
Evaluating TCP BBRv3 Performance in Wired Broadband Networks

Jose Gomeza, Elie F. Kfourya, Jorge Crichignoa, Gautam Srivastavab,c,d

aCollege of Engineering and Computing, University of South Carolina, Columbia, U.S.A
bDepartment of Mathematics and Computer Science, Brandon University, Canada

cResearch Centre for Interneural Computing, China Medical University, Taichung, Taiwan
dDepartment of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

Abstract

Introduced by Google in 2016, the first version of the Bottleneck Bandwidth and Round-Trip Time (BBRv1) congestion
control algorithm (CCA) marked a significant advancement in network communication. Unlike traditional loss-based
CCAs such as CUBIC and Reno, BBRv1 focused on balancing throughput and delay without relying on packet losses
as a congestion signal. However, BBRv1 faced fairness issues due to its aggressiveness when interacting with loss-based
CCAs. To address this issue, BBRv2 was developed, incorporating multiple metrics to improve fairness with loss-
based CCAs. Despite improvements, BBRv2 encountered bugs and performance limitations, prompting the release of
BBRv3 in 2023. BBRv3 addressed bugs found in BBRv2 and fine-tuned parameters to enhance flow coexistence.

This paper evaluates the performance of BBRv3 across diverse network scenarios by comparing it with CUBIC and
further contrasts this comparison with those involving CUBIC against BBRv2 and BBRv1. The evaluation explores
BBRv3’s behavior under different conditions, considering variations in the number of flows, propagation delays, loss
rates, and buffer sizes. Additionally, this paper explores the influence of Active Queue Management (AQM) algorithms
in addressing the RTT unfairness issue. The results indicate that BBRv3’s coexistence with CUBIC is comparable to
that observed in BBRv2, and it depends on factors such as buffer size and the number of flows. BBRv3 maintains high
throughput and lower retransmissions at 1% loss rates compared to its predecessors. Moreover, BBRv3 consistently
keeps low queue occupancy and achieves low Flow Completion Times (FCTs) in scenarios with short and long flows,
even with large buffer sizes.

Keywords: Bottleneck Bandwidth and Round-trip Time (BBR), BBRv3, Active Queue Management (AQM),
Bandwidth-delay Product (BDP), congestion control algorithm (CCA), Controlled Delay (CoDel), CUBIC,
Round-trip Time (RTT) unfairness, router’s buffer size.

1. Introduction

The Transmission Control Protocol (TCP) [1] has
formed the foundation of reliable end-to-end commu-
nication, supported by a variety of congestion control
algorithms (CCAs). A CCA is a mechanism that governs
how TCP will react to congestion to achieve fairness and
use the available bandwidth efficiently. Over the last few
decades, the TCP CCAs experienced a paradigm shift
from early loss-based algorithms, such as Reno [2] and
CUBIC [3], to the model-based Bottleneck Bandwidth
and Round Trip Time (BBR) [4] algorithm. This
transition was driven by the recognition of limitations
observed in using loss-based CCAs to transfer data over
high-speed links (i.e., 10-100Gbps) that involved paths
with large Round-trip Times (RTTs).

Loss-based CCAs faced a series of challenges that re-
duced their ability to ensure efficient and fair utiliza-
tion of network resources. One of the issues consisted
of excessive buffering and delays. This issue is known
as bufferbloat [5] and results in an increasing delay with-
out any performance gain. Loss-based algorithms heavily
relied on packet loss to detect network congestion, assum-
ing it to be a clear sign. However, this approach often

Email addresses: gomezgaj@email.sc.edu (Jose Gomez),
ekfoury@email.sc.edu (Elie F. Kfoury), jcrichigno@cec.sc.edu
(Jorge Crichigno), srivastavag@brandonu.ca (Gautam Srivastava)

failed because packet loss alone wasn’t always a reliable
indicator of congestion. These algorithms were too sen-
sitive to early losses, causing them to react to congestion
prematurely.

Additionally, these algorithms struggled when deal-
ing with high-bandwidth paths. Reno and CUBIC, for
instance, required a considerable amount of time to in-
crease their throughput on paths with higher bandwidths.
For instance, using Reno in a 10Gbps link with a 100ms
propagation delay needs more than an hour to fully uti-
lize the bandwidth. Avoiding this issue demands a loss
rate lower than 0.00000002% (2 out of 10 billion packets),
which is impractical. In similar conditions, CUBIC needs
more than 40 seconds between any losses to fully utilize
the 10Gbps bandwidth considering a loss rate of less than
0.0000029% (i.e., 2.9 out of 100 million packets), which
is also impractical.

BBRv1 [4] presented a solution to these problems by
taking a different approach. Instead of relying on packet
losses to indicate congestion, it estimated the bottleneck
bandwidth to determine the sending rate. This strategy
aimed to reduce delays in queues and prevent bufferbloat
while maximizing the amount of data being sent. To
establish the sending rate, BBRv1 uses pacing, which
involves sending packets at measured intervals from the
sender. This spread-out timing strategy helped manage
data flow. This approach differs from the traditional loss-
based algorithms, where the sending rate is conditioned

Preprint submitted to Elsevier April 28, 2024

by the size of the congestion window, and the sender node
may send packets in bursts.

However, the literature reported that BBRv1 pre-
sented poor coexistence with loss-based CCAs leading
to unfairness issues [6–11]. Therefore, BBRv2 [12]
was proposed to overcome these limitations. BBRv2
considers packet losses, and ECN signals in addition to
the bandwidth and RTT already considered in BBRv1 to
build a network model. As a result, evaluations showed
that BBRv2 presented a better coexistence with loss-
based CCAs and reduced the RTT unfairness problem
observed in BBRv1. Nevertheless, BBRv2 presented
convergence issues when sharing a link with competing
BBRv2 flows. This issue did not allow BBRv2 flows to
converge to a fair link share after a certain period. The
convergence issue was observed in networks with and
without packet losses.

In 2023, the release of BBRv3 [13] aimed to fix bugs
and optimize performance parameters to resolve the con-
vergence issues observed in BBRv2. BBRv3’s goal is to
attain fair bandwidth sharing among competing flows and
enhance its coexistence with loss-based CCAs. This pa-
per presents a performance evaluation of BBRv3 across
various network conditions. These conditions encompass
examining BBRv3’s performance under different router
buffer sizes, loss rates, and propagation delays. This pa-
per also assesses BBRv3’s performance in a context repli-
cating RTT unfairness conditions. Additionally, the ac-
curacy of BBRv3’s bottleneck bandwidth estimation as
a function of RTT is evaluated through both emulated
topology and real hardware settings.

To the best of the authors’ knowledge, the literature is
still missing a performance evaluation of BBRv3. There-
fore, this paper presents an experimental evaluation of
BBRv3 considering routers with different buffer sizes, Ac-
tive Queue Management (AQM) algorithms, links with
different propagation delays and packet loss rates, and
routers with changing bottleneck bandwidth and delays.
The contributions of this paper can be listed as follows:

1. Coexistence and loss resilience: The coexistence of
BBRv3 with CUBIC is influenced by buffer size and
the number of flows, showing fairness issues initially
but improving with more BBRv3 flows. The optimal
coexistence is observed with buffer sizes between
BDP and 10BDP. Furthermore, BBRv3 demonstrates
remarkable resilience to packet losses, maintaining
high throughput and lower retransmissions even
at loss rates of around 1%, which is a key factor
contributing to its unfairness to loss-based CCAs such
as CUBIC.

2. Queue occupancy : BBRv3 maintains low queue occu-
pancy, while CUBIC leads to queue saturation. This
difference contributes to lower end-to-end latency for
BBRv3.

3. Bottleneck bandwidth estimation: BBRv3 effectively
estimates bottleneck bandwidth across varying prop-
agation delays, maintaining stability in emulated bot-
tleneck scenarios. This suggests its robustness across
network conditions.

4. Flow completion time: In scenarios where short flows
compete with a long flow, BBRv3 maintains consis-

tently low Flow Completion Times (FCTs) even with
larger buffer sizes, outperforming CUBIC.

Furthermore, this paper provides access to the virtual
machine (VM) and scripts employed for executing the ex-
periments within Mininet. The VM and scripts are avail-
able at [14]. The rest of the paper is organized as follows:
Section 2 provides background on BBRv1, BBRv2, and
BBRv3. Section 3 summarizes the related work. Section
4 describes the experimental setup. Section 5 presents
the results and evaluations and section 6 concludes the
paper.

2. Background

This section describes the principles of BBRv1, its
shortcomings and the evolution of the CCA. Then,
it delves into the origins of BBRv2, discussing its
limitations, which paved the way for the development
of BBRv3. This section also describes the lifecycle of
BBRv3.

2.1. Principles of BBRv1

BBRv1 was introduced to overcome a design limita-
tion in loss-based CCAs, which considered packet loss as
a sign of congestion [15]. As Network Interface Cards
(NICs) progressed from megabits per second (Mbps) to
gigabits per second (Gbps) and memory chips advanced
from kilobytes (KB) to gigabytes (GB), the correlation
between packet loss and congestion diminished. Cur-
rently, in scenarios with large bottleneck buffers, loss-
based CCAs maintain the bottleneck buffers at full capac-
ity, resulting in bufferbloat [5]. Conversely, in situations
where bottleneck buffers are small, loss-based congestion
control interprets loss as a signal of congestion, leading
to reduced throughput. BBRv1 aimed to overcome these
issues proposing a new approach to congestion control
that aligns with the evolved network landscape.

