An Overview of P4 Programmable Switches and Applications to Cybersecurity and Networks

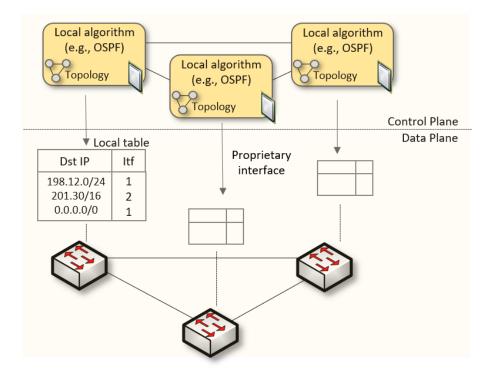
Jorge Crichigno College of Engineering and Computing, University of South Carolina jcrichigno@cec.sc.edu http://ce.sc.edu/cyberinfra

IEEE International Conference on Telecommunications and Signal Processing (TSP)

Online July 12-14, 2023

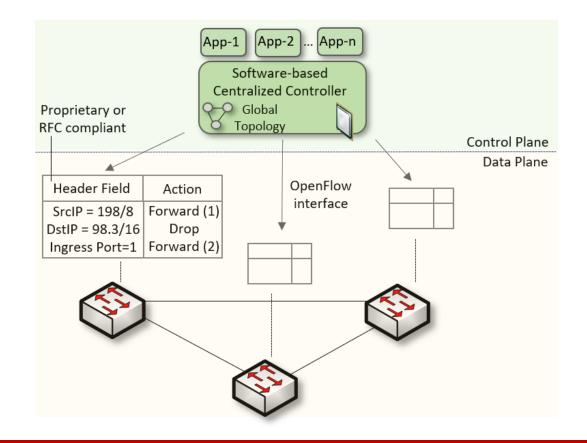
UNIVERSITY OF

SOLTH(ARC

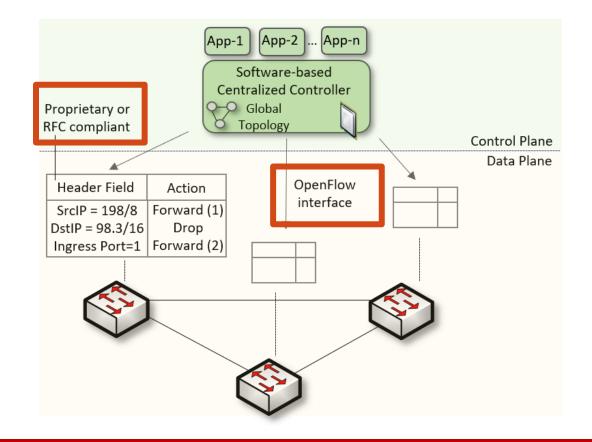

Agenda

- Introduction to P4 Programmable Switches
 - Legacy devices and Software-defined Networking (SDN)
 - Programmable data plane (PDP) switches
- Dynamic Router's Buffer Sizing using P4 Switches
 - Buffer sizing problem
 - A passive application using P4 switches
- DGA Family Classification using DNS Deep Packet Inspection on P4 Switches
 - > Domain Generation Algorithms (DGA) used by malware's command and control (C2)
 - > An application for detection and classification of DGAs using P4 switches
- Conclusion

