
Machine Learning Controller for Data Rate Management in Science DMZ Networks

Christian Vegaa,c, Elie F. Kfouryb , Jose Gomezb, Jorge E. Pezoaa,†, Miguel Figueroaa,d, Jorge Crichignob
aDepartamento de Ingenieŕıa Eléctrica, Universidad de Concepción, Concepción, Chile
bCollege of Engineering and Computing, University of South Carolina, Columbia, U.S.A

cFacultad de Ingenieŕıa, Universidad CESMAG, Pasto, Colombia
dAdvanced Center for Electrical and Electronic Engineering (AC3E), Valparáıso, Chile.

Abstract

This article presents a Machine Learning Controller (MLC) supported by a P4 switch for improving rate control in
non-dedicated Science Demilitarized Zone (Science DMZ) cyberinfrastructures. The proposed scheme utilizes passive
data plane measurements such as Round Trip Time (RTT), throughput, queuing delay, and active flow count to regulate
campus network output and achieve a desired Data Transfer Node (DTN) target rate. We evaluated our solution
through a testbed using a bare-metal data plane switch, legacy router, and emulated hosts. Results show that including
a rate controller based on data plane programmable devices on a non-dedicated Science DMZ cyberinfrastructure can
effectively improve the completion time of scientific big data flows, while having a low impact on the campus network
traffic and bottleneck link utilization. Specifically, the proposed controller achieved an average improvement of 21.72%
in Flow Completion Time (FCT) compared to a trivial fixed-rate solution when the DTN uses BBR2 as a Congestion
Control Algorithm (CCA). The results highlight the potential of machine learning techniques in conjunction with
data plane measurements for optimizing the performance of non-dedicated networks.

Keywords: Science DMZ, Machine Learning Control, rate control, programmable data planes, P4 language, passive
measurement.

1. Introduction

Cooperative research experiments, such as astronom-
ical data collection, weather prediction, and molecular
simulations, generate massive amounts of data. This
Scientific Big Data (SBD) is transferred to processing and
storage sites commonly located at long distances using
dedicated links and cyberinfrastructures. However, SBD
flows are also exchanged over non-dedicated networks ow-
ing to economic or technical constraints, thereby sharing
links with general-purpose traffic, such as web browsing,
Voice over Internet Protocol (VoIP), and streaming. Un-
der these conditions, the high throughput demanded by
SBD flows exchanged over high-latency links degrades
significantly, resulting in longer completion times [1].
Nevertheless, because non-dedicated networks are de-
signed and optimized for exchanging bursty and real-time
traffic, the transmission of SBD flows over such networks
is an open research field.

Rate control in cyberinfrastructures often relies on the
default behavior of congestion control algorithms, Active
Queue Management (AQM) mechanisms, and shaper fil-
ters. Our solution, instead, addresses three key inno-
vations to improve the performance of SBD flows over

Email addresses: christianvega@udec.cl (Christian Vega∗),
ekfoury@email.sc.edu (Elie F. Kfoury), gomezgaj@email.sc.edu
(Jose Gomez), miguel.figueroa@udec.cl (Miguel Figueroa),
jcrichigno@cec.sc.edu (Jorge Crichigno)
∗ Corresponding author
†Deceased

non-dedicated networks. First, we employ a Science De-
militarized Zone (DMZ) composed of a Data Transfer
Node (DTN) and a high-performance switch dedicated to
sending and receiving SBD traffic [1]. Second, we exploit
the capabilities of Programming Protocol-Independent
Packet Processors (P4) switches [2] to collect data with
nanosecond resolution and compute network metrics in
the data plane at line rate [3]. Lastly, we devise a data-
driven rate controller using a Machine Learning Con-
troller (MLC) [4]. The MLC technique is a strategy for
identifying effective model-free control laws from data-
driven models in complex non-linear systems [4] such as
building energy systems [5], robotic manipulators [6] and
fluid mechanics [7]. In MLC, control laws can be sup-
ported by machine learning algorithms such as decision
trees, support vector machines, and Artificial Neural Net-
work (ANN), among others. Given the complexity of flow
behavior in networks due, among other causes, to the op-
eration of congestion control algorithms, the presence of
short flows and long flows, packet loss, and retransmis-
sions, we claim that MLC is an alternative to legacy end-
to-end and network-assisted mechanisms to improve rate
control in non-dedicated networks.

The MLC keeps the DTN transmission rate around
the network administrator’s desired target value while
maintaining the Round Trip Time (RTT) and queuing
delay within an appropriate operating regime. We de-
veloped an MLC law for SBD traffic over non-dedicated
networks, using passive measurements supported on a P4
programmable switch. Because we perform passive mea-
surements in the data plane, the proposed solution does
not generate network traffic overhead or performance
degradation. Such variables are fed to the MLC based



on an ANN that implements a data rate driving law at
the control plane. The control signal is refined using an
Anti-windup filter, which acts as a limiter or modifier
of the control signal to avoid accumulating the integral
error that could induce large oscillations in the control
loop [8]. The solution was deployed in an experimental
testbed using a bare-metal data plane switch and a legacy
router. The solution was evaluated for Cubic [9] and
Bottleneck Bandwidth and Round-trip version 2 (BBR2)
[10] Congestion Control Algorithms (CCAs) at the DTN.
The proposed rate controller outperforms the fixed Token
Bucket Filter (TBF) [11, 12] rate control strategy.

The main motivations for carrying out this work are
summarized as follows:

• To improve the transmission of SBD traffic in non-
dedicated infrastructures, where short and long
flows coexist.

• To validate the applicability of data plane pro-
grammable devices as accurate telemetry elements
to determine the current state of the network and
perform control actions.

• To provide the network administrator with a solu-
tion based on intelligent control to optimize traffic
control in academic cyberinfrastructures.

The most significant contributions of the present work
can be framed as follows:

• A framework for network state variables abstrac-
tion leveraging the data plane capabilities to pas-
sively collect variables at the network bottleneck:
rate, RTT, queuing delay, and the number of active
flows. The proposed data plane telemetry system
can be helpful for future applications in various ar-
eas, such as congestion control, security, network
management, and routing.

• Data-driven models to control SBD flows over a
non-dedicated network built from network state
traces collected through extensive experiments on
a real testbed. One of the models was trained
when the DTN operates with Cubic as the con-
gestion control algorithm, whereas another model
was developed using BBR2 . These models use the
foundations of direct inverse control supported by
an ANNs.

• The evaluation of the proposed solution in a testbed
with hardware-based routing and data plane pro-
cessing devices. We used synthetic traffic generated
by emulated hosts that recreated long and short
flows for the tests. We employed controller perfor-
mance and network-related metrics to evaluate the
proposed solution.

2. Background and related work

2.1. Software-defined networks

Software-Defined Networks (SDN) is a modern net-
work architecture that separates the control and data
planes in the network. The control plane makes deci-
sions about how network traffic should be managed and

routed, while the data plane is responsible for physically
forwarding the packets based on the instructions received
from the control plane. Decoupling the planes enables
flexible, programmable, and agile network management,
enhancing scalability, efficiency, and adaptability [13].

SDN involves a centralized controller, operated by
software, to manage network traffic dynamically by com-
municating with network devices through standardized
protocols. The control plane of SDN provides an exten-
sion for managing the network’s data plane components,
such as switches and interfaces, through OpenFlow [14].
OpenFlow is the most prevalent application programming
interface utilized to manage the control and data planes
in SDN.

2.2. Programmable data plane

In the last decade, advances in the development of
Application-Specific Integrated Circuits (ASICs) have
shown that it is feasible to achieve terabit per second
forwarding speeds with a set of packet-processing capa-
bilities. These enhancements enable the creation of net-
work devices capable of monitoring and controlling net-
work traffic at line rates in the data plane. P4 [2] emerged
as a de-facto data plane programming language that tack-
les three main goals: reconfigurability, protocol indepen-
dence, and target independence because it is extensible
for ASIC, Field Programmable Gate Array (FPGA), and
virtual-based switches, among others [15]. The P4 ecosys-
tem is growing with a wide range of products, projects,
and services [16].

P4 leverages Protocol-Independent Switch Architec-
ture (PISA) [17], a pipeline forwarding architecture for
programmable data planes. Figure 1 depicts PISA, which
is composed of three main programmable elements: (i) a
parser that extracts packet headers based on a defined
policy; (ii) a programmable match-action pipeline, which
executes operation over the packet headers such as order-
ing or filtering using Arithmetic Logic Units (ALUs) and
stateful memories; and (iii) a deparser that reassembles
the packets and serializes them for transmission.

Programmable

parser

Match-action

stage 1

Match-action

stage n

Programmable

deparser

Packets Packets
...

Programmable match-action pipeline

Figure 1: PISA architecture.

2.3. Science DMZ

The term Science Demilitarized Zone (Science DMZ)
was first introduced in the Energy Science Network
(ESnet) by Dart et al. as a design pattern that is suit-
able for optimizing the interactions between Wide Area
Networks (WANs), campus networks, and computing sys-
tems [18]. The so-called “Science DMZ paper” also ad-
dresses use cases where the Science DMZ pattern has
been implemented at the University of Colorado, Penn-
sylvania State University, Virginia Tech Transportation
Institute, National Oceanic and Atmospheric Admin-
istration, and the National Energy Research Scientific

2



Computing Center. The authors also claim that there is
a need to improve the transport protocols, the extension
of virtual circuits, the adoption of high throughput stan-
dards, such as 100-Gigabit Ethernet, and the deployment
of SDN solutions to enhance the performance of the SBD
exchange. Several institutions and academic collabora-
tion networks worldwide [19–21] have joined this initia-
tive, favoring the technological platform for exchanging
large volumes of scientific information. The main moti-
vations for adopting the Science DMZ design pattern are
collaboration, optimized network performance, scalabil-
ity and security.