BBRv1 aimed to optimize data transmission over net-
works by estimating the bottleneck bandwidth and the
round-trip propagation (RTprop). BBRv1’s main goal
is to maximize link utilization by dynamically adjusting
the sending rate based on its estimation of the available
bottleneck bandwidth. This real-time adaptation allows
BBRv1 to respond effectively to varying network con-
ditions, ensuring optimal data transfer performance. A
distinctive feature of BBRv1 lies in its approach to con-
gestion control, specifically in its avoidance of bufferbloat.
Unlike traditional loss-based algorithms that rely on de-
tecting packet losses as a signal of congestion, BBRv1 pri-
oritizes preventing the accumulation of excessive queues
in network buffers. This emphasis on buffer manage-
ment contributes to more responsive and low-latency data
transfers. BBRv1 also incorporates an aggressive startup
mechanism, allowing it to quickly probe the available
bandwidth and converge to the optimal sending rate.
This aggressive approach facilitates rapid data transfer
during the initial stages of a connection and allows it to
dynamically respond to changes in network conditions.

2.2. Shortcomings of BBRv1 and foundations of BBRv2

While BBRv1 has improved the throughput of a TCP
connection, the literature has reported some behavioral

2

Application Data

Transport sending engineRate

Packets to the network

Volume Quantum

Network path
model

State machine
Network path

model
State machine

Bandwidth RTT Loss rate ECN

Input: Measurements from network traffic

BBRv3: model-based congestion control

Output: control parameters

Figure 1: High-level architecture of BBRv3.

issues, such as unfairness with loss-based CCAs and high
retransmission rates [16–18]. BBRv2 adopts a network
traffic modeling approach, estimating bandwidth, mon-
itoring RTT, measuring loss rates, and incorporating
Explicit Congestion Notification (ECN) capabilities.
Studies indicate that BBRv2 tolerates higher packet
loss rates compared to loss-based CCAs, experiences
lower retransmission rates than BBRv1, demonstrates
improved coexistence with CUBIC, mitigates the impact
of RTT unfairness, and exhibits reduced queueing delays
[6–8, 11]. However, evaluations of BBRv2 revealed
issues that caused interruptions in bandwidth probing
following a packet loss event or ECN signal. Addi-
tionally, convergence problems were observed for buffer
sizes exceeding 1.5 BDP. These challenges led to the
development of BBRv3, a minor update to BBRv2
designed to address the identified bugs and fine-tune
performance parameters.

2.3. Principles of BBRv3

BBRv3 presents similar behavior to the one of
BBRv2. BBRv3 is designed to replace the previous
versions of BBR (i.e., BBRv1 and BBRv2) [13]. BBRv3
represents an evolution of CCAs and operates on a
model-based, rate-driven approach. The high-level
architectural framework is illustrated in Figure 1. The
essential metrics under consideration include bandwidth,
RTT, packet loss ratio, and ECN marking frequency.
These metrics collectively inform the computation of the
Bandwidth-delay Product (BDP), facilitating the char-
acterization of the network’s end-to-end path, denoted
as the network path model. Through an assessment of
the current network path model, the algorithm navigates
through various states within a finite-state machine.
This dynamic process encompasses actions such as
bandwidth and RTT probing. The resulting finite state
machine generates three key control parameters: rate,
volume, and quantum. These control parameters play
an essential role in regulating the sending rate. The
rate parameter defines the pacing rate for the sender’s
transmissions. The volume parameter dictates the
allowed volume of data or bits within the path as they
traverse from the sender to the receiver. This concept
aligns with the inflight volume. Meanwhile, the quantum
parameter establishes the maximum burst size achievable
from the sender. The transport protocol sending engine

evaluates these variables to regulate the amount of data
that is injected into the network. Additionally, the
sending engine segments application data into bursts
of size determined by the quantum before injecting the
data into the network as discrete packets.

BBRv3 implements an estimation strategy involving
both short-term and long-term approximations of the
bottleneck bandwidth and maximum inflight data vol-
ume. This approach is similar to the principles observed
in CUBIC, where short-term slow start threshold esti-
mates (ssthresh) and long-term maximum congestion
window (W max) play key roles. During the major part
of the connection duration, BBRv3 operates within a
period in which it swiftly achieves equilibrium in flow
management. This involves adjusting the sending rate
to match the updated bottleneck bandwidth or BDP.
Simultaneously, it aims to retain spare capacity within
the bottleneck link. This approach allows incoming
flows to effectively share the bandwidth. To ensure
regulated behavior, BBRv3 upholds short-term bw lo

and inflight lo approximations, which establish a
limit based on the latest delivery processes (e.g., loss,
ECN). This strategy aims at keeping bounded queueing
levels at the bottleneck link by considering previous
delivery processes.

2.4. Lifecycle of a BBRv3 Flow

The state machine of BBRv3 closely resembles that
of BBRv2, as depicted in Figure 2. It operates through
cycles, alternating between bandwidth and RTT probing.
Initially, a flow begins in the STARTUP phase (a) simi-
lar to the traditional slow start. During this phase, the
algorithm tries to quickly identify the bottleneck band-
width by doubling the sending rate of each RTT. If the
packet loss rate or ECN mark rate surpasses their re-
spective thresholds, the inflight hi is established as an
approximation of the maximum inflight capacity.

Upon reaching a stable value (plateau) during contin-
uous bandwidth probes or setting inflight hi, the flow
departs the STARTUP phase and enters the DRAIN phase
(b). Here, the aim is to deplete excess inflight bits and
any queue formed at the bottleneck link in the previous
phase. This is achieved by adopting a low pacing (send-
ing) rate. The DRAIN phase concludes once the inflight
volume falls to or below the estimated BDP.

The majority of the flow’s lifespan is spent in the
CRUISE phase (c), where the sending rate dynamically
adapts to regulate queue levels. The {bw, inflight} lo

tuple is updated every RTT, utilizing information
from packet loss and ECN signals. Subsequently,
the PROBE BW:REFILL phase (d) is initiated to probe
for additional bandwidth and inflight capacity. The
objective is to elevate the inflight volume (reduced
earlier) by sending at the estimated capacity (bottleneck
bandwidth) for one RTT. It’s important to note that
the anticipation here is that queues won’t form, given
that the sending rate doesn’t exceed the estimated
bottleneck bandwidth. However, in cases where routers
have limited buffers, non-congestion-related packet losses
might occur. To prevent reducing the sending rate and
negatively impacting throughput, the algorithm tolerates
up to loss thresh losses each RTT.

3

Time

In
fl

ig
h

t

In
fl

ig
h

t
Time

In
fl

ig
h

t

Time

In
fl

ig
h

t

Time

In
fl

ig
h

t

Time

Startup

Inflight_hi
Est. BDP

Drain

Est. BDP
Inflight_hi

Inflight_lo

PROBE_BW:REFILL

PROBE_BW:UP

Inflight_hi Inflight_hi
Est. BDP

PROBE_BW:DOWN

Est. BDP
Inflight_lo Inflight_lo

(a) (b) (c) (d) (e)

PROBE_BW:CRUISE

Figure 2: Life cycle of a BBRv3 flow and its five phases: (a) STARTUP, (b) DRAIN, (c) PROBE BW:CRUISE, (d) PROBE BW:REFILL and PROBE BW:UP,
and (e) PROBE BW:DOWN.

During the bandwidth probing PROBE BW:UP phase, if
inflight hi is fully utilized, it is incrementally increased
exponentially each round (1, 2, 4, 8, ..., 2n packets).
Conversely, if the loss rate or ECN mark rate becomes
excessive, the inflight hi is reduced to the estimated
maximum safe inflight volume. The exit criteria for the
PROBE BW:UP phase include setting inflight hi or if the
estimated queue surpasses a certain threshold (inflight
volume >1.25×estimated BDP).

Lastly, the flow transitions into the PROBE BW:DOWN

phase (e) to deplete the recently formed queue and make
use of the available headroom. This phase concludes
when two conditions are met: 1) the inflight volume is
slightly below a headroom margin from inflight hi, and
2) the inflight volume is at or below the estimated BDP.

2.5. Improvements of BBRv3 over BBRv1, and BBRv2

The major updates of BBRv3 consist of 1) fixing bugs
that reduced bandwidth convergence and 2) tuning per-
formance parameters that involved the pacing gain and
the congestion window gain.

2.5.1. Bugs observed in BBRv2 and fixed in BBRv3

BBRv3 fixes bugs and mitigates performance issues
presented by its predecessors, particularly addressing a
critical bug that affected BBRv2. The first bug caused
the interruption of bandwidth probing shortly after loss
or Explicit Congestion Notification (ECN) was set in the
inflight hi parameter. This problem was the result of
a circular dependency between maximum bandwidth and
maximum inflight data. The consequences of this issue
lead to BBRv2 flows struggling to achieve a fair share
when competing against CUBIC or Reno flows. More-
over, these affected flows experienced prolonged periods
to achieve full utilization after congestion events. BBRv3
addresses this issue through persistent bandwidth prob-
ing. It continues probing until either the loss rate or
ECN mark rate surpasses predefined tolerance thresh-
olds of 1% [19]. The bandwidth probe also stops when
the inflight hi parameter has not recently limited the
amount of data being sent, and the available bandwidth
reaches its maximum capacity.

Another bug observed in BBRv2 occurred when the
buffer size was more than 1.5 times the BDP. In this sce-
nario, BBRv2 flows had trouble reaching a fair share.
Two main reasons caused this: First, a fixed conges-
tion window gain prevented slower flows from increas-
ing their sending rates effectively. Second, slower flows
using 0.75 times the estimated bandwidth allocated too

much of the bandwidth to faster flows. This led to an im-
balance in resource sharing, especially with larger buffer
sizes and no explicit loss or congestion signals. BBRv3
mitigated these problems by making two key changes.
First, during bandwidth probing (PROBE BW:UP), the con-
gestion window (cwnd) gain was increased from 2.0 to
2.25, allowing better adjustments in sending rates. Sec-
ond, the pacing gain was adjusted from 0.75 times to
0.9 times (PROBE BW:DOWN). This adjustment helps slower
flows consistently use sufficient bandwidth, facilitating
faster flows to converge to a fair share faster.