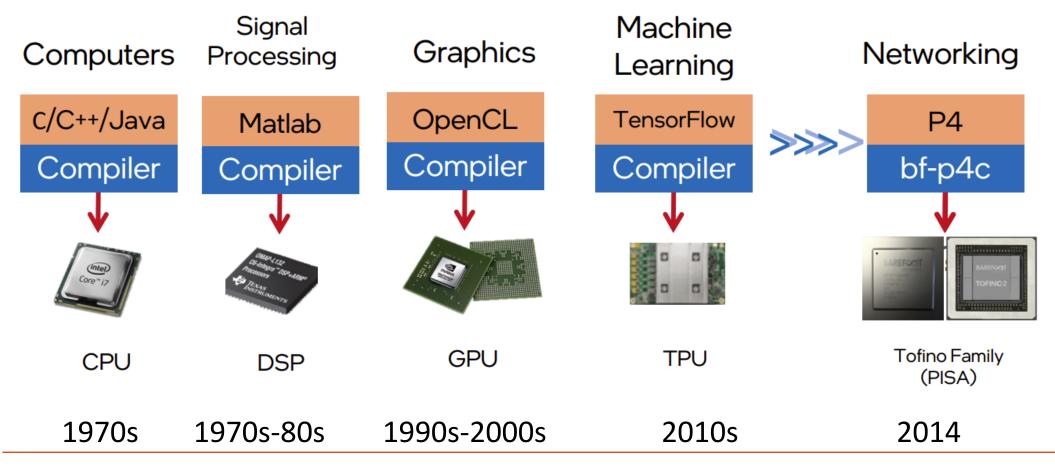
Introduction to P4 Programmable Switches


Traditional (Legacy) Networking

- Since the explosive growth of the Internet in the 1990s, the networking industry has been dominated by closed and proprietary hardware and software
- The interface between control and data planes has been historically proprietary
 - > Vendor dependence: slow product cycles of vendor equipment, no innovation from **end programmers**
 - > A router is a monolithic unit built and internally accessed by the manufacturer only

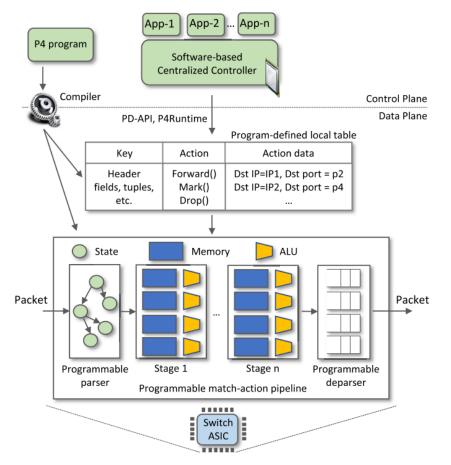

Software-Defined Networking (SDN)

- Protocol ossification has been challenged first by SDN
- SDN (1) explicitly separates the control and data planes, and (2) enables the control plane intelligence to be implemented as a software outside the switches by **end programmers**
- The function of populating the forwarding table is now performed by the controller


SDN Limitation

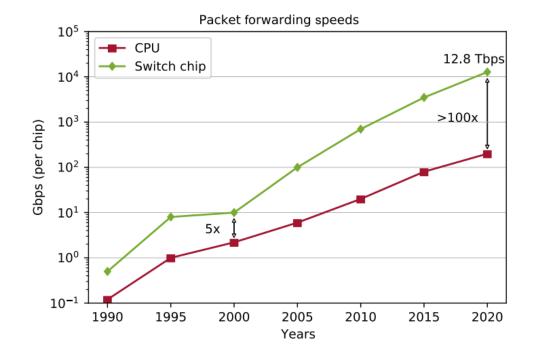
- SDN is limited to the OpenFlow specifications
 - Forwarding rules are based on a fixed number of protocols / header fields (e.g., IP, Ethernet)
- The data plane is designed with fixed functions (hard-coded)
 - Functions are implemented by the chip designer

Can the Data Plane be Programmable?


• Evolution of the computing industry

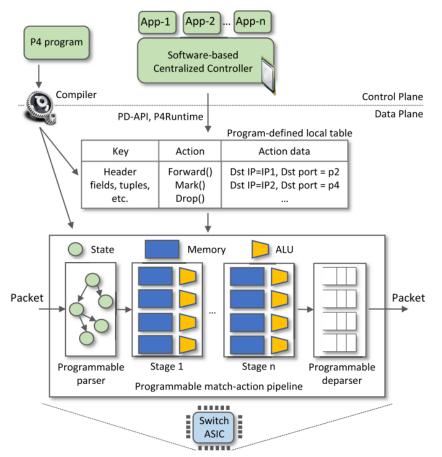
1. Vladimir Gurevich, "Introduction to P4 and Data Plane Programmability," <u>https://tinyurl.com/2p978tm9</u>.