From the state-of-the-art in Science DMZ, we claim
that two issues have been prioritized: performance and
security. Regarding performance, the scope of the present
work, ESnet proposes a set of good practices for network
device selection and DTN tuning. The use of pacing, par-
allel flows, and novel congestion control protocols such as
Bottleneck Bandwidth and Round-trip (BBR) are recom-
mended strategies to maximize the performance of SBD
transmissions [22, 23]. Network architects also have ex-
ploited SDN technology to deploy virtual circuits, thereby
dealing with SBD traffic in actual network implementa-
tions. The authors in [24] examined architectural models
for leveraging OpenFlow switches and the SDN model
within the science-networking context. Then, they pre-
sented designs for SC12 SCinet Research Sandbox [25].
In Thailand, the National Research and Education Net-
work was boosted by the adoption of SDN to control the
operation on six research DMZ nodes [26]. The results
showed that the throughput among these nodes increased
from 100 Mbps to 900 Mbps. The AmoebaNet, an SDN-
enabled service for SBD [27], was proposed to address
three significant insights in Science DMZ: the last mile
problem, the scalability problem, and the programmabil-
ity problem. The solution considered traffic control based
on quality of service policies, obtaining acceptable per-
formances in differentiated traffic. However, AmoebaNet
required the addition of functions specified in the SDN
controller, including quality of service based routing path
computation, flow manager, resource monitoring, topol-
ogy manager, and programming interfaces. Additional
software in DTN is required to connect with program-
ming interfaces.

2.4. Rate control

Rate control in networks is a crucial area of study that
continuously evolves with the growth of network tech-
nologies. The goal of rate control and bandwidth allo-
cation is to manage network resources efficiently, ensure
fair utilization, and provide high-quality services to end-
users. Rate control strategies have been developed into
end-to-end and network-assisted approaches. In the first,
the end devices autonomously regulate the output rate
according to indirect measurements that can be made on
the state of the network. In contrast, network-assisted
rate control is achieved by having a central entity, such
as a controller, that monitors and regulates the data flows
on the network.

2.4.1. Legacy network-assisted rate control

Legacy network-assisted rate control mechanisms rely
on router’s AQM algorithms and congestion notification

mechanisms. One of the first AQM algorithms was Drop-
Tail, in which packets from all hosts are accepted until
the queue size is reached. Floyd and Jacobson in [28] pro-
posed Random Early Detection (RED), which performs
probabilistic packet dropping to inform the hosts about
network congestion. The greater the queue utilization in
the router, the higher the probability of a dropping. In
the test performed, RED performed better than Drop-
Tail. However, RED has some drawbacks, including re-
lying only on queue occupancy, lack of knowledge of the
number of flows that share the bottleneck, complex pa-
rameter tuning, and lack of suitability for small buffers
[29, 30]. Controlled Delay (CODEL) was proposed in
[31] focusing on router queuing delay. CODEL tracks
the sojourn time and the time the packet takes between
router ingress and egress. If the sojourn time overreaches
a predefined threshold, the packet is discarded during the
de-queue process [29]. Performance tests, such as those
conducted in [32], showed that CODEL overcomes RED
regarding queuing delay and link utilization. Despite
the mentioned advantages, CODEL has issues with the
router’s memory usage and scalability owing to the addi-
tional computational load involved in the queuing delay
computation. Subsequently, CODEL and Proportional
Integral Controller Enhanced (PIE) [33] were proposed
by Internet Engineering Task Force (IETF), with the
premise of offering the best RED and CODEL. PIE re-
lies on control theory to estimate the dropping proba-
bility based on queuing latency computation. The tests
performed in [34] demonstrated that PIE outperformed
CODEL in terms of queuing delay under high congestion
conditions.

Regarding congestion notification mechanisms,
Explicit Congestion Notification (ECN) [35] is a network
feature that allows routers to mark packets as they pass
through the network to notify congestion. Instead of
dropping packets, ECN-capable devices set a specific bit
in the IP packet header to indicate congestion. There-
fore, it is possible to mitigate congestion proactively.
Experiments carried out in [36–38] highlight the benefits
of ECN, namely: avoid the global synchronization of
retransmissions, reduce packet drops, promote a fairer
environment, increase throughput, and reduce the delay.

2.4.2. Legacy end-to-end rate control

The default end-to-end rate control used on the In-
ternet is based on Transmission Control Protocol (TCP)
[39], whose algorithms have been refined over time. One
of the most popular flavors of TCP CCA is Cubic, which
is the default algorithm for Linux-based systems. Cubic
is a loss-based CCA that relies on packet loss to detect
congestion because routers discard packets when buffers
fill up. However, when short flows compete with long
flows, even a few of the latter, bandwidth starvation oc-
curs in the network [40], affecting overall performance.
In 2016, Google released BBR [41], a disruptive model-
based CCA that estimates the bandwidth and RTT to
infer Bandwidth Delay Product (BDP) and compute the
host output rate. The authors of [42] concluded that
BBR works well for a single long flow at a bottleneck.
However, it presents coexistence issues with Cubic, as evi-
denced by the fairness index in tests performed in [43] and
[44]. Subsequently, BBR2 [45] was released to mitigate

3



the drawbacks of the first version using ECN and packet-
loss rate estimation. The tests conducted in [44] and [46]
confirmed that BBR2 outperformed BBR in terms of fair-
ness and packet loss.

2.4.3. Learning-based rate control

Due to the heterogeneous and complex traffic in to-
day’s networks, it is not feasible for a rate control mech-
anism to work correctly under different network condi-
tions. Therefore, in recent years, initiatives have emerged
that involve learning as an element to be considered in the
modeling and operation of rate control algorithms. There
is a set of end-to-end performance-oriented solutions in-
volving upgrades at the end devices of the network. Remy
[47], PCC [48], PCC Vivace [49], PCC Proteus [50], GCC
[51], Copa [52], Indigo [53], and ZiXia [54] are based on
calculating an objective function that leverages measure-
ments of the network state. The objective function pa-
rameters in the above algorithms were tuned using recur-
rent neural networks or reinforcement learning. These so-
lutions have shown significant improvements over legacy
rate control algorithms. Other learning-based solutions
train machine-learning-based models from datasets us-
ing supervised, unsupervised, and reinforcement learning
techniques. A comprehensive survey of previous end-to-
end rate control solutions based on machine learning was
conducted by [55].

Although research has focused on end-to-end
machine-learning-based rate controllers, there is a set
of solutions for the network-assisted approach to en-
hance the AQM algorithms. Neural networks [56, 57],
Q-learning [58–60] and reinforcement learning [61] are the
preferred ML algorithms. The aforementioned network-
assisted rate control mechanisms operate with limited
functions restricted by vendors or software routers with
performance impairments that make them impractical for
high-performance applications [62].

2.4.4. Rate control supported by programmable data
planes

P4 has enabled the deployment of rate control mech-
anisms from diverse approaches, including host-centric,
enhanced feedback, traffic isolation, and fast rerouting
[63]. Some solutions [64–69] require software modifica-
tions to the end hosts, and would therefore be applicable
when the network administrator has complete control of
the devices. Legacy AQM algorithms have been adapted
and implemented for P4 switches with certain limitations
[70–75]. P4 also enabled the fast development of custom
AQM algorithms such as P4-SRPT [76], P4-ABC [77],
SP-FIO [78], FDPA [79], P4QoS [80], CoDel++ [81] and
QoSTCP [82]. These schemes benefit from the advan-
tage of accurate measurements on the data plane, which
allows for more timely control actions in the network.

Passive measurement is an emerging field in which
data planes are used to support the operations performed
at the control plane. Due to their line rate processing
capability, these devices can perform accurate measure-
ments without disturbing the network behavior. Devices
such as passive taps are commonly used to create an ex-
act copy of the traffic at monitoring points. The authors
of [83] proposed a system that tracks RTTs online using
a P4 switch as a passive measurement device. They then

applied a meter to support interception attack detection.
In [84], passive measurements of the number of flows and
RTT supported by a P4 switch were used to control the
queue of a legacy router and improve the Flow Comple-
tion Time (FCT) of short flows. Chen et al. used a
similar approach by developing ConQuest, a tool that
measures the queuing delay to identify flows that blow
up the legacy router’s queue.

3. Materials and methods

3.1. Experimental testbed

Figure 2 illustrates the network topology used to test
the proposed solution. The testbed developed is a con-
trolled environment that allows the reproduction of var-
ious aspects of a non-dedicated network that supports
SBD flows in conjunction with commodity traffic. There-
fore, some simplifications were considered in its design.
The campus network consists of 100 sender nodes (s1,
s2, ..., s100) connected by an Open vSwitch (OvS) (S1),
generating commodity traffic. The Science DMZ is co-
located with the campus network and consists of a DTN
sender (DTN-s) and an OvS switch (S3). The testbed was
implemented on a Lenovo ThinkSystem SR630 in which
each network segment was linked to a physical interface
to connect to the legacy router. The campus network
and Science DMZ are connected to a Wide Area Network
(WAN) through a Juniper MX204 border router (BR1).
The remote network consists of a Linux border router
(BR2), an OvS switch (S2), 100 receiver nodes (r1, r2, ...,
r100), and a receiver DTN (DTN-r). The receivers and
DTN-r are on the same logical network segment to rep-
resent remote locations over which there is no control by
the network administrator. Hence, the testbed is config-
ured as a non-dedicated cyberinfrastructure, allowing us
to evaluate the coexistence between SBD and commodity
traffic. All senders and receivers, including DNT-s and
DTN-r, were deployed on isolated namespaces through
Mininet [85] on the server. Mininet offers a lightweight
platform to emulate networks and namespaces. Mininet
has been employed in several works [44, 63, 84, 86, 87]
enabling researchers to test protocols, algorithms, and
applications in a controlled environment, facilitating the
development of network solutions.

Router BR1 is connected through an optical fiber link
to a physical interface of the server that is tied to Linux
Virtual Router BR2 at a preconfigured link rate of 1Gbps
to promote congestion. Thus, the link between BR1 and
BR2 represents the network bottleneck. Optical passive
taps are connected at the links of router BR1 and exactly
replicate the observed traffic to an Edgecore 100BF-32 P4
switch (S4), which computes the network variables at line
rate. The position of the passive taps enables the collec-
tion of the metrics of interest without generating traffic
overhead in the network. The P4 switch is included as
an element of innovation to pre-compute network met-
rics, and it is not inherently part of a Science DMZ ar-
chitecture. The P4 switch uses the management link to
communicate with the Controller, which receives the pre-
computed metrics and outputs control actions to the S1-
eth1 interface.

Table 1 shows the main technical specifications of the
server, and Figure 3 presents the Cumulative Distribution

4



Figure 2: Testbed topology used for emulating scientific and general-purpose traffic in a shared cyberinfrastructure.

