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Agenda
• Review – Science DMZ

• Network performance and measurements
➢ Importance
➢ Examples

• Lessons learned and observations – FABRIC

• Trends
➢ Programmable switch ASICs
➢ Fine-grained measurements

• Opportunities and challenges
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Review – Science DMZ
• Security appliances (IPS, firewalls, etc.) are CPU-intensive

• Small-buffer routers and switches are incapable of absorbing traffic bursts

• Even a small packet loss rate reduces throughput

• Transfers of big science data may last days or even weeks

1E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, “The science dmz: a network design pattern for data-intensive science,” International Conference on High 
Performance Computing, Networking, Storage and Analysis, Nov. 2013.
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Review – Science DMZ
• The Science DMZ is a network designed for big science data1

• Main elements
➢ High throughput, friction free WAN paths (no inline security appliances)

➢ Switches with large buffer size

➢ Data Transfer Nodes (DTNs)

➢ Security = Access-Control List (ACLs) + offline

appliance/s (IDS)

➢ End-to-end measurements = perfSONAR

1E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, “The science dmz: a network design pattern for data-intensive science,” International Conference on High 
Performance Computing, Networking, Storage and Analysis, Nov. 2013.
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Network Performance and Measurements
• The following metrics are often used to measure network performance:

➢ Packet loss

➢ Throughput (e.g., “how much can I get out of the network”)

➢ Latency / round-trip time (RTT)
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• Soft failures are those failures that do not disrupt connectivity, but may prevent high
performance
➢ Critical in high-throughput high-latency networks
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• perfSONAR provides information that reflects the state of the network, in a multi-
domain basis

• perfSONAR = Measurement Middleware
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• Measurements allow us to:
➢ Learn the performance limits (e.g., maximum throughput, minimum delay)

➢ Discover the current state of the network

➢ Modify configuration rules

➢ Implement a control loop

Observe

measurements
To WAN

perfSONAR

Generate / modify 

configuration rules
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• Example 1: connection from Northern New Mexico College (Espanola, NM) to
Albuquerque GigaPop (Albuquerque, NM)
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• Example 1: connection from Northern New Mexico College (Espanola, NM) to
Albuquerque GigaPop (Albuquerque, NM)

• perfSONAR measured a throughput of ~50 Mbps, latency > 30ms
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• Example 1: connection from Northern New Mexico College (Espanola, NM) to
Albuquerque GigaPop (Albuquerque, NM)

• perfSONAR measured a throughput of ~50 Mbps, latency > 30ms
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• Example 2: 10 Gbps WAN, 50ms RTT, TCP CUBIC (default TCP algorithm in Linux)

WAN

H2H1
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• Example 2: 10 Gbps WAN, 50ms RTT, TCP CUBIC (default TCP algorithm in Linux)
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• Example 2: 10 Gbps WAN, 50ms RTT, TCP BBR

WAN

H2H1
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• Example 2: 10 Gbps WAN, 50ms RTT, TCP BBR
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• Example 2: 60ms RTT path from Columbia (SC) to Los Angeles (CA)
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Lessons Learned 
• Network measurements are essential for performance

➢ Classic monitoring systems are good at alerting hard failures (e.g., SNMP, NOC tools indicate when
hardware ceases to function, a power failure occurs)

➢ perfSONAR helps identify soft failures

• There is training periodically offered by the CI community
➢ Are there new alternatives to the Science DMZ model?
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Lessons Learned 
• Measurements illustrated in the original Science DMZ paper
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Lessons Learned 
• Some measurements on FABRIC

20



Lessons Learned 
• Performance measurements for a single flow, 0.0046% packet loss rate
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Lessons Learned 
• Performance measurements for a single flow, 0.0046% packet loss rate
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Trends in Network Performance and Measurements
• The networking community has been using the same measurement tools for years

➢ Ping: initially released in 1983

➢ Traceroute: initially released in 1987

➢ SNMP: the original RFC appeared in 1988

perfSONAR layers
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Trends in Network Performance and Measurements
• The networking community has been using the same measurement tools for years

➢ Ping: initially released in 1983

➢ Traceroute: initially released in 1987

➢ SNMP: the original RFC appeared in 1988

• They produce measurements over long time periods (coarse-grained measurements)

• Traceroute packets may follow a different path than the data packets
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Trends in Network Performance and Measurements
• Can we obtain fine-grained measurements?