P4 Programmable Switches


- P4¹ programmable switches permit **end programmers** to program the data plane
 - Define and parse new protocols
 - Customize packet processing functions
 - Measure events occurring in the data plane with high precision
 - Offload applications to the data plane

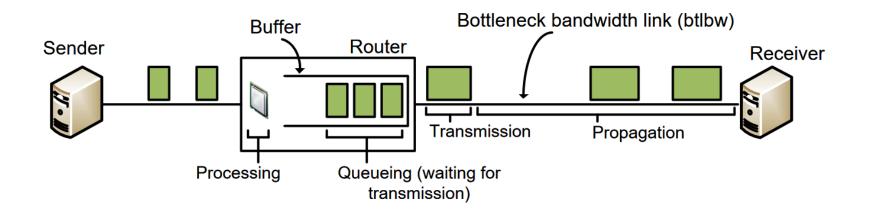
1. P4 stands for stands for Programming Protocol-independent Packet Processors

P4 Programmable Switches


- P4¹ programmable switches permit **end programmers** to program the data plane
 - Define and parse new protocols
 - Customize packet processing functions
 - Measure events occurring in the data plane with high precision
 - Offload applications to the data plane

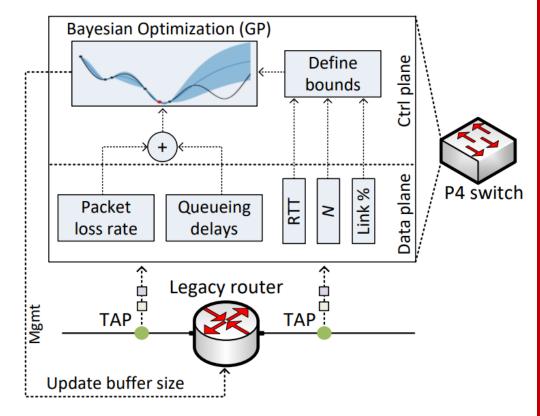
Reproduced from N. McKeown. Creating an End-to-End Programming Model for Packet Forwarding. Available: <u>https://www.youtube.com/watch?v=fiBuao6YZI0&t=631s</u>

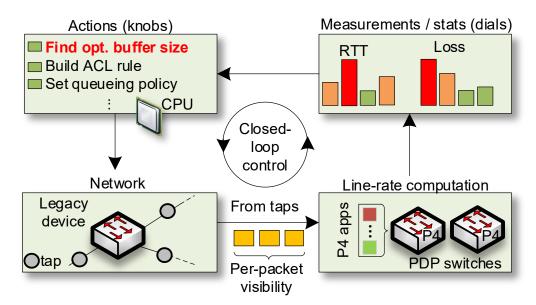
Generalized Forwarding: Match + Action


- Each switch contains table/s
 - Match bits in arriving packet (match phase)
 - Take action Many header fields can determine the action (action phase)
 - Drop
 - Copy
 - Modify
 - Forward (destination-based forwarding is just a particular case)
 - ...

Dynamic Router's Buffer Sizing using Passive Measurements and P4 Programmable Switches

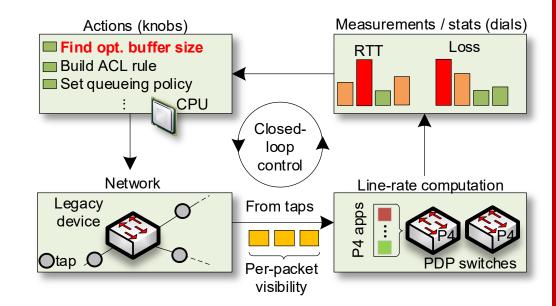
Buffer Sizing Problem


- Routers and switches are designed to include packet buffers
- The size of buffers imposes significant implications on the performance of the network
- If the buffer allocated to an interface is
 - Very large, then packets may experience excessive delay ("bufferbloat")
 - > Very small, then there may be a large packet drop rate and low link utilization