Function (CDF) of normalized CPU and memory usage
traces in a test with traffic generated from all sources on
the network during 600 seconds. The CPU usage remains
below 11.2% while RAM usage remains below 2.3%. It is
worth concluding that the computational resources are
sufficient, and therefore, the bottleneck is conditioned
only by the congestion on the network.

Figure 3: CPU and memory usage of the testbed.

Table 1: Technical specifications of physical server.

Model Lenovo ThinkSystem SR630
Form factor 1U rack-mount
Total RAM 62.6GB
Processor Intel Xeon 4114 @ 2.2GHz
Number of cores 40
Disk ATA 480GB

Using the Netem tool [88], we artificially introduced
a 100ms delay at the link connecting the DTN-s and
DTN-r nodes to emulate a high-latency Science DMZ
link. Netem was also used to introduce, at the switch
labeled as S1, a 10ms propagation delay for the campus
network traffic. Every sender node at the campus net-
work sets up a single TCP connection with one receiver
in the remote network. DTN-s establishes eight TCP con-
nections to the DTN-r node, emulating the behavior of
commonly used applications for scientific data transmis-
sions such as Globus and GridFTP [89]. The number of
flows generated with the former configuration is enough
to saturate the network bottleneck link. The proposed
solution allows the configuration of the CCA algorithm
for both campus network senders and DTN-s.

3.2. Machine learning control system architecture

Control systems are a combination of components
working together to maintain a desired output or response
of a specific dynamical system by adjusting the input.
The primary goal is to ensure that the actual output of a
system follows the desired or reference output, compen-
sating for disturbances and variations, by manipulating
the system’s input variables using a control strategy [90].
Often the actual response is considered as input informa-
tion to the controller, thus resulting in a closed-loop or
feedback control system.

In the present work, we abstract the network as a dy-
namical system with the network state y(t) and an input
u(t) at time t as shown in Figure 4. The network state
y(t) is defined in terms of seven network variables: rate of
DTN-s, rate of campus network, RTT of the connection
between the DTNs, RTT of campus network, queuing de-
lay of DTN-s, queuing delay of campus network, and the
number of active flows. The signal u(t) is the output
rate at the S1-eth1 interface, which connects the campus
network with the router BR1, as show in Figure 2.

5



Figure 4: Machine learning control system architecture.

We claim that the variation in u(t) affects the network
state y(t) and can be used as a control variable for the
system. For instance, suppose that u(t) is set to zero,
and a transfer from DTN-s to DTN-r is then established.
This connection has all the bandwidth available. In the
BR1 queue, there will be only packets coming from DTN-
s. Therefore, the queuing delay and the RTT will tend
to be uniform and conditioned by the operation of the
congestion control algorithm in DTN-s. At the opposite
extreme, if u(t) is set to the maximum possible value in
S1-eth1, traffic from the campus network coexists with
traffic from DTN-s, causing congestion and generating
changes in the network state. By fine-grained regulating
the signal u(t), we claim that it is conceivable to restrain
the traffic from the campus network when congestion is
generated, attempting to favor the traffic coming from
DTN-s.

The widely used direct inverse control strategy [91–
94] seeks to lead the response of the system to a desired
state or set-point yd(t) by modifying the input signal u(t)
obtained by the inverse model. The inverse model aims to
cancel or nullify the system dynamics to equate yd(t) with
y(t). Past states of u(t) and y(t) can be considered to
improve the estimation of the inverse model. Therefore,
memory elements are required to feed the controller with
delayed network states. The inverse model can be ob-
tained from training an ANN with the input and output
data of the system. An ANN is a computational model
inspired by the human brain. It comprises interconnected
nodes named neurons. These neurons collectively process
and learn from input data, adjusting the weights between
neurons through training to produce desired outputs [95].

We chose ANN model because of its straightforward
implementation, the fact that we can obtain a data-
driven model based on passive measurements in the data
plane, and the capability to include past states to en-
hance the prediction. The ANN is fed with the desired
network state yd(t), two previous network states y(t−T )
y y(t − 2T ), and one past value of the system’s input
u(t − T ). In Figure 4, the blocks denoted as Z−1 are
unitary delay blocks with a sample time T . The control
law û(t) implemented with the ANN controller is defined
as follows:

û(t) = f(yd(t), y(t− T ), y(t− 2T ), u(t− T ), ϕ) (1)

Where f is a non-linear function with parameters ϕ
and T is a constant sample time. In the proposed solu-
tion, the set of parameters ϕ are the weights between the

connections of neurons in the ANN layers. The set ϕ is
obtained by probing random values of u(t) and collecting
the corresponding network state y(t) every sample time
T .

The controller is followed by an Anti-windup filter to
reduce the error and avoid saturation of the control sig-
nal in the system loop. Since the output rate of S1 is
between established limits, it is possible that the signal û
overflows the maximum or minimum admissible value. A
problem associated with this situation is the accumula-
tion or windup of the error signal when the control signal
is in saturation constraints, which can generate a degra-
dation in the response time of the system while the error
signal is being discharged [96]. An alternative solution
to this problem is using an Anti-windup filter [8], which
has also been applied to problems related to congestion
control in computer networks [97]. The principle of the
Anti-windup filter is to leverage the difference between
the saturated control signal, i.e., between the admissible
limits and the signal a controller computes. This compo-
nent is added to the signal calculated by the controller
to accelerate the discharge of the integral action. Fig-
ure 5 shows the block diagram of the Anti-windup filter,
where the inputs are the error signal e(t) computed by
y(t) − yd(t) and the output of the ANN controller û(t).
The signal u adds the contributions of signal û, integral
error, and Anti-windup action w(t). Signal w(t) is the
difference between u(t) and u and indicates the satura-
tion of the control variable. The u value is coerced by a
saturator in a ±∆u(t) interval. Finally, the u(t) signal
is set at the S1-eth1 output rate. The Anti-windup filter
has three tuning parameters, namely, Kp, Ki, and Kw,
which handle proportional, integral, and Anti-windup ac-
tions. In summary, the proportional action accelerates
the system response to reach the set point, in this case,
the desired output rate for the campus network; the inte-
gral action aims to reduce the bias of the system response;
and the Anti-windup action accelerates the drain of the
accumulated error when there is saturation in the control
signal.

3.3. Tuning of controller parameters

To tune the controller parameters, we propose an ob-
jective function to minimize the Integral Absolute Er-
ror (IAE) that accumulates the absolute error over time.
The absolute error is computed as the difference between
the set-point rate R∗

DTN (t) and the measured throughput
RDTN (t) of DTN-s. Hence, IAE is defined as follows:

6



Saturator

+

- +

+

Figure 5: Anti-windup filter.

min
Kp,Ki,Kw

IAE =

∫ t

0

∣∣∣∣∣R∗
DTN (τ)−RDTN (τ)

∣∣∣∣∣dτ
Kp,Ki,Kw ≥ 0

(2)

Due to the complexity of the system dynamics result-
ing from the concurrence of heterogeneous flows and their
collateral effects, such as delay, packet loss, and retrans-
missions, it is not viable to find a theoretical model to
obtain the optimal operating values of the parameters.
However, the fact that different combinations of the pa-
rameters can be attempted on the testbed makes it possi-
ble to explore the solution space to determine suitable op-
erating values. Since the three parameters can adopt pos-
itive continuous values, the solution space is ample, and
therefore, an effective technique is required to find the
appropriate values of the parameters. Evolutionary algo-
rithms provide an effective alternative search strategy for
identifying near-optimal solutions in a high-dimensional
search space [4]. A Genetic Algorithm (GA) is an opti-
mization algorithm inspired by natural selection. It starts
with a population of potential solutions represented as in-
dividuals. These individuals undergo processes like muta-
tion, crossover, and selection to produce a new generation
of solutions. Over multiple generations, the algorithm re-
fines and improves the solutions based on their fitness to
a defined objective or fitness function, mimicking evolu-
tion process [98]. As shown in [99–101] GA has proven to
be a practical method for controller tuning, particularly
proportional integral derivative controllers. Hence, a GA
was used to find the controller parameters Kp, Ki and
Kw.

Selecting the parameters of the GA is worthy of con-
sidering the computational limitations of the testbed.
The maximum time allowed for an individual iperf3 test
is 86400s. In every computation of the fitness function or
IAE inside the GA, we generate traffic from the sources
to their corresponding destinations for 120 seconds using
a pseudo-random R∗

DTN (t) signal. Regarding the traffic
generation time of 120 seconds, this was chosen because
it is longer than TCP time needed to reach a stable be-
havior once the slow-start phase has been overcome, and
also it allows collecting a representative sample of data to
estimate the state of the network. The mating pool size
and the number of generations must be enough to offer di-
versity and the possibility to explore the search space and
fit that maximum time restriction. The GA parameters
are summarized in Table 2, and match with the require-

ments and computational limitations. For crossover and
mutation probability, we use typical values. To build and
implement the GA, we used the python library PyGAD
[102].

Algorithm 1 shows the parameter tuning process by
using the GA.

Algorithm 1 GA for MLC parameter tuning problem.

Require: Generation G; Max generations, Gmax; number of
parents mating, mp; mating pool size, ms; crossover prob-
ability, pc; mutation probability, pm

Ensure: Best controller parameters: Kp,Ki,Kw

G = 0; P (G) : Initial population

Compute IAE of population (P (G))

repeat
M ← Select parents (P (G),mp)

Pc(G)← Crossover(P (G), pm, M)

Pm(G)← Mutation(Pc(G), pm)

Compute IAE of (Pm(G))

P (G+ 1)← Selection (Pm(G), steady state selection)

G = G+ 1

Compute IAE (P (G))

Kp,Ki,Kw ← Get best solution (Pm(G))

until G ≥ Gmax

return Kp,Ki,Kw

Table 2: Genetic algorithm parameters.

Parameter Value

Number of generations 100
Number of genes 3
Number of parents mating 15
Mating pool size 30
Crossover probability 0.90
Mutation probability 0.1

3.4. Data collection and computation of network vari-
ables

The control system architecture shown in Figure 4
considers a data-driven network model. This model is de-
fined from seven network variables that jointly define the
network state. We exploited the capabilities supported by
the P4 switch to collect data and compute such network
variables online at the data plane, as shown in Figure 6.

7



Figure 6: Functional block diagram of the solution.

