughly 10 seconds and click
the (Stop flooding) button to stop the DoS attack.

Step 3. Minimize the zeek1 and open the zeek2 using the navigation

bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Step 4. Use the key combination to stop live traffic capture. Statistics of the
capture session will we be displayed with network packets being stored in the new
teptraffic.pcap file.

Bl sudo = MiniEdit ' X ["Host: zeek1"] [-X["Host: zeekZ"]I

X "Host: zeek2" - + X
root@adming ™ Zeek-Labs/TCP-Traffic# tocpdump -1 ze ethl) -= 0 -w toptraffic.po
ap

topdump: listening on zeekZ-eth(, link-type EM1OME (Ethernet), capture size 2621

ured

Page 11

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

Within the 10 seconds timeframe, 1,741,757 packets were generated and collected. This
number of packets verifies that DoS attacks generate an immense amount of network
traffic and can be compared against the much smaller number of packets generated
during the previous scan events.

2.6 Using the zeekl virtual machine to launch a UDP-based DoS attack

Step 1. Using the zeek2 virtual machine, navigate to the lab workspace directory and enter
the UDP-Traffic directory.

cd Zeek-Labs/UDP-Traffic/

"Host: zeek2" =ik

Step 2. Start live packet capture on interface zeek2-ethO and save the output to a file
named udptraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w udptraffic.pcap

X "Host: zeek2" - + X

rootBadmin:™ s

ap

topdump: liztening an ethl), link-type EMLOMB (Ethernet). capture zize
44 bytes
i

Step 3. Minimize the zeek2 and open the LOIC GUI using the navigation bar at
the bottom of the screen. If necessary, right click within the Miniedit editor to activate
your cursor.

m’/_\'. - | L Bl sudo "“Miniedit X "Host:ze... X "Host:ze...

Step 4. Customize the DoS attack by entering the following values in their respective input
boxes.

IP: 10.0.0.2

Port: 20

Method: UDP

Threads: 20

Sockets: 25

Payload: UDP TEST (Must be changed before updating Method feature)

Page 12

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

Low Orbit lon Cannon | When harpoons, air strikes and nukes Ffail | v. 2.9.9.99

e (HiveM 6667 #loic [

[s tervat 30 [

Lock on

IMMA CHARGIN MAH LAZER

Lock on

000 %

.u

UDP TEST

Step 4. Click the Lock on button to save the current configurations. Click the Start (IMMA
CHARGIN MAH LAZER) button to begin the DoS attack. Wait for 10 seconds and click the
Stop (Stop flooding) button to stop the DoS attack.

Step 5. Minimize the zeek1 and open the zeek2 using the navigation

bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Step 6. Use the key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 15,164 packets were recorded by the interface,
which were then captured and stored in the new tcptraffic.pcap file.

Bl sudo | mm MiniEdit ‘X[“Host: zeek1"] | X ["Host: zeek2"]|

X "Host: zeek2" =

=

2
DP-Traffic# [

While the UDP-based DoS attack did not generate as much network traffic as the TCP-
based DoS attack, heavy amounts of traffic were generated by a single machine. Scaled
to a large-scale attack, DoS attacks are extremely debilitating.

Step 7. Stop the current Mininet session by clicking the button on the bottom left

of the MiniEdit editor, and close the MiniEdit editor by clicking the [] on the top right of
the editor.

Page 13

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

Run

[Jo—

We will now return to the Client machine to process and analyze the newly generated
network traffic.

3 Analyzing collected network traffic

After successfully conducting both a TCP-based and UDP-based DoS attack, we can begin

to analyze the collected network traffic using Zeek and the utility commands
to display the capture traffic.

3.1 Analyzing TCP-based traffic

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Miniedit

| —
>

XTermimel

Step 2. Navigate to the TCP-Traffic directory to find the tcptraffic.pcap file.
cd Zeek-Labs/TCP-Traffic/
kd zeek@admin: ~/Zeek-Labs/TCP-Traffic P

File Edit Tabs Help
zeek@admin:~$ lcd Zeek-Labs/TCP-Traffic/

zeek@admin:~/Zeek-Labs/TCP-Traffics |

Step 3. View the file contents of the TCP-Traffic directory to ensure that the
teptraffic.pcap file was successfully saved.

1s

Page 14

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

[zeek@admin: ~/Zeek-Labs/TCP-Traffic =g
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffics [ls
tcptraffic.pcap

zeek@admin:~/Zeek-Labs/TCP-Traffics l

Step 4. Use the following Zeek command to process the packet capture file.
zeek —-C -r tcptraffic.pcap
] zeek@admin: ~/Zeek-Labs/TCP-Traffic - +

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |zeek -C -r tcptraffic.pcap

zeek@admin:~/Zeek-Labs/TCP-Traffics |}

Step 5. List the generated Zeek log files.
1s

ed zeek@admin: ~/Zeek-Labs/TCP-Traffic - +
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffics$!ls
conn.log packet filter.log tcptraffic.pcap

zeek@admin:~/Zeek-Labs/TCP-Traffics$ I

3.1.1 TCP Example Query 1

Example 1: Show the source IP addresses that generated the most network traffic,
organized in descending order.

zeek-cut id.resp p < conn.log | sort | unig -c | sort -rn | head -n 10
kd zeek@admin: ~/Zeek-Labs/TCP-Traffic T

File Edit Tabs Help

zeek@admin;~/Zeek-Labs/TCP-Traffics |zeek-cut id.resp h < conn.log | sort | uni
q -c | sort -rn | head -n 10

870871 10.0.0.2

8 ffe2::2
zeek@admin:~/Zeek-Labs/TCP-Traffics I

The zeek2 virtual machine received 870,871 TCP packets. This command, or a similar
one, can be useful in real-world environments to detect vulnerable hosts within a
network — allowing for the process of securing and mitigating possible threats.

3.1.2 TCP Example Query 2

Example 1: Show the destination ports that received the most traffic, organized in
descending order.

Page 15

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

zeek-cut id.resp p < conn.log | sort | unig -c | sort -rn | head -n 10
ke zeek@admin: ~/Zeek-Labs/TCP-Traffic e
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |zeek-cut id.resp p < conn.log | sort | uni
0 -c | sort -rn | head -n 16

870871 80
8 134
zeek@admin:~/Zeek-Labs/TCP-Traffics [

We can see that 870,871 packets were received by the zeek2 virtual machine on port 80,
which is the port we specified for the zeek1 virtual machine to target. Additional ports
may be discovered during processing, slightly variable due to LOIC attempting to establish
connections; however, it is clear the most targeted port is the one we specified in the DoS
attack.

3.2 Analyzing UDP-based traffic
Step 1. Navigate to the UDP-Traffic directory to find the udptraffic.pcap file.
cd Zeek-Labs/UDP-Traffic/
(] zeek@admin: ~/Zeek-Labs/UDP-Traffic - +

File Edit Tabs Help
zeek@admin:~$ cd Zeek-Labs/UDP-Traffic/

zeek@admin:~/Zeek-Labs/UDP-Traffics Jj

Step 3. View the file contents of the TCP-Traffic directory to ensure that the
udptraffic.pcap file was successfully saved.

1s

[zeek@admin: ~/Zeek-Labs/UDP-Traffic e

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/UDP-Traffics |ls

udptraffic.pcap
zeek@admin:~/Zeek-Labs/UDP-Traffics I

Step 4. Use the following Zeek command to process the packet capture file.
zeek —-C -r udptraffic.pcap
[zeek@admin: ~/Zeek-Labs/UDP-Traffic e

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/UDP-Traffics$ |zeek -C -r udptraffic.pcap

zeek@admin:~/Zeek-Labs/UDP-Traffics Jj

Step 5. List the generated Zeek log files.
Page 16

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

1s

kd zeek@admin: ~/Zeek-Labs/UDP-Traffic - +
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/UDP-Traffics$ [ls

conn.log packet filter.log wudptraffic.pcap

zeek@admin:~/Zeek-Labs/UDP-Tr

3.2.1 UDP Example Query 1
Example 1: Show the list of ports that received any amount of network traffic.

Step 1. Navigate to the lab workspace directory and enter the UDP-Traffic directory.

cd $ZEEK_LABS/UDP-Traffic

admin@bro2: ~/Zeek-Labs-Workspace /UDP-Traffic

File Edit View Search Terminal Help

admin@bro2:~/Zeek-Labs-Workspace/TCP-Traffic$ Ed SZEEK_LABS/UDP-Traffic
admin@bro2:~/Zeek-Labs-Workspace/UDF ~afficS B

Step 2. Process the udptraffic.pcap packet capture file using Zeek. The [-r| option indicates
that Zeek will be reading from an offline pcap file, and the [-dis used to disable checksum
verification.

zeek -C -r udptraffic.pcap

admin@bro2: ~/Zeek-Labs-Workspace /JUDP-Traffic

File Edit View Search Terminal Help
admin@bro2:~/Zeel t orkspa

= e fletnian s raffic$ jzeek -C -r udptraffic.pcap
admin@bro2:~/Z¢ - -Hork e/ FFLCS B

Step 3. Show the list of ports that received network traffic.

cat conn.log | zeek-cut id.resp p

Page 17

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

zeek@admin: ~/Zeek-Labs/UDP-Traffic - +
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/UDP-Traffic$ [cat conn.log | zeek-cut id.resp p

zeek@admin:~/Zeek-Labs/UDP-Traffics |J

We can see that despite the large number of packets collected, very few were recorded
by Zeek’s event-based engine. We specified port 20 as the targeted port during our DoS
attack; however, the number of identified packets is significantly lower than expected.

The primary cause of the decreased packet count is due to the number of UDP packets
being dropped. Primarily due to firewalls, UDP packets may be traced on the interface,
but may not reach the target destination. Furthermore, the default Zeek customization is
primarily focused on TCP traffic, and is not designed to handle UDP traffic in such an in-
depth maner, requiring additional scripts and policies that will be introduced in later labs.

3.3 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended

to hold the key while typing rather than using the key.

cd $ZEEK INSTALL/bin && sudo ./zeekctl stop

Page 18

Lab 5: Generating, Capturing and Analyzing DoS and DDoS-centric Network Traffic

kd zeek@admin: /usr/local/zeek/bin - + X

File Edit Tabs Help
zeek@admin:~$ |cd $ZEEK INSTALL/bin && sudo ./zeekctl stop
[sudo] password Tor zZeek:

stopping zeek ...
zeek@admin: /usr/local/zeek/bins |

Concluding this lab, we have introduced DoS and DDoS events, as well as generated and
captured DoS traffic in the lab workspace environment. Networks require some form of
denial-of-service mitigation or prevention tools since attacks can devastate unsecured
networks.

References

1. Lemon, Jonathan, “Resisting SYN flood DoS attacks with a SYN cache,” In BSDCon,
vol. 2002, pp. 89-97. 2002.

2. Junior, R.B., & Kumar, S. (2014), “Apple’s lion vs microsoft’s windows 7: comparing
built-In protection against ICMP flood attacks,” Journal of information security,
5(03), 123.

3. Kdihrer, M., Hupperich, T., Rossow, C., & Holz, T. (2014). “Exit from hell? reducing
the impact of amplification DDoS attacks,”. In 23rd {USENIX} Security symposium
({USENIX} Security 14) (pp. 111-125).

4. Fachkha, Claude, Elias Bou-Harb, and Mourad Debbabi. "Fingerprinting internet
DNS amplification DDoS activities." 2014 6th International Conference on New
Technologies, Mobility and Security (NTMS). |IEEE, 2014.

5. Fachkha, Claude, Elias Bou-Harb, and Mourad Debbabi. "Towards a forecasting
model for distributed denial of service activities." 2013 IEEE 12th International
Symposium on Network Computing and Applications. |EEE, 2013.

Page 19

UTSA.

The University of Texas at San Antonio™
The Cyber Center for Security and Analytics

ZEEK INSTRUSION DETECTION SERIES

Lab 6: Introduction to Zeek Scripting

Document Version: 03-13-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 6: Introduction to Zeek Scripting

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
[IE2] o 38 o o Yo] [o =4 V2 PP UPPRRUPPRPR 3
(1Y Y=Y T = PP PUPPRRUPTPPR 3
(I Y o o - o [4= T TSP 4
1 Introduction to scripting With Zeekccoovouiiiiiiiiiii i 4
O R 4 T ol T o] A =1V T o USRI 4
1.2 Zeek Module WOIKSPACEccccviiiiiiiiiieieteee ettt e e st e e e saaee s 5
I T 4 -1 (o < A Y- | o PP 5
2 Log file analysis USING ZEEK SCrIPES..ciiiiuririiriiiieeeriiiee et e e e e e 6
2.1 Starting a new instance of ZeeKccuuevieciiii i 6
2.2 Executing @ UDP ZeeK SCriPt....uiieiieeicciiieieee ettt e e e eecrrrre e e e e e e e snrraeeeee e 7
2.3 Executing @ TCP Zeek SCriPt....uuiiiiiieiciiiieeee e e e e rraee e e e 8
3 Modifying Zeek 108 STrE@aMS......uuiiiii e 10
3.1 Renaming the conn.log Streamccccuviiiiiei i 10
3.2 Updating the conn.Iog Streamccccuiiiiiiee e 12
3.3 Closing the current instance of ZeeK.........ccueeeeiiiieeicciiee e, 13
REFEIENCES ...ttt et e e sttt e e s st e e s s abbee e e sareeeesennreeesanns 14

Page 2

Lab 6: Introduction to Zeek Scripting

Overview
This lab covers Zeek’s scripting language. It introduces the major keywords and
components required in a Zeek script. The lab then uses these scripts to analyze processed
log files.
Objectives
By the end of this lab, students should be able to:

1. Develop scripts using Zeek’s scripting language.

2. Analyze processed log files using Zeek scripts.

3. Modify log streams for creating additional events and notices.

Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the Client machine for
offline Zeek script development and offline packet capture processing and analysis.

S nd

Mininet Emulated Network Hardware Network

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Table 2. Shell variables and their corresponding absolute paths.
Page 3

Lab 6: Introduction to Zeek Scripting

Variable Name Absolute Path
$ZEEK INSTALL lusr/local/zeek
$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap
This lab is organized as follows:

1. Section 1: Introduction to scripting with Zeek.
2. Section 2: Log file analysis using Zeek scripts.
3. Section 3: Modifying Zeek log streams.

1 Introduction to scripting with Zeek
Zeek includes its own event-driven scripting language which provides the primary means
for an organization to extend and customize Zeek’s functionality. By modifying Zeek’s log

streams, a more in-depth analysis can be performed on network events.

Since Zeek’s scripting language is event-driven, we define which events we need Zeek to
respond to when encountered during network traffic analysis.

1.1 Zeek script events

The script below shows events that will be explored during this lab. When developing a
Zeek script, the script’s functionalities are wrapped within respective events.

1~ event zeek_init(){

2 /* code */
3}

4~ event zeek done(){
5 /* code */

6 }

7~ event tcp_packet(){
8 /* code */

9 |}

10 ~ event udp_request(){
11 /* code */
12}

13 v event udp_reply(){
14 /* code */
15}

. event: activated when Zeek is first initialized.

o event: activated before Zeek is terminated.
. event: activated when a packet containing a TCP header is processed.

Page 4

Lab 6: Introduction to Zeek Scripting

o event: activated when a packet containing a UDP request header is
processed.

. event: activated when a packet containing a UDP reply header is
processed.

Additional events and their required parameters are outlined and explained in Zeek’s
official documentation. To access the following link, users must have access to an external
computer connected to the Internet, because the Zeek Lab topology does not have an
active Internet connection.

https://docs.zeek.org/en/current/examples/scripting/

1.2 Zeek module workspace

The script below uses the keyword which assigns the script to a namespace. Codes
from other scripts can be accessed by including a matching module. The keyword
is used to export the code entered in its block with the module workspace.

1 module ZeekScript;
2

3~ export {

4 /* Append a new Log stream */

5 /* Define a new data type to format new Log stream */
6 1

lmodule zeekScript| changes the module workspace to ZeekScript.
block: code entered here will be exported with the module workspace.

Exporting code with a module workspace allows more advanced scripts to be built on top
of other scripts.

1.3 Zeek log streams

The script below shows the log stream functionality. When developing a Zeek script, all
processed outputs will be sent to a specific log stream. These log streams will contain the
format of the corresponding log file output. We can create new streams, modify original
streams or append additional parameters to existing streams.

1~ event connection established(){

2 Log::create_stream(LOG, format, path);
3 Log: :write(Logstream, data);
4 3

[connection established event: activated when a host makes a connection to a
receiver.

[Log::create streanl: creates a new log stream, will a name, format structure and
path.

Page 5

Lab 6: Introduction to Zeek Scripting

e [Log::write]: writes included data to the specified log stream.

Additional log stream commands are explained in detail in Zeek’s official documentation.

2 Log file analysis using Zeek scripts

With Zeek’s event-driven scripting language, we can create specific event-based filters to
be applied during packet capture analysis. This section shows example scripts for network
analysis.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

FRGLIGLVE & Content | [#® Status | O Client =

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Miniedit

-
>

LXTermimeal

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes tool to start a new
instance. To type capital letters, it is recommended to hold the key while typing

rather than using the key. When prompted for a password, type and hit
Ented

cd $ZEEK INSTALL/bin && sudo ./zeekctl start

kd zeek@admin: /usr/local/zeek/bin - + %
File Edit Tabs Help

zeek@admin:~$ |cd $ZEEK INSTALL/bin && sudo ./zeekctl start
[sudo] password Tor zeek:

starting z _—
zeek@admin: /usr/1

Page 6

Lab 6: Introduction to Zeek Scripting

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.
2.2 Executing a UDP Zeek script

This lab series includes a Lab-Scripts directory, containing all of the relevant Zeek scripts
that will be used during the labs.

Step 1. Navigate to the Lab-Scripts directory.

cd Zeek-Labs/Lab-Scripts/

zeek@admin: ~/Zeek-Labs/Lab-Scripts -+ X

File Edit Tabs Help
zeek@admin:~$ |cd Zeek-Labs/Lab-Scripts/

zeek@admin:~/Zeek-Labs/Lab-Scriptss$ |
Within this directory, all lab scripts can be accessed, viewed, and modified.

Step 2. Display the content of the lab6_sec2-2.zeek Zeek script using [n1] command.
shows the line numbers in the file.

nl lab6 sec2-2.zeek

zeek@admin: ~/Zeek-Labs/Lab-Scripts Sl ¢

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/Lab-Scripts$ [nl lab6 sec2-2.zeek
event udp request(u: connection){
print fmt("A UDP Request was found: %s", uidresp h);

}

event udp reply(u: connection){
print fmt("A UDP Reply was found: %s", uidresp h);

}
zeek@admin:~/Zeek-Labs/Lab-Scriptss |

The script is explained as follows. Each number represents the respective line number:

1. Event is activated when a packet containing a UDP Request header
is processed. The related packet header information is stored in the connection

data structure passed to the function through the [u] variable.

2. Prints the specified string. [5 5] is a format specifier for strings with [fmt]. It indicates
the position of the corresponding variable’s information in the string.
retrieves the destination IP address from the UDP packet.

3. End of the event.
4. Event activated when a packet containing a UDP Reply header is
processed. The related packet header information is stored in the connection data

structure passed to the function through the [u variable.

Page 7

Lab 6: Introduction to Zeek Scripting

5. Prints the specified string. retrieves the destination IP address from
the UDP packet.

6. End of the event.

Step 3. Navigate to the UDP-Traffic workspace directory.

cd Zeek-Labs/UDP-Traffic/

zeek@admin: ~/Zeek-Labs/UDP-Traffic kX
File Edit Tabs Help
zeek@admin:~$ |cd Zeek-Labs/UDP-Traffic/

zeek@admin:~/Zeek-Labs/UDP-Traffics |}

Step 4. Process a packet capture file using the Zeek script. It is possible to use the
key to autocomplete the longer paths.

zeek -C -r ../Sample-PCAP/smallFlows.pcap ../Lab-Scripts/lab6 sec2-2.zeek

zeek@admin: ~/Zeek-Labs/UDP-Traffic ey

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/UDP-Traffic$ |zeek -C -r ../Sample-PCAP/smallFlows.pcap
/Lab-Scripts/lab6 sec2-2.zeek

UDP Request was found: 239.255.255.250
UDP Request was found: 239.255.255.250
UDP Request was found: 239.255.255.250
UDP Request was found: 239.255.255.250
UDP Request was found: 239.255.255.250
UDP Request was found: 239.255.255.250
UDP Request was found: 255.255.255.255
UDP Request was found: 224.0.0.252

UDP Request was found: 224.0.0.252

UDP Request was found: 71.224.25.112
UDP Request was found: 255.255.255.255
UDP Reply was found: 172.16.0.1

UDP Request was found: 224.0.0.252

UDP Reply was found: 71.224.25.112

UDP Request was found: 71.224.25.112
UDP Request was found: 224.0.0.252

UDP Reply was found: 71.224.25.112

UDP Request was found: 156.26.54.15
UDP Reply was found: 156.26.54.15

UDP Request was found: 178.144.253.171
UDP Request was found: 172.16.255.255

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The packet capture file is processed into output log files. Since we did not create a new
log stream, the script’s output is displayed on the standard output (the screen). When
fudp request] or udp reply] events are triggered, the resulting packet information is
displayed.

2.3 Executing a TCP Zeek script

Step 1. Display the content of the lab6_sec2-3.zeek Zeek script using [n1] command.
shows the line numbers in the file. It is possible to use the key to autocomplete the
longer paths.

Page 8

Lab 6: Introduction to Zeek Scripting

nl ../Lab-Scripts/lab6 sec2-3.zeek

zeek@admin: ~/Zeek-Labs/UDP-Traffic =k 3¢
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/UDP-Traffic$ [nl ../Lab-Scripts/lab6 sec2-3.zeek
1 event tcp packet(c: connection, is orig: bool, flags: string, seq: count
, ack: count, len: count, payload: string) {

2 print fmt("Destination Port #: %s", cidresp p);

3¢, 7
zeek@admin:~/Zeek-Labs/UDP-Traffics I

The script is explained as follows. Each number represents the respective line number:

1. Event is activated when a packet containing a TCP header is
processed. The related packet header information is stored in the connection data

structure passed to the function through the [ul variable. Additional TCP-related
information is passed in a similar manner.

2. Prints the specified string. [z 5| is a format specifier for strings with [Emt]. It indicates
the position of the corresponding variable’s information in the string.
retrieves the destination IP address from the TCP packet.

3. Endofthe event.

Step 2. Process a packet capture file using the Zeek script. It is possible to use the
key to autocomplete the longer paths.

zeek -C -r ../Sample-PCAP/smallFlows.pcap ../Lab-Scripts/lab6 sec2-3.zeek

zeek@admin: ~/Zeek-Labs/UDP-Traffic - + X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/UDP-Traffic$ |zeek -C -r ../Sample-PCAP/smallFlows.pcap

/Lab-Scripts/lab6 sec2-3.zeek

The following output is produced:

kd zeek@admin: ~/Zeek-Labs/UDP-Traffic - 4+ X
File Edit Tabs Help

Destination
Destination
Destination
Destination
Destination
Destination
Destination

8443/tcp
8443/tcp
8443/tcp
8443/tcp
443/tcp
8443/tcp
8443/tcp
8443/tcp
80/tcp
80/tcp
80/tcp
80/tcp
5480/tcp
5480/tcp

Jestination
Jestination
Destination
Destination
Destination
Destination
Destination

HHEHHEHEHEHE SR

Page 9

Lab 6: Introduction to Zeek Scripting

When the event is triggered, the resulting packet information is displayed.
Highlighted is an example of Port 8443 and Port 80 traffic.

These examples highlight Zeek’s capabilities of tracking specific traffic. For instance, a
script can be designed to collect all Port 80 traffic daily and to export it to a log file. In the
following section we introduce log streams.

3 Modifying Zeek log streams

Zeek log streams determine where an event’s output will be returned, as well as how it is
formatted. It is possible to append new streams, modify default streams, or remove
streams.

Before continuing, we must clear the lab workspace directory.

Step 1. Display the contents of the lab_clean.sh shell script using [n1] command.

nl ../Lab-Scripts/lab clean.sh

%] zeek@admin: ~/Zeek-Labs/UDP-Traffic - 4+ X

File Edit Tabs Help

zeek@admin:~/Zeek-Labs/UDP-Traffic$ |nl ../Lab-Scripts/lab clean.sh
1 sudo rm conn.log dhcp.log dns.log dpd.log notice.log Tiles.log packet fi

lter.log http.log snmp.log ssl.log weird.log x509.1og > /dev/null 2>&1
zeek@admin:~/Zeek-Labs/UDP-Traffics]

The shell script removes a list of files expected to be generated by Zeek’s processing using
default log streams. Executing this shell script will clear the directory of log files generated
previously. Output messages from running this script as nore displayed in the Terminal,
instead the code > /dev/null 2>s1]will set errors and notices to be sent to a null folder,
effectively eliminating them.

Step 2. Execute the lab_clean.sh shell script. It is possible to use the key to
autocomplete the longer paths. If required, type as the password.