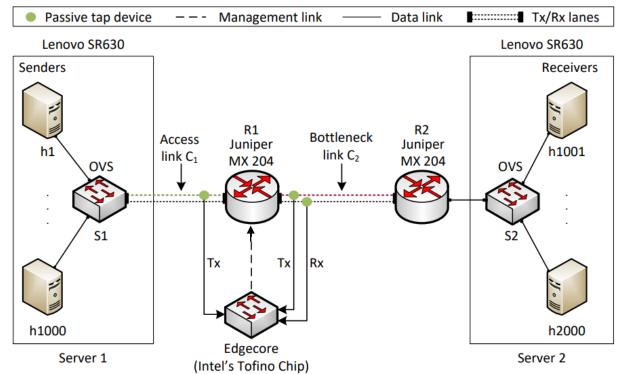

Buffer Sizing Problem

- General rule-of-thumb in the 90s was that the buffer size must equal the Bandwidthdelay product (BDP)
 - Buffer = C * RTT
 - C is the capacity of the port and RTT is the average round-trip time (RTT)
- The "Stanford rule" corrected the previous rule
 - > Buffer = $(C * RTT)/(\sqrt{N})$
 - > N is the number of long (persistent over time) flows traversing the port
- Operator hardcodes the buffer size based on the typical traffic pattern

- The buffer size is dynamically modified
- A P4 switch is deployed passively to compute:
 - Number of long flows
 - Average RTT
 - Queueing delays
 - Packet loss rates
- The control plane sequentially searches for a buffer that minimizes delays and losses
- The searching algorithm is Bayesian Optimization (BO) with Gaussian Processes¹



- The buffer size is dynamically modified
- A P4 switch is deployed passively to compute:
 - Number of long flows
 - Average RTT
 - Queueing delays
 - Packet loss rates
- The control plane sequentially searches for a buffer that minimizes delays and losses
- The searching algorithm is Bayesian Optimization (BO) with Gaussian Processes

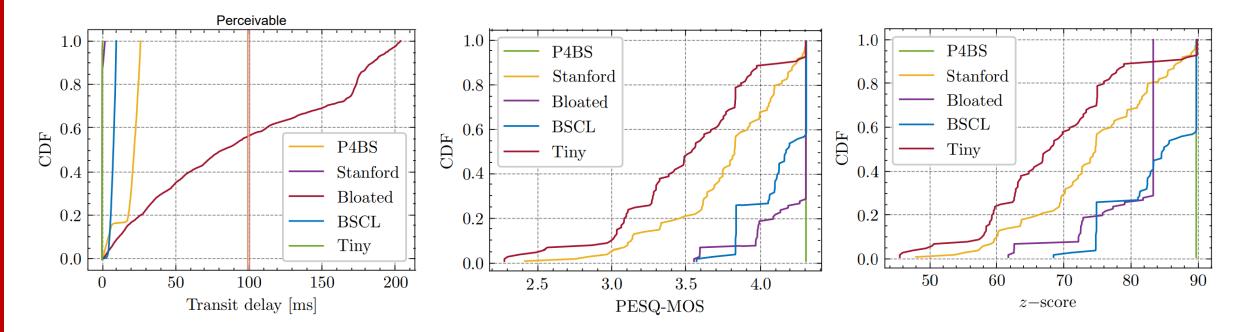

Closed-loop control system

- Note that the system incorporates
 - Customized packet processing
 - Nanosecond resolution measurements
 - Per-packet visibility
- The P4 apps run on the PDP chip at line rate