One of the advantages of data plane processing is the
low computational complexity required to enable fast-
packet processing. The P416 specification indicates that
P4 programs execute a constant number of operations for
each byte of an input packet received and analyzed [103].
Therefore, the computational complexity of a P4 program
is linear in terms of input bytes or O(n) using the Big O
notation. In the programs developed in the present study,
IP and TCP fixed-size headers are used, hence the pro-
cessing time of a packet is constant, and we claim that all
data plane algorithms have a O(1) computational com-
plexity. However, in control plane, the complexity of the
algorithms increases in proportion to the number of flows
handled in the data structures. The computation of each
variable is explained as follows.

3.4.1. Rate calculation

Rate Calculation relies on codes running concurrently
at the data and control planes. At the data plane, coun-
ters for campus network traffic and DTN-s traffic are per-
manently updated. We used Direct Counters elements
available in the P4 switch architecture. As shown in Al-
gorithm 2, when a packet enters the switch, a match-
action table first separates the incoming traffic between
the campus network and the DTN-s using a Longest-
Prefix Match (LPM) rule based on their destination IP.
Subsequently, a counter is assigned and incremented with
the packet size in bytes for each traffic source.

Simultaneously, as shown in Algorithm 3, the con-
trol plane polls the counters every T seconds through
the P4-Runtime interface and computes the difference
between the current and previous byte count per traffic
flow, ∆BCampus and ∆BDTN−s. Additionally, the con-
trol plane program computes the time difference between
the timestamps, namely ∆t. Thus, the data rates are
obtained from the ratio between ∆B and ∆t. The com-
putational complexity of this algorithm is O(1) because
it only performs assignment and mathematical operations
from fixed-size data.

3.4.2. RTT calculation

We leverage the method proposed in [104] for the
RTT computation in which the switch tracks TCP con-
nections through the TCP sequence (SEQ) and acknowl-
edgment (ACK) flags of outgoing and incoming packets
using hash functions available in the P4 Tofino switch

Algorithm 2 Update counters at data plane.

Require: Packet size pkt.s; packet headers hdr; DTN-r
IP address IPDTN-r; remote network IP address segment
IPRN ; DTN-s counter, CDTN-s; campus network counter,
CCampus

Ensure: CDTN-s, CCampus

if hdr.ipv4.dst addr = LPM(DTN -r) then

CDTN-s ← CDTN-s + pkt.s

else if hdr.ipv4.dst addr = LPM(IPRN ) then

CCampus ← CCampus + pkt.s

end if

Algorithm 3 Rate calculation at control plane.

Require: DTN-r IP address IPDTN-r; remote network IP
address Segment IPRN ; DTN-s counter, CDTN-s; campus
network counter, CCampus; sample time, T

Ensure: RDTN-s, RCampus

while True do

Cur BytesCampus ← Read Counter (CCampus)

Cur BytesDTN-s ← Read Counter (CDTN-s)

∆BCampus ← Cur BytesCampus − Prev BytesCampus

∆BDTN-s ← Cur BytesDTN-s − Prev BytesDTN-s

Cur ts← Get Timestamp(now)

∆t← Cur ts− Prev ts

RCampus ← (∆BCampus × 8)/∆t

RDTN−s ← (∆BDTN-s × 8)/∆t

Wait (T seconds)

end while

architecture. The RTT computation is obtained by sub-
tracting the timestamps of the outgoing packet and the
corresponding ACK incoming packet. We modified the
code in the control plane and the data plane to distin-
guish the RTT from the flows coming from the campus
network and those coming from the DTN. In our solu-
tion, we seek outgoing and incoming flows using a passive
tap at the bottleneck interface of router R1. Next, the
RTT samples are pushed to the control plane by using
the P4 Digest interface.

Algorithm 4 describes the operations required at the
control plane to obtain the RTT of the flows between
the campus network and the remote network and also
between DTN-s and DTN-r. The flow vector structure
tracks the active flows from the campus network that are

8



Algorithm 4 RTT calculation at control plane.

Require: campus network flow, f ; DTN Flow, fDTN ; sample
time, T ; vector of active flows, flow vector; smooth factor,
α

Ensure: RTTDTN , RTTCampus

while True do
flow vector ← Update(flow vector)
S ← 0

for f in flow vector do

S ← S + f.RTT

end for
Avg RTT ← S/length(flow vector)

RTTCampus ← α×RTTCampus + (1− α) ∗Avg RTT

RTTDTN ← Retrieve from Digest (fDTN .RTT )

Wait (T seconds)

end while

transiting to the destination network and the respective
estimated RTT values from the data plane. In each cy-
cle, the flow vector is updated using the database of flows
saved in the data plane, including new flows and deleting
inactive flows using a timeout. The representative RTT
value of the campus network, RTTCampus is obtained by
averaging the values of the vector. Thereafter, a smooth-
ing function driven by an α parameter is applied to reduce
fluctuations. The RTT of the connection between DTN-s
and DTN-r, RTTDTN , is retrieved directly from the Di-
gest interface. The complexity is O(N) because of the for
loop needed, which is the most computationally complex
operation of the algorithm, and it is conditioned by the
size of flow vector.

3.4.3. Queuing delay calculation

According to [105], the queuing delay is a crucial met-
ric for early congestion detection. As shown in Algorithm
5, we compute the queuing delay as the difference between
every packet’s timestamps at ingress and egress and store
such value in a register. Registers are stateful elements
of switch architecture that can be stored over time. We
also used a match-action table driven by a LPM rule to
separate the DTN-s and campus network traffic measure-
ments.

Algorithm 6 describes the tasks performed at the con-
trol plane to support queuing delay polling. Every sample
time T , the registers are polled from the data plane to
obtain queuing delay samples from campus network traf-
fic and DTN-s traffic. The complexity of this algorithm
is just O(1), because it implies only variable assignment
operations with fixed-size registers.

3.4.4. Active flows computation

Using the approach addressed in [87], we consider a
flow to be active if the packets associated with this, ex-
ceed a predefined threshold C TH in a time less than
T TH. Algorithm 7 shows the process of updating the
Active Flows register AF Reg. The addition or deletion
of flows in that structure is notified to the control plane
using Digest interfaces, and the capability of P4 switch to
read protocol-specific fields is exploited to remove flows
from the registers using the FIN flag present when a TCP
connection is closing. This update process is necessary

Algorithm 5 Update queuing delay at data plane.

Require: Packet, pkt; DTN-r’s IP address IPDTN-r;
remote network IP address segment IPRN ; DTN’s
switch port, DTN port; campus network switch port,
Campus Network port; Switch timestamp, SWts; Regis-
ter, Reg

Ensure: QD RegDTN , QD RegCampus

flow id← Hash function (pkt.hdr)

in port← pkt.intr metadata.in port

if in port = Campus Network port or in port =
DTN port then

Reg(flow id)← Swts

else if in port = Bottleneck port then

if hdr.ipv4.dst addr = LPM(DTN -r) then

QD RegDTN ← SWts −Reg(flow id)

Push to Digest(QD RegDTN )

else if hdr.ipv4.dst addr = LPM(IPRN ) then

QD RegCampus ← SWts −Reg(flow id)

end if
end if

Algorithm 6 Queuing delay polling at control plane.

Require: Queuing delay register for DTN’s traffic
QD RegDTN ; queuing delay register for campus net-
work traffic, QD RegCampus, sample time, T

Ensure: QDDTN , QDCampus

while True do

QDCampus ← Read register (QD RegCampus)

QDDTN ← Read register (QD RegDTN )

Wait (T seconds)

end while

not only for the accurate computation of the number of
flows but also to optimize the device’s memory resources.

At the control plane, as shown in Algorithm 8, the
Digest interfaces are periodically polled at time T , allow-
ing the flow vector to be updated in the control plane.
Finally, the number of active flows is calculated as the
length of the flow vector. Here the algorithm’s complex-
ity is O(1), because the algorithm supports variable as-
signment, attachment, removal, and length computation
operations.

3.5. ANN model training

To obtain the inverse model, we first collected input
and output data from the network by applying the prin-
ciples of systems identification. To do so, we injected a
pseudo-random step signal at u(t) into the network for
28.800 s, to recreate different output rates of the cam-
pus network and simultaneously collect the network state
variables y(t). Figure 7 shows a portion of 600 seconds
of the pseudo-random signal used to perform the exper-
iment. To put the above reasoning into practice, we de-
veloped a Bash script that generates a random number
between zero and 1000 every time T and set it as the out-
put rate in Mbps of the S1-eth1 interface. We used the
P4 switch as a network state sensing device to measure
the network state, as shown on the right side of Figure 6.
To obtain the inverse model, the role of u(t) is changed by

9



Algorithm 7 Update active flows at data plane.

Require: packet headers, hdr; switch timestamp, SWts;
flow identifier, flow id; counter register, C Reg; times-
tamps register, TS Reg; active flow register, AF Reg; new
flow Digest interface, new flow; timeout Digest interface,
timeout.

Ensure: Active flows register, AF Reg
flow id← Hash function (pkt.hdr)

if flow id in C Reg then

prev ts← TS Reg[flow id]

TS Reg[flow id]← SWts

if TS Reg[flow id]− prev ts < T TH then

if C Reg[flow id] = C TH then

Attach(flow id) to AF Reg

Push (flow id) to new flow Digest
else

C Reg[flow id]← C Reg[flow id] + 1
end if

else

C Reg[flow id]← 0
end if
if hdr.tcp.flags = FIN then

if C Reg[flow id] = C TH then

Remove(flow id) from AF Reg

Push (flow id) to timeout Digest
end if

end if
else

Attach (flow id) to C Reg

Attach (flow id) to TS Reg

end if

considering it now as an output and the variable predicted
by the ANN model. To predict u(t) we exploited the
data collected from the identification process taking as
predictors the set I = {y(t), y(t−T ), y(t−2T ), u(t−T )}.
The set I was employed to train a fully connected neural
network using the Keras and Tensorflow ANN libraries
[106, 107].

0 100 200 300 400 500 600

Time t [s]

0

200

400

600

800

1000

u

(t
) 

[M
b
p
s
]

Figure 7: Portion of a signal used to train the MLC.

The chosen architecture of the ANN is a fully con-
nected neural network, which is a fundamental type of
ANN where each neuron in one layer is connected to ev-
ery neuron in the subsequent layer. In this architecture,
the neurons are organized into input, hidden and output
layers as shown in Figure 8. In the present work, the in-
put layer is composed by the the set I. The second layer

Algorithm 8 Active Flows computation at control
plane.