./../Lab-Scripts/lab clean.sh

b zeek@admin: ~/Zeek-Labs/UDP-Traffic -+ x

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/UDP-Traffic$ |./../Lab-Scripts/lab clean.sh
[sudo] password for zeek:

zeek@admin:~/Zeek-Labs/UDP-Traffics$ I

With the workspace directory cleared, we can move to the next section.

3.1 Renaming the conn.log stream

Page 10

Lab 6: Introduction to Zeek Scripting

In this example, we will rename the conn.log file to be UpdatedConn.log. Renaming log
streams can help with files organization, especially if a log file has been modified from its
original functionality.

Step 1: Display the contents of the lab6_sec3-1.zeek Zeek script using the [n1] command.
It is possible to use the key to autocomplete the longer paths.

nl ../Lab-Scripts/lab6 sec3-1.zeek

kd zeek@admin: ~/Zeek-Labs/UDP-Traffic o
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/UDP-Traffic$ |nl ../Lab-Scripts/lab6 sec3-1.zeek
1 event zeek init()({

local update = Log::get filter(Conn::L0G, "default");
updatespath = "UpdatedConn";

Log::add filter(Conn::LOG, update);

6 }
zeek@admin:~/Zeek-Labs/UDP-Traffics$ |j

The script is explained as follows. Each number represents the respective line number:

Event is activated when Zeek is first initialized.

Creates a local variable initialized to the default filter.
Sets the variable’s path to UpdatedConn.log.

Appends the new filter to the active log streams.

End of the event.

oV kweE

Step 2. Process a packet capture file using the Zeek script. It is possible to use the
key to autocomplete the longer paths.

zeek —-C -r ../Sample-PCAP/smallFlows.pcap ../Lab-Scripts/lab6 sec3-1.zeek

kdd zeek@admin: ~/Zeek-Labs/UDP-Traffic - + X

File Edit Tabs Help
s/UDP-Traffics |[zeek -C -r ../Sample-PCAP/smallFlows.pcap ..
/Lab-Script ab6 -1.zeek

zeek@admin:~/Zeek-Labs/UDP-Traffic$ I

Step 3. List the generated log files in the current directory.
1s

zeek@admin: ~/Zeek-Labs/UDP-Traffic = 4 X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/UDP-Traffic$ |ls
hcp.log dpd.log http.log snmp.log |UpdatedConn.log| x509.1log

dns.log files.log packet filter.log ssl.log welrd. log
zeek@admin:~/Zeek-Labs/UDP-Traffics |j

Page 11

Lab 6: Introduction to Zeek Scripting

Note the UpdatedConn.log, highlighted by the orange box. Since we did not change any
formatting, it is an exact replica of the original conn.log file.

3.2 Updating the conn.log stream

In this example, we modify the conn.log file to generate an additional conn-http.log file.
This modification will split the conn.log contents between two log files, which is useful
when organizing specific events — such as splitting UDP traffic from TCP traffic, or reply
messages from requests.

Step 1. Execute the included lab_clean.sh shell script. If required, type as the
password. It is possible to use the key to autocomplete the longer paths.

./../Lab-Scripts/lab clean.sh

Ed zeek@admin: ~/Zeek-Labs/UDP-Traffic - + X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/UDP-Traffic$ |./../Lab-Scripts/lab _clean.sh
[sudo] password for zeek:

zeek@admin:~/Zeek-Labs/UDP-Traffics []

Step 2. Display the contents of lab6_sec3-1.zeek Zeek script using the [n1] command.

nl ../Lab-Scripts/lab6 sec3-2.zeek

(%] zeek@admin: ~/Zeek-Labs/UDP-Traffic =3¢
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/UDP-Traffic$ nl ../Lab-Scripts/lab6 sec3-2.zeek
1 function http only(rec: Conn::Info) : bool {

return rec?s$service && recs$service == "http";
}
event zeek init()({
6 local filter: Log::Filter = [$name="http-only", $path="conn-http

", $pred=http only];
7 Log::add filter(Conn::L0G, filter);

8 1}
zeek@admin:~/Zeek-Labs/UDP-Traffics |

The script is explained as follows. Each number represents the respective line number:

Boolean function that has the parameter [rec|, an instance of Conn::Info.
Returns True if the service stored in is the HTTP protocol.
End of the function.

Event is activated when Zeek is first initialized.

Creates a local filter with http related naming and pathing.

oukweE

Page 12

Lab 6: Introduction to Zeek Scripting

7. Appends the new filter to the active log streams.

8. End of the event.

Step 2: Process a packet capture file using the Zeek script. It is possible to use the
key to autocomplete the longer paths.

zeek -C -r ../Sample-PCAP/ smallFlows.pcap ../Lab-Scripts/lab6 sec3-2.zeek
kdd zeek@admin: ~/Zeek-Labs/UDP-Traffic SR

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/UDP-Traffics |zeek -C -r ../Sample-PCAP/smallFlows.pcap ..

/Lab-Script abb se 2.zeek

zeek@admin: Zeek-Labs/UDP-Traffics I

Step 3: List the the generated log files in the current directory.

1s

d zeek@admin: ~/Zeek-Labs/UDP-Traffic - + X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/UDP-Traffics$ [ls

onn-http.logl dns.log http.log ssl.log x509.10g
onn.log dpd.log packet filter.log UpdatedConn.log

d : files.log snmp.log weird.log
zeek@admin:~/Zeek-Labs/UDP-Traffics |

Note the conn-http.log file in the first column. This file will have the same formatting as
the conn.log file; however, it will only contain HTTP traffic. These files are highlighted by
the orange box in the proceeding image.

3.3 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended

to hold the key while typing rather than using the key.
cd $ZEEK INSTALL/bin && sudo ./zeekctl stop

[zeek@admin: /usr/local/zeek/bin - + X

File Edit Tabs Help
eekctl stop
rd Tor z

r/local/zeek/bins J]

Page 13

Lab 6: Introduction to Zeek Scripting

Concluding this lab, we have introduced the Zeek scripting language. Using event-driven
functionality, Zeek scripts can be used to customize the output log streams. Besides
renaming existing files, you can also split the files to generate a more protocol or event-
specific log file. Zeek scripts are the backbone of creating an organized workspace for
storing and parsing generated log files.

References

1. “Logging framework”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/frameworks/logging.html#streams

2. “Monitoring HTTP traffic”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/examples/httpmonitor/

3. “Writing scripts”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/examples/scripting/#the-event-queue-and-
event-handlers.

Page 14

UTSA.

The University of Texas at San Antonio™
The Cyber Center for Security and Analytics

ZEEK INSTRUSION DETECTION SERIES

Lab 7: Introduction to Zeek Signatures

Document Version: 03-13-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 7: Introduction to Zeek Signatures

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
[IE2] o 38 o o Yo] [o =4 V2 PP UPPRRUPPRPR 3
(1Y Y=Y T = PP PUPPRRUPTPPR 3
(I Y o o - o [4= T TSP 4
1 Introduction to Zeek SIgNAtUIES......coovuiiiiiiiiiiie ittt s eveee e 4
1.1 Zeek Signature fOrmat ..o 5
1.2 Creating and using Zeek SIZNAtUIEScccuieeiriiieei it 5
1.3 Zeek’s default signature frameworkccccceeveiviiiiniiiee e 6
2 Log file analysis using Zeek SIgNatUures........cccuviiiiiiiiei i 8
2.1 Starting a new instance of ZeeKccuuevieciiii i 8
2.2 Viewing a premade Zeek signature file......ccccoooiiieiei e, 9
2.3 Executing the premade Zeek signature file........ccovvveeeeiiiecccee e, 10
3 Executing Zeek signature matching for network traffic analysis..........cccccoeeeennenn. 12
3.1 Modifying the premade Zeek signature file..........ccceeeieeiieiiee e, 12
3.2 Executing the updated Zeek signature file........ccoceeeeeeieiiiciiiee e, 13
3.3 Closing the current instance of ZeeK.........ccueeeeiiiieeicciiee e, 15
REFEIENCES ...ttt et e e sttt e e s st e e s s abbee e e sareeeesennreeesanns 16

Page 2

Lab 7: Introduction to Zeek Signatures

Overview

This lab covers Zeek’s signature framework language. It introduces what network traffic
signatures are and how they are matched to identify specific network events. This lab
then reviews premade signature files and provides example usage for analysis.

Objectives
By the end of this lab, students should be able to:

1. Develop signatures using Zeek’s signature framework.
Analyze processed log files using Zeek signatures.

3. Modify log streams for creating additional events and notices based on
signatures.

N

Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the Client machine for
offline Zeek script development and offline packet capture processing and analysis.

Mininet Emulated Network Hardware Network
Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Page 3

Lab 7: Introduction to Zeek Signatures

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path
$ZEEK INSTALL lusr/local/zeek
$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap
This lab is organized as follows:

1. Section 1: Introduction to Zeek signatures.
2. Section 2: Log file analysis using Zeek signatures.
3. Section 3: Modifying Zeek signatures for advanced pattern matching.

1 Introduction to Zeek signatures

Following the introduction of developing and implementing basic Zeek scripts, we can
now begin generating Zeek signatures. Introduced in the beginning of this lab series, the
Zeek event-based engine is the primary architecture for running Zeek as an efficient
intrusion detection system. The Zeek event-based engine predominantly utilizes the
extensive scripting language to develop policies in order to define the steps and
notifications necessary to handle anomalies and exceptions.

However, oftentimes it is simpler to create a predetermined string, known as a signature,
and parse packet capture files for the specific signature. Because signatures are used for
low-level pattern matching, the Zeek signature framework does not provide the same in-
depth functionality as the Zeek scripting language for its event-based engine. Zeek
signatures are used to quickly aggregate related network packets through signature
matching before analysts can perform further, in-depth analysis on such traffic.

It is important to understand and be familiar with signatures due to their widespread
usage across many related Intrusion Detection Systems and application-level firewalls.
Separate from Zeek, many alternative IDS, such as the popular Snort, rely on signature-
based pattern matching for anomaly and malicious event detection. Therefore, in
operational cybersecurity environments that analyze network traffic to mitigate and
prevent malicious events, understanding Zeek’s signature framework adds an additional
tool for developing a comprehensive IDS.

This lab will begin by introducing Zeek signatures, detailing their unique file type, how to

load them into the Zeek event-based engine, and include a number of examples of
leveraging signature matching for log file analysis.

Page 4

Lab 7: Introduction to Zeek Signatures

1.1 Zeek signature format

The signature below depicts a basic network traffic signature. Depending on their usage,
signatures can either include stricter requirements, or be more lax to encompass a larger
portion of the processed data.

1~ signature HTTP-sig {
2 ip-proto == tcp
3 dst-port ==

4 payload SPOST/S
5
B

el rn mAeT
event "Found POS

This line defines a new signature object, with the name HTTP-sig.

Defines the desired match’s transport protocol to be TCP.

Defines the desired match’s destination port to be 80.

Defines the desired match’s payload to contain the regular expression equivalent to
‘POST’.

5. Defines an event if the match is found. Currently, the event will post a “HTTP Packet
Found!” message; however, these events can be developed with a more complex
functionality if the need arises.

PwnPE

This signature can be loaded into the Zeek signature framework during network traffic
analysis, in which Zeek will attempt to match packets with the signature’s details. While
each individual packet can only be matched one time, multiple signatures can be

Additional signatures and their included variables are outlined and explained in Zeek’s
official documentation. To access the following link, users must have access to an external
computer connected to the Internet, because the Zeek Lab topology does not have an

active Internet connection.

https://docs.zeek.org/en/current/frameworks/signatures.html

1.2 Creating and using Zeek signatures
Similar to Zeek’s policy scripting framework, Zeek signatures are saved in separate files
denoted by the file extension. There are three ways to initialize Zeek for network

traffic analysis while leveraging the Zeek signature framework:

1. When initializing Zeek from the terminal, include the additional [-s| option:

Izeek -r <pcap file location> -s <signature file locationﬂ

e [zeekl: command to invoke Zeek.

e [-1: option signifies to Zeek that it will be reading from an offline file.
e [pcap file location>]: indicates the pcap file location.

e [-s|: option signifies to Zeek that the next file contains signatures.

Page 5

Lab 7: Introduction to Zeek Signatures

e [script location>] indicates the script location.

2. When creating a Zeek policy script, include the directive:
@load-sigs
module ZeekScript;

export{

1
2
3
4
5 -
6 /* Append and define new log stream parameters */
7}

3. When creating a Zeek policy script, extend the Zeek global [signature files
variable by appending the += operator followed by the signature file:

1 @load-sigs

2

3 module ZeekScript;
A

5

redef signature files += "signature file path.sig"

1.3 Zeek’s default signature framework

This section introduces the default Zeek signature file that is compiled and included after
Zeek has been installed.

While this default Zeek script includes scan-based detection, it will not correctly identify
every unique anomaly that may be encountered. However, it does provide a
comprehensive starter code that can be reviewed and customized to understand the Zeek
signature framework.

The default Zeek signature file is named main.zeek. More information on this script can
be found in Zeek’s documentation pages. To access the following link, users must have
access to an external computer connected to the Internet, because the Zeek Lab topology
does not have an active Internet connection.

https://docs.zeek.org/en/current/scripts/base/frameworks/signatures/main.zeek.h
tml

The file has been copied into the Zeek lab workspace directory and renamed to
ZeekSignatureFramework.zeek for ease of access and name-reference clarity.

Page 6

Lab 7: Introduction to Zeek Signatures

1~ type Action: enum {

@O0~ wW

1

21
22
23
24
25
26

Ignore this signature completely (even for scan detectior

Don't write to the signatures logging stream.

SIG_IGNORE,

Process through the various aggregate technigues, but don't
report individually and don't write to the signatures logging
stream.

SIG QUIET,

Generate a notice.

SIG_LOG,

The same as :zeek:enum: Signatures::S5IG_LOG but ignore fo
aggregate/scan processing

SIG_FILE_BUT_NO_SCAN,

Generate a notice and set it to be alarmed upon.

SIG _ALARM,

Alarm once per originator.

SIG_ALARM PER_ORIG,

Alarm once and then never again.

SIG_ALARM ONCE,

Count signatures per responder host and alarm with the

:zeek:enum: Signatures::Count_Signature”™ notice if a threshold
defined by :zeek:id: Signatures::count_thresholds™ is reached

SIG_COUNT_PER_RESP,
Don't alarm, but generate per-orig summary.
5IG_SUMMARY,

s

The figure above shows the options for signature match events within the
ZeekSignatureFramework.zeek file. The options are explained as follows. Each number
represents the respective line number:

4.[s1G_1GNORE] if a signature is matched, do not write to the logging stream.
8.[sIG_QUIET]: if a signature is matched, process the included events but do not
write to the logging stream.

10.[sIG_LOgG]: if a signature is matched, generate a notice.

13.[SIG FILE BUT NO SCAN| if a signature is matched and does not meet scan
thresholds, write to the logging stream.

15.[s1G_ALARM; if a signature is matched, generate a notice and set an alarm.
17.]s1G_ALARM PER ORIG if a signature is matched, generate a notice and set an
alarm once per host that triggered the match.

19.[s1G_ALARM ONCE] if a signature is matched, generate a notice and set an alarm
only one time, no matter the number of matches.

23.[sIG COUNT PER RESE: if a signature is matched, create a running count per
responder host to compare against developed thresholds to identify and exclude
scan traffic.

23. [SIG_SUMMARY]: generate a summary of all matched signatures based on the
unique hosts that triggered a signature match.

Additional options and signature-specific events can be created using the Zeek scripting
framework. Furthermore, Lab 8 of this series will enumerate upon the aforementioned
scan thresholds and how Zeek determines if a host is probing a network.

Page 7

Lab 7: Introduction to Zeek Signatures

1~ type Info: record {

The network time at which a signature matching type of event
to be logged has occurred.

ts: time &log;

A unique identifier of the connection which triggered the
signature match event.

uid: string &log &optional;

The host which triggered the signature match event.
src_addr: addr &log &optional;

1 ## The host port on which the signature-matching activity

11 ## occurred.

© W00V W N

12 src_port: port &log &optional;

13 ## The destination host which was sent the payload that

14 ## triggered the signature match.

15 dst_addr: addr &log &optional;

16 ## The destination host port which was sent the payload that
17 ## triggered the signature match.

18 dst_port: port &log &optional;

19 ## Notice associated with signature event.

20 note: MNotice: :Type &log;

21 ## The name of the signature that matched.

22 sig id: string &log &optional;

23 ## A more descriptive message of the signature-matching event.
24 event_msg: string &log &optional;

25 ## Extracted payload data or extra message.

26 sub_msg: string &log &optional;

27 ## Number of sigs, usually from summary count.

28 sig count: count &log &optional;

29 ## Number of hosts, from a summary count.

3@ host_count: count &log &optional;

31}

The figure above shows the variables that store signature-specific packet information
accessed in the ZeekSignatureFramework.zeek file. These variables can be accessed to
extract the stored information for notifications and warnings. Furthermore, each variable
can be printed to the logging stream, following the Zeek log file format reviewed in
previous labs. Each variable is explained by its proceeding comments, denoted by the
character.

2 Log file analysis using Zeek signatures

With Zeek’s signature framework, we can create specific pattern-based signature filters
to be applied during packet capture analysis. This section shows example signatures and
their usage for network analysis.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Page 8

Lab 7: Introduction to Zeek Signatures

PRELELVE & Content | |#” Status | O Client =

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Miniedit

[
[5

[XTerminal

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes tool to start a new
instance. To type capital letters, it is recommended to hold the key while typing
rather than using the key. When prompted for a password, type and hit
Entex)

cd $ZEEK INSTALL/bin && sudo ./zeekctl start

bd zeek@admin: /usr/local/zeek/bin - + X

File Edit Tabs Help
zeek@admin:~$ |cd $ZEEK INSTALL/bin && sudo ./zeekctl start
[sudo] password Tor zeek:

starting zeek ...
zeek@admin: /usr/local/zeek/bins |

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Viewing a premade Zeek signature file

Step 1. Navigate to the Lab-Scripts directory.

cd Zeek-Labs/Lab-Scripts/

kd zeek@admin: ~/Zeek-Labs/Lab-Scripts o R

File Edit Tabs Help
zeek@admin:~$ |cd Zeek-Labs/Lab-Scripts/

zeek@admin:~/Zeek-Labs/Lab-Scripts$ |

Step 2: Display the contents of the lab7_sec2-2.sig file using [n1].
nl lab7 sec2-2.sig

Page 9

Lab 7: Introduction to Zeek Signatures

zeek@admin: ~/Zeek-Labs/Lab-Scripts T
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/Lab-Scripts$ |[nl lab7 sec2-2.sig
signature HTTP-POST-sig{
ip-proto == tcp
dst-port == 80
payload /POST/
event "Found HTTP Post"

}

signature HTTP-GET-sig{
ip-proto == tcp
dst-port == 80
payload /GET/
event "Found HTTP Request"”

zeek@admin:~/Zeek-Labs/Lab-Scriptss |

This signature file contains two signatures to be matched during network traffic analysis
and is explained as follows. Each number represents the respective line number:

This line defines a new signature object, with the name HTTP-POST-sig.

Defines the desired match’s transport protocol to be TCP.

Defines the desired match’s destination port to be 80.

Defines the desired match’s payload to contain the regular expression equivalent to
‘POST".

5. Defines an event if the match is found. Currently, the event will post a “Found HTTP
Post” message.

PwnPE

This line defines a new signature object, with the name HTTP-GET-sig.

Defines the desired match’s transport protocol to be TCP.

Defines the desired match’s destination port to be 80.

10. Defines the desired match’s payload to contain the regular expression equivalent to
‘GET'.

11. Defines an event if the match is found. Currently, the event will post a “Found HTTP

Request” message.

0 0 N

2.3 Executing the premade Zeek signature file

Step 1. Navigate to the TCP-Traffic directory.

cd ../TCP-Traffic/

bl zeek@admin: ~/Zeek-Labs/TCP-Traffic -+ X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/Lab-Scripts$ |cd ../TCP-Traffic/

zeek@admin:~/Zeek-Labs/TCP-Traffics |j

Step 2. Process the smallFlows.pcap packet capture file using the signature file lab7_sec2-
2.sig. It is possible to use the key to autocomplete the longer paths.

Page 10

Lab 7: Introduction to Zeek Signatures

zeek -r ../Sample-PCAP/smallFlows.pcap -s ../Lab-Scripts/lab7 sec2-2.sig

ke zeek@admin: ~/Zeek-Labs/TCP-Traffic ST

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |zeek -r ../Sample-PCAP/smallFlows.pcap -s
/Lab-5cripts/lab7 sec2-2.siqg

zeek@admin:~/Zeek-Labs/TCP-Traffics |

Step 3: List the generated log files in the current directory.
1ls

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffics |ls
conn.log dpd.log notice.log snmp.log
files.log packet filter.log ssl.log

g http.log signatures.log weird.log
zeek@admin:~/Zeek-Labs/TCP-Traffics |

A new log file that has not been previously introduced is now displayed: signatures.log.
This log file will contain all signature matches and their corresponding events and notices.

Step 4: View the contents of the signatures.log file using the text editor.

gedit signatures.log

[zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help
zeek@admin:~/Zeek- /TCP-Traffics |gedit signatures.log

(gedit:1766): dbind-WARNING *=*: : Error retrieving accessibility bus
address: org.freedesktop.DBus.Error.ServicelUnknown: The name org.ally.Bus was n

ot provided by any .service files

zeek@admin:~/Zeek-Labs/TCP-Traffics J]

signatures.log

Open~ || [H Save | | = -n &
fseparator \xe9
#set separator ,
#empty field (empty)
#unset_field
#path signatures
#open 2020-03-14-20-13-17
#fields ts uid src_addr src_port dst_addr dst_port note sig id event msg sub_msg
sig count host_count
#types time string addr port addr port enum string string string count count
1295981542.484409 CQisODXT6RApTIFHh 192.168.3.131 57011 72.14.213.138 80 [Signatures::Sensitive Signature HTTP-GET-|
192.168.3.131: [Found HTTP Request [GET _/complete/search?client=chrome&hl=en-US&g=cr HTTP/1.1\x0d\x0aHost:|
clientsl.google.ca\x0d\x@aConnection: keep-alive\x@d\x@aUser-Agent: Mozilla/5.0 (Window... - -
1295981542.727459 C713r43nGTMxJoBpug 192.168.3.131 55950 72.14.213.102 80 Signatures::Sensitive Signature HTTP-GET-
sig 192.168.3.131: Found HTTP Request GET /complete/search?client=chrome&hl=en-US&g=msn HTTP/1.1\x0d\x0aHost:
clientsl.google.ca\x0d\x0aConnection: keep-alive\x0d\x@aUser-Agent: Mozilla/5.0 (Windo... - -
1295981543.182793 C8HaSy3s9Hz4gRWETb 192.168.3.131 55953 65.55.206.209 80 Signatures::Sensitive Signature HTTP-GET-
sig 192.168.3.131: Found HTTP Request GET / HTTP/1.1\x0d\x0aHost: msn.ca\x0d\x0aConnection: keep-alive\x0d\x0aAccept: application/
xml,application/xhtml+xml, text/html;q=0.9,text/plain;q=0.8,image/p. .. - -
1295981543.354015 Ci0CuG4zRGEOBYRRCS 192.168.3.131 55954 65.55.17.37 80 Signatures::Sensitive Signature HTTP-GET-
sig 192.168.3.131: Found HTTP Request GET / HTTP/1.1\x0d\x0aHost: ca.msn.com\x@d\x0aConnection: keep-alive\x@d\x0aAccept:
application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,ima. . -
1295981543.474636 CY51nn32umCReIiRJ6 192.168.3.131 55955 207. 46 148.38 80 Signatures::Sensitive Signature HTTP-GET-
sig 192.168.3.131: Found HTTP Request GET /action/MMN_Homepage HTTP/1.1\x0d\x0aHost: view.atdmt.com\x@d\x0aConnection: keep-
alive\xed\x@aReferer: http://ca.msn.com/\x0d\x0aAccept: '/'\xod\anUSer—Agent Mozil. -
1295981543.474636 - 192.168.3.131 - - Signatures: Multlple Sig Respondels HTTP-GET-sig Found HTTP
Request 192.168.3.131 has triggered signature HTTP-GET-sig on 5 hosts 5
1295981543.528088 CGS8Lp42KSACPYHNC9 192.168.3.131 55956 66.235.139.121 80 Signatures::Sensitive Signature HTTP-GET-
sig 192.168.3.131: Found HTTP Request GET /b/ss/msnportalhomepagecaen/1/H.7- pdv 2/5844959191000087
[AQB]&ndh=1&1=25%2F0%2F2011%2010%3A52%3A23%202%20480&ns=msnportal&pageName=MSN%2 .
1295981543.536159 CGP8riRzMRKNZYHH5 192.168.3.131 55957 65.55.5. 232 80 Slgnatuves :Sensitive Signature HTTP-GET-
sig 192.168.3.131: Found HTTP Request GET /ADSAdClient31.d11?GetSAd=&DPJIS=0&PN=MSFT&PG=CAE9ITX&AP=1389 HTTP/1.1\x0d\x0aHost:

rad.msn.com\x0d\x0aConnection: keep-alive\x@d\x@aReferer: http://ca.msn.