Closed-loop control system

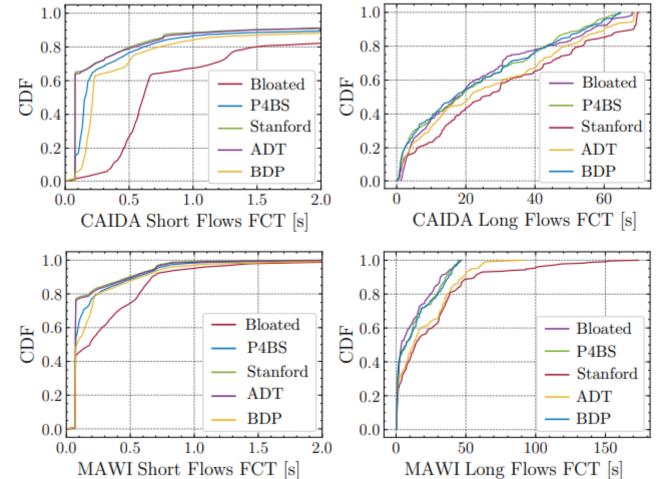
- 1000 senders
- P4 switch: Wedge100BF-32X with Intel's Tofino ASIC
- Legacy router: Juniper router MX-204
- Different congestion control algorithms
- Access network:
 - \succ C₁ = 40Gbps, C₂ = 1Gbps
- Core network:
 - $> C_1 = 10$ Gbps, $C_2 = 2.5$ Gbps

Results


- Combined metric accounting for packet loss and delay [0, 1] (the lower, the better)
- Top heatmaps: access network
- Bottom heatmaps: core network
- The Mixed scenario combines multiple congestion control algorithms¹

	Tiny					Stanford BSCL					BDP Bloated						ADT					P4BS			- 0.5				
Vegas	0.13	0.24	0.43	0.78	0.08	0.20	0.39	0.79	0.01	0.01	0.29	0.66	0.01	0.03	0.20	0.45	0.20	0.28	0.33	0.42	0.15	0.25	0.46	0.73	0.00	0.01	0.20	0.30	
NewReno	0.13	0.23	0.48	0.99	0.09	0.19	0.43	0.98	0.05	0.09	0.33	0.86	0.06	0.09	0.25	0.55	0.47	0.47	0.49	0.56	0.11	0.21	0.47	0.95	0.09	0.08	0.23	0.38	- 0.4
Cubic	0.08	0.13	0.34	0.79	0.03	0.09	0.33	0.78	0.05	0.08	0.25	0.68	0.07	0.09	0.21	0.47	0.48	0.50	0.56	0.65	0.08	0.12	0.46	0.72	0.03	0.07	0.19	0.34	- 0.3
Illinois	0.44	1.00	1.00	1.00	0.14	0.34	1.00	1.00	0.06	0.15	0.85	1.00	0.09	0.14	0.41	1.00	0.46	0.49	0.51	0.53	0.88	0.93	1.00	1.00	0.06	0.16	0.21	0.42	- 0.2
BBRv2	0.23	0.30	0.56	1.00	0.19	0.27	0.62	0.95	0.13	0.18	0.37	0.90	0.16	0.18	0.31	0.75	0.35	0.14	0.26	0.34	0.28	0.38	0.71	1.00	0.07	0.08	0.15	0.33	- 0.1
Mixed	0.23	0.46	1.00	1.00	0.16	0.34	0.93	0.93	0.14	0.22	0.53	0.70	0.12	0.18	0.47	0.71	0.49	0.51	0.54	0.66	0.16	0.41	0.49	0.63	0.05	0.12	0.19	0.30	_ 0.0
Vegas	0.06	0.10	0.18	0.27	0.02	0.09	0.16	0.27	0.02	0.03	0.07	0.22	0.02	0.03	0.08	0.20	0.17	0.20	0.28	0.47	0.04	0.16	0.29	0.43	0.03	0.07	0.12	0.24	- 1.0
NewReno	0.06	0.11	0.19	0.31	0.05	0.09	0.16	0.32	0.04	0.06	0.13	0.28	0.06	0.07	0.12	0.23	0.46	0.48	0.53	0.60	0.12	0.19	0.31	0.43	0.01	0.10	0.12	0.31	- 0.8
Cubic	0.06	0.08	0.16	0.28	0.04	0.06	0.13	0.28	0.06	0.06	0.13	0.26	0.09	0.08	0.12	0.21	0.50	0.52	0.57	0.68	0.11	0.16	0.29	0.44	0.01	0.02	0.10	0.25	- 0.6
Illinois	0.33	0.52	1.00	1.00	0.10	0.25	1.00	1.00	0.04	0.13	0.80	1.00	0.07	0.11	0.41	1.00	0.48	0.50	0.53	0.61	0.37	0.73	1.00	1.00	0.08	0.11	0.35	0.68	- 0.4
BBRv2	0.18	0.16	0.31	1.00	0.16	0.18	0.31	1.00	0.09	0.16	0.23	1.00	0.10	0.13	0.23	0.85	0.39	0.44	0.40	0.52	0.23	0.32	0.56	1.00	0.11	0.09	0.30	0.51	
Mixed	0.11	0.13	0.67	1.00	0.10	0.13	0.63	1.00	0.07	0.10	0.42	0.88	0.08	0.09	0.39	0.69	0.43	0.44	0.45	0.53	0.20	0.30	0.61	1.00	0.04	0.05	0.29	0.59	- 0.2
	50	100	250	500	50	100	250	500	50	100	250	500	50	100	250	500	50	100	250	500	50	100	250	500	50	100	250	500	- 0.0
	N			N N			Ν					Ν			Ν			N			N								