Require: Digest for new flows report, newf low; Digest for
timeout report, timeout flow; sample time, T ; vector of
active flows, flow vector; flow identifier, flow id

Ensure: Number of active flows AF

while True do
new flow id← Retrieve from Digest(new flow[flow id])

if new flow id then

Attach(new flow id) to flow vector

end if
timeout flow id ← Retrieve from Digest

(timeout flow[flow id])
if timeout flow id then

Remove(timeout flow id) from timeout vector

end if

AF = length(flow vector)
Wait (T seconds)

end while

is a hidden layer that is 64 times the dimension of the set
I. The third layer is a pre output layer with the same di-
mensions as the set I. The output layer has a size of one
and represents the predicted signal u(t). In the experi-
ments conducted, we achieved a relative validation error
of 1% using the cross-validation technique. Two inverse
models were obtained according to the CCA configured at
DTN-s, either Cubic or BBR2. Training was performed
for 12,000 s to provide sufficient information to build the
model.

Figure 8: Artificial neural network used for the MLC.

3.6. Control law implementation

The MLC control signals are carried using User Data-
gram Protocol (UDP) sockets on the management in-
terface between the server and the switch S1. The
control plane generates a JavaScript Object Notation
(JSON) structure containing the computed network vari-
ables y(t), y(t − T ), y(t − 2T ), and u(t − T ) every T
time interval. Then, it sends such a structure to the
server, which computes the output rate u(t) by feed-
ing the trained ANN controller with the abovementioned

10



structure. The administrator sets the desired network
state yd(t) by considering the target DTN-s rate and net-
work constraints.

Table 3 lists the values that fill the vector yd with the
desired network state. The expected value of Rcampus

is the remaining capacity that is not required by DTN-
s. The RTT values are set considering the restrictions
imposed by the testbed, namely 100ms for SBD flows and
10ms for general-purpose traffic. The expected queuing
delays are set to 0 to minimize bottleneck congestion.
Finally, the number of Active Flows AF is set using the
last active flow computation.

Table 3: Parameters of yd.

k Variable name Value

1 RDTN -s Target Rate R∗
DTN-s(t)

2 Rcampus Bmax −R∗
DTN-s(t)

3 RTTDTN 100 ms
4 RTTCampus 10 ms
5 QDDTN-s 0 ms
6 QDCampus 0 ms
7 AF Last AF

3.7. Comparison scenario

A common solution for controlling campus network
traffic is to set a target output rate leveraging the config-
uration capabilities of the network device. The network
manager often coarsely changes this target rate according
to the network operating conditions but without making
fine-tuning as proposed in this article. Open vSwitch
(OVS) switches admit TBF for rate control. Therefore,
if the available bandwidth at the bottleneck is Bmax the
campus output rate is set to Bmax −R∗

DTN-s(t). We call
this method the trivial solution; it is the reference point
for analyzing the performance of the proposed solution.

4. Results

In this section, we present the results of the tests con-
ducted to evaluate the performance of the proposed solu-
tion under diverse scenarios. The experiments were per-
formed in a data center using real network devices. The
tests were replicated a significant number of times in or-
der to obtain statistically reliable results. Performance
evaluation focuses on FCT and link utilization as metrics
that quantify the performance from a network perspec-
tive. However, Mean Relative Absolute Error (MRAE)
is also analyzed as a metric to evaluate the ability of the
algorithm to track the target DTN-s rate.

4.1. Controller parameters

Using the models obtained in Section 3.5, we conduct
parameter tuning of the controller presented in Section
3.2, supported by the genetic algorithm setup shown in
Table 2. Figure 9 shows the convergence curve of IAE
in the genetic algorithm used to tune the controller pa-
rameters when either Cubic or BBR2 is configured at the
DTN-s. For the case of BBR2, the cumulative error differ-
ence between the actual rate and the set point is smaller
than when we use Cubic. Table 4 summarizes the results
of the parameters’ tuning procedure.

Figure 9: Convergence curve of IAE in controller parameters tun-
ing. As the number of AG generations increases, the IAE decreases.
Although the greatest reduction in IAE occurs when Cubic is used
as CCA in DTN-s, better error tracking is obtained with BBR2.

Table 4: Selected controller parameters.

DTN-s
CCA

Generation Kp Ki Kw

Cubic 77 0.285 1.486 1.565
BBR2 76 0.388 1.918 1.340

4.2. Controller performance oriented test with multiple
long flows in campus network

This experiment evaluated the proposed solution from
the DTN-s performance perspective. Therefore, the
senders in the campus network generate long flows to
their respective receivers with an induced delay of 10ms.
However, the DTN-s generates long flow traffic with an
induced delay of 100ms.

In order to test the MLC accuracy, we compute
MRAE, every tN samples as follows:

MRAE =
1

tN

tN∑
t=1

∣∣∣∣∣R∗
DTN-s(t)−RDTN-s(t)

R∗
DTN-s(t)

∣∣∣∣∣ (3)

MRAE is a measure of set-point tracking which is the
ability to maintain or follow the desired reference, in this
case R∗

DTN−s. In the experiment, tN = 120, and because
∆t = 1s each trial takes 120s. In total, we perform 100
trials for each MLC. This number of trials guarantees
an expected error of less than 0.43% and a confidence
level of 95%, assuming a normal distribution of the traces.
CDFs of MRAE are shown in Figure 10. In general, the
implementation of MLC outperforms the trivial solution
in terms of MRAE, with an average reduction of 4.1%
and 4.5% for the MLCs of Cubic and BBR2, respectively.

4.3. DTN’s performance oriented test with long flows in
campus network

Although the proposed controllers adequately track
the reference, evaluating the solution’s performance in
terms of network metrics is essential. Flow Completion
Time (FCT) is the time elapsed between sending the first
packet and receiving the last packet for a given TCP con-
nection. This experiment evaluates FCT for 10GB data
transmission from DTN-s to DTN-r. The experiment was
repeated 100 times for each MLC to obtain the CDFs

11



(a) (b)

Figure 10: Mean Relative Absolute Error (a) DTN-s CCA: Cubic (b) DTN-s CCA: BBR2. The proposed solution provides better set-point
tracking in both scenarios.

(a) (b)

Figure 11: DTN-s Flow Completion Time (a) DTN-s CCA: Cubic (b) DTN-s CCA: BBR2. The proposed solution improves in both
scenarios the FCT of the SBD flows, having a more significant impact when BBR2 is configured as CCA in DTN-s.

shown in Figure 11. This number of trials guarantees an
expected error of less than 1.47s and a confidence level of
95%, assuming a normal distribution of the traces. An
average reduction against the trivial solution of 12.932s
and 39.042s of FCT for Cubic and BBR2 controllers, re-
spectively, was found. The previous means an FCT re-
duction of 7.4% in the case of Cubic’s MLC and an av-
erage reduction of 21.72% using BBR2’s MLC. We also
note that 100% of the attempts with the proposed con-
troller obtained a lower FCT than the trivial solution for
the BBR2 case. The results imply that it is possible to
transmit more scientific data in a given time interval with
the proposed MLCs.

We also compute the bottleneck Link Utilization ρ
using data plane measurements. This value is obtained
at time t through the sum of the flow rates, including
traffic generated by the DTN-s RDTN-s and the campus
network hosts Rsh , divided by the maximum link band-
width Bmax, as follows:

ρ(t) =
RDTN-s(t) +

∑100
h=1 Rsh(t)

Bmax

(4)

For link utilization, we also use 100 trials, and the ex-
pected error is 0.0255, with a confidence level of 95%, as-
suming a normal distribution of data. Figure 12 presents
the CDFs of bottleneck link utilization for the MLCs and
their respective trivial comparison scenario; we found
similar behavior in the two situations, with an average
negligible decrease of 0.57% and 0.65% in the ρ of the
proposed solutions.

4.4. DTN’s performance with multiple streams in campus
network

The aim of these experiments is to assess how the pro-
posed solution behaves when the number of streams in the
campus network varies. To achieve this, we configured
the testbed such that the campus network establishes a
specific number of streams Ns given by TCP connections
with the remote network, and then measured the FCT of
a 10GB data transmission between DTN-s and DTN-r.

12



(a) (b)

Figure 12: Bottleneck link utilization. (a) DTN-s CCA: Cubic (b) DTN-s CCA: BBR2. The proposed solution does not impact the
bottleneck link utilization.

We ran the test for Cubic and BBR2 algorithms con-
figured in DTN-s, and for 1, 10, 100, 1000, and 10000
streams. We tested the P4 switch during compilation
and execution for overflow problems and did not find any
issues.

The results of the experiments are shown in Figure
13. The percentage reduction of the FCT of the proposed
MLC, with respect to the trivial solution, is presented in
Table 5. The proposed solution is capable of reducing the
FCT of the SBD traffic by an average of 0.07% to 21.72%,
depending on the CCA and the number of streams. The
MLC implemented is particularly useful for reducing the
FCT above 10 streams. This is because TCP inherently
tends to utilize all available bandwidth, regardless of the
number of streams established between the campus net-
work and the remote network. Additionally, the proposed
MLC calculates the output rate of the campus network
from aggregated network state metrics, allowing the sys-
tem to be scalable to the maximum number of admissible
inputs in the active flows table.

Table 5: Flow completion time reduction of the proposed solution
varying the number of streams.

CCA Ns
Mean FCT [s] FCT

reduction [%]MLC Trivial

Cubic

1 108,51 110,46 1,77
10 154,37 167,83 8,02
100 159,49 173,94 8,30
1000 162,47 169,17 3,96
10000 156,27 169,10 7,58

BBR2

1 91,85 91,91 0,07
10 105,99 114,86 7,72
100 140,73 179,78 21,72
1000 140,58 150,62 6,66
10000 140,67 151,78 7,32

4.5. Performance of short flows coexisting with long flows
in the bottleneck

The present experiment evaluates the FCT of short
flows when sharing the bottleneck link with SBD flows
for the proposed MLCs. The Weibull heavy-tailed dis-
tribution has been widely used to model the behavior of

short flows on the Internet [108]. The probability distri-
bution function of a Weibull random variable is defined
as:

f(x;λ, k) =


k

λ

(x
λ

)k−1

e−(
x
λ )

k

if x ≥ 0

0 if x < 0.