• Barrier: the CI engineer is limited by what the equipment vendor implements
➢ The switch ASIC is designed with fixed functions (hard-coded) by the chip designer

Observe

measurements
To WAN

perfSONAR

Generate 

configuration rules
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Programmable Switch ASICs
• We now have the technology that permits CI engineers to run customized functions

Data Plane
Control Plane

CPU-based control plane

Switch
ASIC

Programmable parser, tables, arithmetic logic 
units (ALUs), programmable deparser, …

P4 Code

CI Engineer

compiler

Switch
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Programmable Switch ASICs
• We now have the technology that permits CI engineers to run customized functions

➢ Designed for packet processing operations

Data Plane
Control Plane
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Programmable Switch ASICs
• We now have the technology that permits CI engineers to run customized functions

➢ Designed for packet processing operations

➢ Much faster than general-purpose CPUs for processing packets

28
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Programmable Switch ASICs
• We now have the technology that permits CI engineers to run customized functions

➢ Designed for packet processing operations

➢ Much faster than general-purpose CPUs for processing packets

➢ Limited SRAM memory capacity

Data Plane
Control Plane

CPU-based control plane

Switch
ASIC

Programmable parser, tables, arithmetic logic 
units (ALUs), programmable deparser, …

P4 Code

CI Engineer

compiler

Switch
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Programmable Switch ASICs
• We can track flows in the data plane

➢ Science DMZs do not need to track millions of flows (enough SRAM memory available)

➢ NOTE: legacy CPU-based appliances (e.g., firewalls, IDS) cannot process packets fast enough; need
large DRAM memory to track millions of flows; eject large flows’ control connections prematurely

30



Programmable Switch ASICs
• Can we exploit the visibility provided by programmable ASICs on non-programmable

networks? Solution would:
➢ Be less disruptive

➢ Foster incremental use of programmable ASICs

➢ Not need to deploy complex code at once
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Programmable Switch ASICs
• Traditional Science DMZ with optical passive taps feeding a programmable ASIC
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Fine-grained Measurements
• Granular RTT calculation
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Fine-grained Measurements
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• Granular RTT calculation - Applications
➢ Calculating the optimal buffer size (a function of the

average RTT of all large flows crossing the switch)

➢ Detecting bad routing decisions, hijacking, reflected
in large RTTs
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• Customized firewall, without adding any additional processing on Science DMZ devices
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• Customized firewall, without adding any additional processing on Science DMZ devices

Fine-grained Measurements
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• Fine-grained measurements of buffer
occupancy of legacy devices
➢ Legacy measurements (e.g., SNMP) provide only

coarse-grained measurements

➢ E.g., Juniper MX-204 router provides one SNMP
sample per minute
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• Fine-grained measurements of buffer
occupancy of legacy devices
➢ Legacy measurements (e.g., SNMP) provide only

coarse-grained measurements

➢ E.g., Juniper MX-204 router provides one SNMP
sample per minute

➢ Programmable switches provide a high precision
timer, full visibility of all packets
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Programmable 
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Passive TAP

Fine-grained Measurements
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• Fine-grained measurements of packet loss of
legacy devices
➢ Legacy measurements (e.g., SNMP) provide only

coarse-grained measurements (often erroneous)
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• Fine-grained measurements of packet loss of
legacy devices
➢ Legacy measurements (e.g., SNMP) provide only

coarse-grained measurements (often erroneous)

➢ Programmable switches can compute packet loss
rates accurately and promptly

50 / 150 / 300 flows enter the network
P4

Legacy 
router

Programmable 
switch

Passive TAP

Fine-grained Measurements
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• Traffic separation based on RTT
➢ If multiple flows with different RTTs compete, TCP favors one flow over the other

RTT unfairness in a 10 Gbps network. Two BBRv2 flows sharing the network. 

Fine-grained Measurements
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• Traffic separation based on RTT
➢ By accurately measuring RTT in real time, flows can be classified and separated in different queues

RTT unfairness in a 10 Gbps network. Two BBRv2 flows sharing the network. 

Fine-grained Measurements
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Programmable ASICs – Opportunities and Challenges

• Fine-grained measurement tools can complement current tools

• P4 code is open
➢ Reusing code is simple

• Designing and testing new ideas can be accomplished faster

• There can be more opportunities for collaboration
➢ Code can be downloaded from the open-source community, tailored in house
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Programmable ASICs – Opportunities and Challenges

• CI engineers are not yet (fully) familiar with these technologies

• Deploying a fully programmable network is unrealistic
➢ Deployment models are still being investigated

• There is no readily available technical support
➢ There are few forums, but they focus more on research (e.g., Intel Connectivity Research Program)
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Thank you
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• Traffic separation based on flow size
➢ The flow completion time (FCTs) of small

flows is significantly impacted when the
network is busy

➢ A possible solution to prevent the increase of
FCTs is to separate small flows from large
flows