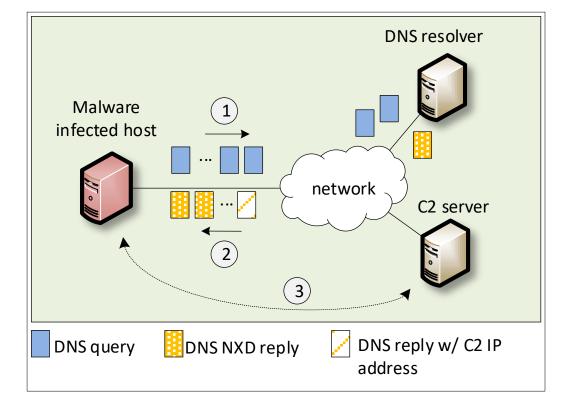
¹ Mishra et al. "The great Internet TCP congestion control census," ACM on Measurement and Analysis of Computing Systems, 2019


Results

- 100 VoIP calls playing 20 reference speech samples (G.711.a)
- The Perceptual Evaluation of Speech Quality (PESQ) compares an error-free audio signal to a degraded one (the higher, the better)
- The z-score considers both the delay and the PESQ (the higher, the better)

Results

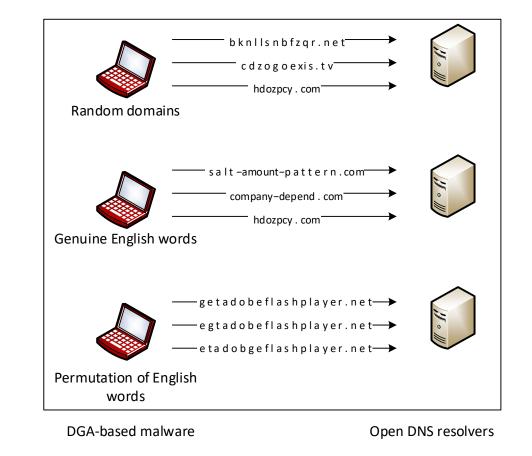
- These results use real traffic traces from CAIDA¹ and MAWI²
- They include long and short flows
- P4BS found a balance such that:
 - The FCT of short flows is close to that of the Stanford buffer
 - The FCT of long flows is close to that of the bloated buffer


¹Center for Applied Internet Data Analysis (CAIDA). <u>https://www.caida.org/</u> ²MAWI Working Group Traffic Archive. <u>https://mawi.wide.ad.jp/mawi/</u> DGA Family Classification using DNS Deep Packet Inspection on P4 Programmable Switches