(5)

where k and λ are the shape and scale parameters, respec-
tively. We used two variables to model short flows. First,
inter-departure time measures the difference between the
departure times of one packet and the next. Second, flow
size denotes the number of bytes occupied by each flow.
We used the SourcesOnOff tool [109], which allows us to
generate flows with given distributions for inter-departure
time and flow size. Table 6 summarizes the parameters
that describe the short flows from Weibull distributions
in the experiments.

Table 6: Selected controller parameters.

Variable k λ min max

Inter-departure time 0.5 20ms 1ms 100ms
Flow size 0.5 100kB 10kB 10MB

In this experiment, we set up a similar configuration
to the one described in Section 4.3, with the exception
that one of the senders generated short flows. We cap-
tured the packets for 600 seconds and analyzed them us-
ing the tcptrace tool. The resulting CDFs are presented in
Figure 14. Comparing the CDFs of the proposed MLCs
with the trivial solution, we found that the curves are
very similar. However, there were improvements of 18.7%
and 14.4% in terms of the median η of ρ for the Cubic
and BBR2 controllers, respectively. The absolute vari-
ations in η were 25ms and 18ms for the MLCs trained
with Cubic and BBR2, respectively, which are negligible
for most campus network applications.

5. Conclusion

This study demonstrated the advantages of integrat-
ing data plane devices and machine learning algorithms

13



(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 13: Flow completion time for a different number of streams on the network. (a) Ns=1, DTN-s CCA:Cubic (b) Ns=1, DTN-s
CCA:BBR2 (c)Ns=10, DTN-s CCA:Cubic (d)Ns=10, DTN-s CCA:BBR2 (e)Ns=100, DTN-s CCA:Cubic (f)Ns=100, DTN-s CCA:BBR2
(g) Ns=1000, DTN-s CCA:Cubic (h) Ns=1000, DTN-s CCA:BBR2 (i) Ns=10000, DTN-s CCA:Cubic (j) Ns=10000, DTN-s CCA:BBR2.

14



(a) (b)

Figure 14: Flow Completion Time for short flows. (a) DTN-s CCA: Cubic (b) DTN-s CCA: BBR2. Although the proposed solution
prioritizes SBD flows, the impact on the FCT of short flows is minimal and does not represent a significant degradation in performance.

to improve the rate control of Science DMZ networks. By
employing an MLC to adjust traffic flows dynamically, we
can enhance the FCT of data-intensive scientific flows of
the Science DMZ coexisting with the short flows gener-
ated in the campus network.

The results suggest that this approach has significant
potential for optimizing the efficiency of transferring SBD
over non-dedicated networks. The proposed solution min-
imizes the FCT of long flows, with a negligible impact on
the bottleneck link utilization and short flows FCT. In
particular, our study highlights the importance of adap-
tive rate control, which can respond online to changing
network conditions and traffic demand.

There are several potential future directions for this
work. One avenue for further research is the development
of more sophisticated machine learning algorithms at the
control plane that can better adapt to changing network
conditions and traffic demands. Another exploration area
is deploying machine-learning-based controllers directly
on the data plane, considering architecture restrictions.
Furthermore, there is a need for an additional evalua-
tion of this approach under different traffic patterns and
network conditions. The above will help identify the op-
timal configurations and tradeoffs between performance,
scalability, and overhead.

As data plane processing continues to advance and be
applied in real-world scenarios, solutions such as those
presented in this paper will become increasingly essential
for optimizing network performance and ensuring reliable
data transfer in a wide range of scientific applications.

6. Acknowledgement

In memory of Doctor Jorge E. Pezoa, who signifi-
cantly contributed to the research and writing of this pa-
per. His dedication, expertise, and passion for his field
of study will forever be remembered and cherished. This
work has been supported by Chilean National Agency
for Research and Development (ANID) Fondecyt Reg-
ular 1220960, PCHA/Doctorado Nacional Folio 2018-
21180418, Basal Fund FB0008, and U.S. National Science
Foundation (NSF) (grant number 2118311).

7. Appendix

Table 7 provides a list of abbreviations while table 8
presents the notations and symbols used in this article.

Table 7: Abbreviations used in this article.

Abbreviation Term

ACK Acknowledgement
ALU Arithmetic Logic Unit
AQM Active Queue Management
ASIC Application-specific Integrated Circuit
BBR Bottleneck Bandwidth and Round-trip Time
BBR2 Bottleneck Bandwidth and Round-trip version 2
BDP Bandwidth-Delay Product
CCA Congestion Control Algorithm
CDF Cumulative Distribution Function

CODEL Controlled Delay
DTN Data Transfer Node
FCT Flow-Completion Time
FPGA Field Programmable Gate Array
IAE Integral Absolute Error
IETF Internet Engineering Task Force
JSON JavaScript Object Notation
LPM Longest-Prefix Match
MLC Machine Learning Controller
MRAE Mean Relative Absolute Error
PIE Proportional Integral Controller Enhanced
PISA Protocol-Independent Switch Architecture
RED Random Early Detection
RTT Round Trip Time
SBD Scientific Big Data

Science DMZ Science Demilitarized Zone
SDN Software-Defined Networks
TBF Token Bucket Filter
TCP Transmission Control Protocol
VoIP Voice over Internet Protocol
WAN Wide Area Network

Table 8: Notations and symbols used in this article.

Symbol Usage or Signification

η Median value
λ Scale parameter Weibull distribution
µ Mean value
ρ Link utilization
σ Standard deviation
ϕ Model parameters
k Shape parameter Weibull distribution
K Tunning parameter
Ns Number of streams
O(·) Complexity of Algorithm
t Instant time
u Control signal
w Windup signal
T Sample time
R Rate (bps)
y Network state

Z−1 Unitary delay

15



References

[1] J. Crichigno, E. Bou-Harb, and N. Ghani, “A Comprehensive
Tutorial on Science DMZ,” IEEE Communications Surveys
Tutorials, vol. 21, no. 2, pp. 2041–2078, 2019.

[2] P. B. et. al, “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 3, pp. 87–95, 2014.

[3] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An Exhaustive
Survey on P4 Programmable Data Plane Switches: Taxon-
omy, Applications, Challenges, and Future Trends,” IEEE
Access, vol. 9, pp. 87094–87155, 2021.

[4] T. Duriez, S. L. Brunton, and B. R. Noack, Machine learning
control-taming nonlinear dynamics and turbulence. Springer,
2017.

[5] L. Zhang, Z. Chen, X. Zhang, A. Pertzborn, and X. Jin,
“Challenges and opportunities of machine learning control
in building operations,” Building Simulation, vol. 16, no. 6,
p. 831 – 852, 2023.

[6] D. Rawat, M. K. Gupta, and A. Sharma, “Intelligent control
of robotic manipulators: a comprehensive review,” Spatial
Information Research, vol. 31, no. 3, p. 345 – 357, 2023.

[7] J. Velino, S. Kang, and M. B. Kane, “Machine learning con-
trol for floating offshore wind turbine individual blade pitch
control,” Journal of Computing in Civil Engineering, vol. 36,
no. 6, 2022.

[8] S. Galeani, S. Tarbouriech, M. Turner, and L. Zaccarian, “A
tutorial on modern anti-windup design,” European Journal
of Control, vol. 15, no. 3-4, pp. 418–440, 2009.

[9] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly
high-speed tcp variant,” SIGOPS Oper. Syst. Rev., vol. 42,
p. 64–74, jul 2008.

[10] N. Cardwell, Y. Cheng, S. Yeganeh, I. Swett, V. Vasiliev,
P. Jha, Y. Seung, M. Mathis, and V. Jacobson, “Bbrv2: A
model-based congestion control,” Presentation in the Inter-
net Congestion Control Research Group (Iccrg) at Ietf 105
Update, Montreal, Canada, 2019.

[11] S. Heckmuller and B. E. Wolfinger, “Analytical modeling of
token bucket based load transformations,” in 2008 Interna-
tional Symposium on Performance Evaluation of Computer
and Telecommunication Systems, pp. 15–23, IEEE, 2008.

[12] B. Kovács, “Mathematical remarks on token bucket,” in
SoftCOM 2009-17th International Conference on Software,
Telecommunications & Computer Networks, pp. 151–155,
IEEE, 2009.

[13] S. Singh and R. K. Jha, “A survey on software defined net-
working: Architecture for next generation network,” Journal
of Network and Systems Management, vol. 25, pp. 321–374,
2017.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
flow: enabling innovation in campus networks,” ACM SIG-
COMM computer communication review, vol. 38, no. 2,
pp. 69–74, 2008.

[15] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Vargh-
ese, and D. Walker, “P4: Programming protocol-independent
packet processors,” SIGCOMM Comput. Commun. Rev.,
vol. 44, p. 87–95, July 2014.

[16] Open Networking Foundation, “P4 Contributors.” [Online].
Available: https://p4.org/ecosystem/, Accessed on 2023-
12-24.

[17] N. McKeown, “Pisa: Protocol independent switch architec-
ture, 2015,” in P4 Workshop.

[18] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zu-
rawski, “The science dmz: A network design pattern for
data-intensive science,” in SC ’13: Proceedings of the Inter-
national Conference on High Performance Computing, Net-
working, Storage and Analysis, pp. 1–10, Nov 2013.

[19] L. Smarr, C. Crittenden, T. DeFanti, J. Graham, D. Mishin,
R. Moore, P. Papadopoulos, and F. Würthwein, “The pacific
research platform: Making high-speed networking a reality
for the scientist,” in Proceedings of the Practice and Experi-
ence on Advanced Research Computing, pp. 1–8, 2018.

[20] W. E. Allcock, B. S. Allen, R. Ananthakrishnan, B. Blaiszik,
K. Chard, R. Chard, I. Foster, L. Lacinski, M. E. Papka, and
R. Wagner, “Petrel: A programmatically accessible research
data service,” in Proceedings of the Practice and Experience

in Advanced Research Computing on Rise of the Machines
(learning), pp. 1–7, 2019.

[21] W. Ahmad, B. Alam, S. Sharma, and A. Kushwaha, “Epige-
nomics scientific big data workflow scheduling for cancer diag-
nosis in health care using heterogeneous computing environ-
ment,” Brazilian Archives of Biology and Technology, vol. 66,
2022.

[22] E. S. N. (Esnet), “Esnet fasterdata knowledge base.” [Online].
Available: https://www.es.net/, Accessed on 2023-12-24.