Page 11

Lab 7: Introduction to Zeek Signatures

The file is explained as follows:
e The red box indicates the name of the signature that was matched.
e The orange box indicates the event or message that was included when defining
the signature.
e The blue box indicates the packet payload that was matched against the input
signatures.

Step 6: Clear the contents of the TCP-Traffic directory.

./../Lab-Scripts/lab clean.sh

zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffics |./../Lab-Scripts/lab clean.sh

zeek@admin:~/Zeek-Labs/TCP-Traffics |

3 Executing Zeek signature matching for network traffic analysis

This section modifies the existing signature file to generate additional signature events
and notices. We will be modifying the previous signatures from TCP-based HTTP messages
to UDP-based SNMP and DNS messages.

3.1 Modifying the premade Zeek signature file
Step 1: View the contents of the lab7_sec3-1.sig file using [n1].
nl ../Lab-Scripts/lab7 sec3-1.sig

zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ [nl ../Lab-Scripts/lab7 sec3-1.sig
signature HTTP-POST-sig{
ip-proto == tcp
dst-port == 80
payload /POST/
event "Found HTTP Post"

S

I

signature HTTP-GET-sig{
ip-proto == tcp
dst-port == 80
payload /GET/
event "Found HTTP Request"

12}
zeek@admin:~/Zeek-Labs/TCP-Traffics$ I

Step 2: Open the lab7_sec3-1.sig file with the text editor.

gedit ../Lab-Scripts/lab7 sec3-1.sig

Page 12

Lab 7: Introduction to Zeek Signatures

zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ gedit ../Lab-Scripts/lab7 sec3-1.sig

(gedit:1904): dbind-WARNING **: : Error retrieving accessibility bus
address: org.freedesktop.DBus.Error.ServiceUnknown: The name org.ally.Bus was n
ot provided by any .service files

(gedit:1904): Gtk-WARNING **: : Attempting to read the recently used
resources file at '/home/zeek/.local/share/recently-used.xbel', but the parser
failed: Failed to open file “/home/zeek/.local/share/recently-used.xbel”: Permis

sion denied.
zeek@admin:~/Zeek-Labs/TCP-Traffics Jj

Step 3: Update the lab7_sec3-1.sig file to include the following signatures.

signature SNMP-REQUEST-sig{
ip-proto == udp
dst-port == 161
event “Found SNMP Request”
}
signature SNMP-RESPONSE-sig{
ip-proto == udp
dst-port == 52400
event “Found SNMP Response”
}
signature DNS-REQUEST-sig{
ip-proto == udp
dst-port == 53
event “Found DNS Request”

% g

Open~ = lab7_sec3-1.sig

signature SNMP-REQUEST-sig{
ip-proto == udp
dst-port == 161
event "Found SNMP Request"

}

signature SNMP-RESPONSE-sig{
ip-proto == udp
dst-port == 52400
event "Found M

}

signature DNS-REQUEST-sig{
ip-proto == udp

dst-port == 53
event "Found DNS Request"

3.2 Executing the updated Zeek signature file

Step 1. Process the smallFlows.pcap packet capture file using the signature file lab7_sec3-
1.sig. It is possible to use the key to autocomplete the longer paths.

zeek -r ../Sample-PCAP/smallFlows.pcap -s ../Lab-Scripts/lab7 sec3-1l.sig

Page 13

Lab 7: Introduction to Zeek Signatures

[zeek@admin: ~/Zeek-Labs/TCP-Traffic - + x

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffics$ |zeek -r ../Sample-PCAP/smallFlows.pcap -S

/Lab-Scripts/lab7 -1.sig
zeek@admin:~/Zeek-Labs/TCP-Traffics |J

Step 2: List the generated log files in the current directory.
1ls

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic -+ X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffics |ls
conn.log dpd.log notice.log snmp.log x509.10q
dhcp.log files.log acket filter.log ssl.log

dns.log http.log ignatures.log weird.log
zeek@admin:~/Zeek-Labs/TCP-Traffics J]

The signatures.log file has been recreated and will contain the newly updated signature
matches.

Step 3: View the contents of the signatures.log file using the text editor.
gedit signatures.log
(%] zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |gedit signatures.log

(gedit:1442): dbind-WARNING **: : Error retrieving accessibility bus

address: org.freedesktop.DBus.Error.ServiceUnknown: The name org.ally.Bus was n
ot provided by any .service files
zeek@admin:~/Zeek-Labs/TCP-Traffics |j

Page 14

Lab 7: Introduction to Zeek Signatures

signatures.log

Openv || [+ Save || = ~o
#separator \x09
#set separator
#empty field (empty)
#unset_field =
#path signatures
#open 2020-03-15-14-42-18
#fields ts uid src_addr src_port dst_addr dst _port note sig id event msg sub _msg
sig_count host_count
#types time string addr port addr port enum string string string count count
1295981655.843173 Ch41fz23dedK6z0QMf 10.0.2.15 49796 10.0.2.3 153 Signatures::Sensitive Signature DNS-REQUEST-|
kig 10.0.2[.15: Found DNS Request] (empty) - -
1295981655.926096 C6htqQ21BqdCN3tAES 10.0.2.15 50559 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - =
1295981658.781806 CTzqJplsof9eUhmMpa 10.0.2.15 54657 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - 5
1295981658.854004 C5vx411tVLQaGd7DI5 10.0.2.15 57524 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - -
1295981659.567918 CyUWNQ14mIGNAM7]3j 10.0.2.15 54795 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - x
1295981659.783932 Cgh2xI1SLGX120wlt4 10.0.2.15 61870 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - =
1295981660. 144937 CEI19BpY4uXcODlka 10.0.2.15 64982 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - 5
1295981663.533829 CBY6B02rdUVOXEIbI6 10.0.2.15 57632 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - -
1295981664 .266166 C50VQAF61YGPi6Hic 10.0.2.15 62310 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - S
1295981664.492158 C9TKgM7eY4clREqyg 10.0.2.15 59794 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - =
1295981665.894416 Cv38BD3VTNI7rARZue 10.0.2.15 58511 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - 3
1295981668.205083 Cn6chsplhTmXLqTzc 10.0.2.15 58971 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 160.0.2.15: Found DNS Request (empty) - -
1295981685.227252 CXkQnx1TuS8bgIRIma 10.0.2.15 59686 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - z
1295981696.667788 CONHMj iCbbAgLibDa 10.0.2.15 61133 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - .
1295981711.656223 CLWqCIAPbkM3BRCSg 10.0.2.15 59365 10.0.2.3 53 Signatures::Sensitive Signature DNS-REQUEST-
sig 10.0.2.15: Found DNS Request (empty) - - .
1295981744.511002 CZx0Ux3gaud2WgVwxg 192.168.3.131 52400 192.168.3.99 161 Signatures::Sensitive Signature SNMP-
IREQUEST-sig 192.168.3.131: Found SNMP Request (empty) - =
1295981744.570907 CZx0Ux3gaud2WgVwxg 192.168.3.99 161 192.168.3.131 [52400 Signatures::Sensitive Signature SNMP-I
ESPONSE-sig 192.168.3.99: Found SNMP Response | (empty) - %

The file is explained as follows:
e The red box indicates the DNS-REQUEST-sig signature match as well as the
triggered IP address and event message.
e The orange box indicates the SNMP-REQUEST-sig signature match as well as the
triggered IP address and event message.
e The blue box indicates the SNMP-RESPONSE-sig signature match as well as the
triggered IP address and event message.

3.3 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password| as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended

to hold the key while typing rather than using the key.

cd $ZEEK INSTALL/bin && sudo ./zeekctl stop

kd zeek@admin: /usr/local/zeek/bin - + X%
File Edit Tabs Help

INSTALL/bin && sudo

Page 15

Lab 7: Introduction to Zeek Signatures

Concluding this lab, we have introduced the Zeek signature framework. Leveraging
pattern matching, Zeek signatures can be used to quickly discover packets that follow
predetermined formats, while employing a low-level framework for generating warnings
and notifications.

References

1. “Signature framework”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/frameworks/signatures.html

2. “Logging framework”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/frameworks/logging.html#streams

3. “Monitoring HTTP traffic”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/examples/httpmonitor/

4. “Writing scripts”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/examples/scripting/#the-event-queue-and-
event-handlers.

Page 16

UTSA.

The University of Texas at San Antonio™
The Cyber Center for Security and Analytics

ZEEK INSTRUSION DETECTION SERIES

Lab 8: Advanced Zeek Scripting for Anomaly and
Malicious Event Detection

Document Version: 03-13-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
[IE2] o 38 o o Yo] [o =4 V2 PP UPPRRUPPRPR 3
(1Y Y=Y T = PP PUPPRRUPTPPR 3
(I Y o o - o [4= T TSP 4
1 Zeek’s default anomaly detection SCriptS.....evivvciieeiiiiiiee e 4
O R 4 T or- Y B 1YL o | USRI 4
1.2 Zeek bruteforCe-VENTcoi i 6
2 Generating customized malicious network traffic.......ccccccvviieeiiiiiieeiiii e, 7
2.1 Starting a new instance Of ZeeKcocuveeiiviiiiii i 7
D A - YUY o 1ol o 11 =8 Y 1T 1 = SRR 8
2.3 Setting up the zeek2 virtual machine for live network captureccccvvveeee.. 10
2.4 Using the zeekl virtual machine for network scanning activities 11
2.4.1 Terminating live network captureccccceee e, 12
3 Applying Zeek scripts to filter network trafficcccccoeeieiieiiiiee e, 13
3.1 Applying the ZeekDetectScans filtercceeeeiecciiiieee e, 13
3.2 Applying the ScanFilter filter.......cccoiiiii i 15
3.3 Closing the current instance of ZeeK.........cccueeeeciiieeiciiiie e 20
REFEIENCES ...ttt e e e sttt e e s st e e e sttt e e e saraeeessnreeesaans 21

Page 2

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

Overview

This lab covers Zeek’s scripting language and introduces more advanced scripting
capabilities. This lab simulates a new zero-day scanning technique and explains a Zeek
script that captures this new event. The lab is designed to further highlight the
customization properties of Zeek scripting.

Objectives

By the end of this lab, students should be able to:

1. Use precompiled Zeek scripts for identifying network traffic anomalies.
2. Develop a Zeek script for identifying and organizing specific malicious traffic

events.

3. Generate customized malicious traffic to be used for testing purposes.

Lab topology

Figure 1 shows the lab workspace topology. The Client machine will be used for offline
Zeek script development, while the zeek1 and zeek2 virtual machines will generate and
collect network traffic.

Mininet Emulated Network

Lab settings

Figure 1. Lab topology.

Hardware Network

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device

Account

Password

Page 3

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

Client admin password

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path
$ZEEK_INSTALL lusr/local/zeek
$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap
This lab is organized as follows:

1. Section 1: Zeek’s default anomaly detection scripts.
2. Section 2: Generating customized malicious network traffic.
3. Section 3: Applying Zeek scripts to filter network traffic.

1 Zeek’s default anomaly detection scripts

Zeek’s scripting language can be used to identify and report network anomalies by using
event-driven functions. This section introduces two default Zeek script filters that are
installed by default after Zeek installation.

While these default Zeek scripts might not correctly identify every unique anomaly, they
provide a comprehensive starter code that can be customized further for anomaly-based
detection.

1.1 Zeek scan-event

The first default Zeek script is the scan.zeek script. More information on this script can be
foundin Zeek’s documentation pages. To access the following link, users must have access
to an external computer connected to the Internet, because the Zeek Lab topology does
not have an active Internet connection.

https://docs.zeek.org/en/latest/scripts/policy/misc/scan.zeek.html

The file has been copied into the Zeek lab workspace directory and renamed to
ZeekDetectScans.zeek for ease of access and name-reference clarity.

This Zeek script is used to identify scan-related traffic. Internet scanning can be split into
three main categories:

Page 4

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

1. [Vertical Scanning] an attacker scans many ports on a single destination host
address.

2. Horizontal Scanning]: an attacker scans a single port on many destination host
addresses.

3. Block Scanningl an attacker interweaves vertical and horizontal scanning
techniques to increase complexity and become harder to track.

The script shown in the figure below list the first few lines of the ZeekScanDetection.zeek
file.

##! TCP Scan detection

..Authors: Sheharbano Khattak

Seth Hall

All the authors of the old scan.bro

@load base/frameworks/notice
@load base/frameworks/sumstats
@load base/utils/time

Nounm kR wN R

As shown in the figure above, loading other scripts is done through the statement
with the following format:

@load <zeekscriptfile>

Lines 5, 6 and 7 include the functionalities found within the export blocks of the
respectively included Zeek scripts.

The script leverages thresholds to determine if scan-like activities are present when
processing network capture. If all the thresholds are exceeded, traffic is inferred to be
scan-related.

For real time deployment, these thresholds will need to be modified dependent on the
network size. For instance, a smaller network containing less IP addresses will need a
lower threshold of scan packets to identify a scan-event. However, modifying these
thresholds may result in an increase of false positives and true negatives, so it highly
recommended to simulate and test network traffic before modification.

25 ## Failed connection attempts are tracked over this time interval for

26 ## the address scan detection. A higher interval will detect slower

27 ## scanners, but may also yield more false positives.

28 const addr_scan_interval = 5min &redef;

29 ## Failed connection attempts are tracked over this time interval for

30 ## the port scan detection. A higher interval will detect slower

31 ## scanners, but may also yield more false positives.

32 const port_scan_interval = 5min &redef;

33 ## The threshold of the unique number of hosts a scanning host has to

34 ## have failed connections with on a single port.

35 const addr_scan_threshold = 25.0 &redef;

36 ## The threshold of the number of unique ports a scanning host has to

37 ## have failed connections with on a single victim host.

38 const port_scan_threshold = 15.0 &redef;

39 global Scan::addr_scan_policy: hook(scanner: addr, victim: addr, scanned_port: port);
40 global Scan::port_scan_policy: hook(scanner: addr, victim: addr, scanned_port: port);
41 1}

Page 5

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

The figure above shows the thresholds in the ZeekScanDetection.zeek file. The thresholds
are explained as follows. Each number represents the respective line number:

28.[const addr scan intervall: threshold to check a source IP address for varying
destination IP address scan-related traffic. The default interval is 5 minutes.

32.[const port scan intervall: threshold to check a source IP address for varying
destination port scan-related traffic. The default interval is 5 minutes.

35.[const addr scan threshold]: threshold of unique destination IP addresses that
a single host attempts to contact. The default threshold is 25 unique destination
IP addresses.

38.[const port scan threshold]: threshold of unique destination ports that a single
host attempts to contact. The default threshold is 15 unique destination ports.

1.2 Zeek bruteforce-event

The second default Zeek script is the detect-bruteforcing.zeek script. More information
on this script can be found in Zeek’s documentation pages. To access the following link,
users must have access to an external computer connected to the Internet, because the
Zeek Lab topology does not have an active Internet connection.

https://docs.zeek.org/en/stable/scripts/policy/protocols/ssh/detect-
bruteforcing.zeek.html

The file has been copied into the Zeek lab workspace directory and renamed to
ZeekDetectBruteForce.zeek for ease of access and name-reference clarity.

This Zeek script is used to identify brute-force password attacks. Brute-force attacks can
be identified by several failed login attempts. This denotes that an attacker is attempting
to systematically submit credentials until the correct credentials are found. The
motivation behind this attack is to gain authorized access to an account, machine or
server.

The script leverages the following thresholds to determine if scan-like activities are
present when processing network capture. During real time deployment, these
thresholds should be modified depending on the network size. The number of failed login
attempts (or duration) should be modified to increase the script’s accuracy.

Page 6

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

1 ##! FTP brute-forcing detector, triggering when too many rejected usernames or
2 ##! failed passwords have occurred from a single address.

3 Q@load base/protocols/ftp

4 @load base/frameworks/sumstats

5 @load base/utils/time

6 module FTP;

7~ export {

8~ redef enum Notice::Type += {

9 ## Indicates a host bruteforcing FTP logins by watching for too
10 ## many rejected usernames or failed passwords.

11 Bruteforcing

12 3

13 ## How many rejected usernames or passwords are required before being
14 ## considered to be bruteforcing.

15 const bruteforce_threshold: double = 20 &redef;

16 ## The time period in which the threshold needs to be crossed before
17 ## being reset.

18 const bruteforce_measurement_interval = 15mins &redef;

19 }

The thresholds are explained as follows. Each number represents the respective line
number:

15.[const bruteforce threshold: threshold for the number of failed
authentications attempts a source IP address can make. The default value is 20
failed attempts within the related time interval threshold.

18.[const bruteforce measurement intervall: threshold for the time to check a
source IP address for failed authentication attempts. The default interval is 15
minutes.

2 Generating customized malicious network traffic

This section introduces creating and using a new Zeek script, tailored to react to more
specific events.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

FRGLIGLVE & Content | [#® Status | O Client =

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Page 7

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

Miniedit

e
>

XTermimel

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes tool to start a new
instance. To type capital letters, it is recommended to hold the key while typing
rather than using the key. When prompted for a password, type and hit
Entex)

cd $ZEEK INSTALL/bin && sudo ./zeekctl start

kd zeek@admin: /usr/local/zeek/bin = e
File Edit Tabs Help

zeek@admin:~$ |cd $ZEEK_INSTALL/bin && sudo ./zeekctl

[sudo] password Tor zeek:

zeek@admin: /usr/lo¢

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Launching Mininet

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type and hit
Enter]. The MiniEdit editor will now launch.

Miniedit
E —
=

[XTerminzl

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the button within the
tab on the top left of the MiniEdit editor.

Page 8

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

File | Edit Run

MNew

Save

Export Level 2 Script

Help

Quit

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the button.

- Open =3¢

Directory: /home/zeek — \ B ‘

o .presage mininet zeek

& .thumbnails oflops Zeek-Labs

5 .wireshark oftest E Zeek-Topologies|

&) Desktop openflow

& Documents pox

& Downloads [Public

Kl I
File name: | Open

Files of type: Mininet Topology (*.mn) — Cancel

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the button.

Directory:

Open

/home/zeek/Zeek-Topologies

- &

[| Topology.mn

ET

File name: |

Files of type:

Mininet Topology (*.mn) —

Open

Cancel

Page 9

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

Step 5. To begin running the virtual machines, navigate to the button, found on the
bottom left of the Miniedit editor, and select the button, as seen in the image
below.

Run

Stop m—

2.3 Setting up the zeek?2 virtual machine for live network capture

Step 1. Launch the zeek2 terminal by holding the right mouse button on the desired
machine, and clicking the button.

Terminal

Step 2. Using the zeek2 terminal, navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

T "Host: zeek2" - + X
rootEadmind™# Labz/TCP-Traffic

rootidadming ™/ E LP-Trattic#

Step 3. Start live packet capture on interface zeek2-ethO and save the output to a file
named scantraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w scantraffic.pcap

X "Host: zeek2" - + X

rootBadming ™/ Zeek-Labs TCP-Traffic# topdump -1 zeekZ-ethd -z O -w scantraffic.p
-

E.n::F-I:IumF-: listening on zeekZ-ethl, link-type EM10ME (Ethernet). capture size 2621

44 bytes
1

Page 10

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

The zeek2 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek1 machine to generate scan-based network traffic.

2.4 Using the zeekl virtual machine for network scanning activities

Step 1. Minimize the zeek2 and open the zeekl by following the

previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

751
\

7aal1 | zeek?
Host Options | _

Terminal

Step 2. Launch a TCP connect scan against the zeek2 machine.

nmap -sT 10.0.0.2

X "Host: zeekl" - + X

rootladmint™# nmap -=T 10,0,0,2

map.org J et 2020-01-13 15:03 EST

root@admin: “#]

Step 3. Launch a scan against the zeek2 machine with the SYN, FIN and RST flags set. We
will label this scan as Casel.

nmap --scanflags SYN,FIN,RST 10.0.0.2

By specifying the option, we can control which TCP flags are included in
the packet header.

Page 11

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

T "Host: zeekl" - + x

] 1|___|"" : : filtered
:FB:ER:E i)

1 host up) scanned in 34,42

Step 5. Launch a scan against the zeek2 machine with the SYN, RST and ACK flags set. We
will label this scan as Case2.

nmap —--scanflags SYN,RST,ACK 10.0.0.2

X "Host: zeekl" - + X
SYN,RST,ACK 10,0,0,2

11-13 1505 EST

H |_|E: Oy

Mmap done:r 1 IF addre (1 host up) scanned in 34,42
rootBadmin: “# I

2.4.1 Terminating live network capture

Step 1. Minimize the zeek1 and open the zeek2 using the navigation

bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

EJEIJ;_L?J gl sudo ; | X ["Host: zeek1"] |X[“Host: zeek2"]|

Step 2. Use the key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 6014 packets were recorded by the interface, which
were then captured and stored in the new scantraffic.pcap file.

X "Host: zeek2" - + X

Page 12

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

Step 3. Stop the current Mininet session by clicking the button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the [on the top right of
the editor.

3 Applying Zeek scripts to filter network traffic

Now that we have collected traffic containing the zero-day exploits, we will process the
packet capture file using Zeek.

3.1 Applying the ZeekDetectScans filter

After successfully conducting a number of TCP-based scans, the scanpackets.pcap packet

capture file now contains the required traffic. In this section we analyze the collected
network traffic using Zeek.

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Miniedit:

| —
>

EXTermimal

Step 2. Navigate to the TCP-Traffic directory to find the scantraffic.pcap file.
cd Zeek-Labs/TCP-Traffic/

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic SR

File Edit Tabs Help
zeek@admin:~$ cd Zeek-Labs/TCP-Traffic/

zeek@admin:~/Zeek-Labs/TCP-Traffics |

Step 3. View the file contents of the TCP-Traffic directory to ensure that the
scantraffic.pcap file was successfully saved.

1s
Page 13

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic T

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |ls
scantraffic.pcap

zeek@admin:~/Zeek-Labs/TCP-Traffic$ I

Step 4. Process the scantraffic.pcap packet capture file using ZeekScanDetection.zeek. It
is possible to use the key to autocomplete the longer paths.

zeek —-C -r scantraffic.pcap ../Lab-Scripts/ZeekDetectScans.zeek
kd zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |zeek -C -r scantraffic.pcap ../Lab-Scripts
/ZeekDetec ns.zee

zeek@admin:~/Zeek-Labs/TCP-Traffics |

Step 2: Display the contents of the notice.log file using the command.
cat notice.log

zeek@admin: ~/Zeek-Labs/TCP-Traffic - 4 X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |[cat notice.log
#separator \x09
#set separator ,
#empty field (empty)
#unset field -
notice
2020-01-13-15-11-43
ts uid id.orig h id.orig p id.resp h id.res
fuid file mime type file desc proto note msg sub s
dst p n peer descr actions suppress for remote
_location.country code remote location.region remote location.city remote
_location.latitude remote location.longitude
#types time string addr port addr port string string string
enum enum string string addr addr port count string set[en
um] interval string string string double double
1578946016.741433 - - - - - - - -
- Scan::Port Scan [10.0.0.1 scanned at least 15 unique portsjof host 10.0
.0.2 in OmOs remote 10.0.0.1 10.0.0.2
otice::ACTION LOG 3600.000000 - -
#close 2020-01-13-15-11-44
zeek@admin:~/Zeek-Labs/TCP-Traffics |}

Within the notice.log file, we can see the zeekl machine has been identified for creating
scan-based network traffic and exceeding the 15-ports threshold configured earlier.

Step 3: Display the contents of the conn.log file using the following command.

head -n 25 conn.log | zeek-cut ts id.orig h id.orig p id.resp h id.resp p
history

Page 14

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

zeek@admin: ~/Zeek-Labs/TCP-Traffic =i ¢
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |head -n 25 conn.log | zeek-cut ts id.orig
h id.orig p id.resp h id.resp p history

1578946016.740376 10. .
1578946016.740425 10.
1578946016.740493 10.
1578946016.740525 10.
1578946016.740595 10.
1578946016.740663 10.
1578946016.740728 10.
1578946016.740793 10.
1578946016.740858 10.
1578946016.740924 10.
1578946016.741140 10.
1578946016.741207 10.
1578946016.741271 10.
1578946016.741336
1578946016.741423
1578946016.741487
1578946016.741550 ;
zeek@admin:~/Zeek-Labs/TCP-Tr

0 35734 10.
0 45382 10.
0 43620 10.
0 36164 10.
0 47598 10.
0 40448 10.
0 57284 10.
0. 37798 10.
20, 54886 10.
0
0
0
0
0
0
0
0
a

1 135 Sr
1

1

1

1

1

1

1

1

A 54362 10.
1

1

1

1

1

1

1

ff

8888 Sr
995 Sr
Sr
b
Sr
Sr
ST
Sr
Sr
ST
Sr
]
Sr
Sr
ST
Sr

58980 10.
60390 10.
51092 10.
44352
EEEEY
54560
53068

[clooNoNooNoloNoNoloNoNoNoNoNoNo)
[clooNoNooNolooNoloNoNoNoNoN ool
[cloNoNoNoNoNoloNoNoloNoNoNoNoNoNol
NNNNNNNNNNNNNNNNN

R |

The Terminal command is explained as follows:

e fhead -n 25 conn.log]: returns the top 25 rows of the conn.log file, specified

by the [-n] option.
° |\ zeek-cut ts id.orig h id.orig p id.resp h id.resp p historﬂ:

uses the utility to return the specified columns and remove padding.