2.5.2. Performance tuning implemented in BBRv3

BBRv3 also implemented changes in performance
parameters. These changes were made to the STARTUP

phase, where the congestion window gain has been recal-
ibrated from 2.89 to 2.0, a change grounded in analytical
derivations [20]. Similarly, the STARTUP pacing gain has
undergone a shift from 2.89 to 2.77, again guided by an-
alytic reasoning [21]. When leaving the STARTUP phase,
BBRv3 now sets the inflight hi parameter based on
the maximum value between the estimated BDP and
the highest number of packets successfully transmitted
during the last RTT. The criteria for transitioning out
of the STARTUP phase due to packet loss have been also
revised. Currently, BBRv3 requires a smaller number
of loss events within a single round trip (6 instead of
8). These changes result in reduced queuing delays and
lower rates of packet loss during the STARTUP phase and
in the following stages.

3. Related Work

As far as the authors are aware, there has been a
gap in the existing literature regarding the assessment
of BBRv3. However, prior researchers have conducted
evaluations of BBRv2 and BBRv1.

Hock et al. [18] conducted a comprehensive evaluation
of the BBRv1, focusing on bottleneck links of 10 Gbps
and 1 Gbps, multiple flows, and varying RTTs. Their
findings reveal that while BBRv1 works effectively for a
single flow at a bottleneck, its performance with multi-
ple flows diverges from its original objectives. BBRv1’s
mechanisms unintentionally lead to sustained overload at
the bottleneck, resulting in increasing inflight data and
queuing at the bottleneck buffer. The authors noted that
the absence of a mechanism to drain this queue leads
to issues such as increased queuing delays, RTT unfair-
ness in large buffers, and significant packet losses and
unfairness in smaller buffers. The authors observed that

4

R1 R2 R3

(Loss/delay) (Rate limiting,
buffer size, and

AQM)

Bottleneck link

.

.

.

.

.

.

h1

h100

h101

h200

Senders Receivers

Server 1 Server 2

Figure 3: Topology used for the evaluations.

BBRv1 lacks explicit congestion detection and reaction
mechanisms, leading to challenges in handling congestion
and fairness among multiple flows. The paper emphasizes
that BBRv1’s approach and insights into its mechanisms
are valuable for congestion control research. Addition-
ally, the authors suggest further investigation of BBRv1’s
behavior with AQM mechanisms.

Hurtig et al. [16] evaluated the interaction of CUBIC
and BBR. The authors provide a comprehensive under-
standing of BBRv1’s effects, considering the heterogene-
ity of Internet traffic sizes. Unlike previous evaluations
that primarily focused on steady-state performance with
large flows, this work explores BBRv1’s behavior during
the startup phase and its impact on different-sized flows.
The experiments reveal that, under specific conditions,
BBRv1’s startup phase can significantly reduce through-
put for competing large CUBIC flows. Additionally, the
steady-state operation of BBRv1 may negatively affect
the performance of bursty flows using loss-based CCAs
over bottlenecks with larger buffer sizes. The experi-
ments demonstrate that an all-BBRv1, mixed-size traffic
consistently performs well across various bandwidths and
buffer sizes. However, in scenarios where a small buffer
is shared by a large CUBIC flow and successive BBRv1
bursts, the aggressive BBRv1 startup mechanism leads
to a significant reduction in throughput for the large flow
and bottleneck utilization.

Nandagiri et al. [17] conducted an experimental eval-
uation to compare the performance differences between
BBRv1 and BBRv2. Their work focuses on assessing how
these versions perform in terms of throughput, delay, and
fairness under varying network conditions. The experi-
ments highlight the potential issues when BBRv2 coexists
with CUBIC in routers with deep buffers. Furthermore,
the performance of BBRv2 with ECN is compared to CU-
BIC with an AQM and ECN, indicating similar fairness
and performance in terms of throughput, latency, and
link utilization. The study emphasizes the need for care-
ful consideration of BBRv2’s adoption of Data Center
TCP (DCTCP) style ECN, particularly in WAN deploy-
ments.

Kfoury et al. [6] used Mininet for assessing the per-
formance of BBRv2. The study tested the alpha version
of BBRv2 through experiments involving both small and
large buffer sizes. The researchers replicated scenarios
of RTT unfairness, examined BBRv2’s interaction with
other TCP flows, and analyzed the influence of AQM al-
gorithms on the performance of both BBRv1 and BBRv2.

Gomez et al. [7] evaluated BBRv2 through Mininet
emulation. The study highlighted improved coexistence

of BBRv2 and CUBIC compared to BBRv1 and CUBIC.
The research illustrated BBRv2’s effectiveness in address-
ing RTT unfairness and achieving a better bandwidth dis-
tribution over BBRv1, particularly in dynamic network
conditions.

Song et al. [8] conducted an evaluation and compari-
son of BBRv1 and BBRv2 using Mininet and a physical
testbed. The study illustrated BBRv2’s ability to miti-
gate the fairness concerns seen in BBRv1. The evalua-
tions indicated that BBRv2 exhibited improved fairness
when competing with other flows, particularly in scenar-
ios involving routers with limited buffer capacities. The
research underscored the synchronization and coexistence
challenges faced by BBRv1 flows when interacting with
loss-based CCAs.

Tierney et al. [9] evaluated the applicability of BBRv2
on Data Transfer Nodes (DTNs). The researchers con-
ducted tests with BBRv2 in both a live network setting
and a controlled experimental setup. Their assessments
underscored the enhanced performance of BBRv2, par-
ticularly during large data transfers. Additionally, the
study emphasized the potential of BBRv2 as a viable
choice within high-speed, short-queue network environ-
ments. Furthermore, the authors confirmed that the out-
comes observed with Mininet hold validity when applied
to real-world networks.

Scherrer et al. [10] introduced a fluid model of both
BBRv1 and BBRv2. Through simulations using ns-3
across diverse network configurations, the researchers
presented analytical assessments, including stability
analysis. Their findings indicated the model’s capacity
for accurately forecasting the behaviors of BBRv2. The
study additionally validated BBRv2’s effectiveness in
mitigating the unfair behavior of BBRv1 while identi-
fying the specific scenarios where BBRv2 could lead to
issues like bufferbloat and unfairness.

Gomez et al. [11] evaluated the performance of
BBRv2 using FABRIC [22], a large-scale testbed used to
test the next generation of Internet applications. The
authors used FABRIC to reproduce Wide Area Network
(WAN) conditions. BBRv2 is compared with various
CCAs in terms of throughput relative to the RTT, queue
occupancy, RTT fairness, and packet loss rate as a
function of the router’s buffer size. The evaluation also
investigates the impact of AQM algorithms in mitigating
performance issues arising from RTT unfairness and
the interactions between different CCAs when sharing a
bottleneck link.

4. Experimental Setup

Figure 3 shows the topology used to conduct the ex-
periments. At any time, a TCP connection has one slow-
est link or bottleneck link that determines the location
of queue formation. The choice of topology is based on
the necessity of creating a bottleneck link. This condition
is crucial to evaluate CCAs because a bottleneck deter-
mines the maximum data delivery rate of the connection
and serves as the location where persistent queues are
established. In future evaluations of BBRv3 the authors
plan to incorporate topologies with multiple routes, wire-
less paths, and asymmetric link conditions as suggested
in [23]. The topology consists of 100 senders (h1, h2, ...,

5

h100), each opening a TCP connection to a corresponding
receiver (h101, h102, ..., h200). This topology is imple-
mented using Mininet [24] and real hardware. The Op-
erating System (OS) used for the experiment is Ubuntu
22.04 running a custom kernel compiled to implement
BBRv3 [25]. The scripts used for the experiments and
the link to the VM are available in the following GitHub
repository [14].

Mininet is a network emulator that uses network
namespaces to isolate computing resources. Mininet
hosts use the real protocol stack in Linux and produce
real traffic. These hosts are interconnected using Open
Virtual Switches (OVS) [26], which are open-source
network switches designed to operate within virtualized
environments such as data centers, cloud infrastructure,
and network virtualization platforms. OVS functions
as a software-based switch that facilitates network
communication between VMs and physical machines
(servers), allowing them to efficiently exchange data
across different network segments.

The topology implemented with Mininet is hosted on
a server allocated with enough computing resources so
that the CPU and Memory are not limiting factors in
the tests. Specifically, the VM is allocated 16 vCPUs
operating at 3.00GHz and 32GB of memory. A similar
topology is implemented using a hardware switch, which
is the Juniper MX-204 [27]. The experiments involving
the hardware router replaced the role of the OVS switch,
which was acting as router R2, with a physical Juniper
MX-204 hardware router. This router also allows limiting
the rate and modifying the buffer size.

Loss/delay emulation:. Router R1 is used to emulate de-
lay and inject packet losses using NetEm [28]. All tests
are configured with a 20ms propagation delay, unless oth-
erwise specified.

Rate limiting, buffer size and AQM:. In the emulated
topology, the egress interface of router R2 limits the rate
using Token Bucket Filter (TBF) and implements AQM
policies [29] such as FQ-CoDel [30]. The default AQM
policy used in routers is Tail Drop (TD) unless another
policy is explicitly stated. Similarly, in the hardware
switch, the rate is limited to 1Gbps by the Physical In-
terface Controller (PIC). Additionally, a Class of Service
(CoS) [31] scheduler is used to set the buffer size.