[23] B. Tierney, E. Dart, E. Kissel, and E. Adhikarla, “Explor-
ing the bbrv2 congestion control algorithm for use on data
transfer nodes,” 2021.

[24] I. Monga, E. Pouyoul, and C. Guok, “Software-defined net-
working for big-data science-architectural models from cam-
pus to the wan,” in 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, pp. 1629–
1635, IEEE, 2012.

[25] SC12, “SCinet Research Sandbox.” [Online]. Avail-
able: https://sc12.supercomputing.org/content/

scinet-research-sandbox.html, Accessed on 2023-12-
24.

[26] K. Jutawongcharoen, V. Varavithya, K. Lekdee, A. Chaichit,
and T. Sribuddee, “The implementation of the uninet’s re-
search dmz,” in 2016 International Computer Science and
Engineering Conference (ICSEC), pp. 1–5, IEEE, 2016.

[27] S. Shah, W. Wu, Q. Lu, L. Zhang, S. Sasidharan, P. De-
Mar, C. Guok, J. Macauley, E. Pouyoul, J. Kim, and S.-Y.
Noh, “Amoebanet: An sdn-enabled network service for big
data science,” Journal of Network and Computer Applica-
tions, vol. 119, pp. 70 – 82, 2018.

[28] S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,” IEEE/ACM Transactions on net-
working, vol. 1, no. 4, pp. 397–413, 1993.

[29] D. A. Alwahab and S. Laki, “A simulation-based survey of ac-
tive queue management algorithms,” in Proceedings of the 6th
International Conference on Communications and Broad-
band Networking, pp. 71–77, 2018.

[30] G. Patil, S. I. McClean, and G. Raina, “Drop tail and red
queue management with small buffers: Stability and hopf bi-
furcation,” ICTACT Journal on Communication Technology,
vol. 02, pp. 339–344, 2011.

[31] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Rfc
8289: Controlled delay active queue management,” IETF,
Jan, 2018.

[32] S. Muhammad, T. J. Chaudhery, and Y. Noh, “Study on per-
formance of aqm schemes over tcp variants in different net-
work environments,” IET Communications, vol. 15, pp. 93–
111, 1 2021.

[33] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Sub-
ramanian, F. Baker, and B. VerSteeg, “Pie: A lightweight
control scheme to address the bufferbloat problem,” in 2013
IEEE 14th International Conference on High Performance
Switching and Routing (HPSR), pp. 148–155, 2013.

[34] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Sub-
ramanian, F. Baker, and B. VerSteeg, “Pie: A lightweight
control scheme to address the bufferbloat problem,” in 2013
IEEE 14th international conference on high performance
switching and routing (HPSR), pp. 148–155, IEEE, 2013.

[35] K. Ramakrishnan, S. Floyd, and D. Black, RFC3168: The
Addition of Explicit Congestion Notification (ECN) to IP.
USA: RFC Editor, 2001.

[36] M. M. Kadhum and S. Hassan, “The effect of ecn on short
tcp sessions,” in 2007 IEEE International Conference on
Telecommunications and Malaysia International Conference
on Communications, pp. 708–712, 2007.

[37] K. Pentikousis, H. Badr, and B. Kharmah, “On the per-
formance gains of tcp with ecn,” in 2nd European Con-
ference on Universal Multiservice Networks. ECUMN’2001
(Cat. No.02EX563), pp. 82–91, 2002.

[38] N. L. Ewald, C. Kulatunga, and G. Fairhurst, “Performance
impact of ecn on multimedia traffic with satellite delay,” in
2009 International Workshop on Satellite and Space Com-
munications, pp. 120–124, 2009.

[39] J. Zhang, Z. Yao, Y. Tu, and Y. Chen, “A survey of tcp
congestion control algorithm,” in 2020 IEEE 5th Interna-
tional Conference on Signal and Image Processing (ICSIP),
pp. 828–832, 2020.

[40] V. Arun, M. Alizadeh, and H. Balakrishnan, “Starvation in
end-to-end congestion control,” in Proceedings of the ACM

16

https://p4.org/ecosystem/
https://www.es.net/
https://sc12.supercomputing.org/content/scinet-research-sandbox.html
https://sc12.supercomputing.org/content/scinet-research-sandbox.html


SIGCOMM 2022 Conference, pp. 177–192, 2022.
[41] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Ja-

cobson, “Bbr: Congestion-based congestion control,” ACM
Queue, vol. 14, September-October, pp. 20 – 53, 2016.

[42] J. Crichigno, Z. Csibi, E. Bou-Harb, and N. Ghani, “Impact
of segment size and parallel streams on tcp bbr,” in 2018 41st
International Conference on Telecommunications and Signal
Processing (TSP), pp. 1–5, 2018.

[43] M. Hock, R. Bless, and M. Zitterbart, “Experimental evalua-
tion of bbr congestion control,” in 2017 IEEE 25th Interna-
tional Conference on Network Protocols (ICNP), pp. 1–10,
2017.

[44] J. Gomez, E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Sri-
vastava, “A performance evaluation of tcp bbrv2 alpha,” in
2020 43rd International Conference on Telecommunications
and Signal Processing (TSP), pp. 309–312, 2020.

[45] N. Cardwell, Y. Cheng, S. H. Yeganeh, P. Jha, Y. Seung,
K. Yang, I. Swett, V. Vasiliev, B. Wu, L. Hsiao, et al.,
“Bbrv2: A model-based congestion control performance op-
timization,” in Proc. IETF 106th Meeting, pp. 1–32, 2019.

[46] S. Zhang, W. Lei, W. Zhang, and H. Li, “An evaluation of
bottleneck bandwidth and round trip time and its variants,”
International Journal of Communication Systems, vol. 34, 6
2021.

[47] K. Winstein and H. Balakrishnan, “Tcp ex machina:
Computer-generated congestion control,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp. 123–
134, 2013.

[48] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira,
“{PCC}: Re-architecting congestion control for consistent
high performance,” in 12th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 15),
pp. 395–408, 2015.

[49] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. God-
frey, and M. Schapira, “{PCC} vivace: Online-learning con-
gestion control,” in 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 18),
pp. 343–356, 2018.

[50] T. Meng, N. R. Schiff, P. B. Godfrey, and M. Schapira,
“Pcc proteus: Scavenger transport and beyond,” in Proceed-
ings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, tech-
nologies, architectures, and protocols for computer commu-
nication, pp. 615–631, 2020.

[51] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Anal-
ysis and design of the google congestion control for web real-
time communication (webrtc),” in Proceedings of the 7th In-
ternational Conference on Multimedia Systems, pp. 1–12,
2016.

[52] V. Arun and H. Balakrishnan, “Copa: Practical delay-based
congestion control for the internet,” in 15th {USENIX} Sym-
posium on Networked Systems Design and Implementation
({NSDI} 18), pp. 329–342, 2018.

[53] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby,
P. Levis, and K. Winstein, “Pantheon: the training ground
for internet congestion-control research,” in 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18),
pp. 731–743, 2018.

[54] L. Jia, T. Huang, and L. Sun, “Zixia: A reinforcement learn-
ing approach via adjusted ranking reward for internet conges-
tion control,” in ICC 2022-IEEE International Conference
on Communications, pp. 365–370, IEEE, 2022.

[55] H. Jiang, Q. Li, Y. Jiang, G. Shen, R. Sinnott, C. Tian, and
M. Xu, “When machine learning meets congestion control:
A survey and comparison,” Computer Networks, vol. 192,
p. 108033, 2021.

[56] J. Sun and M. Zukerman, “An adaptive neuron aqm for
a stable internet,” in NETWORKING 2007. Ad Hoc and
Sensor Networks, Wireless Networks, Next Generation In-
ternet: 6th International IFIP-TC6 Networking Conference,
Atlanta, GA, USA, May 14-18, 2007. Proceedings 6, pp. 844–
854, Springer, 2007.

[57] Q. Yan and Q. Lei, “A new active queue management algo-
rithm based on self-adaptive fuzzy neural-network pid con-
troller,” in 2011 International Conference on Internet Tech-
nology and Applications, pp. 1–4, IEEE, 2011.

[58] A. P. Silva, K. Obraczka, S. Burleigh, and C. M. Hirata,
“Smart congestion control for delay-and disruption toler-
ant networks,” in 2016 13th Annual IEEE International

Conference on Sensing, Communication, and Networking
(SECON), pp. 1–9, IEEE, 2016.

[59] S. Masoumzadeh, G. Taghizadeh, K. Meshgi, and S. Shiry,
“Deep blue: A fuzzy q-learning enhanced active queue
management scheme,” in 2009 International Conference on
Adaptive and Intelligent Systems, pp. 43–48, IEEE, 2009.

[60] A. P. Silva, K. Obraczka, S. Burleigh, and C. M. Hirata,
“Smart congestion control for delay-and disruption toler-
ant networks,” in 2016 13th Annual IEEE International
Conference on Sensing, Communication, and Networking
(SECON), pp. 1–9, IEEE, 2016.

[61] C. Zhou, D. Di, Q. Chen, and J. Guo, “An adaptive aqm
algorithm based on neuron reinforcement learning,” in 2009
IEEE International Conference on Control and Automation,
pp. 1342–1346, IEEE, 2009.

[62] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McK-
eown, and J. Rexford, “Pisces: A programmable, protocol-
independent software switch,” in Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, (New York,
NY, USA), p. 525–538, Association for Computing Machin-
ery, 2016.

[63] J. Gomez, E. F. Kfoury, J. Crichigno, and G. Srivastava,
“A survey on tcp enhancements using p4-programmable de-
vices,” Computer Networks, vol. 212, p. 109030, 2022.

[64] A. Feldmann, B. Chandrasekaran, S. Fathalli, and E. N.
Weyulu, “P4-enabled network-assisted congestion feedback:
A case for nacks,” in Proceedings of the 2019 Workshop on
Buffer Sizing, pp. 1–7, 2019.

[65] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore,
G. Antichi, and M. Wójcik, “Re-architecting datacenter net-
works and stacks for low latency and high performance,” in
Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, pp. 29–42, 2017.

[66] M. Kang, G. Yang, Y. Yoo, and C. Yoo, “Proactive con-
gestion avoidance for distributed deep learning,” Sensors,
vol. 21, no. 1, p. 174, 2020.