The column (last column in the figure above) contains information regarding
which TCP flags were found within a packet header:

e [s: SYN flag.

e [SYN+ACK flags.

e [a]: ACK flag.

e [f]: FIN flag.

® [d: RST flag.

e [u: URG flag.

[d: Multiple flags set.

The event is attributed to the host when the flag letter is uppercase; otherwise, it is
attributed to the receiver. In this example, the capital S and lowercase r denotes the SYN
flag sent from the host, while the receiver responded with a RST flag.

3.2 Applying the ScanFilter filter

Step 1: Display the contents of the ScanFilter.zeek file using [n1].

nl ../Lab-Scripts/ZeekFilter.zeek

Page 15

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

zeek@admin: ~/Zeek-Labs/TCP-Traffic =i
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ Inl ../Lab-Scripts/ScanFilter.zeek
1 module SCAN;

export {

redef enum Log::ID += {CASE1LOG};
redef enum Log::ID += {CASE2LO0G};

type outputFormat: record {
ts: time &log;
id: conn_id &log;
orig h: addr &log;
orig p: port &log;
resp h: addr &log;
resp p: port &log;
history: string &log &optional;

The script is explained as follows. Each number represents the respective line number:

1. Declares a new module workspace.
2. Export block allows code to be accessed outside the current module
workspace.

3. Creates and appends the to the list of Log files.
4. Creates and appends the to the list of Log files.

6. Block that includes all the columns and features to be included in these new
log files. Each will contain a variable type and output location:

[ts]: time that the packet was received.
[id]: packet identification number.

lorig hf: source IP address.
lorig pl: source port.

[cesp_h|: destination IP address.
[cesp p|: destination port.
history|: string of flag characters.

Page 16

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

d zeek@admin: ~/Zeek-Labs/TCP-Traffic =i
File Edit Tabs Help

16 event zeek init() {

17 Log::create stream(CASE1LOG, [$columns=outputFormat, $path="Ca
sel"]);

18 Log::create stream(CASE2L0G, [$columns=outputFormat, $path="Ca
se2"]);

19 }

20 event tcp packet(c: connection, is orig: bool, flags: string, seq: cou
nt, ack: count, len: count, payload: string) {

21 local rec: SCAN::outputFormat = [$ts=c$start time, $id=c$id, $
orig h=cidorig h, $orig p=c$idsorig p, $resp h=c$id$resp h, $resp p=cs$ids$res
p p, $history=c$history];

if(flags == "SFR") {
Log::write(SCAN: :CASE1LOG, rec);
}

if(flags == "SRA") {
Log::write(SCAN: :CASE2L0G, rec);
}

}
zeek@admin:~/Zeek-Labs/TCP-Traffics |

16. Initialization event.

17. Creates a new log stream using the previously introduced LOG ID,
loutputFormat| column formatting and a file name path.

18. Creates a new log stream using the previously introduced LOG ID,
loutputFormat] column formatting and a file name path.

20. Event triggered when a TCP packet is processed.

21. Creates a local variable [red| to store the column-related information, using the
current packet data, accessed with the [cid<column>| format.

22. Checks if the SFR flag combination is present in the packet. This relates to the
history column, containing SYN-FIN-RST flags.

23. If the SFR flag combination is present, the packet will be written to the
log stream with the packet information passed through the local
variable [red]|.

24. Checks if the SRA flag combination is present in the packet. This relates to the
history column, containing SYN-RST-ACK flags.

25. If the SRA flag combination is present, the packet will be written to the
log stream with the packet information passed through the local

variable [red]|.

Step 2. Execute the lab_clean.sh shell script to clear the directory. If required, type

as the password.

./../Lab-Scripts/lab clean.sh

Page 17

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

kd zeek@admin: ~/Zeek-Labs/UDP-Traffic -+ X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/UDP-Traffics$
[sudo] password for zeek:

i

/../Lab-Scripts/lab_clean.sh

zeek@admin:~/Zeek-Labs/UDP-Traffics I

Step 3: Process the scantraffic.pcap packet capture file using ScanFilter.zeek. It is
possible to use the key to autocomplete the longer paths.

zeek —-C -r scantraffic.pcap ../Lab-Scripts/ScanFilter.zeek
kd zeek@admin: ~/Zeek-Labs/TCP-Traffic S
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |zeek -C -r scantraffic.pcap ../Lab-Scripts
/ScanFilte eek

zeek@admin:~/Zeek-Labs/TCP-Traffics [

Step 4: List the generated log files in the current directory.

1s

zeek@admin: ~/Zeek-Labs/TCP-Traffic =i
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$|1ls
conn. log scantraffic.pcap

packet filter.log weird.log
:~/Zeek-Labs/TCP-Traffics |]

Note the Casel.log and Case2.log files, highlighted by the orange box, generated by
including the ScanFilter.zeek filter during processing.

Step 5: View the contents of the Casel.log file.

head -n 25 Casel.log | zeek-cut ts id.orig h id.orig p id.resp h id.resp p
history

Page 18

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

zeek@admin: ~/Zeek-Labs/TCP-Traffic b X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ lhead -n 25 Casel.log | zeek-cut ts id.orig
h 1d.orig p id.resp h id.resp p history
1578946073.989214 10.0.0.1 56046
1578946073.989222 10.0 56046
1578946073.989223 10.0 56046
1578946073.989230 10.0 56046
1578946073 .989245 10.0 56046
1578946073 .989250 10.0 56046
1578946073.989263 10.0 56046
1578946073.989282 10.0 56046
1578946073.989293 10.0 56046
1578946073.989303 10.0. 56046

¢]

0

0

0

0

0

0

Ir

23
199
993
1723
3306
1025
22
256
8888
21
23
21

1578946075.090251 10. 56047
1578946075.090272 10. 56047
1578946075.090282 10. 56047
1578946075.090292 10. 56047
1578946075.090301 10. 56047
1578946075.090310 i 56047
1578946075.090319 10. 56047
zeek@admin:~/Zeek-Labs/TCP-

[cooooooNooooNooNoNolNoNol
[clolooNooNoNoNooloNoNoNoNoNoNo]
NNRNNNNNNNNNNNNNNN
L B B B e B N N B I B e B N

IDGGGD@CDOGOOCDOGG@@OG
—ﬁ}—‘!—‘b—‘}—-‘b—‘}—‘}—‘}—‘b—‘b—‘b—‘b—-‘}—‘l——'b—‘b—‘

The Terminal command is explained as follows:

e f|head -n 25 Casel.log| returnsthe top 25 rows of the conn.log file, specified
by the [-n| option.

° |\ zeek-cut ts id.orig h id.orig p id.resp h id.resp p historﬂ:
uses the utility to only return the specified columns, and removes
padding.

Unlike the default example, we can see the column contains the exact same flag.
Our filter was successful in organizing the traffic related to the exploit.

Step 6: Display the contents of the Case2./og file.

head -n 25 Case2.log | zeek-cut ts id.orig h id.orig p id.resp h id.resp p
history

Page 19

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

zeek@admin: ~/Zeek-Labs/TCP-Traffic = 4 X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |head -n 25 Case2.log | zeek-cut ts id.orig
h id.orig p id.resp h id.resp p history
.589254 .0.0.1 53710
.589256 0.0 53710
.589260 0.0 53710
.589261 0.0 53710
.589279 0.0 53710
.589281 0.0 53710
.589286 0.0 53710
.589290 0.0 53710
.589292 .0.0 53710
.589306 .0.0. 53710
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Tra

995
143
587
135
80
53
1723
23
554
111
111
554
23
53
80
1723
995

.690266 53711
.690287 53711
.690297 53711
.690307 53711
.690316 53711
.690325 53711
53711

locNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol
[ocNoNoNoNoNoNoloNoNoNoNoNoNoNoNoNo]
NNNNNNNNNNNNNNNNN
loolobolobeodebleloPloboelelollelelelol

.690337 :
zeek@admin:~/Zeek-Labs/TCP-

- e e e b e et et e e e e e e e et

-y o

The Terminal command is explained as follows:

e head -n 25 Case2.log]: returnsthe top 25 rows of the conn.log file, specified
by the [-n] option.

L] |\ zeek-cut ts id.orig h id.orig p id.resp h id.resp p historﬂ:
uses the utility to only return the specified columns, and removes
padding.

Unlike the default example, we can see the column contains the exact same flag.
Our filter was successful in organizing the traffic related to the exploit.

3.3 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended

to hold the key while typing rather than using the key

cd $ZEEK INSTALL/bin && sudo ./zeekctl stop

Page 20

Lab 8: Advanced Zeek Scripting for Anomaly and Malicious Event Detection

kd zeek@admin: /usr/local/zeek/bin - + X

File Edit Tabs Help
zeek@admin:~$ |cd $ZEEK INSTALL/bin && sudo ./zeekctl stop
[sudo] password Tor zZeek:

stopping zeek ...
zeek@admin: /usr/local/zeek/bins |

Concluding this lab, we introduced default frameworks for anomaly-detection scripts. We
generated malicious network traffic to simulate a zero-day exploit, and then processed
the traffic using a customized a Zeek script. With the resulting Zeek log files, these exploits
can be studied for additional analysis and mitigation.

References

1. Bilge, Leyla, and Tudor Dumitras. "Before we knew it: an empirical study of zero-
day attacks in the real world." Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012.

2. “Writing scripts”, Zeek user manual, [Online], Available: Zeek,
https://docs.zeek.org/en/stable/examples/scripting/#the-event-queue-and-
event-handlers.

Page 21

UTSA.

The University of Texas at San Antonio™
The Cyber Center for Security and Analytics

ZEEK INSTRUSION DETECTION SERIES

Lab 9: Profiling and Performance Metrics of Zeek

Document Version: 03-13-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 9: Profiling and Performance Metrics of Zeek

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
[IE2] o 38 o o Yo] [o =4 V2 PP UPPRRUPPRPR 3
(1Y Y=Y T = PP PUPPRRUPTPPR 3
(I Y o o - o [4= T TSP 4
1 Introduction to Zeek Profiling......cccoviiiiiioiiii e 4
2 Generating customized malicious network traffic.......cccccceveeiiiiieiiiiccc 5
2.1 Starting a new instance Of ZeeKoovuveeiiiiiiiii i 5
2.2 Launching MiININEt......coiiiiiiiiee e et e e baa e e e s ares 6
2.3 Setting up the zeek2 virtual machine for live network capturecccccuvvveeeee..n. 7
2.4 Using the zeekl virtual machine for network scanning activitiesccceee..... 8
2.4.1 Terminating live network captureccccceei e, 10
3 Generating and viewing Zeek profiling log files.........ccooovviieeiiiee e, 11
3.1 Applying the profiling filtercoooiei e 11
4 Implementing tools to test Zeek’s performanceccccocuveeiiiciiee e 14
4.1 Using sysstat sar ULHITYeeeer oo 14
4.2 UsiNg the top ULtyuueieeiie s 16
4.3 Viewing the resource consumption of Zeekcceevvieiciiiieiiiiiiicceeee e, 16
4.4 Closing the current instance of Zeek........cccoooviieiiciiiii e, 17
REFEIENCES ...ttt et e e sttt e e s st e e s s abbee e e sareeeesennreeesanns 18

Page 2

Lab 9: Profiling and Performance Metrics of Zeek

Overview

With Zeek’s event-based framework, anomalies can be detected, processed and analyzed
with external software. In this lab, we explain Zeek’s profiling log stream and Zeek’s
resource consumption.

Objectives
By the end of this lab, students should be able to:
1. Enable Zeek’s profiling log stream for session-based statistics.

2. Generate customized traffic to be captured by Zeek’s profiling.
3. Implement tools necessary for testing Zeek’s resource consumption.

Lab topology

Figure 1 shows the lab workspace topology. The Client machine will be used for offline
Zeek script development, while the zeek1 and zeek2 virtual machines will generate and
collect network traffic.

Mininet Emulated Network Hardware Network

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Page 3

Lab 9: Profiling and Performance Metrics of Zeek

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path
$ZEEK INSTALL lusr/local/zeek
$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Zeek profiling.

2. Section 2: Generating customized malicious network traffic.

3. Section 3: Generating and viewing Zeek profiling log files.

4. Section 4: Implementing tools to test Zeek’s performance.
1 Introduction to Zeek profiling

Zeek includes the option of enabling profiling. When profiling is enabled, a new log stream
will be created to store session-related statistics. The Profile log file will contain a large
variety of information, including but not limited to running time, memory usage,
connection information and packet protocol statistics.

To enable profiling while using Zeek for offline packet capture file processing, you will
need to implement the following functionality in a Zeek script.

module Profiling

1
2
3 redef profiling_file = open (fmt(<filename>, <logstream>));
4 redef profiling interval = ;

5 redef expensive_profiling multiple = 5;

6

7

8

9

* event zeek_init() {
set_buf(profiling file, F);
}

The script is explained as follows. Each number represents the respective line number:

1. Sets the module workspace as Profiling.

3. Specifies the name of the new profiling log file, as well as determines the format
based off an input log stream.

4. Specifies the time interval for Zeek to record empirical information. In this
example the time interval is 3 seconds.

Page 4

Lab 9: Profiling and Performance Metrics of Zeek

5. Specifies the number of profiling intervals defined in Line 5. In this example, the
profiling interval is 5 instances.

7. Initialization event.

Appends the new log stream information.

9. End of initialization event.

oo

Profiling is enabled by calling the Zeek script during packet processing, as reviewed in the
previous labs.

zeek -r <packet capture file> <Profiling Script>

e [Kpacket capture file>]: denotes the input packet capture file.
e [KProfiling Script>:|denotes the Zeek script to be run during packet processing.

In the following section we generate customized malicious traffic to be viewed within a
Zeek profiling log.

2 Generating customized malicious network traffic

This section introduces creating and using a Zeek profiling script, which will enable
session-based statistics for Zeek packet capture file processing.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

RELLL Ve & Content | |#” Status | O Client =

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Miniedit:

EXTermimal

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes tool to start a new

instance. To type capital letters, it is recommended to hold the key while typing
Page 5

Lab 9: Profiling and Performance Metrics of Zeek

rather than using the key. When prompted for a password, type and hit
Entez.

cd $ZEEK INSTALL/bin && sudo ./zeekctl start

kd zeek@admin: /usr/local/zeek/bin - + X
File Edit Tabs Help

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Launching Mininet

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type and hit
[Enter]. The MiniEdit editor will now launch.

Miniedit

[

[XTermimeal

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the button within the
tab on the top left of the MiniEdit editor.

File| Edit Run Help

MNew

Save
Export Level 2 Script

Quit

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the button.

Page 6

Lab 9: Profiling and Performance Metrics of Zeek

- Open Ty 0 S

Directory: /home/zeek — \ B ‘

i .presage mininet zeek

& .thumbnails oflops Zeek-Labs

5 .wireshark oftest E Zeek-Topologies|

&) Desktop openflow

& Documents pox

& Downloads Public

4l I
File name: | Open

Files of type: Mininet Topology (*.mn) — Cancel

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the button.

Gl Open - + X

Directory: /homejzeek/Zeek-Topologies = | @ ‘

[| Topology.mn

ET M

File name: | Open

Files of type: Mininet Topology (*.mn) — Cancel

Step 5. To begin running the virtual machines, navigate to the button, found on the
bottom left of the Miniedit editor, and select the button, as seen in the image
below.

Run

g —

2.3 Setting up the zeek2 virtual machine for live network capture

Page 7

Lab 9: Profiling and Performance Metrics of Zeek

Step 1. Launch the zeek2 terminal by holding the right mouse button on the desired
machine, and clicking the button.

Terminal

Step 2. Navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

T "Host: zeek2" - + X

root@admin:™ feek-Labz/TCP-Traffics

rootBadmin: ™ : ILP=-Trattic# |

Step 3. Start live packet capture on interface zeek2-ethO and save the output to a file
named scantraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w scantraffic.pcap

L o "Host: zeek2" - + X

i

44 buytes
i

The zeek2 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek1 machine to generate scan-based network traffic.

2.4 Using the zeekl virtual machine for network scanning activities
In this section we use the software to generate TCP-based scan traffic.
This section introduces two new options for the software.

e [-f]: specifies to send packet fragments. By fragmenting packets, a scanner can
attempt to bypass firewalls that check for entire packet signatures.

Page 8

Lab 9: Profiling and Performance Metrics of Zeek

e [mtu <num>|: specifies the max number of bytes to be sent in a fragmented packet.
The number variable must be a multiple of 8.

Step 1. Minimize the zeek2 and open the zeekl by following the

previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

el

-

7oal1 | zeek2
Host Options —

Terminal

Step 2. Launch a fragmented TCP SYN scan against the zeek2 machine.

nmap -sS -f 10.0.0.2

X "Host: zeekl" - + X

r"|:||:|t.@a|:|r|'|iﬁ:”# rimap -=5 —-f 1I:]+[:I+I:I+':_;'

Step 3. Launch a fragmented TCP SYN scan with a packet size of 8 bytes against the zeek2
machine.

nmap -sS -mtu 8 10.0.0.2

x "Host: zeek1" - + X

rootadming “# | nmap -=5 -mtu 8 10

7.0 ht map.arg) at) 15:53 EST
ort For

Page 9

Lab 9: Profiling and Performance Metrics of Zeek

Step 5. Launch a fragmented TCP SYN scan with a packet size of 64 bytes against the Bro2
machine.

nmap -sS -mtu 64 10.0.0.2

X "Host: zeekl" - + X

Mmap done: 1 IF addr

rootiadmin: ™#

2.4.1 Terminating live network capture

Step 1. Minimize the zeek1 and open the zeek2 using the navigation

bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

- = | o) Ellsudo ; | X ["Host: zeek1"] |X[“Hostz zeek2"]|

Step 2. Use the key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 10,033 packets were recorded by the interface,
which were then captured and stored in the new scantraffic.pcap file.

X "Host: zeek2" T

ured
by filter

I
CP-Traffict [

Step 3. Stop the current Mininet session by clicking the button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the [x] on the top right of
the editor.

Page 10

Lab 9: Profiling and Performance Metrics of Zeek

3 Generating and viewing Zeek profiling log files

Now that we have collected fragmented traffic, we can begin processing the packet
capture file with Zeek.

3.1 Applying the profiling filter

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Miniedit

[—
>

EXTermimal

Step 2. Navigate to the Lab-Scripts directory.
cd Zeek-Labs/Lab-Scripts/
kd zeek@admin: ~/Zeek-Labs/Lab-Scripts =i

File Edit Tabs Help
zeek@admin:~$ lcd Zeek-Labs/Lab-Scripts/

zeek@admin:~/Zeek-Labs/Lab-Scripts$ |

Step 3. View the EnableProfiling.zeek Zeek script.

nl EnableProfiling.zeek

Page 11

Lab 9: Profiling and Performance Metrics of Zeek

zeek@admin: ~/Zeek-Labs/Lab-Scripts =X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/Lab-Scripts$ [nl EnableProfiling.zeek
1 module Profiling;

2 function log suffix(): string

{
local rprof = getenv("ZEEK LOG SUFFIX");

if (rprof == "")
return "log";

return rprof;

}

redef profiling file = open(fmt("prof.%s", Profiling::log suffix())):
10 redef profiling interval = 15 secs;
11 redef expensive profiling multiple = 20;

12 event zeek init()

13 {

14 set buf(profiling file, F);
15 }

zeek@admin:~/Zeek-Labs/Lab-Scriptss |J

Similar to the example in the introduction, the EnableProfiling.zeek Zeek script is used to
create a new log file named Statistics.log containing Zeek profiling statistics. The script
enables the intervals to be 15 seconds apart, with 20 total intervals.

Step 4. Navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

"Host: zeek2" R R
P-Traffic

lrattic# |

Step 5. Process the ntraffic.pcap packet capture file.
zeek —-C -r ntraffic.pcap EnableProfiling.zeek

[zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |zeek -C -r scantraffic.pcap ../Lab-Scripts
/EnableProfiling.zeek

zeek@admin:~/Zeek-Labs/TCP-Traffic$ I

Step 6. Display the contents of the Statistics.log file.

nano prof.log

Page 12

Lab 9: Profiling and Performance Metrics of Zeek

zeek@admin: ~/Zeek-Labs/TCP-Traffic - X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |nano prof.log

zeek@admin:~/Zeek-Labs/TCP-Traffics |

The prof.log file will be displayed.

File Edit Tabs Help
GNU nano 2.9.3

zeek@admin: ~/Zeek-Labs/TCP-Traffic ol I, S

prof.log

.000000
.000000
.000000

Command line: zeek -C -r scantraffic.pcap ../Lab-Scripts/EnableProfis

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

Memory: total=89364K total adj=0K malloced: 66980K
Run-time: user+sys=0.0 user=0.0 sys=0.0 real=0.0

Conns: total=0 current=0/0 ext=0 mem=0K avg=0.0 table=0K connvals=0K
Conns: tcp=0/0 udp=0/0 icmp=0/0
TCP-States: Inact. Syn. SA Part.

Est. Fin. R

TCP-States:
TCP-States:
TCP-States:
TCP-States:
TCP-States:
TCP-States:
TCP-States:

Inact.
Syn.
SA
Part.
Est.
Fin.
Rst.

.000000
.000000
.000000

Connections expired due to inactivity: O
Total reassembler data: OK
Timers: current=30 max=30 mem=1K lag=0.00s

Viewing the Statistics.log file, each profiling_interval will be displayed between a line
separator made by dashes [---].

Within the Statistics.log file, we can see the total memory used while processing the
packet capture file, the Run-time, as well as a number of TCP flags, connections and
Triggers. Within the first iteration of profiling_interval we see that no TCP packet flags

have been recorded.

Step 6. Go to the next iteration of profiling_interval within the Statistics.log file.

Page 13

Lab 9: Profiling and Performance Metrics of Zeek

[zeek@admin: ~/Zeek-Labs/TCP-Traffic -+ X
File Edit Tabs Help
GNU nano 2.9.3 prof.log

.164306 Memory: total=89364K total adj=0K malloced: 66984K

.164306 Run-time: user+sys=0.0 user=0.0 sys=0.0 real=0.0

.164306 Conns: total=0 current=0/0 ext=0 mem=0K avg=0.0 table=0K co$
.164306 Conns: tcp=0/0 udp=0/0 icmp=0/0

.164306 TCP-States: Inact. Syn. SA Part. Est.
.164306 TCP-States:Inact.

.164306 TCP-States:Syn.

.164306 TCP-States:SA

.164306 TCP-States:Part.

.164306 TCP-States:Est.

.164306 TCP-States:Fin.

.164306 TCP-States:Rst.

.164306 Connections expired due to inactivity: O

.164306 Total reassembler data: OK

.164306 Timers: current=27 max=30 mem=1K 1ag=1578948751.16s
.164306 DNS Mgr: requests=0 succesful=0 failed=0 pending=0 cached h$
.164306 Triggers: total=0 pending=0

.164306 ScheduleTimer = 2

i e i L i

& N

By write Out Where Is Cut Text &S] Justify
EX ~U

@i Read File Replace Uncut Text @l To Spell

By scrolling through the prof.log file, we can see information found in the next iteration
of a profiling_interval. We can see the total number of TCP-States:Syn has updated
multiple parameters, with additional Triggers being been included. This includes the total

memory usage, displayed towards the bottom of the image.

Zeek profiling is a great tool for generating more detailed session-based statistics while
processing packet capture files with Zeek.

4 Implementing tools to test Zeek’s performance

While Zeek profiling will display the resulting statistics after processing a packet capture
file, it is important to monitor Zeek resource consumption during network traffic analysis.

A number of Linux-based software utilities can be used to track system resource
consumption in real time.
4.1 Using sysstat sar utility

The command can be used to display a number of system resources over specific time
intervals. The following steps will highlight the ways to enable sar resource tracking.

Step 1. Launch the utility to track CPU consumption.

sar 2 30

e [sar] calls the utility, belonging to the packages.

Page 14

Lab 9: Profiling and Performance Metrics of Zeek

e [2 indicates each iteration of CPU statistics is separated by a 2 second time interval.
e [30]: indicates that a total of 30 iterations of CPU statistics should be displayed.

zeek@admin: ~/Zeek-Labs/TCP-Traffic G ¢

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ [sar 2 30
Linux 4.15.0-70-generic (admin) 01/13/2020 x86 64

:37 PM CPU suser %nice Ssystem Siowait %steal
:39 PM 0.13 0.06

:41 PM

:43 PM

:45 PM

147 PM

Use the keyboard combination to terminate the utility and return to the
terminal.