Metrics Collection:. The tool used to generate traffic be-
tween senders and receivers is iPerf3 [32]. Performance
metrics and variables include throughput, retransmission
rate, size of congestion window, RTT, and others. The
queue occupancy on the interface connecting to the bot-
tleneck link is measured using Linux’s traffic control (tc).
The estimated bottleneck bandwidth in BBRv3 and other
internal variables are measured using Linux’s ss com-
mand [33]. The retransmission rate is calculated using
the relationship between the number of sent packets and
the number of retransmitted packets present in the iPerf3
report. The Jain’s fairness index is computed to measure
fairness, as described in RFC 5166 [34]:

F =

(
n∑

i=1

Ti

)2

n ·
n∑

i=1

(Ti)2
(1)

where Ti is the throughput of flow i. For example, in
a scenario with 100 simultaneous flows, n = 100 and i =
1, 2, ..., 100. The results report the fairness index in per-
centage, which is given by multiplying Eq. 1 by 100. In
the experimental evaluations, each test was executed for
120 seconds, unless otherwise specified. The experiments
were repeated 10 times and the results averaged. The size
of the TCP send and receive buffers (net.ipv4.tcp wmem

and net.ipv4.tcp rmem) on the end hosts (senders and
receivers) was set to 10 times the BDP.

5. Results and Evaluations

This section presents the results and evaluations of
BBRv3 obtained by running tests in different network
conditions. Every experiment was repeated 10 times and
results were averaged for more accuracy.

5.1. Inter-protocol Fairness

This experiment evaluates how effectively BBRv3,
BBRv2, BBRv1, and CUBIC coexist. The evaluation
involves observing the throughput as a function of the
buffer size. Four distinct setups are examined: 1) Two
competing flows without losses, 2) in a scenario without
packet losses, 100 competing flows divided in a 50:50 ra-
tio, 3) a scenario with 0.025% packet losses involving two
competing flows, and 4) in a scenario with 0.025% packet
losses, 100 competing flows divided in a 50:50 ratio. The
aggregated throughput of these flows is analyzed both
with and without packet losses. The bottleneck link’s
bandwidth for these experiments is set at 1Gbps, and
the RTT is 20ms. The buffer sizes span from 0.1 times
the BDP to 100 times the BDP. Specifically, the range
starts from 0.1BDP and increments in steps of 0.1BDP
up to BDP. Then, from BDP to 10BDP, the increment
is equal to BDP. Finally, for buffer sizes ranging from
10BDP to 100BDP, the increment is 10BDP.

Figure 4(a) shows in the upper graph the fairness
index, while the lower graphs illustrate the throughput
of CUBIC against BBRv3, BBRv2, and BBRv1 flows.
Additionally, the throughput between BBRv3, BBRv2,
and BBRv1 is analyzed. The horizontal axis of the fig-
ures is shown in logarithmic scales to enhance readability.
For buffer sizes less than BDP, BBRv3 achieves higher
throughput, leading to lower fairness with CUBIC flows.
In this range, BBRv3 affects CUBIC’s throughput due to
the large number of packet retransmissions, which CU-
BIC identifies as congestion. This behavior is also ob-
served in BBRv2 and BBRv1 where the fairness index
is around 60%. BBRv3 presents an improvement in the
fairness in this range. This behavior was also observed
in previous evaluations of BBRv2 and BBRv1 [6, 7, 11].
As buffer sizes grow from BDP to 10BDP, both CUBIC
and BBRv3 exhibit improved convergence towards better
fairness. Similarly, BBRv2 and CUBIC present a fairness
index between 80% and 95%. On the other hand, BBRv1
exhibits lower fairness, as it acquires a larger share of

6

0

50

100

Fa
irn

es
s [

%
]

CUBIC-BBRv3
CUBIC-BBRv2
CUBIC-BBRv1

BBRv3-BBRv2
BBRv3-BBRv1
BBRv1-BBRv2

0

1 CUBIC BBRv3

0

1 CUBIC BBRv2

0

1

Th
ro

ug
hp

ut
 [G

bp
s]

CUBIC BBRv1

0

1 BBRv3 BBRv2

0

1 BBRv3 BBRv1

10 1 100 101 102

Buffer size [BDP]
0

1 BBRv1 BBRv2

(a) 2 flows with no loss.

0

50

100

Fa
irn

es
s [

%
]

CUBIC-BBRv3
CUBIC-BBRv2
CUBIC-BBRv1

BBRv3-BBRv2
BBRv3-BBRv1
BBRv1-BBRv2

0

1 CUBIC BBRv3

0

1 CUBIC BBRv2

0

1

Th
ro

ug
hp

ut
 [G

bp
s]

CUBIC BBRv1

0

1 BBRv3 BBRv2

0

1 BBRv3 BBRv1

100 101 102

Buffer size [BDP]
0

1 BBRv1 BBRv2

(b) 100 flows with no loss.

0

50

100

Fa
irn

es
s [

%
]

CUBIC-BBRv3
CUBIC-BBRv2
CUBIC-BBRv1

BBRv3-BBRv2
BBRv3-BBRv1
BBRv1-BBRv2

0

1 CUBIC BBRv3

0

1 CUBIC BBRv2

0

1

Th
ro

ug
hp

ut
 [G

bp
s]

CUBIC BBRv1

0

1 BBRv3 BBRv2

0

1 BBRv3 BBRv1

10 1 100 101 102

Buffer size [BDP]
0

1 BBRv1 BBRv2

(c) 2 flows with 0.025% loss.

0

50

100

Fa
irn

es
s [

%
]

CUBIC-BBRv3
CUBIC-BBRv2
CUBIC-BBRv1

BBRv3-BBRv2
BBRv3-BBRv1
BBRv1-BBRv2

0

1 CUBIC BBRv3

0

1 CUBIC BBRv2

0

1

Th
ro

ug
hp

ut
 [G

bp
s]

CUBIC BBRv1

0

1 BBRv3 BBRv2

0

1 BBRv3 BBRv1

100 101 102

Buffer size [BDP]
0

1 BBRv1 BBRv2

(d) 100 flows with 0.025% loss.

Figure 4: Fairness index and throughput with respect to the buffer size in four different scenarios: (a) Two competing flows without packet
losses. (b) One hundred flows equally divided in a 50:50 ratio without packet losses. (c) Two flows with 0.025% packet losses. (d) One
hundred flows equally divided in a 50:50 ratio with 0.025% packet losses.

the bandwidth compared to the CUBIC flow. This per-
formance is attributed to the fact that BBRv1 does not
reduce the amount of inflight data in response to packet
losses caused by small buffers. In this range, BBRv3
achieves fair bandwidth distribution by accurately esti-
mating the inflight data to the BDP without inducing
excessive packet losses. This approach ensures sufficient
time for the CUBIC flow to recover from losses.

Larger buffer sizes (>10 BDP) lead to less fairness,
favoring CUBIC flows. This happens because CUBIC
tends to fill up the bottleneck buffer completely, while
BBRv3 keeps its inflight data around the BDP. A larger
buffer tends to give more bandwidth share to CUBIC.
However, because CUBIC creates persistent queues, the
competing BBRv3 flow cannot estimate the bottleneck
bandwidth accurately. This behavior is not observed
in BBRv1 and BBRv2. In a scenario where a BBRv3
flow competes with a BBRv2 flow, it is noticed that the
BBRv3 flow consistently obtains a larger portion of the
available bandwidth across multiple buffer sizes. This be-
havior is due to the increased congestion window gain in
BBRv3, which allows for occupying additional headroom
relative to BBRv2. Conversely, when a bottleneck link is
shared between a BBRv1 and a BBRv3 flow, better fair-
ness is achieved. This pattern contrasts with the scenario
of a BBRv1 flow competing against a BBRv2 flow, where
fairness tends to be lower.

In a scenario with multiple flows, as depicted in Figure
4(b), the fairness index corresponding to BBRv3 and CU-
BIC flows remains steady at approximately 80-90% from
0.1BDP to 10BDP. Buffer sizes ranging from 20BDP to
30BDP exhibit convergence to fairness. However, when
buffer sizes surpass 30BDP, CUBIC gains a larger share
of the bandwidth, lowering the fairness index to approx-
imately 80%. On the other hand, for buffer sizes larger
than 10BDP, CUBIC flows competing against BBRv1
and BBRv2 converge to fairness. When BBRv3 flows in-
teract with BBRv2 flows, the major share favors BBRv3
flows similar to the scenario with two competing flows. It

is noted that BBRv3 and BBRv1 present better fairness
for a wide range of buffer sizes. Conversely, BBRv1 and
BBRv2 show a lower fairness index for buffer sizes below
2BDP, whereas for large buffer sizes, the performance is
similar to that of BBRv3 competing with BBRv1. When
examining a scenario involving a single CUBIC flow and a
single BBRv3 flow with a 0.025% packet loss rate (see Fig-
ure 4(c)), the fairness index is observed to settle around
60%, favoring the BBRv3 flow. Buffer sizes from BDP
to 10BDP show an improving fairness index, peaking
around 80% between 2BDP and 10BDP, favoring BBRv3.
No substantial improvement is observed for buffer sizes
ranging from 10 times the BDP to 100 times the BDP,
as BBRv3 consistently retains a significant portion of
the available bandwidth. On the other hand, BBRv2
and BBRv1 present a similar fairness index, which set-
tles around 50%. This discrepancy arises due to the fact
that CUBIC’s throughput is inversely proportional to the
square root of the RTT. The situation is further exacer-
bated by the presence of small buffers and the introduc-
tion of packet loss. When BBRv3 and BBRv1 share a
bottleneck link with packet losses, the BBRv3 flow ob-
tains a higher share of the available bandwidth. On
the other hand, it is observed that BBRv3 and BBRv1
present better fairness for a wide range of buffer sizes
even with packet losses. As reported in [6], BBRv1 and
BBRv2 exhibit a low fairness index, with preference given
to the BBRv1 flow.