➢ Programmable switches can identify long
flows

➢ 10,000 small flows whose inter-connection
times are generated from an exponential
distribution with a mean of one second

➢ 10 large flows were started, each with a
random starting time over the test duration

Applications of programmable switches to enhance the performance of Science DMZ
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• Traffic separation based on
Congestion Control Algorithms (CCA)
➢ When flows using different CCAs co-exist

on a link, the fairness is significantly
impacted

➢ One solution is to separate flows into
different queues on the router based on
their CCAs

➢ Programmable switches compute the
bytes-in-flight and use Deep Learning
algorithms to identify the CCA

➢ Flows are then allocated into different
queues based on their CCAs

Applications of programmable switches to enhance the performance of Science DMZ
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• Traffic separation based on Congestion Control Algorithms (CCA)
➢ 10 long flows started at the same time, with alternating CCAs (i.e., Flow1 uses CUBIC, Flow2

uses BBR, Flow3 uses CUBIC, etc.)

➢ The figure below shows the fairness index (0 -> unfair, 100 -> fair)
▪ Left -> without separation

▪ Right -> with separation

Applications of programmable switches to enhance the performance of Science DMZ
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• Bottleneck estimation for traffic
policing
➢ During a large data transfer, a link can get

fully utilized and its router’s buffer gets
filled

➢ This increases the latency for short flows
sharing the bottleneck link

➢ Programmable switches can compute the
throughput of flows and identify those
that are bottlenecked

➢ Such information can be used to force
flows to slow their rate, which avoids
filling the queues
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Large transfer path

Dist. 
switches

Firewall
Bottleneck

Internet
Server

. . .

. . .

DTN

Applications of programmable switches to enhance the performance of Science DMZ
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• Bottleneck estimation for traffic policing
➢ Flow Completion Time (FCT) of 10,000 short flows

whose inter-connection times are generated from
an exponential distribution with a mean of one
second

➢ Long flows which transmitted 75Gbytes:
▪ Completed in approximately 85 seconds when

policing is not configured

▪ Completed in approximately 87 seconds when
policing is configured

➢ While the FCT of the long flow slightly increased
when policing is configured, this increase is
acceptable since the flow is not interactive
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• Dynamic buffer sizing
➢ By leveraging measurements from programmable switches, the buffer size can be

dynamically modified

Static buffer

Dynamic buffer

Propagation delays

Applications of programmable switches to enhance the performance of Science DMZ
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• Detecting DDoS attacks and applying mitigations
through ACLs
➢ Deploying a firewall or an Intrusion Prevention System

(IPS) inline affects the throughput of data transfers in
Science DMZ

➢ Programmable switches can be deployed passively

➢ DDoS detection algorithms are executed in the
programmable switches

➢ Access Control List (ACL) rules are pushed to the non-
programmable router

Applications of programmable switches to enhance the security of Science DMZ

ACL rules 
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• Detecting DDoS attacks and applying mitigations through ACLs

Applications of programmable switches to enhance the security of Science DMZ

DNS amplification attack SYN flood attack
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• Traffic separation based on RTT
➢ If multiple flows with different RTTs compete, TCP favors one flow over the other

          (a)     (b)

RTT unfairness in a 10 Gbps network. (a) Two BBRv2 flows sharing the network. (b) Two CUBIC flows sharing the network.

Fined-grained Measurements
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• Traffic separation based on RTT
➢ By accurately measuring RTT in real time, flows can be classified and separated in different queues

RTT unfairness in a 10 Gbps network. (a) Two BBRv2 flows sharing the network. (b) Two CUBIC flows sharing the network.

          (a)     (b)

Fined-grained Measurements
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  10 Gbps (Single-mode fiber)
  10 Gbps (10GBase-T)
     1 Gbps (Multi-mode fiber)
     1 Gbps (1000Base-T)
100 Mbps (100Base-T)
Horizontal cable (from closet to work area)

Cabling 
AD:          Administration building
AGS:        Aggregation Switch
BR:          Border Router
CD:          Core Distribution
CEN:       Campus Enterprise Network
DTN:       Data Transfer Node
GE:          General Education building
HT:          High Tech building
SDMZ:    Science DMZ
SERPA:   Solar Energy Research Park & Academy building
TEC:        Teaching Education Center
VE:           Vocational Education building
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PerfSONAR
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• perfSONAR provides information that reflects the state of the network, in a multi-
domain basis

• perfSONAR = Measurement Middleware
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