Step 2. Launch the utility to track memory consumption.

sar -r 3 25

e [sar] calls the utility, belonging to the packages.

e [-r]: indicates memory consumption in kilobytes.

e [3: indicates each iteration of memory statistics is seperated by a 3 second time
interval.

e [25]: indicates that a total of 25 iterations of memory statistics should be displayed.

zeek@admin: ~/Zeek-Labs/TCP-Traffic T
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ lsar -r 3 25
Linux 4.15.0-70-generic (admin) 01/13/2020 _x86 64

:04 PM kbmemfree kbavail kbmemused %memused kbbuffers kbcached Kkbcom
%scommit kbactive kbinact kbdirty
:07 PM 7266672 7496160 792116 9. 92692 332116 1172

12.99 432692 121120 48

:10 PM 7266672 7496160 792116 9. 92692 332116 1172
12.99 432692 121120 48

:13 -PM 7266672 7496160 792116 9. 92692 332116 1172
12.99 432692 121120

Use the keyboard combination to terminate the utility and return to the
terminal.

Page 15

Lab 9: Profiling and Performance Metrics of Zeek

4.2 Using the top utility

Alternative to the syystat sar utility, the top utility can be used to display the resource
consumption of every active process.

Step 1. Launch the top utility to track resource consumption.

top -1i

e [top| calls the utility.

e [-i]: toggles idle processes off, so that only active processes will be displayed.

hed zeek@admin: ~ S L
File Edit Tabs Help
zeek@admin:~$ top -i

After entering the command, the Terminal will display the resource consumption.

Each row will belong to a unique process and display the related CPU and memory
resource usage.

[zeek@admin: ~/Zeek-Labs/TCP-Traffic =R R
File Edit Tabs Help

16:09:37 up 2:53, 1 user, load average: 0.00, 0.00, 0.00
174 total, 1 running, 112 sleeping, 0 stopped, 0 zombie
0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 s
iB Mem : 8058788 total, 7265812 free, 293128 used, 499848 buff/cache
iB Swap: 969960 total, 969960 free, 0 used. 7495516 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
765 root 20 0O 360328 56920 32028 S 0.3 0.7 0:10.61 Xorg

4.3 Viewing the resource consumption of Zeek

Step 1. Using the File drop down options, create a New Tab within the Terminal.

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic - 4+ X
Edit Tabs Help

+ New Window 1 user, load average: 0.00, 0.00, 0.00

T NewTab nning, 112 sleeping, © stopped, ® zombie

y, 0.0 ni, 99.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 s
X CloseTab , 7266308 free, 292624 used, 499856 buff/cache

(3 close Window . 969960 free, 0 used. 7496028 avail Mem

Step 2. In the second tab, begin packet capture file processing of the bigFlows.pcap file
using Zeek.

zeek -C -r ../Sample-PCAP/bigFlows.pcap

Page 16

Lab 9: Profiling and Performance Metrics of Zeek

[zeek@admin: ~/Zeek-Labs/TCP-Traffic - 4+ X
File Edit Tabs Help

* zeek@ad... X zeek@admi... X
zeek@admin:~/Zeek-Labs/TCP-Traffic$ jzeek -C -r ../Sample-PCAP/bigFlows.pcap

zeek@admin:~/Zeek-Labs/TCP-Traffics$ |

Step 3. Return to the first Terminal tab and view the active processes.

[zeek@admin: ~/Zeek-Labs/TCP-Traffic =X
File Edit Tabs Help

zeek@admi... X | zeek@admi... X

op - 16:11:25 up 2:54, 1 user, load average: 0.10, 0.03, 0.01

asks: 176 total, 2 running, 113 sleeping, 0 stopped, 0 zombie
sCpu(s): 2.5 us, 0.5 sy, 0.0 ni, 97.0 id, 6.0 wa, 0.0 hi, 0.0 si, 0.0 s
iB Mem : 8058788 total, 6811436 free, 386184 used, 861168 buff/cache

iB Swap: 969960 total, 969960 free, 0 used. 7401608 avail Mem

NI VIRT RES SHR S |%CPU %MEM TIME+ COMMAND .
0 1402392 109280 18468 R 20.6 B 0:00.62 zeek
7
4

0 360328 56920 32028 S 1.0 0:11.00 Xorg
0 547208 34304 26072 S 1.0 0:03.14 lxtermin+

1 B
0.
0.

Use the keyboard combination to terminate the utility and return to the
terminal.

4.4 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended

to hold the key while typing rather than using the key.
cd $ZEEK INSTALL/bin && sudo ./zeekctl stop

kd zeek@admin: /usr/local/zeek/bin - + X

File Edit Tabs Help
zeek@admin:~$ |cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop
[sudo] pa ord Tor zeek:

sr/local/zeek/bins J]

Concluding this lab, we introduced Zeek’s profiling capabilities and generated fragmented
traffic to be processed into a profiling log file. Lastly, we introduced Terminal utilities that
can be used to track Zeek’s resource consumption per process. Regular checking of Zeek
profiling and resource consumption is necessary to ensure the IDS is working optimally in
a real-time environment.

Page 17

Lab 9: Profiling and Performance Metrics of Zeek

Furthermore, we have concluded introducing Zeek’s capabilities as an IDS. The remaining
labs within this series will focus on further processing Zeek log files for advanced analysis.

References

1. “Profiling”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/scripts/policy/misc/profiling.zeek.html

Page 18

UTSA.

The University of Texas at San Antonio™
The Cyber Center for Security and Analytics

ZEEK INSTRUSION DETECTION SERIES

Lab 10: Application of the Zeek IDS for Real-Time
Network Protection

Document Version: 03-15-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
[IE2] o 38 o o Yo] [o =4 V2 PP UPPRRUPPRPR 3
(1Y Y=Y T = PP PUPPRRUPTPPR 3
(I Y o o - o [4= T TSP 4
1 Introduction to real-time network traffic analysis using Zeekccceevvveeircieennns 4
1.1 Starting a new instance Of ZEeKcuuveiviiiiiiiiiiie e 4
1.2 LauNnChing MININET....cciii et e e e saaaee s 5
1.3 Setting up the zeekl virtual machine for live network capturecccccceeeeennnes 7
1.4 Using the zeek2 virtual machine for network scanning activitiesccceu...... 8
1.4.1 Terminating live Nnetwork captureccccooeecciiiieeee e, 9
1.5 Analyzing the generated Zeek 10g filesccueviirieeiiii e, 9
2 Introduction to the Zeek NetControl frameworkcoccveeeeiiieeeiniiieeiirieeeeee, 11
2.1 Viewing Zeek NetControl within a script file......cccovveeeiiiieiccee e, 11
2.2 Executing Zeek NetControl within a script file.......cccceeeiieeccciiee e, 15
3 Identifying SSH attacks by leveraging the Zeek NetControl framework 18
3.1 Closing the current instance of ZeeK.........cccueeeeciieeeiciiiie e, 21
REFEIENCES ...ttt et e e sttt e e s st e e s s abbee e e sareeeesennreeesanns 21

Page 2

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

Overview
This lab introduces Zeek’s real-time packet analysis for intrusion prevention. By
combining the various Zeek-specific events that were introduced and reviewed in
previous labs, we are able to identify and mitigate malicious traffic in real-time.
Objectives
By the end of this lab, students should be able to:

1. Run Zeek in live mode to process network traffic on the wire.

2. Understand the Zeek NetControl framework.
3. Leverage advanced Zeek scripts for anomaly event detection.

Lab topology
Figure 1 shows the lab workspace topology. This lab primarily uses the zeek2 virtual

machine to generate scan-based traffic, and the zeek1 virtual machine to perform live
network capture.

Mininet Emulated Network Hardware Network

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Page 3

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path
$ZEEK INSTALL lusr/local/zeek
$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap
This lab is organized as follows:

1. Section 1: Introduction to real-time network traffic analysis using Zeek.

2. Section 2: Introduction to the Zeek NetControl framework.
3. Section 3: Identifying SSH attacks by leveraging the Zeek NetControl
framework.
1 Introduction to real-time network traffic analysis using Zeek

The previous labs within this lab series have leveraged the tcpdump terminal utility for
capturing network traffic and generating packet capture files. However, Zeek is capable
of collecting and analyzing such network traffic in real-time, with the ability to apply
signature-matching and event-based Zeek scripts for malicious event detection.

This section will introduce leveraging Zeek for real-time network traffic analysis, without
needing to save the packets captured by the receiving interface.

In contrast to the previous terminal option used for offline packet analysis, this lab
will be using the terminal option to indicate the receiving interface for real-time
network traffic analysis.

1.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

PR LIGLVE & Content | |#* Status | O Client =

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Page 4

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

Miniedit

e
>

XTermimel

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes tool to start a new
instance. To type capital letters, it is recommended to hold the key while typing
rather than using the key. When prompted for a password, type and hit
Entex)

cd $ZEEK INSTALL/bin && sudo ./zeekctl start

kd zeek@admin: /usr/local/zeek/bin = e
File Edit Tabs Help

zeek@admin:~$ |cd $ZEEK_INSTALL/bin && sudo ./zeekctl

[sudo] password Tor zeek:

zeek@admin: /usr/lo¢

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

1.2 Launching Mininet

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type and hit
[Enter]. The MiniEdit editor will now launch.

Miniedit
E —
=

[XTerminzl

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the button within the
tab on the top left of the MiniEdit editor.

Page 5

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

File | Edit Run

MNew

Save

Export Level 2 Script

Help

Quit

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the button.

- Open =3¢

Directory: /home/zeek — \ B ‘

o .presage mininet zeek

& .thumbnails oflops Zeek-Labs

5 .wireshark oftest E Zeek-Topologies|

&) Desktop openflow

& Documents pox

& Downloads [Public

Kl I
File name: | Open

Files of type: Mininet Topology (*.mn) — Cancel

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the button.

Directory:

Open

/home/zeek/Zeek-Topologies

- &

[| Topology.mn

ET

File name: |

Files of type:

Mininet Topology (*.mn) —

Open

Cancel

Page 6

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

Step 5. To begin running the virtual machines, navigate to the button, found on the
bottom left of the Miniedit editor, and select the button, as seen in the image
below.

Run

Stop [E]_

1.3 Setting up the zeek1 virtual machine for live network capture

Step 1. Launch the zeek1 terminal by holding the right mouse button on the desired
machine, and clicking the button.

7aal zeek?2
Host Options _—

Terminal

Step 2. Navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

I "Host: zeek2" - + x

rootidadmin: ™ feek—Labs/TCP-Traffics

rootBadming ™/ Zeek-Labs L= rattic |

Step 3. Start an instance of Zeek live packet capture on interface zeekl-ethO while
applying the advanced Zeek script ZeekDetectScans.zeek. It is possible to use the key
to autocomplete the longer paths.

zeek —C -i zeekl-ethO ../Lab-Scripts/ZeekDetectScans.zeek

T "Host: zeekl" - + x

Page 7

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

The ZeekDetectScans.zeek scripting file was introduced in Lab 8 of this lab series and will
be used by the Zeek event-based engine to identify scan-based traffic. During live network
traffic analysis, alternative scripts and signature files can be leveraged to identify specific
anomalies and malicious attacks.

The zeek1 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek2 machine to generate scan-based network traffic.
14 Using the zeek2 virtual machine for network scanning activities

In this section we use the software to generate TCP-based scan traffic in order to
trigger Zeek’s logging notices.

Step 1. Minimize the zeekl and open the zeek2 by following the

previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

Zaaln |

Host Options

Terminal

Step 2. Launch a fragmented TCP scan against the zeek1 machine.

nmap -sT 10.0.0.1

T "Host: zeek2" - + x

root@admin:™# mmap -=T 10,0,0,1

7.E0 kit Srmap,arg 1 oat 20 03-1E 16:08 EIT
t fo

doner 1 IP address (1 host up 1 =canned in 12,35 zeconds

Now that we have generated scan-based traffic, we can verify that Zeek was able to
identify such malicious events in real-time, while generating corresponding log files.

Page 8

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

1.4.1 Terminating live network capture

Step 1. Minimize the zeek2 and open the zeek1 using the navigation

bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

X ["Host: zeek1"]| 7K ["Host: zeek2"]

Step 2. Use the key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 2002 packets were recorded by the interface, which
were continually analyzed by the Zeek event-based engine.

T "Host: zeekl" - + x
in:™s —Labz/TCP-Traffic# |zeek -C -i zeekl-ethd . Lab-Scripts.

ekl-ethi

ethi), O dropped

Within the previous image, the red box denotes the live capture command while the
orange box indicates the number of packets received on the zeek1-ethO interface. 2002
packets were generated by the zeek2 virtual machine, and no packets were dropped
during analysis.

Step 3. Stop the current Mininet session by clicking the button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the [x] on the top right of
the editor.

15 Analyzing the generated Zeek log files

To verify the success of our real time application of Zeek’s event-based engine, we will
return to the Client machine.

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Page 9

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

Miniedit

e
>

CXTerminal

Step 2. Navigate to the TCP-Traffic directory to find the scantraffic.pcap file.
cd Zeek-Labs/TCP-Traffic/
%] zeek@admin: ~/Zeek-Labs/TCP-Traffic - 4+ X

File Edit Tabs Help
zeek@admin:~$ lcd Zeek-Labs/TCP-Traffic/

zeek@admin:~/Zeek-Labs/TCP-Traffics [

Step 3. View the file contents of the TCP-Traffic directory to ensure that Zeek generated
log files based on the real-time network traffic analysis.

1s

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic R
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffics |ls
conn.log notice.log packet filter.log reporter.log weird.log

zeek@admin:~/Zeek-Labs/TCP-Traffics |J

A number of log files have been generated, specifically, the notice.log file which will
contain the event’s triggered by the ZeekDetectScans.zeek script file.

Step 3. View the file contents of the notice.log file to verify scan-based traffic was
correctly identified and recorded by the Zeek event-based engine.

Head notice.log

Page 10

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ lhead notice.log

#separator \x09

#set separator ,

#fempty field (empty)

funset field -
notice
2020-03-16-16-08-28
ts uid id.orig h id.orig p id.resp _h id.resp_
fuid file mime type file desc proto note msg sub S
dst p n peer descr actions suppress for remote 1
.country code remote location.region remote location.city remote 1

.latitude remote location.longitude
time string addr port addr port string string string e
enum string string addr addr port count string set[enum
interval string string string double double

1584389308.915846

otice::ACTION LOG
#close 2020-03-16-16-08-30
zeek@admin:~/Zeek-Labs/TCP-Traffics ||

Within the previous image, the red box denotes the terminal command while the orange
box indicates the resulting notice generated by Zeek due to the ZeekDetectScans.zeek
script file. The zeek2 virtual machine, with an IP address of 10.0.0.2, was recorded to have
scanned at least 15 unique ports on the zeek1 virtual machine.

Concluding this section, we have reviewed the capabilities of Zeek for conducting packet
analysis during live network traffic capture. The signature and script files reviewed in
previous labs can be leveraged during such real-time analysis, allowing for Zeek to
monitor and protect a network in real-time.

In the following section, we will review Zeek’s NetControl framework, which is used to
create a backend communication channel with application firewalls and related
monitoring systems.

2 Introduction to the Zeek NetControl framework

The Zeek NetControl framework is used to create a flexible, unified interface for active
mitigation and response against anomalous traffic. The framework allows for connectivity
between a large number of devices, removing the heterogeneity of such configurations
through creating a task-oriented API. This API is developed using the Zeek scripting
language, consisting of a number of high-level calls and lower-level rule syntax. This
section will introduce and review basic Zeek NetControl calls and their implementation
for network traffic analysis in real-time.

2.1 Viewing Zeek NetControl within a script file

Step 1. On the left side of the Client desktop, click on the LXTerminal icon as shown below.

Page 11

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

Step 2. Navigate to the Lab-Scripts directory.
cd Zeek-Labs/Lab-Scripts/

zeek@admin: ~/Zeek-Labs/Lab-Scripts =
File Edit Tabs Help

zeek@admin:~$ |cd Zeek-Labs/Lab-Scripts/
zeek@admin:~/Zeek-Labs/Lab-Scriptss |j

Step 3. View the contents of the lab10_sec2-1.zeek file using [n1].
nl Zeek-Labs/Lab-Scripts/

zeek@admin: ~/Zeek-Labs/Lab-Scripts - 4+ X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/Lab-Scripts$ |[nl 1abl0 sec2-1.zeek
event NetControl::init() {
local debug plugin = NetControl::create debug(T);
NetControl::activate(debug plugin, 0);

}

event connection established(c: connection) {

if (|NetControl::find rules addr(c$idsorig h)| > 0){
print "Error! Rule already exists!";
return;

}

NetControl::drop_connection(c$id, 20 secs);
print "Success! Rule created!";

zeek@admin:~/Zeek-Labs/Lab-Scriptss |

The script is explained as follows. Each number represents the respective line number:

1. Initializes the NetControl API framework.

Creates a local variable to contain debug information.

3. Usesthe NetControl API to activate debugging and display notifications and/or
error messages.

5. Zeek eventin which a connection between a source and destination is formed.
This can be initialized by the TCP handshake or a series of UDP Request and
Reply packets.

N

Page 12

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

7. Checks if a NetControl rule already exists based on the source address
requesting a connection.

8. Prints a debug error message if the rule exists.

9. Exits the function and begins checking for the next connection within the
packet stream.

11. If arule has not been created, add a rule to drop any connections made by the
current source address that lasts over 20 seconds.

12. Prints a debug message that a new rule was created.

This script is relatively basic and straightforward, yet shows the steps necessary to
initialize the NetControl API. Without calling its initialization function, Zeek will be unable
to communicate to various hardware devices through its backend.

Step 3. View the contents of the ZeekDetectSSHAttacks.zeek file using [n1].

This script is very similar to the ZeekDetectScans.zeek default script reviewed in Lab 8 of
this lab series. The following images will briefly review the file contents, while the Zeek
documentation and previous lab provide a more in-depth analysis of this Zeek script. To
access the following link, users must have access to an external computer connected to
the Internet, because the Zeek Lab topology does not have an active Internet connection.

https://docs.zeek.org/en/master/scripts/policy/protocols/ssh/detect-
bruteforcing.zeek.html

Command:
nl ZeekDetectSSHAttacks.zeek

zeek@admin: ~/Zeek-Labs/Lab-Scripts -+ X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/Lab-Scriptss$ [nl ZeekDetectSSHAttacks.zeek
1 ##! Detect hosts which are doing password guessing attacks and/or passwo
rd
##! bruteforcing over S5H.

@load base/protocols/ssh

@load base/frameworks/sumstats
@load base/framework

@load base/frameworks/i

module SSH;
export {

redef enum Notice::Type += {
Indicates that a host has been identified as crossing

:zeek:id: SSH::password guesses limit™ threshold with
failed logins.
Password Guessing,
Indicates that a host previously identified as a "pas

guesser" has now had a successful login
attempt. This is not currently implemented.
Login By Password Guesser,

Page 13

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

The script is explained as follows. Each number represents the respective line number:
3-6. Zeek pre-directives to load SSH, summary and notice-specific script
functionality.

7. Sets the module namespace to SSH.

8-17. Creates the export block to define the variables used throughout this
script, specifically, the Password_Guessing variable on line 13 that will store the
number of failed SSH password attempts.

| zeek@admin: ~/Zeek-Labs/Lab-Scripts -+ X
File Edit Tabs Help

redef enum Intel::Where += {
An indicator of the login for the intel framework.
SSH: :SUCCESSFUL_LOGIN,

1.

I

The number of failed SSH connections before a host is designa

guessing passwords.
const password guesses limit: double = 5 &redef;

The amount of time to remember presumed non-successful logins

build a model of a password guesser.
const guessing timeout = 1@ mins &redef;

This value can be used to exclude hosts or entire networks fr
tracked as potential "guessers". The index represents

client subnets and the yield value represents server subnets.
const ignore guessers: table[subnet] of subnet &redef;

Scroll down on the Terminal to view more of the script. Each number represents the
respective line number:
25. Variable named password_guesses_limit that stores a numerical threshold
for total number of failed SSH connections before marking a host as launching a
brute-force attack.

28. Variable named guessing timeout that stores a time-based threshold
before resetting the password_guesses_limit variable back to 0.
29. Variable named ignore_guessers that stores a table of IP addresses

identified to be launching SSH brute-force attacks. These addresses can be blocked
or partially filtered.

Page 14

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

zeek@admin: ~/Zeek-Labs/Lab-Scripts iS¢
File Edit Tabs Help

71 {
72 local id = c$id;

73 # Add data to the FAILED LOGIN metric unless this connection sho

74 # be ignored.
75 if (! (id$orig h in ignore guessers &&
76 id$resp h in ignore guessers[id$orig h]))
77 SumStats::observe("ssh.login.failure", [$host=id$orig h]
, [$str=cat(id$resp h)l);
}

event NetControl::init(){
local debug plugin = NetControl::create debug(T);
NetControl::activate(debug plugin, 0);

}

hook Notice::policy(n: Notice::Info){
if (n$note == SSH::Password Guessing)({
NetControl::drop address(n$src, 30min);

}

zeek@admin:~/Zeek-Labs/Lab-Scriptss |

Scroll down on the Terminal to view more of the script. Each number represents the
respective line number:
79. Initializes the NetControl APl framework.
80. Creates a local variable to contain debug information.
81. Uses the NetControl API to activate debugging and display notifications
and/or error messages.
83. Zeek hook to the Notice logging stream so that we can append new information
with default information.
84. Checks the Password _Guessing variable to determine if the current source
address has been identified to be launching SSH brute-force attacks.
85. If the current source address was launching SSH brute-force attacks, create
a new rule that will drop all network traffic from this source for the next 30
minutes.

Now that we have reviewed both scripts that will be used within the remainder of the lab,
we can see the value of Zeek’s NetControl framework. By leveraging Zeek scripts we are
able to identify anomalous network traffic events, detect malicious sources and finally

leverage NetControl to mitigate their attacks. The remainder of this lab will include
examples of executing the aforementioned Zeek scripts.

2.2 Executing Zeek NetControl within a script file

Step 1. Navigate to the TCP-Traffic directory.

cd ../TCP-Traffic/

Page 15

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

| zeek@admin: ~/Zeek-Labs/TCP-Traffic -+ x
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/Lab-Scripts$ |cd ../TCP-Traffic/

zeek@admin:~/Zeek-Labs/TCP-Traffics [

Step 2. Process the smallFlows.pcap packet capture file using the lab10_sec2-1.zeek
script. To type capital letters, it is recommended to hold the key while typing
rather than using the key. It is possible to use the key to autocomplete the
longer paths.

zeek -C -r ../Sample-PCAP/smallFlows.pcap ../Lab-Scripts/labl0_ sec2-1.zeek >
terminal.log

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X
File Edit Tabs Help

'TCP-Traffics$ zeek -C -r ../Sample-PCAP/smallFlows.pcap .

/Lab-Script able .zeek > terminal.log
zeek@admin:~/Zeek-Labs/TCP-Trattics |

Because we have NetControl debugging enabled, we are going to save all error messages
and notifications to the file terminal.log. By saving these notifications to a separate file, it
is easier to view them in an organized fashion.

Step 3. View the file contents of the terminal.log file using fhead]

head terminal.log

[zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |head terminal.log

netcontrol debug (Debug-AC E[[ty=NetControl::DROP, target=NetControl:
:FORWARD, entity=[ty=NetControl::CONNECTION, conn=[orig h=192.168.3.131, orig p=
55950/tcp, resp h=72.14.213.102, resp p=80/tcp], flow=<uninitialized>, ip=<unini
tialized>, mac=<uninitialized>], expire=20.0 secs, priority=0, location=, out po
rt=<uninitialized>, mod=<uninitialized>, id=2, cid=2, plugin ids={\x0a\x0a}, a
ctive plugin ids={\x0a\x0a}, no expire plugins={\x0a\x0a}, added=F]
Success! Rule created!
rror! Rule already exists!

Rule already exists!

Rule already exists!

Rule already exists!

Rule already exists!

Rule already exists!

Rule already exists!
zeek@admin:~/Zeek-Labs/TCP-Traffics |

Reviewing this image, the red box indicates the terminal command used to view the file.
The orange box indicates the NetControl debug message that it has been initialized. The
blue box indicates that a new rule has been created to drop all packets from the specified
IP address for passing the connection-length threshold. The dark blue box indicates the
Zeek event message that the rule was created successfully, while the yellow box indicates
the Zeek event message that the rule already existed and a duplicate was not created.

Page 16

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

Step 4. View the contents of the TCP-Traffic directory using [Ls|.

1s

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic =X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffics$ [ls

conn.log dpd.log netcontrol drop.log snmp.log weird.log
dhcp.log files.log netcontrol.log ssl.log x509. 109

dns.log http.log packet filter.log terminal.log
zeek@admin:~/Zeek-Labs/TCP-Traffic$ I

The two log files are interested in are the netcontrol.log and netcontrol_drop.log files. The
netcontrol.log file will contain all information related to adding and removing rules, while
the netcontrol_drop.log file will contain information regarding to when each rule was
triggered and by which source address.