Figure 4(d) shows a scenario with 100 flows. It is
observed that the fairness index remains at around 80%
for buffer sizes from 0.1BDP to BDP. Buffer sizes larger
than BDP but less than 10BDP maintain a fairness index
of about 90%. BBRv2 and BBRv1 present similar fair-
ness for BDP values greater than 4 BDP. In this scenario,
the impact of packet loss on throughput is shared among
the different flows. Each flow can experience losses inde-
pendently, and the combined effect is decreased by the
parallel nature of these flows. Furthermore, the adap-
tive nature of the TCP flows helps to utilize the available

7

60

80

100
Fa

irn
es

s [
%

] Fairness

100 101 102

Buffer size [BDP]
0.0

0.5

1.0

Th
ro

ug
hp

ut
 [G

bp
s]

20ms 100ms

(a) BBRv1 with Tail Drop.

60

80

100

Fa
irn

es
s [

%
] Fairness

100 101 102

Buffer size [BDP]
0.0

0.5

1.0

Th
ro

ug
hp

ut
 [G

bp
s]

20ms 100ms

(b) BBRv2 with Tail Drop.

60

80

100

Fa
irn

es
s [

%
]

Fairness

100 101 102

Buffer size [BDP]
0.0

0.5

1.0

Th
ro

ug
hp

ut
 [G

bp
s] 20ms 100ms

(c) BBRv3 with Tail Drop.

60

80

100

Fa
irn

es
s [

%
]

Fairness

100 101 102

Buffer size [BDP]
0.0

0.5

1.0

Th
ro

ug
hp

ut
 [G

bp
s] 20ms 100ms

(d) BBRv3 with FQ-CoDel.

Figure 5: Fairness index and throughput as a function of the buffer size for a pair of competing flows: one with a 20ms propagation delay
and the other with a 100ms propagation delay.

bandwidth due to the decrease in throughput experienced
by one of the flows. For buffer sizes greater than 10BDP,
the aggregate throughput converges close to fairness. As
in previous scenarios, it has been noted that when packet
losses occur, BBRv3 flows tend to capture a larger share
of the bandwidth compared to BBRv2 flows. Similarly,
when comparing BBRv3 with BBRv1, it is observed a
similar trend for buffer sizes below 3BDP. However, for
larger buffer sizes, both BBRv3 and BBRv1 converge to-
wards improved fairness, resembling the performance ob-
served when BBRv1 and BBRv2 interact.

5.2. RTT Unfairness

BBRv3 considers both the RTT and the estimated
bottleneck bandwidth to determine the optimal amount
of data to introduce into the network. This quantity of
data approaches the BDP, which reflects Kleinrock’s op-
timal operating point [35]. This strategy aims to mini-
mize delays and maximize throughput. Due to the rela-
tionship between the RTT and the bottleneck bandwidth
(i.e., inflight data = RTT×Btlbw), the higher the RTT,
the higher the amount of data that BBRv3 injects into
the network. Therefore, BBRv3 flows with higher RTTs
tend to share a bottleneck bandwidth with BBRv3 un-
fairly compared to flows with lower RTTs. This problem
is known as the RTT unfairness. This issue contradicts
the typical behavior of traditional TCP CCAs, which gen-
erally favor flows with shorter RTTs, resulting in two sig-
nificant consequences [36]. First, it introduces a tradeoff
between achieving low latency and ensuring a high de-
livery rate, challenging decades of engineering efforts to
reduce end-to-end latency. For instance, prioritizing a
route with the minimum RTT through Open Shortest
Path First (OSPF) may not be optimal, as flows on that
route can be easily overwhelmed when competing with
others on a suboptimal route with higher latency. Sec-
ond, the preferential treatment of long RTT flows allows
a malicious receiver to exploit this advantage, potentially
stealing bandwidth from competing flows by artificially
increasing the latency of a particular inbound traffic.

The following tests assess how well BBRv1, BBRv2,
and BBRv3 perform in scenarios involving RTT unfair-
ness. Specifically, the experiments focus on evaluating
the performance of two competing flows relative to the
buffer size. These flows experience RTTs of 20ms and
100ms, respectively. Additionally, the evaluations extend
to a situation where a router implements the FQ-CoDel
AQM [30]. Two scenarios are evaluated 1) two compet-
ing BBRv1, BBRv2, and BBRv3 flows, where the router

creating the bottleneck link (referred to as router R2)
uses a simple TD policy, and 2) two competing BBRv3
flows, but this time, the router (router R2) implements
the FQ-CoDel mechanism to shape the bottleneck link.

In Figure 5(a), it is observed the results corresponding
to BBRv1 flows. When the buffer sizes exceed BDP, the
flow with a higher RTT cannot accurately estimate the
bottleneck, leading to performance degradation for the
flow with a lower RTT. Consequently, the fairness index
drops to approximately 60%. On the other hand, figure
5(b) displays the results for BBRv2. Here, the fairness
index improves compared to BBRv1. For buffer sizes be-
low BDP, the fairness index remains similar to BBRv1.
However, for buffer sizes greater than BDP, the fairness
index does not fall below 80%.

Figure 5(c) represents the throughput of these com-
peting BBRv3 flows. In this context, the router’s queue-
ing approach is based on the TD policy. The observation
reveals that when the buffer sizes are below the BDP, the
flows tend to achieve a state of fairness. However, when
buffer sizes exceed BDP, the fairness index tends to settle
around 80%, where the flow with the higher RTT receives
the larger share of the available bandwidth. The RTT un-
fairness issue in BBRv3, similar to its predecessors, origi-
nates in two distinct phases. First, an excess queue forms
and rapidly expands on the bottleneck when BBRv3 flows
increase inflight to probe for additional bandwidth. Sec-
ond, a long RTT flow introduces a larger volume of excess
traffic (i.e., inflight data = RTT×Btlbw) compared to a
short RTT flow, dominating both the queue backlog and
the delivery rate. Consequently, the short RTT flow ob-
serves a lower delivery rate, adjusts its speed to match the
measurement, and becomes a disadvantaged participant
against flows with higher RTTs. Additionally, the short
RTT flow is prone to be limited by the congestion win-
dow, restricting its capacity for probing for more band-
width. BBRv3 presents an improvement in the fairness
for buffer sizes greater than BDP compared to BBRv2.

Figure 5(d) shows that the RTT unfairness issue is
mitigated by implementing the FQ-CoDel AQM in the
router. FQ-CoDel employs a fair queuing mechanism
that separates TCP flows into different queues, pre-
venting the dominance of a single flow over bottleneck
bandwidth and ensuring a fair distribution of bandwidth
shares. Moreover, FQ-CoDel incorporates the Controlled
Delay (CoDel) mechanism in each queue, focusing on
managing the delay experienced by packets rather than
controlling the queue length. This dual mechanism
highlights the efficacy of FQ-CoDel in addressing the

8

0 100 200 300 400 500
Time [seconds]

0.5

1

1010

1

0.5Bu
ffe

r S
ize

 [B
DP

]
Buffer Size
CUBIC
BBRv3
BBRv2
BBRv1

Figure 6: Queue occupancy for different buffer sizes for CUBIC
BBRv1, BBRv2, and BBRv3.

challenge of RTT unfairness. In previous evaluations
of BBRv1 and BBRv2 [6, 7, 11], the FQ-CoDel AQM
effectively mitigated the RTT unfairness issue observed
in competing flows.

5.3. Queue Occupancy

This experiment examines the queue occupancy of
CUBIC and BBRv3. The queue occupancy is obtained
by parsing the number of bytes from the limit parame-
ter of the TBF queueing discipline implemented in the
egress interface of router R2. Various throughput tests
are performed between one sender and one receiver and
the queue is sampled every 0.5 seconds. Then, the re-
sults are aggregated and averaged. Each test lasts 500
seconds, and the propagation delay is 20ms. In this way,
5,000 samples are collected. The queue size undergoes
variations, ranging from 0.5BDP to 10BDP, then reverses
course from 10BDP down to 0.5BDP.

Figure 6 illustrates that BBRv3 effectively maintains
a controlled queue length, preventing it from exceeding
0.5BDP. This is due to the estimation mechanism that
BBRv3 implements to approximate the optimal operation
point where the inflight data is maximized and the prop-
agation delay is minimized. This result is similar to the
standing queue observed in BBRv1 and BBRv2, which
also settles around 0.5 BDP [11]. In contrast, CUBIC
tends to fill the queue to its maximum capacity, resulting
in bufferbloat [5]. As a result, the end-to-end latency of
the connection is around 200ms.

5.4. Throughput, Retransmisions, and Packet Losses

This experiment evaluates the performance of a
BBRv3 flow as a function of the loss rate. Unlike
loss-based CCAs, BBRv3 and BBRv2 take a different
approach, considering factors such as bandwidth, RTT,
loss rate, and ECN to model the network path. On
the other hand, BBRv1 only considers the bottleneck
bandwidth estimation and the RTT. This experiment
considers a loss rate ranging from 0.001% (i.e., 10 out
of 1,000,000 packets) to 20% (200 out of 1,000 packets).
The metrics evaluated include throughput and the
number of retransmitted packets. Each test employs a
20ms propagation delay, with buffer sizes adjusted to
the BDP. Ten evaluations are performed for each loss
rate, and the results are averaged. The tests have a
duration of 120 seconds each. Figure 7(a) illustrates that
the throughput of BBRv3 and BBRv2 starts to decline
noticeably when the loss rate surpasses 0.1%. At a loss

10 3 10 2 10 1 100 101

Loss rate [%]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 [G

bp
s]

BBRv3 BBRv2 BBRv1 CUBIC

(a) Throughput.