[67] S. Shahzad, E.-S. Jung, J. Chung, and R. Kettimuthu, “En-
hanced explicit congestion notification (eecn) in tcp with p4
programming,” in 2020 International Conference on Green
and Human Information Technology (ICGHIT), pp. 35–40,
2020.

[68] A. Laraba, J. François, S. R. Chowdhury, I. Chrisment,
and R. Boutaba, “Mitigating tcp protocol misuse with pro-
grammable data planes,” IEEE Transactions on Network and
Service Management, vol. 18, no. 1, pp. 760–774, 2021.

[69] A. Sacco, A. Angi, F. Esposito, and G. Marchetto, “Hint:
Supporting congestion control decisions with p4-driven in-
band network telemetry,” vol. 2023-June, p. 83 – 88, 2023.

[70] R. Kundel, J. Blendin, T. Viernickel, B. Koldehofe, and
R. Steinmetz, “P4-codel: Active queue management in pro-
grammable data planes,” in 2018 IEEE Conference on Net-
work Function Virtualization and Software Defined Networks
(NFV-SDN), pp. 1–4, IEEE, 2018.

[71] I. Kunze, M. Gunz, D. Saam, K. Wehrle, and J. Rüth,
“Tofino+ p4: A strong compound for aqm on high-speed
networks?,” in 2021 IFIP/IEEE International Symposium
on Integrated Network Management (IM), pp. 72–80, IEEE,
2021.

[72] R. Kundel, A. Rizk, J. Blendin, B. Koldehofe, R. Hark, and
R. Steinmetz, “P4-codel: Experiences on programmable data
plane hardware,” in ICC 2021-IEEE International Confer-
ence on Communications, pp. 1–6, IEEE, 2021.

[73] C. Papagianni and K. De Schepper, “Pi2 for p4: An active
queue management scheme for programmable data planes,”
in Proceedings of the 15th International Conference on
Emerging Networking Experiments and Technologies, pp. 84–
86, 2019.

[74] L. Toresson, “Making a packet-value based aqm on a pro-
grammable switch for resource-sharing and low latency,”
2021.

[75] N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krishna-
murthy, J. Nelson, and S. Peter, “Evaluating the power of
flexible packet processing for network resource allocation.,”
in NSDI, pp. 67–82, 2017.

[76] A. Mushtaq, R. Mittal, J. McCauley, M. Alizadeh, S. Rat-
nasamy, and S. Shenker, “Datacenter congestion control:
Identifying what is essential and making it practical,” ACM
SIGCOMM Computer Communication Review, vol. 49, no. 3,
pp. 32–38, 2019.

17



[77] M. Menth, H. Mostafaei, D. Merling, and M. Häberle, “Imple-
mentation and evaluation of activity-based congestion man-
agement using p4 (p4-abc),” Future Internet, vol. 11, no. 7,
p. 159, 2019.

[78] A. G. Alcoz, A. Dietmüller, and L. Vanbever, “Sp-pifo: Ap-
proximating push-in first-out behaviors using strict-priority
queues.,” in NSDI, pp. 59–76, 2020.

[79] C. Cascone, N. Bonelli, L. Bianchi, A. Capone, and B. Sansò,
“Towards approximate fair bandwidth sharing via dynamic
priority queuing,” in 2017 IEEE International Symposium on
Local and Metropolitan Area Networks (LANMAN), pp. 1–6,
IEEE, 2017.

[80] B. Turkovic, S. Biswal, A. Vijay, A. Hüfner, and F. Kuipers,
“P4qos: Qos-based packet processing with p4,” in 2021
IEEE 7th International Conference on Network Softwariza-
tion (NetSoft), pp. 216–220, IEEE, 2021.

[81] T. V. Doan, T. Scheinert, O. Lhamo, J. A. Cabrera, F. H. P.
Fitzek, and G. T. Nguyen, “Interplay between priority queues
and controlled delay in programmable data planes,” p. 64 –
71, 2023.

[82] C. Chen, H.-C. Fang, and M. S. Iqbal, “Qostcp: Provide
consistent rate guarantees to tcp flows in software defined
networks,” in ICC 2020-2020 IEEE International Conference
on Communications (ICC), pp. 1–6, IEEE, 2020.

[83] S. Sengupta, H. Kim, and J. Rexford, “Continuous in-
network round-trip time monitoring,” in Proceedings of the
ACM SIGCOMM 2022 Conference, SIGCOMM ’22, (New
York, NY, USA), p. 473–485, Association for Computing Ma-
chinery, 2022.

[84] E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Srivastava,
“Dynamic router’s buffer sizing using passive measurements
and p4 programmable switches,” in 2021 IEEE Global Com-
munications Conference (GLOBECOM), pp. 01–06, 2021.

[85] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McK-
eown, “Reproducible network experiments using container-
based emulation,” in Proceedings of the 8th international
conference on Emerging networking experiments and tech-
nologies, pp. 253–264, 2012.

[86] J. Ali, R. H. Jhaveri, M. Alswailim, and B.-h. Roh, “Es-
calb: An effective slave controller allocation-based load bal-
ancing scheme for multi-domain sdn-enabled-iot networks,”
Journal of King Saud University-Computer and Information
Sciences, vol. 35, no. 6, p. 101566, 2023.

[87] E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Srivastava,
“Dynamic Router’s Buffer Sizing using Passive Measurements
and P4 Programmable Switches,” in IEEE Global Comm.
Conf. GLOBECOM, 2021.

[88] S. Hemminger et al., “Network emulation with netem,” in
Linux conf au, vol. 5, p. 2005, Citeseer, 2005.

[89] K. Chard, S. Tuecke, and I. Foster, “Globus: Recent enhance-
ments and future plans,” in Proc. XSEDE16 Conf. Diversity,
Big Data, and Science at Scale, pp. 1–8, 2016.

[90] N. S. Nise, Control systems engineering. John Wiley & Sons,
2020.

[91] M. T. Hagan and H. B. Demuth, “Neural networks for con-
trol,” in Proc. ACC 1999, vol. 3, pp. 1642–1656, IEEE, 1999.

[92] B. Kamanditya and B. Kusumoputro, “Elman recurrent neu-
ral networks based direct inverse control for quadrotor at-
titude and altitude control,” in 2020 Int. Conf. Intelligent
Eng. and Management, pp. 39–43, 2020.

[93] B. Y. Suprapto and B. Kusumoputro, “A comparison of back
propagation neural network and elman recurrent neural net-
work algorithms on altitude control of heavy-lift hexacopter
based on direct inverse control,” in 2018 Int. Conf. ICECOS,
pp. 79–84, 2018.

[94] H. Alshareefi, C. Lupu, S. Olteanu, and L. Ismail, “Design
and simulation of adaptive neuro-fuzzy inference system in-
verse controller for a coupled tank system,” in 2021 10th In-
ternational Conference on ENERGY and ENVIRONMENT
(CIEM), pp. 1–5, 2021.

[95] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and
machine learning, vol. 4. Springer, 2006.

[96] S. Tarbouriech and M. Turner, “Anti-windup design: an
overview of some recent advances and open problems,” IET
control theory & applications, vol. 3, no. 1, pp. 1–19, 2009.

[97] O. Lamrabet, N. E. Fezazi, F. E. Haoussi, and E. H. Tissir,
“Using input delay approach for synthesizing an anti-windup
compensator to aqm in tcp/ip networks,” in 2017 Interna-
tional Conference on Advanced Technologies for Signal and

Image Processing (ATSIP), pp. 1–6, 2017.
[98] K. M. Passino, Biomimicry for optimization, control, and

automation. Springer Science & Business Media, 2005.
[99] A. Jayachitra and R. Vinodha, “Genetic algorithm based pid

controller tuning approach for continuous stirred tank reac-
tor,” Advances in Artificial Intelligence, vol. 2014, pp. 9–9,
2015.

[100] A. Mirzal, S. Yoshii, and M. Furukawa, “Pid parameters
optimization by using genetic algorithm,” arXiv preprint
arXiv:1204.0885, 2012.

[101] J. Zhao and M. Xi, “Self-tuning of pid parameters based on
adaptive genetic algorithm,” in IOP conference series: mate-
rials science and engineering, vol. 782, p. 042028, IOP Pub-
lishing, 2020.

[102] A. F. Gad, “Pygad: An intuitive genetic algorithm python
library,” 2021.

[103] P. L. Consortium et al., “P416 language specification,” Ver-
sion, vol. 1, no. 3, p. 8, 2018.

[104] X. Chen, H. Kim, J. M. Aman, W. Chang, M. Lee, and
J. Rexford, “Measuring TCP round-trip time in the data
plane,” in Proc. Workshop Secure Programmable Net Infras-
tructure, pp. 35–41, 2020.

[105] C. Lee, C. Park, K. Jang, S. Moon, and D. Han, “Accurate
latency-based congestion feedback for datacenters,” in 2015
USENIX Annual Technical Conference (USENIX ATC 15),
pp. 403–415, 2015.

[106] F. Chollet et al., “Keras,” 2015.
[107] M. A. et. al, “TensorFlow: Large-scale machine learning on

heterogeneous systems,” 2015. Software available from ten-
sorflow.org.

[108] A. Arfeen, K. Pawlikowski, D. McNickle, and A. Willig, “The
role of the weibull distribution in modelling traffic in internet
access and backbone core networks,” Journal of network and
computer applications, vol. 141, pp. 1–22, 2019.

[109] A. Varet and N. Larrieu, “Realistic network traffic profile
generation: Theory and practice,” Computer and Informa-
tion Science, vol. 7, no. 2, pp. pp–1, 2014.

18


	Introduction
	Background and related work
	Software-defined networks
	Programmable data plane
	Science DMZ
	Rate control
	Legacy network-assisted rate control
	Legacy end-to-end rate control
	Learning-based rate control
	Rate control supported by programmable data planes


	Materials and methods
	Experimental testbed
	Machine learning control system architecture
	Tuning of controller parameters
	Data collection and computation of network variables
	Rate calculation
	RTT calculation
	Queuing delay calculation
	Active flows computation

	ANN model training
	Control law implementation
	Comparison scenario

	Results
	Controller parameters
	Controller performance oriented test with multiple long flows in campus network
	DTN's performance oriented test with long flows in campus network
	DTN's performance with multiple streams in campus network
	Performance of short flows coexisting with long flows in the bottleneck

	Conclusion
	Acknowledgement
	Appendix