Step 5. View the file contents of the netcontrol.log file using [gedit].

gedit netcontrol.log

zeek@admin: ~/Zeek-Labs/TCP-Traffic - 4+ X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |gedit netcontrol.log

(gedit:1269): dbind-WARNING **: : Error retrieving accessibility bus
address: org.freedesktop.DBus.Error.ServiceUnknown: The name org.ally.Bus was n
ot provided by any .service files

(gedit:1269): Gtk-WARNING **: : Attempting to read the recently used
resources file at '/home/zeek/.local/share/recently-used.xbel', but the parser
failed: Failed to open file “/home/zeek/.local/share/recently-used.xbel”: Permis

sion denied.
zeek@admin:~/Zeek-Labs/TCP-Traffics [

m netcontrol.log

Open~ Save = PCAL

#separator \x09

#set separator

#empty field (empty)

#unset_field

#path netcontrol

#open 2020-03-16-15-54-25

#fields ts rule_id category cmd state action target entity type entity mod msg priority expire

location plugin

#types time string enum string enum string enum string string string string int interval string string

0.000000 - NetControl: :MESSAGE - - - - - - activating plugin with priority

0 - - - Debug-All

0.000000 - NetControl: :MESSAGE - - = - - - = activation

finished - - - Debug-All

. 000000 - NetControl: :MESSAGE - - - - - - - plugin initialization

done = = =

1295981542.727058 2 NetControl: :RULE ADD NetControl: :REQUESTED NetControl: :DROP NetControl: : FORWARD
etControl::CONNECTION 192.168.3.131/55950<->72.14.213.102/80 - = 0 20.000000 = Debug-All

1295981542.727058 2 NetControl: :RULE ADD NetControl: : SUCCEEDED NetControl: :DROP NetControl: : FORWARD

INetControl: :CONNECTION 192.168.3.131/55950<->72.14.213.102/80 - 3] 20.000000 3 Debug-All

1295981562. /750126 2 NetConTrol: :RULE EXPIRE NetControl::[IMEOUI NetContTrol: :DROP etControl::
etControl::CONNECTION 192.168.3.131/55950<->72.14.213.102/80 - =] 20.000000 = Debug-All

1295981562.756126 2 NetControl::RULE REMOVE NetControl::REQUESTED NetControl: :DROP NetControl: : FORWARD

Reviewing this image, the red box indicates that a Connection request was made by the
source address 192.168.3.131 to the destination address 72.14.213.102. The orange box
indicates that the connection was established while the blue box indicates that the
connection was dropped and forced to time-out because of NetControl filtering packets
from this source destination.

Page 17

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

Step 6. View the file contents of the netcontrol_drop.log file using [gedit].

gedit netcontrol drop.log

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ [gedit netcontrol drop.log

(gedit:1297): dbind-WARNING **: : Error retrieving accessibility bus

address: org.freedesktop.DBus.Error.ServiceUnknown: The name org.ally.Bus was n
ot provided by any .service files
zeek@admin:~/Zeek-Labs/TCP-Traffics JJ

Open m netcontrol_drop.log Save = _ o @
#separator \x09
#set_separator

#empty field (empty)

#unset_field =

#path netcontrol _drop

#open 2020-03-16-15-54-25

#fields ts rule id orig h orig p resp h resp p expire location

#types time string addr port addr port interval string

1295981542 .727058 2 192.168.3.131 55950 72.14.213.102 80 20.000000 -1
1295981563.683990 3 192.168.3.131 58303 208.82.236.129 860 20.000000 =
1295981585.113271 4 192.168.3.131 58350 208.82.236.129 80 20.000000
1295981606.708004) 192.168.3.131 56160 65.54.95.68 80 20.000000
1295981627.735202 6 192.168.3.131 56213 65.54.95.75 80 20.000000

Reviewing this image, the red box indicates that a source address attempted to create a
connection, breaking the NetControl rule we had previously implemented. Therefore, all
packets were dropped from this source host during the time-out interval we declared
within the lab10_sec2-1.zeek script.

Step 7. Clear the TCP-Traffic directory by using the lab_clean.sh shell script.

./../Lab-Scripts/lab clean.sh

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help
zeek@admin:~/Zeek-Labhs/ -affics |./../Lab-Scripts/lab clean.sh

zeek@admin:~/Zeek-Labs/TCP-Traffics |

3 Identifying SSH attacks by leveraging the Zeek NetControl framework

Now that we have reviewed a basic implementation of the NetControl framework,
creating a connection-based rule and identifying source addresses that broke the rule, we
will conduct a more in-depth analysis on SSH brute-force password attacks.

Step 1. Process the sshguess.pcap packet capture file using ZeekDetectSSHAttacks.zeek.
To type capital letters, it is recommended to hold the key while typing rather
than using the key. It is possible to use the key to autocomplete the longer
paths.

zeek -C -r ../Sample-PCAP/sshguess.pcap ../Lab-
Scripts/ZeekDetectSSHAttacks.zeek

Page 18

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ |zeek -C -r ../Sample-PCAP/sshguess.pcap
ab-Scripts/ZeekDetectSSHAttacks.zeek

netcontrol debug (Debug-All): init

netcontrol debug (Debug-All): add rule: [ty=NetControl::DROP, target=NetControl:
:FORWARD, entity=[ty=NetControl::ADDRESS, conn=<uninitialized>, flow=<uninitiali

zed>, ip=192.168.56.1/32, mac=<uninitialized>], expire=30.0 mins, priority=0, lo
cation=, out port=<uninitialized>, mod=<uninitialized>, id=2, cid=2, plugin ids
={\x0a\x0a}, active plugin ids={\x0a\x0a}, no expire plugins={\x0a\x0a}, adde

zeek@admin:~/Zeek-Labs/TCP-Traffics [

Similar to the previous section, we can see the NetControl debug messages including its
initialization and creation of a new rule.

Step 2. View the contents of the TCP-Traffic directory using [Ls|.
1s

kad zeek@admin: ~/Zeek-Labs/TCP-Traffic -+ x

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffics |Ls
conn.log netcontrol.log packet filter.log

netcontrol drop.log notice.log ssh.log
zeek@admin:~/Zeek-Labs/TCP-Traffics]

We can see that the netcontrol.log, netcontrol_drop.log and notice.log files were created
during packet capture analysis.

Step 3. View the file contents of the netcontrollog file using[gedit]

gedit netcontrol.log

b
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffics$ |gedit netcontrol.log

(gedit:1365): dbind-WARNING **: : Error retrieving accessibility bus

address: org.freedesktop.DBus.Error.ServiceUnknown: The name org.ally.Bus was n
ot provided by any .service files
zeek@admin:~/Zeek-Labs/TCP-Traffics []

*netcontrol.log

Open~¥ M Save = - o @
#separator \x09
#set separator
#empty field (empty)
#unset_field
#path netcontrol
#open 2020-03-16-15-59-58
#fields ts rule_id category cmd state action target entity type entity mod msg priority expire
location plugin
#types time string enum string enum string enum string string string string int interval string string
0.000000 = NetControl: :MESSAGE = = = = = = activating plugin with priority
0 - = - Debug-All
0.000000 = NetControl: :MESSAGE = = = = = = = activation
finished - - - Debug-All
0.000000 - NetControl: :MESSAGE - - - - - - - plugin initialization
done = = =
R427726724A379736 2 NetControl: :RULE ADD NetControl: :REQUESTED NetControl: :DROP NetControl: :FORWARDl
etControl: :ADDRESS 192.168.56.1/32 - =] 1800.000000 = Debug-All

1427726724.379736 2 NetControl: :RULE ADD NetControl: : SUCCEEDED NetControl: :DROP NetControl: : FORWARD
NetControl: :ADDRESS 192.168.56.1/32 - =] 1800.000000 = Debug-All

#close 2020-03-16-15-59-58

Page 19

Lab 10: Application of the Zeek IDS for Real-Time Network Protection
Reviewing the previous image, the red box indicates that a new rule was created due to
the address 192.168.56.1 surpassing the incorrect SSH password guessing threshold.

Step 4. View the file contents of the netcontrol_drop.log file using [gedit].

gedit netcontrol drop.log

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic o e 8
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |gedit netcontrol drop.log

(gedit:1382): dbind-WARNING **: : Error retrieving accessibility bus
address: org.freedesktop.DBus.Error.ServiceUnknown: The name org.ally.Bus was n
ot provided by any .service files

zeek@admin:~/Zeek-Labs/TCP-Traffics ||

Open~ m netcontrol_drop.log
#separator \x09

#set separator ,

#empty field (empty)

#unset field -

#path netcontrol drop

#open 2020-03-16-15-59-58

#fields ts rule id orig h orig p resp h resp p expire location
#types time string addr port addr port interval string
11427726724.379736 2 192.168.56.1] 5 1800.000000

#close 2020—03-16—15—59-58l
Reviewing the previous image, the red box indicates which addresses were discovered to
break the NetControl rules. In this example, only one address was discovered,

192.168.56.1.

Step 4. View the file contents of the notice.log file using [gedit].

gedit notice.log

kd
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ /gedit notice.log

(gedit:1397): dbind-WARNING **: : Error retrieving accessibility bus
address: org.freedesktop.DBus.Error.ServiceUnknown: The name org.ally.Bus was n
ot provided by any .service files

zeek@admin:~/Zeek-Labs/TCP-Traffics$ [

Openv || [gncticelag Save | E | /o @8
#separator \x09
#set _separator
#empty field (empty)
#unset_field
#path notice
#open 2020-03-16-15-59-58
#fields ts uid id.orig h id.orig p id.resp_h id.resp p fuid file mime type file desc proto
note msg sub src dst p n peer_descr actions suppress for remote_location.country code
remote location.region remote location.city remote location.latitude remote location.longitude
#types time string addr port addr port string string string enum enum string string addr addr port
count string set[enum] interval string string string double double
1427726724.379736 = = = = = = = = SSH: :Password Guessing 192.168.56.1 appears
fto be guessing SSH passwords (seen in 5 connections). Sampled servers: 192.168.56.103, 192.168.56.103, 192.168.56.103, 192.168.56.103,
192.168.56.103 192.168.56.1 = S = Notice::ACTION LOG 3600.000000 = S S = S

#close 2020-03-16-15-59-58

Page 20

Lab 10: Application of the Zeek IDS for Real-Time Network Protection

Recall that the notice.log file is generated by the ZeekDetectSSHAttacks.zeek script. The
red box indicates which IP address was logged to have broken the SSH password guessing
threshold.

3.1 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended

to hold the key while typing rather than using the key.
cd $ZEEK INSTALL/bin && sudo ./zeekctl stop

kd zeek@admin: /usr/local/zeek/bin - + X
File Edit Tabs Help

zeek@admin:~$ jcd $ZEEK INSTALL/bin && sudo ./zeekctl stop
[sudo] password Tor zeek:

stopping zeek ...
zeek@admin: /usr/local/zeek/bins JJ

Concluding this lab, we have introduced the Zeek NetControl framework and Zeek’s live
processing of real-time network traffic. While the NetControl examples were performed
on offline packet capture files, by combining Zeek’s live analysis from Section 1 with the
examples from Section 2 and 3, active measures can be taken for identifying malicious
network traffic and blocking such sources.

References

1. “NetControl Framework”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/frameworks/netcontrol.html

2. “Logging framework”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/frameworks/logging.html

3. “Writing scripts”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/examples/scripting/#the-event-queue-and-
event-handlers

4. “Quick start Guide”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/current/quickstart

Page 21

UTSA.

The University of Texas at San Antonio™
The Cyber Center for Security and Analytics

ZEEK INSTRUSION DETECTION SERIES

Lab 11: Preprocessing of Zeek Output Logs for
Machine Learning

Document Version: 03-13-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSPPI 3
[IE2] o 38 o o Yo] [o =4 V2 PP UPPRRUPPRPR 3
(1Y Y=Y T = PP PUPPRRUPTPPR 3
(I Y o o - o [4= T TSP 4
1 Introduction to machine learning in Nnetwork SECUrity.......ccoccvveiriiieeeiniiieee e 4
1.1 ARFF file fOrmat..co e 5
2 Aggregating network capture datasetsccccceeeiiiieiiiiiiee 6
2.1 Starting a new instance Of ZeEKoovuiieiiiciiiii i 6
2.2 Launching MiININEt......cciiiiiiiie et e s e e s nae e e s s aeees 7
2.3 Setting up the zeek?2 virtual machine for live network captureccccuveeenneee. 8
2.4 Using the zeekl virtual machine for network scanning activitiesccc........ 9
2.4.1 Terminating live network captureccccceee oo, 10
3 Preprocessing of ZeeK 10g files........uiiiiiiiiieiiiiee e 11
3.1 Preprocessing the malicious datasetcccccceevecciiiiiiee e, 11
3.2 Preprocessing of the benign datasetcccceeecieiiiciiiee e, 15
3.3 Creation of the test and training datasets........ccccvvvveeeeii e, 16
3.4 Adding the .arff file headers ..o 18
3.5 Closing the current instance of ZeeK.........ccceeeeiiieeiciiiee e, 19
REFEIENCES ...ttt et e e sttt e e s st e e s s abbee e e sareeeesennreeesanns 20

Page 2

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

Overview
This lab introduces the application of machine learning in the network security field. After
using Zeek’s scripting language to generate anomaly-based output files, it is necessary to
format these datasets to be used by machine learning classifiers.
Objective
By the end of this lab, students should be able to:

1. Explain the benefits of leveraging machine learning for network analysis.

2. Understand Attribute-Relation File Format (ARFF).
3. Aggregate and preprocess a dataset to be used by a machine learning classifier.

Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the Bro2 machine for
offline Zeek log file processing and reformatting.

S nd

Mininet Emulated Network Hardware Network

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Table 2. Shell variables and their corresponding absolute paths.
Page 3

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

Variable Name Absolute Path
$ZEEK INSTALL lusr/local/zeek
$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap
This lab is organized as follows:

1. Section 1: Introduction to machine learning in network security.
2. Section 2: Aggregating network capture datasets.
3. Section 3: Preprocessing of Zeek log files.

1 Introduction to machine learning in network security

Machine learning is programming computers to optimize a performance criterion using
example data or past experience®. Machine learning is particularly useful for computing
empirical correlations, and in cases where it is difficult to write a computer program to
solve a given problem. In recent years, technological advances in machine learning have
propelled its application on various domains and sectors. Cyber-security is a critical area
in which machine learning (ML) is increasingly becoming significant.

By using Zeek and text processing languages, it is possible to identify the presence of an
anomaly. Once an anomaly is detected, Zeek’s scripts can be implemented to extract
relevant fields and build a dataset.

In this lab series, we will train machine learning classifiers using these anomaly-based
datasets in order to build a model that can be used for future predictions.

This lab focuses on reformatting Zeek log files into Attribute-Relation File Format (ARFF)
files, to be used by Weka software. Weka is a workbench for machine learning that is
intended to help in the application of machine learning techniques to a variety of real-
world problems?.

Supervised learning is a common approach used in machine learning. Supervised learning
consists of a target / outcome variable (or dependent variable) which is to be predicted
from a given set of predictors (independent variables). When training a machine learning
classifier using supervised learning, it is important to include both a training and test
dataset:

e [Training dataset]: dataset used by the classifier to “learn” correlations and
feature weights. Data should include instances of both variable and control group,
while containing a classification label.

Page 4

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

e [Testing dataset] dataset used by the classifier to test accuracy. If the classifier
is able to accurately predict labels for the training dataset but not for the testing
dataset, then it is necessary to adjust and retrain the classifier.

1.1 ARFF file format

The Weka software contains a variety of different machine learning algorithms to train a
number of classifiers. Each classifier will require different datasets; for instance, decision
trees can only handle numeric or nominal values, and strings cannot be used as an input
without being listed nominally.

The majority of machine learning classifiers accept numeric data inputs. Therefore, we
will need to preprocess our log file datasets to contain only numeric and nominal data.
Additionally, Weka requires each input dataset to be formatted in an .arff file format.

ARFF files contain comma-separated values and additional headers and labels. Below is a
sample of a properly formatted .arff file that we will be developing in this lab.

Open~ [+ trainset.arff
@RELATION networktraffic

@ATTRIBUTE time NUMERIC

@ATTRIBUTE sourceip NUMERIC
@ATTRIBUTE destip NUMERIC

@ATTRIBUTE sourceport NUMERIC
@ATTRIBUTE destport NUMERIC
@ATTRIBUTE protocol {tcp, udp, icmp}
@ATTRIBUTE duration NUMERIC
@ATTRIBUTE class {1, 0}

@DATA
1561919069960814,19216813,19216822,49526,1755, tcp, 0000003, 1
1295981666357961,172162551,18912644128,50983,3192,udp, 0259354, 0
1295981648891455,172162551,2049163158, 10630,80, tcp,0150006,0
1561919069995416,19216813,19216822,49526,9002, tcp, 0000003, 1
1561919069978244,19216813,19216822,49526, 15660, tcp, 0000004, 1
1561919069995584,19216813,19216822,49526, 2607, tcp, 0000004, 1
1295981640291009,172162551,255255255255,68,67,udp, ?,0
1295981676623302,1921683131,65549575,56332,80, tcp,6663279,0
1295981562322663,1921683131,7214213102,52213,443,1tcp,0065626,0
1295981774709267,100215,2074611378,2544,5443,tcp,40508775,0
1561919069981087,19216813,19216822,49526,8002, tcp, 0000003, 1
1295981675450881,1921683131,65549539,56326,80, tcp,7835533,0
15619196069953353,19216813,19216822,49526,22,tcp,0000003,1
1561919069954148,19216813,19216822,49526,5963, tcp, 0000004, 1
1295981655952795,100215,6449254,2527,1863, tcp,0543426,0
1561919069953343,19216813,19216822,49526,445, tcp,0000004,1
1561919069984349,19216813,19216822,49526, 10566, tcp, 0000003, 1

The ARFF file headers can be summarized as follows:

e [GRELATION: name of the dataset.
e [@ATTRIBUTE]: specifies the label and the data type for each column:

Page 5

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

o |NUMERIC]: integer data type.
o [NoMINAL]: values match entries defined within the brackets [{}].

e [eDATA] lists the input data.

Now that we have introduced ARFF files and understand what an input dataset should
look like, we can start aggregating and preprocessing a dataset using Zeek.

2 Aggregating network capture datasets

To create our dataset, we need to make sure there is a certain level of entropy in the data
to guarantee that the machine learning classifier will learn properly. Therefore, we need
to combine both benign and malicious datasets.

In this lab, we use the smallFlows.pcap file as the control group, identified as benign traffic
with a class label of 0. We then generate a new scantraffic.pcap file to be used as the
variable group, identified as malicious traffic with a class label of 1.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

RLLGIGGVE & Content | |+ Status | O Client «

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Miniedikt

XTermimal

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes tool to start a new

instance. When prompted for a password, type and hit[Entexr]

cd $SZEEK INSTALL/bin && sudo ./zeekctl start

Page 6

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

kd zeek@admin: /usr/local/zeek/bin - + X

File Edit Tabs Help
zeek@admin:~$ |cd $ZEEK INSTALL/bin && sudo ./zeekctl start
[sudo] password for zeek:

starting zeek ...
zeek@admin: /usr/local/zeek/bins |

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Launching Mininet

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type and hit
Enter]. The MiniEdit editor will now launch.

Miniedikt
e
[

[XTerminal

Step 2. The Minikdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the button within the
tab on the top left of the MiniEdit editor.

File | Edit Rum Help

Mew

Save
Export Level 2 Script

Quit

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the button.

Page 7

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

- Open Ty 0 S

Directory: /home/zeek — \ B ‘

i .presage mininet zeek

& .thumbnails oflops Zeek-Labs

5 .wireshark oftest E Zeek-Topologies|

&) Desktop openflow

& Documents pox

& Downloads Public

4l I
File name: | Open

Files of type: Mininet Topology (*.mn) — Cancel

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the button.

Gl Open - + X

Directory: /homejzeek/Zeek-Topologies = | @ ‘

[| Topology.mn

ET M

File name: | Open

Files of type: Mininet Topology (*.mn) — Cancel

Step 5. To begin running the virtual machines, navigate to the button, found on the
bottom left of the Miniedit editor, and select the button, as seen in the image
below.

Run

g —

2.3 Setting up the zeek2 virtual machine for live network capture

Page 8

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

Step 1. Launch the zeek2 terminal by holding the right mouse button on the desired
machine, and clicking the button.

Terminal

Step 2. Navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

T "Host: zeek2" - + X
rootladmint ™# | od c—LabsSTCP-Trafficd

root@admin: ™ feek-Labzs/ [LP-rattick JJ

Step 3. Start live packet capture on interface zeek2-ethO and save the output to a file
named scantraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w scantraffic.pcap

L o "Host: zeek2" - + X

Cap
topdumpi listening on ze

44 buytes
i

The zeek2 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek1 machine to generate scan-based network traffic.

2.4 Using the zeek1 virtual machine for network scanning activities

In this section we use the software to generate TCP-based scan traffic.

Step 1. Minimize the zeek2 and open the zeekl by following the

previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

Page 9

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

,Sl
\

Zaal

Host Options !

Terminal

Step 2. Launch a TCP SYN scan against the zeek2 machine.

nmap -sS 10.0.0.2

X "Host: zeekl" - + X

2.4.1 Terminating live network capture

Step 1. Minimize the zeek1 and open the zeek2 using the navigation

bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

| MiniEdit | X ["Host: zeek1"] | X ["Host: zeekZ"]|

Step 2. Use the key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 2,014 packets were recorded by the interface, which
were then captured and stored in the new scantraffic.pcap file.

o "Host: zeek2" - + X
k-Labs/TCP-Traf fic# topdump -1 zeek:

1

dropped by
L

Page 10

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

Step 3. Stop the current Mininet session by clicking the button on the bottom left
of the MiniEdit editor, and close the MiniEdit editor by clicking the [on the top right of
the editor.

We now have our malicious dataset, and because the smallFlows.pcap file is already
downloaded, we already have our control group, the benign dataset. In the following
section we will begin formatting our datasets into ARFF files.

3 Preprocessing of Zeek log files

To generate ARFF files, we first need to process our packet capture files using Zeek’s
default configuration.

In a real-time environment, at this stage you may include anomaly-specific scripts. Once
an anomaly has been processed by Zeek, the resulting log files will need to be reformatted.

Afterwards, we need to select which features we wish to extract from the Zeek log files
to be used in our training and testing datasets. It is important to carefully select the
relevant features when training a classifier. If features are not strategically selected,
classifiers may create unreliable correlations which may lead to poor accuracy in the
detection process. In this lab we extract a small number of general packet features.

3.1 Preprocessing the malicious dataset
Step 3. Navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

"Host: zeek2" S
-Labs/TCP-Traffics

[LF=1rattick |

Step 1. Process the scantraffic.pcap file.
zeek -C -r scantraffic.pcap
kd zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |zeek -C -r scantraffic.pcap

zeek@admin:~/Zeek-Labs/TCP-Traffics |

Page 11

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

Step 2. Display the contents of the conn.log file.

column -s, -t conn.log | less -#2 -N -S

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic -+ X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ [column -s,-t conn.log | less -#2 -N -S

Examining the previous command:

® [column -s, -t conn.lod callsthe utility to read and columnize the file
contents of the conn.log file. The option specifies the separator and the
option enables the output to be created as a table.

e [| less -#2 -N -g| accepts the output of the column utility and calls the
utility. The specifies the default number of positions to scroll horizontally in
the RIGHTARROW and LEFTARROW keys, the [-N] option marks each row with a line
number and the [-5| option causes the display to remove any data that would not
fit on the current Terminal screen rather than overflowing to a new line.

The previous command results in the following output.

zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X
File Edit Tabs Help

#separator \x09

#set separator ,

#empty field (empty)

#unset field -

#path conn

#open 2020-01-14-15-32-07

#fields ts uid id.orig h id.orig p id.resp h
#types time string addr port addr port enum string
1579033622.315045 CURciC452zficwqUd4 10. 34419
1579033622.315032 C783Yf11CqgfChOhT2 10. 34419
1579033622.315140 CMx1Zx2W3e8bbtze03 10. 34419
1579033622.315134 CCbkYJ2NERy061ysqgk 10. 34419
1579033622.315159 CbdzEc3YakBUR5UOU9 10. 34419
1579033622.315178 CvxV931d60izkn1hU9 10. 34419
1579033622.315195 COdoVIYdJ5zHx43yl 10. 34419
1579033622.315206 CHo4LU1w8QnQZYEgpc 10. 34419
1579033622.315237 COAWHQ28M3Maa7JYF9 10. 34419
1579033622.315262 CmRU2028MCCI3SIt22 34419
1579033623.415498 Ca6eP91ZtkhEgn45t5 34419
1579033623.415547 Chus1gq18X5monq9BP3 34419
1579033623.415588 Cfxi6d1JZcqKPLVBqf 34419
1579033623.415620 C7E24142VKT4rnIXL4 34419
1579033623.415645 CVo4YY3PhV5HTCXKke 34419

LoNOOUV A WNM

0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
.0.0.
.0.0.
.0.0.
.0.0.
.0.0.
.0.0.

e N el el e el e el S R S S =

We can see in the previous image that the conn.log file is nowhere near the .arff file
format. We will need to remove the Zeek padding, column names, change the tab
delimiter and remove excess column features.