10 3 10 2 10 1 100 101

Loss rate [%]
101

102

103

104

105

106

Re
ta

ns
m

iss
io

ns
 [P

ac
ke

ts
]

BBRv3 BBRv2 BBRv1 CUBIC

(b) Retransmissions.

Figure 7: Throughput and retransmissions as a function of the
packet loss rate.

rate of 0.5%, BBRv3 and BBRv2 achieve around 60% of
their maximum performance, coinciding with the point
of the highest retransmissions, as observed in Figure
7(b). A similar trend was reported in [11], where BBRv2
achieves its maximum retransmission rate with a 0.1%
loss rate before the throughput decreases below 60%.
This observation indicates that while BBRv3 exhibits a
proactive response with packet retransmissions similar to
BBRv2, the retransmission rate is significantly reduced
compared to BBRv1. This behavior occurs because
BBRv3 and BBRv2 calculate the loss rate to adjust the
sending rate, with the goal of preventing an excessive
impact on competing flows. On the other hand, CUBIC’s
performance dips to 60% with just 0.01% packet losses.
It’s worth noting that at 0.001% and 0.01% loss rates,
CUBIC, BBRv3, and BBRv2 exhibit a similar number
of retransmissions. However, when the loss rate reaches
0.1%, CUBIC’s performance drops below 20% of the
available bandwidth, and its retransmission rate settles
around 1000 packets for higher loss rates. In contrast,
BBRv3 and BBRv2 maintain a performance above
20% until the loss rate exceeds 1%. BBRv1 exhibits a
throughput of around 1Gbps even under loss rates up
to 20%, which is also observed in [4] with a 100Mbps
link. However, this performance gain comes at the cost
of a significantly higher retransmission rate than BBRv3
and BBRv2. Specifically, when facing loss rates ranging
from 1% to 20%, BBRv1 results in a retransmission
count of up to 10 million packets, a significantly higher
number than BBRv3 and BBRv2. This behavior leads to
unfairness with loss-based CCAs, as observed in section
5.1.

5.5. Performance with Different RTTs and Packet Loss

Packet losses can significantly affect TCP perfor-
mance, and they can occur due to various network
components such as routers, switches, and firewalls
[37, 38]. Loss-based TCP CCAs such as CUBIC respond
to packet losses by reducing their sending rate, which
leads to a decrease in the overall performance. This
impact becomes more pronounced as the RTT of the
network path increases. In contrast, BBRv3 takes
a different approach. It considers multiple metrics,
including bandwidth, RTT, loss rate, and ECN, to
model the network path and maximize throughput. This
experiment aims to evaluate how packet losses affect
the performance of BBRv3, BBRv2, and BBRv1 across
different RTTs and compare it to the performance of a
CUBIC flow under the same conditions. The RTTs vary
from 2ms to 100ms, with a bottleneck link of 1Gbps,

9

2 20 40 60 80 100
RTT [ms]

0.0

0.2

0.4

0.6

0.8

1.0
Th

ro
ug

hp
ut

 [G
bp

s]
CUBIC BBRv3 BBRv2 BBRv1

(a) Throughput.

2 20 40 60 80 100
RTT [ms]

103

104

105

Re
tra

ns
m

iss
io

ns
 [P

ac
ke

ts
]

CUBIC BBRv3 BBRv2 BBRv1

(b) Retransmissions.

Figure 8: Throughput and retransmission of CUBIC, BBRv1,
BBRv2, and BBRv3 as a function of the RTT.

and the buffer size is adjusted to the BDP for each
RTT. Additionally, the number of retransmissions as a
function of the RTT is reported.

Figure 8 shows the throughput and retransmissions of
data transfers across a 1Gbps path. The emulated packet
loss rate is 0.025% (i.e., 1 out of 4000 packets). Fig-
ure 8(a) shows that BBRv3, BBRv2, and BBRv1 main-
tain high throughput over RTTs ranging from 2ms to
100ms compared to CUBIC, which with RTTs higher
than 2ms and packet losses presents lower performance.
Similar observations are reported in [8, 9, 11]. This per-
formance observed in BBRv3 makes it suitable for en-
vironments such as a Science DMZ [37] to enable large
data transfers. Figure 8(b) illustrates that BBRv3 de-
creases the number of retransmissions as the RTT in-
creases, contrasting with the behavior of BBRv2 [11],
which exhibits an increase in retransmissions with grow-
ing RTT. BBRv3 employs adaptive rate control mecha-
nisms, adjusting the sending rate based on the available
bandwidth and the RTT. By updating the gain of the
performance parameters [20, 21], BBRv3 achieves and
maintains high throughput while minimizing retransmis-
sion rates in contrast to BBRv2. This behavior enables a
better coexistence with loss-based CCAs such as CUBIC.
On the other hand, for RTTs of 2ms and 20ms, BBRv1
exhibits a higher retransmission rate while demonstrat-
ing similar performance to BBRv2 for RTTs higher than
20ms.

5.6. Fairness of BBRv3, BBRv2, and BBRv1 Flows with
a CUBIC flow

This experiment evaluates the fairness between mul-
tiple BBRv3, BBRv2, and BBRv1 flows with a CUBIC
flow. In this scenario, five of each BBRv3, BBRv2, and
BBRv1 flows compete against one CUBIC flow to observe
the evolution of the fairness index and the throughput
as a function of time. Initially, the CUBIC flow begins,
and then, at intervals of 60 seconds, additional BBRv3,
BBRv2, and BBRv1 flows join. The scenario considers
a bottleneck link of 1Gbps and an RTT of 20ms. The
buffer size of the bottleneck link is adjusted to BDP. The
test duration is 480 seconds.

Figure 9 shows the fairness index and the throughput
of a CUBIC flow and multiple subsequent BBRv3,
BBRv3, and BBRv1 flows. It is observed at t=60, that
one CUBIC flow and one BBRv3 flow do not converge
to fairness. In this case, the fairness index remains
around 80%. However, as additional BBRv3 flows join,
they share the available bandwidth equitably. When the
last BBRv3 flow joins, fairness is achieved among them.

60

80

100

Fa
irn

es
s [

%
]

CUBIC-BBRv3
CUBIC-BBRv2

CUBIC-BBRv1

0.0

0.5

1.0 CUBIC flow
BBRv3 flow 1
BBRv3 flow 2

BBRv3 flow 3
BBRv3 flow 4
BBRv3 flow 5

0.0

0.5

1.0

Th
ro

ug
hp

ut
 [G

bp
s] CUBIC flow

BBRv2 flow 1
BBRv2 flow 2

BBRv2 flow 3
BBRv2 flow 4
BBRv2 flow 5

0 100 200 300 400
Time [seconds]

0.0

0.5

1.0 CUBIC flow
BBRv1 flow 1
BBRv1 flow 2

BBRv1 flow 3
BBRv1 flow 4
BBRv1 flow 5

Figure 9: Throughput and fairness index over time as a CUBIC
flow interacts with successive BBRv3, BBRv2, and BBRv1 flows.

Conversely, the CUBIC flow retains a smaller share,
resulting in a fairness index of approximately 90% that
favors the BBRv3 flows. When BBRv2 flows compete
against a CUBIC flow, it’s noted that a new BBRv2
flow initially decreases the bandwidth share of the
CUBIC flow. However, after approximately 60 seconds
of adding the BBRv2 flow, the flows converge towards
fairness. After all BBRv2 flows start, the CUBIC flow
experiences an increase in bandwidth share, reducing the
overall fairness among the flows. This behavior aligns
with previous observations in evaluations of BBRv2
[7]. In contrast, BBRv1 exhibits a lower fairness index
than BBRv3. Across all three experiments, BBR flows
eventually converge to fairness, whereas the CUBIC flow
achieves fairness only after 60 seconds when competing
against BBRv2 flows.

5.7. Coexistence with CUBIC

This test examines how effectively different quantities
of BBRv3 flows coexist with CUBIC flows. Specifically,
the experiment assesses the coexistence of 1, 2, 3, 5, and
10 BBRv3 flows with various numbers of CUBIC flows,
ranging from 1 to 10. The test setup includes a 1Gbps
bottleneck link with a 20ms delay. Each test is repeated
ten times for improved accuracy and the test duration is
120 seconds.

Figure 10 examines how the number of competing
flows impacts the throughput share for each CCA. In the
graph, dashed lines depict the theoretical fair share, while
solid lines indicate the actual measured share. Overall,
it’s evident that when BBRv3 flows compete against CU-
BIC flows, BBRv3 tends to utilize more bandwidth than
its fair share. However, as the number of BBRv3 flows

10

1 2 3 4 5 6 7 8 9 10
Number of CUBIC flows

0

20

40

60

80

100
To

ta
l s

ha
re

 o
f C

UB
IC

 fl
ow

s [
%

] # BBRv3 flows
1 2 3 5 10

Figure 10: Bandwidth share for competing CUBIC and BBRv3
flows. The dashed lines show the ideal fair share and the solid lines
show the measured share.

increases, CUBIC’s portion of the bandwidth gets closer
to the expected fair share. When there are ten BBRv3
flows and two CUBIC flows, the achieved share matches
the fair share precisely. Previous evaluations of BBRv2
[6] present the same behavior, where the fair share is
achieved with ten BBRv3 flows and two CUBIC flows.
In this experiment is observed that having more BBRv3
flows diverts more from the fair share compared to using
BBRv2. This behavior indicates that BBRv3 flows are
more aggressive than BBRv2 flows when interacting with
loss-based CCAs.