Page 12

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

Press the [o] key on your keyboard to exit and return to the Terminal.

Step 3: Display the contents of lab11_malicious.sh shell script using the [n1] command.
nl ../Lab-Scripts/labll malicious.sh

d zeek@admin: ~/Zeek-Labs/TCP-Traffic - 4+ X

File Edit Tabs Help
:~/Zeek-Labs/TCP-Traffics$ |nl ../Lab-Scripts/labll malicious.sh
conn.log | zeek-cut ts id.orig h id.resp h id.orig p id.resp p proto
duration > packet.csv
cat packet.csv | tr '[\t]"' '[,]' > packet2.csv
sed 's/\.//9' packet2.csv > packet3.csv

sed 's/-/?/g' packet3.csv > packet4d.csv

awk '{print $0 ",1"}' packetd4.csv > malicious.csv

column -s,-t malicious.csv | less -#2 -N -S
zeek@admin:~/Zeek-Labs/TCP-Traffics [J

The script is explained as follows. Each number represents the respective line number:

1. Usingthe utility, the contents of the conn.log file will be passed into the
utility to remove the log file header and only include the specified columns.
The output of the utility will be saved to a new file named packet.csv.
The feature columns we will be using to train our example machine learning
classifier are:

e [ts]: time the packet was received.
e [id.orig h|: source IP address.

e [id.resp h|: destination IP address.

e [id.orig p| source port.

e [id.resp h|: destination port.

e [protd]: transport protocol.

e [duration]: connection or session length.

2. Using the utility, the contents of the packet.csv file will be passed into the
utility. The [t utility will replace the packet.csv file’s tab-delimited structure with
a comma-delimited structure, and the output will be saved to a new file named
packet2.csv.

3. Usingthe utility, all instances of a period [.] will be removed. This will allow for
the IP addresses to be input as a numeric data type rather than a string, and the
output will be saved to a new file named packet3.csv.

4. Using the utility, all instances of a dash [will be replaced by [?]. Currently,
when a column is empty, Zeek writes a dash [However, Weka reads question
marks [2] as an empty column. The output will be saved to a new file named
packet4.csv.

5. Using the utility, every row will have an additional|, 1]appended to the end of
the row. This will represent the class label; we used 1 to denote the malicious
traffic. The output will be saved to a new file named malicious.csv.

Page 13

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning
6. The file contents of malicious.csv will be displayed. This command is introduced in
the Step 1 of this subsection.

Step 4: Execute the lab11_malicious.sh shell script. If prompted for a password, type

and hit Enter.

./../Lab-Scripts/labll malicious.sh

Jd zeek@admin: ~/Zeek-Labs/TCP-Traffic - 4+ X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |./../Lab-Scripts/labll malicious.sh

After executing all commands in the script, the malicious.csv file contents will be
displayed on the Terminal as shown in the figure below.

zeek@admin: ~/Zeek-Labs/TCP-Traffic - 4+ X
File Edit Tabs Help

1579033622315045,10001,10002,34419, 1025, tcp,0000061,1
1579033622315032,10001,10002,34419,3306, tcp, 0000084, 1
1579033622315140,10001,10002,34419,113, tcp,0000016,1
1579033622315134,10001, 10002,34419, 135, tcp, 0000030, 1
1579033622315159, 10001, 10002,34419, 8888, tcp,0000023,1
1579033622315178,10001,10002,34419,25,tcp,0000012,1

1579033622315195,10001,10002,34419,22,tcp,0000014,1

1579033622315206,10001, 10002 ,34419,139, tcp, 0000016, 1
1579633622315237,10001,10002,34419, 111, tcp, 0000008, 1
1579033622315262, 10001, 10002,34419,1723, tcp, 0000009, 1
1579033623415498,10001,10002,34419,445,tcp,0000023,1
1579033623415547,10001,10002,34419,995, tcp, 0000009, 1
1579033623415588,10001,10002,34419,23, tcp,0000012,1

1579033623415620, 10001, 10002,34419, 143, tcp, 0000008, 1
1579033623415645,10001,10002,34419,443,tcp,0000004,1
1579033623415666,10001,10002,34419,110, tcp,0000004,1
1579033623415683,10001, 10002, 34419,256, tcp, 0000008, 1
1579033623415708,10001, 10002,34419,8080, tcp,0000003,1
1579033623415728,10001,10002,34419,554,tcp, 0000008, 1
1579033623415753,10001,10002,34419,993, tcp, 0000004, 1
1579033623415775,10001,10002,34419,3389, tcp, 0000008, 1
1579033623415799, 10001, 10002, 34419,587, tcp, 0000008, 1
1579033623415819,10001, 10002,34419, 199, tcp, 0000008, 1

Lo~NOOTUVAEWNM

We can see from the above image that the malicious.csv file is now properly formatted to
fit in the section of an ARFF file. Each row contains an equal number of comma-
delimited columns with only numeric characters.

Press the [o key on your keyboard to exit and return to the Terminal.

Now that we have our malicious dataset created, we can begin formatting our benign
dataset.

Step 5: Execute the lab_clean.sh shell script to clear the directory. If required, type

as the password.

./../Lab-Scripts/lab clean.sh
Page 14

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

ke zeek@admin: ~/Zeek-Labs/UDP-Traffic - + x

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/UDP-Traffic$ |./../Lab-Scripts/lab_clean.sh
[sudo] password for zeek:

zeek@admin:~/Zeek-Labs/UDP-Traffics I

3.2 Preprocessing of the benign dataset

Step 1: Process the smallFlows.pcap file using the command.

zeek —-C -r ../Sample-PCAP/smallFlows.pcap

kad zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help
/Zeek-Labs/TCP-Traffics [zeek -C -r ../Sample-PCAP/smallFlows.pcap

Zeek-Labs/TCP-Traffics |

Step 2: Display the contents lab11_benign.sh shell script using the [n1] command.
nl ../Lab-Scripts/labll benign.sh

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic =S¢
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ [nl ../Lab-Scripts/labll benign.sh
1 cat conn.log | zeek-cut ts id.orig h 1id.resp h id.orig p 1id.resp p proto
duration > packet.csv
cat packet.csv | tr '[\t]' '[,]' > packet2.csv
sed 's/\.//g' packet2.csv > packet3.csv

sed 's/-/7/9' packet3.csv > packet4.csv

awk '{print $0 ",0"}' packet4.csv > benign.csv

column -s,-t benign.csv | less -#2 -N -S
zeek@admin:~/Zeek-Labs/TCP-Traffics I

With the exception of Line 5, the script is exactly the same as the one explained in Step
3 of the previous section.

Line 5 has been modified to append |, 0] to the end of each row. This value represents the
benign class label. The output will be saved to a new file named benign.csv.

Step 3: Execute the lab11_benign.sh shell script.

./../Lab-Scripts/labl benign.sh

zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |./../Lab-Scripts/labll benign.sh

After executing all commands in the script, the benign.csv file contents will be displayed
on the Terminal as shown in the figure below.

Page 15

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X
File Edit Tabs Help

1295981542708292,1921683131,7214213102,55950,80, tcp,0058485,0
1295981543461968,1921683131,2074614838,55955,80, tcp,0028620,0
1295981543337241,1921683131,65551737,55954,80, tcp,1776718,0
1295981546609581,1921683131,20882236129,58264,80, tcp,0125448,0
1295981546736952,1921683131,20882236129,58265,80, tcp,0169843,0
1295981549760088,1921683131,7214213105,57721,443,tcp,0001363,0
1295981549832444,1921683131,20882236129,58272,80,tcp,0166319,0
1295981543841133,1921683131,655495140,55963,80,tcp,9427326,0
1295981545127681,1921683131,655495142,55973,80, tcp,8140921,0
1295981543652521, 1921683131, 206108207139,55960,80, tcp,17762163,0
1295981561406421,1921683131,742175010,570638,80,tcp,0081750,0
1295981562220872,1921683131,7214213102,52201,443, tcp,0067879,0
1295981562221263,1921683131,7214213102,52203,443,tcp,0068419,0
1295981562221386,1921683131,7214213102,52204,443,tcp,0070702,0
1295981562223069,1921683131,7214213102,52205,443,tcp,0070857,0
1295981562223270,1921683131,7214213102,52206,443,tcp,0071444,0
1295981562269795,1921683131,7214213102,52207,443,tcp,0068342,0
1295981562271216,1921683131,7214213102,52209,443,tcp,0073342,0
12959815622706019,1921683131,7214213102,52208,443,tcp,0074541,0
1295981562271658,1921683131,7214213102,52211,443,tcp,0077819,0
1295981562271438,1921683131,7214213102,52210,443,tcp,0078040,0
1295981562317554,1921683131,7214213102,52212,443,tcp,0066224,0
1295981562322663,1921683131,7214213102,52213,443,tcp,0065626,0

LoNOOTUVAEWNM

We can see from the above image that the benign.csv file is now properly formatted to
fit in the section of an ARFF file. Each row contains an equal number of comma-
delimited columns with only numeric characters.

Press the [key on your keyboard to exit and return to the Terminal.

Now that we have our both of our datasets created, we are ready to combine them into
the training and test input datasets.

3.3 Creation of the test and training datasets

Step 1: Combine the malicious.csv and benign.csv files into the dataset.csv file.
cat malicious.csv benign.csv > dataset.csv
|| zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ cat malicious.csv benign.csv > dataset.csv

zeek@admin:~/Zeek-Labs/TCP-Traffics I

The dataset.csv file will now contain the benign.csv rows appended to the end of the
malicious.csv rows. We now need to randomize the file contents and apply further
formatting by executing the lab11 create_sets.sh shell script.

Step 2: Display the contents of lab11_create _sets.sh shell script using the n1] command.

Page 16

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

nl ../Lab-Scripts/labll create sets.sh

kd zeek@admin: ~/Zeek-Labs/TCP-Traffic = 4 X
File Edit Tabs Help

zeek@admin:~/Zeek-Labs/TCP-Traffic$ Inl ../Lab-Scripts/labll create sets.sh
shuf dataset.csv > randomized.csv
head -n 300 randomized.csv > test.csv
sed -e '1,300d' randomized.csv > trainset.arff

sed 's/.$/?/' test.csv > testset.arff

wc -1 testset.arff

wc -1 trainset.arff
zeek@admin:~/Zeek-Labs/TCP-Traffic$ I

The script is explained as follows. Each number represents the respective line number:

1. Usingthe utility, the contents of the dataset.csv file will be shuffled, and the
output will be saved to a new file named randomized.csv.

2. Using the utility, the top 300 rows from the randomized.csv file were saved
to a new file named test.csv.

3. Using the utility, rows 1-300 are removed from the randomized.csv file and
the output is saved to the new trainset.arff file.

4. Using the utility, the last column of the test.csv file is removed. We are
removing the label of each instance of the test dataset so that we can have the
classifier attempt to predict these labels. The output is saved to the new
testset.arff file.

5. Using the [wc] utility, the number of rows within the testset.arff file are displayed.
We can compare this value against the value found in Line 8 to make sure no
packet data was lost.

6. Using the wd utility, the number of rows within the trainset.arff file are displayed.
We can compare this value against the value found in Line 7 to make sure no
packet data was lost.

Step 3: Execute the lab11_create_sets.sh shell script.
./../Lab-Scripts/labll create sets.sh

[zeek@admin: ~/Zeek-Labs/TCP-Traffic -+ X

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |./../Lab-Scripts/labll create sets.sh
300 testset.arff

1400 trainset.arff
zeek@admin:~/Zeek-Labs/TCP-Traffics I

The figure above shows the line count of the testset.arff and trainset.arff files. The
testset.arff file contains 300 rows while the trainset.arff file contains 1400 rows. The
trainset.arff file size may be variable due to the number of packets generated during the
original TCP SYN scans; however, the testset.arff file should always be equal to 300 rows
due to the executed script.

Page 17

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

Now that we have generated our testing and training .arff files, the final step for
preprocessing the Zeek datasets is to add the .arff file headers to each file.

3.4 Adding the .arff file headers

Step 1: Using the text editor, open the trainset.arff file for editing.

nano trainset.arff

zeek@admin: ~/Zeek-Labs/TCP-Traffic - + X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ |nano trainset.arff

zeek@admin:~/Zeek-Labs/TCP-Traffics |j

Step 2: Prepend the following headers to the trainset.arff file. To type capital letters, it is
recommended to hold the key while typing rather than using the key.

QRELATION networktraffic

@ATTRIBUTE time NUMERIC

@ATTRIBUTE sourceip NUMERIC
@ATTRIBUTE destip NUMERIC

@ATTRIBUTE sourceport NUMERIC
@ATTRIBUTE destport NUMERIC
@ATTRIBUTE protocol {tcp, udp, icmp}
@ATTRIBUTE duration NUMERIC
QATTRIBUTE class {1,0}

@DATA

GNU nano 2.9.3 trainset.arff
GRELATION networktraffic

@ATTRIBUTE time NUMERIC
@ATTRIBUTE sourceip NUMERIC
@ATTRIBUTE destip NUMERIC
@ATTRIBUTE sourceport NUMERIC
@ATTRIBUTE destport NUMERIC
protocol {tcp, udp, icmp}
duration NUMERIC
class {1, 0}

1561919069960814,19216813,19216822,49526,1755,tcp,0000003,1
1295981666357961,172162551,18912644128,50983,3192, udp, 0259354,0
1295981648891455,172162551,2049163158,10630,80, tcp, 0150006, 0
1561919069995416,19216813,19216822,49526,9002, tcp,0000003,1
1561919069978244,19216813,19216822,49526,15660, tcp, 0000004, 1
1561919069995584,19216813,19216822,49526,2607,tcp,0000004,1
1295981640291009,172162551,255255255255,68,67,udp,?,0

The input training dataset is now a properly formatted .arff file and can be input into a
machine learning algorithm to train a classifier.

Step 3: Using the text editor, open the testset.arff file for editing.

Page 18

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

nano testset.arff

zeek@admin: ~/Zeek-Labs/TCP-Traffic - &+ X
File Edit Tabs Help
zeek@admin:~/Zeek-Labs/TCP-Traffic$ lnano testset.arff

zeek@admin:~/Zeek-Labs/TCP-Traffics |

Step 2: Prepend the following headers to the testset.arff file. To type capital letters, it is
recommended to hold the key while typing rather than using the key.

The headers are the same as those added to the trainset.arff file, so they can be copied
and pasted directly into the testset.arff file.

@RELATION networktraffic

@ATTRIBUTE time NUMERIC

@ATTRIBUTE sourceip NUMERIC
@ATTRIBUTE destip NUMERIC
@ATTRIBUTE sourceport NUMERIC
@ATTRIBUTE destport NUMERIC
@ATTRIBUTE protocol {tcp, udp, icmp}
@ATTRIBUTE duration NUMERIC
QATTRIBUTE class {1,0}

@DATA

GNU nano 2.9.3 testset.arff
BRELATION networktraffic

@ATTRIBUTE time NUMERIC
sourceip NUMERIC
destip NUMERIC
sourceport NUMERIC
destport NUMERIC
protocol {tcp, udp, icmp}
duration NUMERIC

class {1, 0}

@DATA
1295981622205977,1921683131,2049163166,58443,80,tcp,47357377,7
1561919069964921,19216813,19216822,49526, 19780, tcp,0000003,?
1561919069986518,19216813,19216822,49526,8090, tcp, 0000004, ?
1295981609684965,1921683131,65549568,56174,80,tcp, 13589864, 7
1295981658219915,172162551,66235143184,10648,443,tcp, 95860479, 7?
1561919069964373,19216813,19216822,49526,1105, tcp,0000004,?
1561919069975717,19216813,19216822,49526,58080, tcp, 0000003, ?

The input test dataset is now a properly formatted .arff file and can be input into a
machine learning classifier to test the classifier’s accuracy.

3.5 Closing the current instance of Zeek

Page 19

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended

to hold the key while typing rather than using the key.

cd $ZEEK INSTALL/bin && sudo ./zeekctl stop

ke zeek@admin: /usr/local/zeek/bin -+ X

File Edit Tabs Help
zeek@admin:~3% jcd $ZEEK INSTALL/bin && sudo ./zeekctl stop
[sudo] password Tor zeek:

stopping zeek ...
zeek@admin: /usr/local/zeek/bins JJ

References

1. Alpaydin, E., “Introduction to machine learning,” MIT press (2009).
2. Holmes, G., Donkin, A., & Witten, I. H. (1994). Weka: A machine learning

workbench.
3. “Attribute-relation file format”, The university of waikato, [Online], Available:

https://www.cs.waikato.ac.nz/~ml/weka/arff.html

Page 20

UTSA.

The University of Texas at San Antonio™
The Cyber Center for Security and Analytics

ZEEK INSTRUSION DETECTION SERIES

Lab 12: Developing Machine Learning Classifiers
for Anomaly Inference and Classification

Document Version: 03-13-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
[IE2] o 38 o o Yo] [o =4 V2 PP UPPRRUPPRPR 3
(1Y Y=Y T = PP PUPPRRUPTPPR 3
(I Y o o - o [4= T TSP 4
1 INTroduction tO WEKQ.....ooouiiiiiiiiiie ettt st e e s s naaae e e e 4
1.1 STArting WK ..ooe ittt 4
2 Importing @ dataset iNt0 WEKaoooviiiiiiniiieceec et 6
2.1 Loading the training datasetccccovviiiiiiiiiiie e 7
2.2 Filtering the training dataset........cccoeviiiiiiiiiiie e 9
2.3 Training a decision table classifierccccooiieieiiieeec e, 13
2.4 Training a decision tree classifier......coociieiiiee i 15
2.4.1 Updating the decision tree classifiercccccevecviiieiee i, 17
3 Reviewing the classifier’s predictions on a test dataset.........cccceeeeccieeeieciieececnnenn. 22
3.1 Saving the deciSion table..... ..o 22
3.2 Using the classifier to predict labels for the test datasetccceeeeenvineennnee. 24
3.3 Viewing the predicted labels for the testdatasetccccoeecviieeeeeiieicccciiieeen. 26
REFEIENCES ...ttt et e e sttt e e s st e e s s abbee e e sareeeesennreeesanns 29

Page 2

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

Overview

This lab introduces the application of machine learning in the network security field. The
lab explains how to generate a decision table and decision tree to infer scan-related
network traffic. The lab is designed to train and test a machine learning classifier using
network traffic dataset.

Objectives
By the end of this lab, students should be able to:
1. Train a decision table to classify scan-related network traffic.
2. Train a decision tree to classify scan-related network traffic.
3. Test and modify the trained classifiers and review their output classifications on a
test dataset.

Lab topology

Figure 1 shows the lab workspace topology. This lab primarily uses the Client machine for
offline Zeek log file processing and reformatting.

3 (zeekl g1 zeek2
Pamiamd -

(R
Y,

Mininet Emulated Network Hardware Network

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Page 3

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path
$ZEEK INSTALL lusr/local/zeek
$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap
This lab is organized as follows:
1. Section 1: Introduction to Weka.

2. Section 2: Building a decision classifier with Weka.
3. Section 3: Reviewing the classifier’s predictions on a test dataset.

1 Introduction to Weka

After formatting Zeek output logs into the ARFF files, Weka is now able to process them.
Weka contains the algorithms necessary to develop a number of machine learning
classifiers. More information on the Weka software can be found on their documentation
pages. To access the following link, users must have access to an external computer
connected to the Internet, because the Zeek Lab topology does not have an active
Internet connection.

https://www.cs.waikato.ac.nz/ml/weka/documentation.html

In the following sections, we train a DecisionTable and a J48 Decision Tree classifier.

1.1 Starting Weka

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

FRELLLVE & Content | |»” Status | O Client =

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Page 4

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

Miniedit

[
>

XTermimel

Step 3. Navigate to the Weka workspace directory.
cd Zeek-Labs/Lab-Tools/weka
kd zeek@admin: ~/Zeek-Labs/Lab-Tools/weka A I, S

File Edit Tabs Help
zeek@admin:~$ lcd Zeek-Labs/Lab-Tools/weka

zeek@admin:~/Zeek-Labs/Lab-Tools/wekas$ |

Step 4. Using Java, launch the Weka software.

java -jar weka.jar

kd zeek@admin: ~/Zeek-Labs/Lab-Tools/weka = i

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/Lab-Tools/weka$ |java -jar weka.jar

Step 5. Once Weka has been loaded, a notification containing Weka related information
will be displayed. Select the OK button to continue to the Weka GUI Chooser panel.

[« Weka GUIChooser - + X

Weka has a package manager that you
can use to install many learning schemes and tools.
The package manager can be found under the "Tools" menu.

|| Do not show this message again

OK

The Weka GUI Chooser panel will look similar to the following image.

Page 5

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

(] Weka GUI Chooser - 4+ X
Program Visualization Tools Help

Applications

Explorer

w E KA L Experimenter

The University

X of Waikato .
% KnowledgeFlow
\
Workbench
Waikato Envircnment for Knowledge Analysis L
Versicn 3.8.4
(c) 1999 - 2019 Simple CLI

The University of Waikato
Hamilton, New Zealand

Step 6. For this lab, we will be using the Explorer application. Click the Explorer button to
launch the application.

Applications

Explorer

Experimenter

KnowledgeFlow

Workbench

Simple CLI

Weka has been successfully launched and we can proceed to the next section.

2 Importing a dataset into Weka
Once the Explorer application opens, a new GUI window will be displayed. Initially, this

window has all options greyed out, indicating that we have not yet opened or loaded a
dataset.

Page 6

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

The Explorer panel contains a Menu Bar located at the top of the GUI window. There is a
total of 6 additional panels, which contain related information necessary to train, test and

visualize classifiers developed while using Weka. By default, the Preprocess panel will be
selected.

The Preprocess panel is used to import a training dataset to be used for training a machine
learning classifier. Features can be removed, randomized or appended within this panel.

(] Weka Explorer -+ X

| | Preprocessl Cla

| Openfile.. || OpenURL... | \ Open DB... || Generate... |

Filter

| Choose |None
Current relation Selected attribute

Relation: None Attributes: None Name: None Weight: None Type: None
Instances: None Sum of weights: None Missing: None Distinct: None Unique: None

Attributes

v|| Visualize All |

Status

Welcome to the Weka Explorer Log ‘W x0

2.1 Loading the training dataset

Step 1. On the top left of the Preprocess window the Open file button can be found. Click
the Open file button to load the training dataset.

l Preprocess |

Open file... | | OpenURL.. || OpenDB.. || Generate.. J

Step 2. Enter the path to the trainset.arff file. Alternatively, use the GUI to navigate to the

lab workspace directory to select the file. Use the Open button to load the trainset.arff
file into Weka.

/home/zeek/Zeek-Labs/Sample-PCAP/trainset.arff

Page 7

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

() Open - + X

Look In: [ﬁ Sample-PCAP \'J [ﬁj | & | [f:ﬁj VE@

—

|| testset.arff
[trainset.arffl

[_] Invoke options dialog

O™

File Name: I/home/zeek/Zeek-Labs/Sample-PCAP/trainset.arff l

Files of Type: | Arff data files (*.arff) ﬂ

| open || cancel |

After click the Open button, the Preprocess panel will be updated to contain the
trainset.arff file statistics.

Each section header has been highlighted with a red box. We can see that the Current

relation, Attributes and Selected attribute sections have been updated to contain
trainset.arff file data.

Step 3. Within the Attributes section, click the class feature to change the active attribute.

Page 8

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

(] Weka Explorer = kX
j Preprocess] Classify T Cluster T Associate T Select attributes T Visualize]

L Open file... J | OpenURL.. || OpenDB.. || Generate.. | Undc (Edit.. || Save.. J
Filter .
Choose |None Apply
Current relation _____ Selected attribute =
Relation: networktraffic Attributes: 8 Name: time Type: Numeric
Instances: 1401 Sum of weights: 1401 Missi... 0 (0%) Distinct: 1401 Unique: 1401 (100%)
AtTbutes Statistic | value |
pr———— Minimum 1295981542484409
- - Maximum 1561919070053261
Al || None | nvert || Pattern | Mean 1453721842608295.5
S . StdDev 130687564832435.69
| No. | | Name [|
e G T
7 W) aciirceN | | | Class: class (Nom) 'J[Visualize All |
3 |_J destip
4 |_| sourceport
5 | destport
6 [_J protocol
7 |J duration 4

0 0 0 0
T T — 1
1295981542484409 1428950306268835 15619190700532€61

Status

OK ‘ }UiJ wxo

By selecting the class feature within the Attributes section, the Explorer panel will be
updated to display the active feature.

Within the Current relation section, our dataset’s name, networktraffic, is displayed.
Additionally, it is shown that the dataset contains 1401 unique data objects (instances).

Within the Selected attribute section, the class labels added to the dataset in the previous
lab are counted. The trainset.arff dataset contains 831 data objects labeled with a 1,
belonging to the malicious class, while 570 data objects are labeled with a 0, belonging to
the benign class.

At this point, trainset.arff dataset has been successfully loaded into Weka and we can
begin filtering the data before training a machine learning classifier.

2.2 Filtering the training dataset

The majority of machine learning classifiers are unable to handle string attributes. For
network analysts, source and destination IP addresses are valuable features that are often

necessary for traffic analysis. However, these IP addresses are unable to be stored as
string values when training a classifier.

Page 9

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

There is a number of ways to address this issue. If a network analyst were to know all of
the unique IP addresses, when generating their ARFF dataset, they can create the nominal
values similar to how we created the nominal protocol values.

Because Internet-scale traffic contains a very large number of unique IP addresses, the
aforementioned process may not be feasible. Therefore, in the previous lab, we
converted our source and destination IP addresses into numerical values. In this section,
we will be using all unique iterations of the numerical values to generate a nominal list.
By reformatting the IP addresses into numeric values using Terminal utilities, the Weka
software will be able to select all unique IP addresses and convert them into a nominal
feature set.

Step 1. Within the Preprocess tab, under the Filter section, click the Choose button.

_[PrepmcessT Classify T Cluster IAssuciate T Select attributes T Visualize]

1 Open file... I[Open URL... J[Open DB... || Generate... | Undo l Edit... J[5

Filter

[choose |none | Apply |

Step 2. Under the unsupervised option, select the attribute option to display a list of
attribute-based filters.

Filter

v (& filters
[AllFilter
|| MultiFilter
| “| RenameRelation
» (& supervised

Vsl

ik -

\
\
L |
[A \
| | AddUserFields ‘
|| AddVvalues 1
i_ CartesianProduct ‘
| | Center ‘
L[ChangeDateFormat
"| ClassAssigner
|| ClusterMembership
D Copy b |
|| DateToNumeric A4

[”E-i.lt.er... J | Eemove filter J | glbse |

Page 10

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

Step 3. Scroll to the NumericToNominal filter and double click to select it.

Filter

e

Bl

lwn

[T MIEtNEXPression
[5 MergelnfrequentNominalvalues
[MergeManyValues

[%] MergeTwoValues

[NominalToBinary

[| NominalToString

[Normalize

["] NumericCleaner

[NumericToBinary

["] NumericToDate
NumericToNominal A
| "] NumericTransform
[obfuscate

| 7| ordinalToNumeric

[PartitionedMultiFilter
[PKIDiscretize

[PrincipalComponents
[| RandomProjection

["] RandomSubset

[| Remove

[| RemoveByName

[| RemoveType

T

v

Step 4. Within the Filter section, click the first-last description to modify the filter.

Filter

| Eilter... | | Remove filter | | Close |

| Choose ||NumericT|:|N|:|minaI Rifirst-last|

“ Apply J Stop

Step 5. Update the Indexes of the Attributes to be filtered. Click the Apply button to edit

the indexes.

Page 11

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

& weka.gui.GenericObjectEditor ey e
weka.filters.unsupervised.attribute.NumericToNominal
About

A filter for turning numeric attributes into nominal ones. More

Capabilities

attributelndices |2-3|

debug | False v
doNotCheckCapabilities | False _vJ
invertSelection |False _vJ

| Open... i Save... | oK | Cancel |

Step 6. On the right side of the Filter section, click the Apply button to apply the modified
filter.

Filter
Choose |NumericToMominal -R 2-3 Apply

The source and destination IP addresses will now be converted to the Nominal feature
type.

Step 7. Within the Attributes section, click the sourceip feature to change the active
attribute.

By selecting the sourceip feature within the Attributes section, the Explorer panel will be
updated to display the active feature.

Within the Selected attribute section, the sourceip feature will now display the Nominal

data objects. In the following image, the highlighted sourceip related to the scanning
machine’s IP address (192.168.1.3), displays 831 unique instances being recorded.

Page 12

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

(«] Weka Explorer - + X
_[PreprocessT Classify T Cluster T Associate T Select attributes T Visualize]

[- Open file... | | Open URL... J [Open DB... | L Generate... | | Undo J | Edit... J | save.. |
Filter
S :) _—
{ Choose J}NumericTuNuminaI -R 2-3 [Apply J Stop
Current relation ISelected attribute!
Relation: networktraffic-wek... Attributes: 8 Name: sourceip Type: Nominal
Instances: 1401 Sum of weights: 1401 Missing: 0 (0%) Distinct: 8 Unique: 4 (0%)
|Attributes| | No. | Label | Count | Weight [|
‘)| | 1 10022 1 1.0 Al
— 2 100215 76 76.0
Al J|_ None || Invert || Pattern | ‘ [3 19216813 831 831.0 |
- L o | 4 65552560 1 1.0 vl
No. | | Name [‘ L P, = =20 St |
A o o w y— o
3 [destip ‘ [Class: class (Nom) ,VJ[Visualize All J
4[] sourceport
5 [J destport 5
6 (| protocol
7 [J duration !
8] class v|
329
L Remove)

161
76
1 I 1 - 1 . 1
Status S
0K Log ‘*‘ x0

Additionally, the Selected attribute section will be updated to show new statistics for each
feature. The updated Selected attribute section is displayed in the previous image.

2.3 Training a decision table classifier

Step 1. Within the Explorer panel, click the Classify tab located at the top of the Explorer
panel to switch to the Classify panel.

() Weka Explorer - + x
[Preprocess | Classify | Cluster T Associate I Select attributes T Visualize]

Classifier

Step 2. Once the Classify panel has loaded, click the Choose button within the Classifier
section to select which machine learning classifier we are developing.

(] Weka Explorer
| Preprocess] ClassifyT Cluster TAssociate T Select attributes T Visualize]
Classifier

I Choose l!ZeroR

Step 3. Under the rules collection, double-click with your mouse to select the
DecisionTable classifier.

Page 13

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

Classifier

v (@ weka

' ¥ (& classifiers
Te » ([bayes
» (@ functions
> (& lazy
> [meta
» [@ misc

DecisionTable
| JRip

|| OneR

| PART

|| ZerorR

> [trees

i = |

Step 4. Under the Test options section, click the Start button to begin training the classifier.
Notice the Classifier section has been updated to display the DecisionTable classifier.

| Preprocess I Classify T Cluster T Assoc

Classifier

| Choose lDecisionTable H1-5"w

Test options
p

N |
() Use training set
() Supplied test set Set...
(® Cross-validation Folds 10
(_ Percentage split % 66
| More options... | |
\
{ (Nom) class E]
Start Stop

Step 4. See the Decision Table classifier’s results.

Page 14

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

Classifier output
LIV T I.l.’- ~ 'LUJJ.I.I.I.\-U LT LUnIvew v v v A
Kappa statistic 1 =
Mean absolute error 0.0016
Root mean squared error 0.0016
Relative absolute error 0.3281 %
Root relative squared error 0.3281 %
Total Number of Instances 1401
| === Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC
1.000 0.000 1.000 1.000 1.000 1.000
1.000 0.000 1.000 1.000 1.000 1.000
Weighted Avg. 1.000 0.000 1.000 1.000 1.000 1.000
, ' N
=== Confusion Matrix ===
a b <-- classified as
831 0| a="1
0 570 | b=20
|/
v
< 7 T

Within the Result list section we can see our new Decision Table that has been trained
with the transet.arff dataset. Within the Classifier output section, we can see the
prediction results for the Decision Table classifier. The Confusion Matrix depicts that the
classifier had a 100% accuracy when predicting labels after being trained.

2.4 Training a decision tree classifier

Step 1. Click the Choose button within the Classifier section to select which machine
learning classifier we are developing.

(] Weka Explorer
I Preprocess | Classify T Cluster T Associate T Select attributes T Visualize]
Classifier

Choose JDecisionTabIe X 1 -5 "weka.attributeSelection.BestFirst -D 1 -N 5"

Step 2. Under the trees collection, double-click with your mouse to select the /48 decision
tree classifier.

Page 15

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

Classifier
p-

¥ (& weka

¥ (&5 classifiers
;_‘ > & bayes i
» (& functions :
> (& lazy
> ﬁ meta
> [misc
» (& rules
v (& trees

| | DecisionStump
| | HoeffdingTree

148
| LMT

(
= o
L "I RandomForest
Re | “| RandomTree !
f—l | | REPTree

Step 3. Under the Test options section, click the Start button to begin training the classifier.
Notice the Classifier section has been updated to display the J48 classifier.

v
| Preprocess | ClassnfyT Cluster T Associ

Classifier

>
‘ Choose |]48 -C0.25-M2

Test options
-

() Use training set
() Supplied test set Set...

(® Cross-validation Folds 10

() Percentage split % 66

| (More options... J |

(Nom) class B |

Start Stop

Step 4. See the J48 Decision Tree classifier’s results.

Page 16

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

Classifier output

TJ.II\TUTI \-\.LL’ CLlUJdoLTICU g Lunivea
| Kappa statistic

'Mean absolute error

Root mean squared error

' Relative absolute error

| Root relative squared error

| Total Number of Instances

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC
1.000 0.002 0.999 1.000 0.999 0.999
0.998 0.000 1.000 0.998 0.999 0.999
Weighted Avg. 0.999 0.001 0.999 0.999 0.999 0.999
Confusion Matrix ===
a b <-- classified as
831 0| a=:1
1569 | b=0
EAS J >

140

[l N = o Rl o N

.9985
.0007
.0267
1479 %
4385 %

VLivrTaawy o

Within the Result list section we can see our new J48 Decision Tree that has been trained
with the transet.arff dataset. Within the Classifier output section, we can view the
prediction results for the Decision Tree classifier. The Confusion Matrix depicts that the
classifier did not have a 100% accuracy when predicting labels after being trained and
misclassified a single malicious data packet as benign.

2.4.1 Updating the decision tree classifier

Because our J48 Decision Tree has made an error in predicted a label, we can attempt to
remove or add additional features to increase the classifier’s accuracy.

Step 1. Right click the J48 Decision Tree under the Result list section to display more
options. Click to Visualize the J48 Decision Tree.

Page 17

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

TP Rate FP Rat

View in main window
View in separate window
Save result buffer
Delete result buffer(s)

[(Nom) class

| start J

Stop
f

Result list (right-click for optio

} - Load model
16:18:36 - rules.DecisionTable Save model
16:21:45 - trees.|48 Re-evaluate model on current test set

Re-apply this model's configuration

Visualize classifier errors

ISR Visualize margin curve
OK Visualize threshold curve >
Cost/Benefit analysis b
Visualize cost curve 2

KM 180 i Blzecke

Step 2. View the Visualized J48 Decision Tree.

time

/\

== 1285881835784353

/

0 (570.0)

= 1285581839784353

T~

1(831.0)

We can see the time feature column was the only decision node within the tree. For the
purposes of this lab, the datasets were collected at varying times; therefore, the decision
tree had an over reliance on the time feature to determine when the malicious and benign
events took place.

Step 3. Within the Explorer panel, click the Preprocess tab located at the top of the
Explorer panel to switch to the Preprocess panel.

w

| Preprocess | Classify TCIusterTAssociateT Select attributes TVisuaIize]

Weka Explorer

[Open file...][Open URL... || OpenDB.. || Generate.. JL

Step 4. Once the Preprocess tab has loaded, click the time feature within the Attributes
section and select the Remove button.

Page 18

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

Attributes
-

[All || None Jl Invert | | Pattern |

A

2 | sourceip ™

3 [] destip

4 [] sourceport

5 [] destport

6 [protocol t/

7 [] duration v
Remove

With the time feature removed, we can retrain our decision tree to view the new accuracy.

Step 5. Within the Explorer panel, click the Classify tab located at the top of the Explorer
panel to switch to the Classify panel.

() Weka Explorer - + x
[Preprocess | Classify | Cluster I Associate T Select attributes T Visualize]
Classifier

Step 6. The J48 Decision Tree should still be selected. Under the Test options section, click

the Start button to begin training the classifier. Notice the Classifier section has been
updated to display the new J48 classifier.

Test options
%

() Use training set

() Supplied test set Set...

® Cross-validation Folds 10
(_) Percentage split % 66

| More options... |

{Nom) class v J

Start Stop

Step 7. See the J48 Decision Tree classifier’s results.

Page 19

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

FEZTICUT TOCCC ’ TNLUODIL T LACU Ao cunivey

Kappa statistic

Mean absolute error
Root mean squared error
Relative absolute error

Root relative squared error

Total Number of Instances

=== Detailed Accuracy By

TP Rate

0.999

0.993
Weighted Avg. 0.996

Class

FP Rate

0.007
0.001
0.005

=== Confusion Matrix ===

830 1| a=1
4566 | b=0

a b <-- classified as

AN

140

Precision Recall

0.995
0.998
0.996

oo ocl

.9926
.003
.0415
6131 %
4411 %

0.999
0.993
0.996

F-Measure

0.997
0.996
0.996

Wy IIUIT O

MCC

0.993
0.993
0.993

J

T

Within the Result list section we can see our new J48 Decision Tree that has been trained
with the transet.arff dataset. Within the Classifier output section, we can view the
prediction results for the Decision Tree classifier. The Confusion Matrix depicts that the
classifier actually had a worse accuracy than the previously trained J48 Decision Tree.

In this example, we highlight the importance of choosing the best fit features when
training a classifier. In a real-time network environment, it may take multiple tests before
discovering which features are necessary for classifying a specific anomaly.

Step 6. Right click the newest J48 Decision Tree under the Result list section to display
more options. Click to Visualize the J48 Decision Tree.

Page 20

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

| IP Rate

[(Nom) class

| Start |

Result list (right-click fo
5-

16:18:36 - rules.Decisiol
16:21:45 - trees.]48

16:29:46 - trees.]48

Status
-

OK

7NNl - IR i

View in main window
View in separate window
Save result buffer
Delete result buffer(s)

Load model

Save model

Re-evaluate model on current test set
Re-apply this model's configuration

Visualize classifier errors

Visualize margin curve

Visualize threshold curve 3
Cost/Benefit analysis >
Visualize cost curve B

Step 7. View the Visualized J48 Decision Tree.

= 10022 100233921 688B555256121 62 TRB557282] 6886209190254

duration

/\

<= 27 =27

sourceip O (554.07/1.0)

A

1 (0.0} 0 (3.63)| 1 (830.0)J 1 (0.0)| 0 (12.09)] 1 (0.0)J

1 (o.o)l

Because the Decision Tree has a larger number of nodes, we are unable to see some of
the decision thresholds. The following steps will explain how to scale the Visualized tree.

Step 8. Right click on the Visualized J48 Decision Tree and select the Auto Scale option.

Page 21

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

duration
Center on Top Node
Fit to Screen /\
Auto Scale «=27 =27

Select Font / \

courcap 0(554.070.0)

= 10022 100223921 686555256121 62 TRb 5570821 6868620191 90254

AN

1 (0.0)‘ 0(3.63)| 1 (830.0)‘ 1(0.0)| 0 (12.09} | 1 (0.0)E 0(1.21) 1(0.0}|

Step 8. View the Visualized J48 Decision Tree.

duration
/\
<= 27 =27
- C
sourceip 0 (554.07/1.0)|
- 1e216813 = 65552560 =172162551 =655557251 = 1921683131 _ = 66209190254 _
1 {0.0}] 0(12.09)/ 1{0.0)|

Here we can see the new J48 Decision Tree has multiple layers and decision nodes. The
duration feature has replaced the time feature as the root node, and the sourceip feature
is used to further classify the dataset. However, because this tree has reduced accuracy,
we will be continuing the lab by using the Decision Table created initially.

3 Reviewing the classifier’s predictions on a test dataset

Now that we have determined that the Decision Table was a more accurate classifier, we
can begin testing the classifier’s accuracy using the test dataset.

3.1 Saving the decision table

It is possible to save a trained classifier to be reused in future instances of testing and
classification. This section will introduce how to save a trained classifier.

Step 1. Under the Result list section, right click on the Decision Table and select Save
model.

Page 22

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

t (Nom) class View in main window

_ View in separate window
| Start | Stop Save result buffer
Result list (right-click for optioy Delete result buffer(s)
f

Load model
Save model
Re-evaluate model on current test set

Re-apply this model's configuration

16:18:36 - rules.DecisionTable
16:21:45 - trees.|48
16:29:46 - trees.]48

Visualize classifier errors

Visualize tree

Status Visualize margin curve
OK Visualize threshold curve 3
Cost/Benefit analysis >

& rfal ﬂ lﬁ; .[zeek@q Visualize cost curve >

Step 2. Navigate to the Lab workspace directory and save the Decision Table. Alternatively,
use the GUI to navigate to the lab workspace directory to select the file. Use the Save
button to save the new DecisionTable file into Weka.

/home/zeek/Zeek-Labs/Sample-PCAP/DecisionTable

] Save e e
Look In: [ﬁ Sample-PCAP |TJ l (i J [foot J l] J [E”EJ
=4 § R

File Name: IfhomefzeekJZeek—LabSfSampIe—PCAP!DecisionTabIeI |

Files of Type: | Model object files |v]

I Save H Cancel J

Once saved, we can proceed to testing the classifier’s accuracy on predicting labels for
the test dataset.

Page 23

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

3.2 Using the classifier to predict labels for the test dataset

Step 1. Under the Test options section, select the Set button to load the test dataset.
Within the Test Instances window, click the Open file button.

Test options Classifier output

-
G Ueei i g ok () Test Instances I 1 S
® Supplied test set Set... Relation: None Attributes: None
S et ’ Instances: None Sum of weights: None
() Cross-validation Folds 10
(U Percentage split % 66 Open file... | | Open URL... |
| More options... J i m}

{Nom) class &J

Step 2. Select the testset.arff file and click the Open button to load the test dataset.

() Open S .
Look In: [[ﬁ‘ Sample-PCAP |'] [(i J [fumt J l i J { |§|] 8]
‘| testset.arff | [} Invoke options dialog

|| trainset.arff

LU o -
File Name: Itestset.arﬁ'l
Files of Type: |Arff data files (*.arff) =]

I Open I | Cancel |

Step 3. Under the Test options section, select the More options button to configure the
classifier to match the following image then, click on OK.

Page 24

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

& Classifier evaluation options =3¢
Preprocess | Classify T Cluster T Associate T Sele
Classifier (| Output model
l Choose ”]43 £0.25 M2 (] output models for training splits
Test options Classifier L) Output per-class stats
(_) Use training set Ea;;;a [] output entropy evaluation measures
(@ Supplied test set l i J Eiz: ;E [| output confusion matrix
() Cross-validation Folds 10 Relati
- Root rd | | Store test data and predictions for visualization
(_J Percentage split % 66 Total
- [] collect predictions for evaluation based on AURQC, etc.
| More opticns... | = Dot
[_] Error plot point size proportional to margin
{ (Nom) class r] Output predictions[Choose]‘PIainText
— : Welghte
Start Stop [] Cost-sensitive evaluation Set..
Result list (right-click for options) - o
Random seed for XVal / % Split |1
a
16:18:36 - rules.DecisionTable 831)
16:21:45 - trees.|48 o 57 [_] Preserve order for % Split
16:29:46 - trees.|48 ;
]] Output source code VWekaClassifier
-
| Evaluation metrics... |
Status
oK L e J

Step 4. Under the Result list section, right click on the Decision Table and select Re-
evaluate model on current test set.

t (Nom) class View in main window
View in separate window
| Start | Stop Save result buffer
Result list (right-click for optio| Delete result buffer(s)
: Load model
0:18:36 es.De 0 apie
Save model
16:21:45 - trees.]48 BaAavalaata models ant test ce
16:29:46 - trees.)48 Re-apply this model's configuration
Visualize classifier errors
Visualize tree
§tatus Visualize margin curve
0K Visualize threshold curve >
Cost/Benefit analysis >
AN B3 5N Bllzeek@ad Visualize cost curve »

Step 5. After filtering the sourceip and destip features into Nominal attributes, the
testset.arff file will not be properly formatted. Weka will need to update the testset.arff
dataset to be used by the classifier. Select the Yes button on the ClassifierPanel pop-up
panel.

Page 25

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

(#] ClassifierPanel - + X

Data used to train model and test set are not compatible.
Would you like to automatically wrap the classifier in

an “InputMappedClassifier” before proceeding?.
[_J Do not show this message again

(Mo | [yes

The classifier will generate new predictions, which can be viewed by saving the
resulting .arff file.
3.3 Viewing the predicted labels for the testdataset

To save the resulting .arff file,

Step 1. Within the Explorer panel, click the Visualize tab located at the top of the Explorer
panel to switch to the Visualize panel .

(] Weka Explorer SRR

[Preprocess T Classify T Cluster I Associate T Select attributes | Visualize |

Plot Matrix sourceip destip sourceport destport protocol duration
i
___________________ . T — AD
class
£/
duration
B ledeniiiihdiias] aoral e o) I S
protocol 3 I sEsnEnsawes] e o T e B e i iR :
- J T
LB)
PointSize: [1] () Update
Jitter: O Select Attributes
= v ——] ———————
Class Colour
Status
.
oK Log w x0

Displayed will be resulting graphs from attribute correlations solved by the machine
learning classifier.

Page 26

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

Step 2. Select the duration x duration graph, found in the sixth column (duration) and

second row (duration).

Plot Matrix sourceip destip sourceport destport protocol duration
class
duration
T s Jhvs s gl i e
Step 3. Click the Save button.
(o] Weka Explorer: Visualizing networktra...rs.unsupervised.attribute.Remove-R1 - + X
[X: duration (Num) .'] | ¥: duration (Num) !']
[Colour: class (Nom) .V} lSeIect Instance ,v}
Reset | Clear || Open Jl Save Jitter @
Plot: networktraffic-weka.filters.unsupervised.attribute. NumericToNominal-R2-3-weka.filters.unsupervised.attr...
258520601 L o id g ik § A
A = e
) by R R) R
il ! - 1K
ERC A R e
= | DRI TR
£ ‘
Ty ﬁi‘.’
f 2
1292603024 x
o
i
H
o
o
¥
%X
3 T
3 129260302 238520601 :

Step 3. Navigate to the Lab workspace directory and save the DecisionTableResults.
Alternatively, use the GUI to navigate to the lab workspace directory to select the file. Use
the Save button to save the new DecisionTableResults file into Weka.

/home/zeek/Zeek-Labs/Sample-PCAP/DecisionTsuableResults

Page 27

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

(] Save e
Look In: | [Sample-PCAP :J | |)| @ (=] &1
| '] testset.arff
|| trainset.arff
e - BB

File Mame: IIhomefzeekueek—LabsfSampIe—PCAPIDecisiontabIeResuIts|I

Files of Type: | Arff data files vJ

I Save || Cancel |

Step 4. Close all of the Weka tabs with the orange x on the top right corner of each panel.
Step 5. Return to the Terminal and navigate to the lab workspace directory.

cd $SZEEK LABS

] zeek@admin: ~/Zeek-Labs/Sample-PCAP - + X

File Edit Tabs Help
zeek@admin:~$ icd Zeek-Labs/Sample-PCAP/

zeek@admin:~/Zeek-Labs/Sample-PCAPS |}

Step 5. Using a text editor, view the DecisionTableResults.arff file.
gedit DecisionTableResults.arff
kd zeek@admin: ~/Zeek-Labs/Sample-PCAP =i

File Edit Tabs Help
zeek@admin:~/Zeek-Labs/Sample-PCAPS$ [nano DecisionTableResults.arff

zeek@admin:~/Zeek-Labs/Sample-PCAPS l

The file will be opened, and each data object will contain a new classification label.

Page 28

Lab 12: Developing Machine Learning Classifiers for Anomaly Inference and Classification

kd zeek@admin: ~/Zeek-Labs/Sample-PCAP =ahiX
File Edit Tabs Help
GNU nano 2.9.3 DecisionTableResults.arff

@relation networktraffic-weka.filters.unsupervised.attribute.NumericToNominal$

@attribute sourceip {10022,100215,19216813,65552560,172162551,655557251,19216%
@attribute destip {10022,10023,10112,100215,1002255,1721601,2454514,6443557,6$%
@attribute sourceport numeric

@attribute destport numeric

@attribute protocol {tcp,udp,icmp}

@attribute duration numeric

@attribute class {1,0}

@data

19216813,19216822,49526,1755,tcp, 3,1
172162551,18912644128,50983,3192, udp,259354,0
172162551,2049163158,10630,80,tcp, 150006,0
19216813,19216822,49526,9002,tcp, 3,1
19216813,19216822,49526,15660,tcp,4,1
19216813,19216822,49526,2607,tcp,4,1
172162551,255255255255,68,67,udp,?,0
1921683131,65549575,56332,80,tcp,6663279,0

Traffic found in the first row of data was labeled with a 1, as malicious traffic. Traffic found
in the second row of data was labeled with a 0, as benign traffic.

Concluding this lab, we have introduced the capabilities of implementing a machine
learning classifier to detect specific anomalies or events. Multiple classifiers can be used
for training network security classifiers, and the features within each training dataset can
have a profound impact on the classifier’s accuracy. By removing, modifying or adding
new features you can test the accuracy of a classifier. In this lab, we generated a Decision
Table that was capable of labeling malicious and benign traffic.

References

1. “Attribute-relation file format”, The university of waikato, [Online], Available:
https://www.cs.waikato.ac.nz/~ml/weka/arff.html

Page 29