5.8. Bottleneck Bandwidth Estimation

This experiment compares how BBRv3, BBRv2, and
BBRv1 estimate the bottleneck bandwidth in relation to
the propagation delay. The bottleneck bandwidth esti-
mation represents the maximum data rate that can be
effectively transmitted through a specific path or segment
of a network. The experimental setup considers a Mininet
topology with an emulated 1Gbps bottleneck link. The
experiments involve a BBRv3 flow from a sender to a re-
ceiver. The estimation of the bottleneck bandwidth is de-
rived from Linux socket statistics, utilizing the ss -tin

command [33], which probes for samples every 100ms.
Figure 11 presents results acquired from an emulated

bottleneck link. These results illustrate the distribution
of bottleneck bandwidth estimations across propagation
delays ranging from 10ms to 100ms. It is observed only
a minor fluctuation in values across these varying delays.
In BBRV3 and BBRv1, it is observed that the mean value
of the estimation settles around 0.95Gbps. This behavior
is observed for all the propagation delays. BBRv3, as its
predecessors, relies on the sender’s computed ACK rates
to estimate the bottleneck bandwidth. However, Su et
al. [39] identified an issue with the estimation mechanism
in BBRv1, where it produces implausible ACK patterns,
leading to inaccurate bottleneck estimations. This prob-
lem arises during the probing phase, where BBR’s send-
ing rate can exceed the bottleneck rate by 1.25 times.
Even if the ACK rate does not surpass the sending rate,
BBR adapts to and maintains the overestimated rate for
approximately 10 RTTs, introducing additional queuing
delays. This overestimation problem results in prolonged
queuing delays, particularly in low-packet-loss environ-
ments, as the RTT increases. On the other hand, it is
observed that BBRv2 overestimates the bottleneck band-
width for lower propagation delays. Similar findings were

10 20 30 40 50 60 70 80 90 100
Propagation delay [ms]

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Th
ro

ug
hp

ut
 [G

bp
s]

(a) BBRv3.

10 20 30 40 50 60 70 80 90 100
Propagation delay [ms]

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Th
ro

ug
hp

ut
 [G

bp
s]

(b) BBRv2.

10 20 30 40 50 60 70 80 90 100
Propagation delay [ms]

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Th
ro

ug
hp

ut
 [G

bp
s]

(c) BBRv1.

Figure 11: Boxplot of the bottleneck bandwidth estimation as a
function of the RTT of (a) BBRv3, (b) BBRv2, and (c) BBRv1.

reported by Vargas et al. [40], indicating that the over-
estimation is attributed to the burstiness of the traffic.
In response to this, the authors suggested an alternative
estimation approach designed to filter out the effects of
traffic burstiness.

5.9. Flow Completion Time of Short Flows

A major share of internet traffic involves web brows-
ing. This experiment focuses on measuring the FCT of
short BBRv3 flows, which closely resemble typical web
browsing behavior. This test also includes the CDFs of
BBRv1 and BBRv2 flows. The setup involves a client
generating 5,000 HTTP requests to a web server. These
requests are designed to retrieve small files stored on the
web server, resulting in the creation of short-lived TCP
flows. Concurrently, a long TCP flow shares the same
network bottleneck as the short flows. The primary ob-
jective here is to examine how the completion time of
these short flows is affected when they compete for net-
work resources with a long flow. The experimental condi-
tions consider a 1Gbps bottleneck link with a 20ms propa-
gation delay. Multiple buffer sizes are considered and the
Cumulative Distribution Function (CDF) of the FCT of
short flows is reported.

The results, as depicted in Figure 12, illustrate the
CDFs of the FCT for both CUBIC, BBRv1, BBRv2, and
BBRv3 flows. It is observed when the buffer sizes are
less than or equal to BDP, the FCT values for BBRv1,
BBRv2, BBRv3, and CUBIC flows are similar. Within
this range, the mean FCT values for both algorithms
vary from 0.13 seconds to 0.19 seconds. However, as the
buffer sizes exceed the BDP threshold, the FCT of CU-
BIC flows experiences a significant increase. For instance,
with buffer sizes of 100BDP, the mean FCT for CUBIC
reaches approximately 2.38 seconds. In contrast, BBRv1,
BBRv2, and BBRv3 maintain lower FCT values, with
a mean of around 0.18 seconds, even with larger buffer
sizes. This behavior in CUBIC is explained because the
CUBIC flows tend to fill the router’s buffer. On the other

11

0 1 2 3 4 5
Flow completion time [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
 = 0.14
 = 0.18
BBRv3
 = 0.13
 = 0.18
BBRv2
 = 0.18
 = 0.19
BBRv1
 = 0.17
 = 0.18

(a) 0.1BDP

0 1 2 3 4 5
Flow completion time [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
 = 0.18
 = 0.18
BBRv3
 = 0.17
 = 0.19
BBRv2
 = 0.17
 = 0.18
BBRv1
 = 0.13
 = 0.18

(b) 0.5BDP

0 1 2 3 4 5
Flow completion time [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
 = 0.16
 = 0.19
BBRv3
 = 0.16
 = 0.18
BBRv2
 = 0.17
 = 0.17
BBRv1
 = 0.17
 = 0.18

(c) BDP

0 1 2 3 4 5
Flow completion time [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
 = 0.60
 = 0.22
BBRv3
 = 0.17
 = 0.18
BBRv2
 = 0.18
 = 0.19
BBRv1
 = 0.16
 = 0.19

(d) 10BDP

0 1 2 3 4 5
Flow completion time [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
 = 2.38
 = 0.49
BBRv3
 = 0.18
 = 0.18
BBRv2
 = 0.19
 = 0.18
BBRv1
 = 0.21
 = 0.20

(e) 100BDP

Figure 12: The Cumulative Distribution Function (CDF) for the Flow Completion Time (FCT) of short flows using CUBIC, BBRv1,
BBRv2, and BBRv3 is analyzed while these flows compete with a long flow. It is important to note that the CDF curves for BBRv1,
BBRv2, and BBRv3 overlap.

hand, BBRv1, BBRv2, BBRv3, try to send data at the
highest possible rate without creating a queue.

5.10. Effects of Parallel Streams and Different MTUs

This experiment explores the performance variations
achievable using different configurations of parallel data
streams and Maximum Transmission Units (MTUs) with
CUBIC, BBRv3, BBRv2, and BBRv1. The experimen-
tal setup involves two VMs connected via a high-speed
100Gbps link, characterized by a low propagation delay
of less than 1 ms. There are no emulated bottlenecks or
packet losses in this topology. Path MTU Discovery (PM-
TUD) is enabled (i.e., net.ipv4.tcp mtu probing=1) to
prevent PMTU black holes [41, 42] and allow TCP flows
to achieve higher performance. Each experiment has a
duration of 120 seconds and is repeated ten times. The
results from these repetitions are then averaged to en-
hance accuracy.

Figure 13 presents a heatmap illustrating the average
throughput concerning the number of parallel streams
and MTUs for CUBIC, BBRv3, BBRv2, and BBRv1. It
is observed that CUBIC consistently achieves a higher
throughput compared to BBRv3 across different con-
figurations. CUBIC demonstrates its peak performance
when utilizing four parallel streams with an MTU of
9000 bytes. In contrast, BBRv3 reaches its optimal
performance when employing eight parallel streams and
an MTU of 9000 bytes. On the other hand, for MTU
sizes of 1500 bytes, both CUBIC and BBRv3 perform at
their best with 16 parallel streams. CUBIC performance
is higher than BBRv3 with low latency because it can
quickly increase the window size after a congestion event
and avoid oscillations around the optimal point [3].
However, BBRv3, while more aggressive in situations
with higher RTTs, experiences limited startup gains
in low-RTT scenarios. BBRv2 and BBRv1 present

Streams 1500 9000 1500 9000 1500 9000 1500 9000

1 9.63 42.9 5.9 13.7 15.8 16.3 13.4 17.4

2 21.4 72.4 11.1 23.7 29.5 29.6 25.3 34.5

4 28 91 19 43.3 51.7 54.6 48.9 55.7

8 34.3 85.8 32 81.1 80.3 91.4 82.7 94.4

16 44.8 80 35.9 75 83.1 94.1 83 94.7

0 100

Throughput [Gbps]

CUBIC BBRv3 BBRv1

MTU MTU

BBRv2

MTU MTU

Figure 13: Average throughput of CUBIC, BBRv3, BBRv2, and
BBRv1. The throughput is given as a function of the number of
parallel streams and the Maximum Transmission Unit (MTU).

comparable performance when using the same MTUs
[11].

6. Conclusion

This paper presented an evaluation of BBRv3, using
Mininet and real hardware. BBRv3 shows resilience
to packet losses, compared to CUBIC in maintaining
throughput at 1% loss rates. Fairness in BBRv3 is
influenced by buffer size and propagation delay, with
optimal fairness achieved between BDP and 10 BDP.
The integration of FQ-CoDel AQM mitigates RTT
unfairness across buffer sizes. BBRv3 exhibits low queue
occupancy, contributing to lower latency compared to
CUBIC. In scenarios with short flows against a long flow,
BBRv3 maintains consistently low Flow Completion
Times (FCT) with larger buffer sizes. While BBRv3
presents high performance in various scenarios, coexis-
tence challenges with other BBRv3 flows and fairness
issues with loss-based algorithms may require further
optimization in specific network conditions. Future
research could explore BBRv3 in higher-throughput
scenarios and non-emulated propagation delays.

7. Acknowledgement

This work is supported by the National Science Foun-
dation (NSF), Office of Advanced Cyberinfrastructure
(OAC), under grant number 2118311.

References

[1] J. Postel, “RFC 793: Transmission control protocol (TCP),”
September 1981.

[2] M. Allman, “RFC 2581: TCP congestion control,” April 1999.
[3] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-

speed TCP variant,” ACM SIGOPS operating systems review,
2008.

[4] N. Cardwell, Y. Cheng, S. Gunn, S. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Queue, 2016.

[5] J. Gettys, “Bufferbloat: Dark buffers in the Internet,” IEEE
Internet Computing, 2011.

[6] E. Kfoury, J. Gomez, J. Crichigno, and E. Bou-Harb, “An
emulation-based evaluation of TCP BBRv2 alpha for wired
broadband,” Computer Communications, 2020.

[7] J. Gomez, E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Sri-
vastava, “A performance evaluation of TCP BBRv2 alpha,” in
2020 43rd International Conference on Telecommunications
and Signal Processing (TSP), 2020.

[8] Y. Song, G. Kim, I. Mahmud, W. Seo, and Y. Cho, “Under-
standing of BBRv2: evaluation and comparison with BBRv1
congestion control algorithm,” IEEE Access, 2021.

12

[9] B. Tierney, E. Dart, E. Kissel, and E. Adhikarla, “Explor-
ing the BBRv2 congestion control algorithm for use on data
transfer nodes,” in 2021 IEEE Workshop on Innovating the
Network for Data-Intensive Science (INDIS), 2021.

[10] S. Scherrer, M. Legner, A. Perrig, and S. Schmid, “Model-
based insights on the performance, fairness, and stability of
BBR,” in Proceedings of the 22nd ACM Internet Measurement
Conference, 2022.

[11] J. Gomez, E. Kfoury, J. Crichigno, and G. Srivastava, “Un-
derstanding the performance of TCP BBRv2 using FABRIC,”
2023 IEEE BlackSeaCom, Istanbul, Turkiye, 2023.

[12] N. Cardwell, Y. Cheng, S. Yeganeh, I. Swett, V. Vasiliev,
P. Jha, Y. Seung, M. Mathis, and V. Jacobson, “BBRv2: a
model-based congestion control,” Presentation in the Internet
Congestion Control Research Group (ICCRG) at IETF 105
Update, Montreal, Canada, July, 2019.

[13] N. Cardwell, Y. Cheng, K. Yang, D. Morley, S. Y. Has-
sas, P. Jha, Y. Seung, V. Jacobson, I. Swett, B. Wu, and
V. Vasiliev, “BBRv3: Algorithm bug fixes and public Inter-
net deployment.” [Online]. Available: https://tinyurl.com/

2p9x5fjn, Accessed on 08-30-2023.
[14] J. Gomez, “BBRv3 experiments’ scripts.” [Online]. Avail-

able: https://github.com/gomezgaona/bbr3, Accessed on 08-
14-2023.

[15] V. Jacobson, “Congestion avoidance and control,” ACM SIG-
COMM computer communication review, 1988.

[16] P. Hurtig, H. Haile, K.-J. Grinnemo, A. Brunstrom, E. Atx-
utegi, F. Liberal, and Å. Arvidsson, “Impact of TCP BBR on
CUBIC traffic: A mixed workload evaluation,” in 2018 30th
International Teletraffic Congress (ITC 30), 2018.

[17] A. Nandagiri, M. Tahiliani, V. Misra, and K. Ramakrish-
nan, “BBRv1 vs BBRv2: Examining performance differences
through experimental evaluation,” in 2020 IEEE International
Symposium on Local and Metropolitan Area Networks (LAN-
MAN, 2020.

[18] M. Hock, R. Bless, and M. Zitterbart, “Experimental evalua-
tion of bbr congestion control,” in 2017 IEEE 25th interna-
tional conference on network protocols (ICNP), 2017.

[19] N. Cardwell, Y. Cheng, K. Yang, D. Morley, S. Hassas, P. Jha,
and Y. Seung, “BBR congestion control: Fundamentals and
updates.” [Online]. Available: http://tinyurl.com/tj2ts8a8,
Accessed on 08-29-2023.

[20] I. Swett and The Google BBR Team, “BBR startup cwnd
gain: a derivation.” [Online]. Available: https://tinyurl.

com/yyexzn3w, Accessed on 08-14-2023.
[21] The Google BBR Team, “BBR startup pacing gain: a deriva-

tion.” [Online]. Available: https://tinyurl.com/mr2vbw3v,
Accessed on 08-14-2023.

[22] I. Baldin, A. Nikolich, J. Griffioen, I. Monga, K. Wang,
T. Lehman, and P. Ruth, “FABRIC: A national-scale pro-
grammable experimental network infrastructure,” IEEE In-
ternet Computing, 2019.

[23] S. Floyd and M. Allman, “Specifying new congestion control
algorithms,” tech. rep., 2007.

[24] K. Kaur, J. Singh, and N. Ghumman, “Mininet as software
defined networking testing platform,” in International confer-
ence on communication, computing & systems (ICCCS), 2014.

[25] N. Cardwell, “TCP BBRv3 Release.” [Online]. Available:
https://tinyurl.com/mruajjvw, Accessed on 08-14-2023.

[26] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Ra-
jahalme, J. Gross, A. Wang, J. Stringer, and P. Shelar, “The
design and implementation of open vSwitch,” in 12th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI15), 2015.

[27] Juniper Networks, “MX204 universal routing platform.” [On-
line]. Available: https://tinyurl.com/yz86p3vx, Accessed on
08-14-2023.

[28] S. Hemminger, “Network emulation with NetEm,” in Linux
conf au, 2005.

[29] T. Høiland-Jørgensen, P. Hurtig, and A. Brunstrom, “The
good, the bad and the WiFi: Modern AQMs in a residential
setting,” Computer Networks, 2015.

[30] T. Høiland-Jørgensen, P. McKenney, D. Taht, J. Gettys, and
E. Dumazet, “RFC 8290: The flow queue CoDel packet sched-
uler and active queue management algorithm,” tech. rep., Jan-
uary 2018.

[31] Juniper Networks, “Class of Service User Guide.” [Online].
Available: https://tinyurl.com/2swtshvj, Accessed on 09-
11-2023.

[32] J. Dugan, S. Elliott, B. Mah, J. Poskanzer, and K. Prabhu,
“iPerf3, tool for active measurements of the maximum
achievable bandwidth on IP networks,” URL: https://github.
com/esnet/iperf, 2014.

[33] M. Kerrisk, The Linux programming interface: a Linux and
UNIX system programming handbook. 2010.

[34] S. Floyd, “RFC 5166: metrics for the evaluation of congestion
control mechanisms,” 2008.

[35] L. Kleinrock, “Internet congestion control using the power
metric: Keep the pipe just full, but no fuller,” Ad hoc net-
works, 2018.

[36] S. Ma, J. Jiang, W. Wang, and B. Li, “Towards RTT fair-
ness of congestion-based congestion control,” Computer Sci-
ence Archive (arXiv), 2017.

[37] J. Crichigno, E. Bou-Harb, and N. Ghani, “A comprehensive
tutorial on science DMZ,” IEEE Communications Surveys &
Tutorials, 2018.

[38] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zu-
rawski, “The science DMZ: A network design pattern for data-
intensive science,” in Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage
and Analysis, 2013.

[39] B. Su, X. Jiang, G. Jin, and H. Chen, “Rethinking the rate
estimation of BBR congestion control,” Electronics Letters,
2020.

[40] S. Vargas, R. Drucker, A. Renganathan, A. Balasubramanian,
and A. Gandhi, “BBR bufferbloat in DASH video,” in Pro-
ceedings of the Web Conference 2021, 2021.

[41] Energy Sciences Network (ESnet), “MTU issues.” [Online].
Available: https://tinyurl.com/5fypnknn, Accessed on 09-
08-2023.

[42] J. Bosma, B. Overeinder, and W. Toorop, “Discovering path
MTU black holes on the internet using RIPE Atlas,” 2012.

13

https://tinyurl.com/2p9x5fjn
https://tinyurl.com/2p9x5fjn
https://github.com/gomezgaona/bbr3
http://tinyurl.com/tj2ts8a8
https://tinyurl.com/yyexzn3w
https://tinyurl.com/yyexzn3w
https://tinyurl.com/mr2vbw3v
https://tinyurl.com/mruajjvw
https://tinyurl.com/yz86p3vx
https://tinyurl.com/2swtshvj
https://tinyurl.com/5fypnknn

	Introduction
	Background
	Principles of BBRv1
	Shortcomings of BBRv1 and foundations of BBRv2
	Principles of BBRv3
	Lifecycle of a BBRv3 Flow
	Improvements of BBRv3 over BBRv1, and BBRv2
	Bugs observed in BBRv2 and fixed in BBRv3
	Performance tuning implemented in BBRv3

	Related Work
	Experimental Setup
	Results and Evaluations
	Inter-protocol Fairness
	RTT Unfairness
	Queue Occupancy
	Throughput, Retransmisions, and Packet Losses
	Performance with Different RTTs and Packet Loss
	Fairness of BBRv3, BBRv2, and BBRv1 Flows with a CUBIC flow
	Coexistence with CUBIC
	Bottleneck Bandwidth Estimation
	Flow Completion Time of Short Flows
	Effects of Parallel Streams and Different MTUs

	Conclusion
	Acknowledgement