Introduction to DGAs

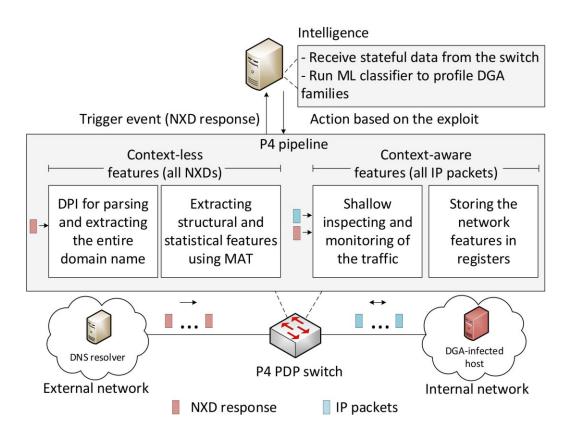
- Attackers often use a Command and Control (C2) server to establish communication between infected host/s and bot master
- Domain Generation Algorithms (DGAs) are the *de facto* dynamic C2 communication method used by malware, including botnets, ransomware, and many others

Introduction to DGAs

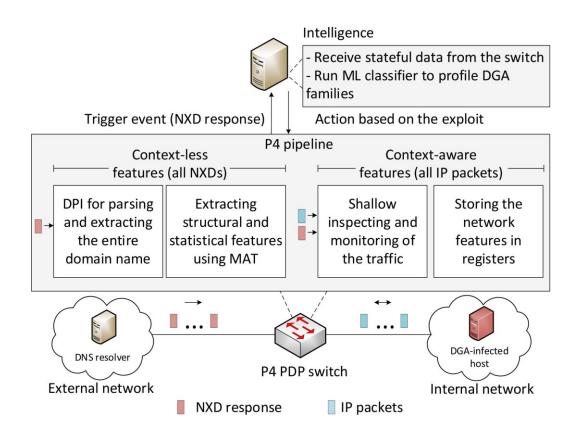

- DGAs evade firewall controls by frequently changing the domain name selected from a large pool of candidates
- The malware makes DNS queries to resolve the IP addresses of these generated domains
- Only a few of these queries will be successful; most of them will result in Non-Existent Domain (NXD) responses

(1) DNS queries. (2) (NXD) replies. (3) Eventually, a query for the actual domain is sent and malware-C2 communication starts.

Introduction to DGAs


- DGAs evade firewall controls by frequently changing the domain name selected from a large pool of candidates
- The malware makes DNS queries to resolve the IP addresses of these generated domains
- Only a few of these queries will be successful; most of them will result in Non-Existent Domain (NXD) responses

Existing Mitigation Techniques


- Context-aware approaches analyze the network traffic behavior to fingerprint DGAs
 - Slow since they typically analyze batches of traffic offline
- Context-less approaches analyze domain names (DNS-based) via ML models
 - > The use of a general-purpose CPU/GPU may create a bottleneck due to high traffic volume
- There is a need for a system that
 - uses both context-aware and context-less features
 - detects and classifies DGAs based on the family (Trojan, backdoor, etc.)

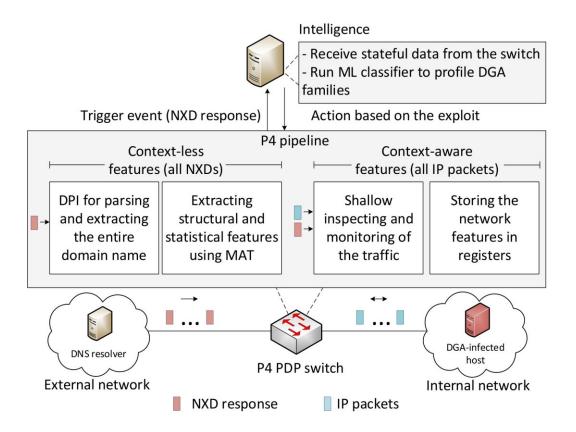
- The P4 PDP switch collects and stores the context-aware (traffic) features of the hosts
 - Number of IP addresses contacted
 - Inter-arrival Time (IAT) between consecutive IP packets
 - Number of DNS requests made
 - Time it takes for the first NXD response to arrive
 - IAT between subsequent NXD responses¹

¹A. AlSabeh, K. Friday, J. Crichigno, E. Bou-Harb, "Effective DGA Family Classification using a Hybrid Shallow and Deep Packet Inspection Technique on P4 Programmable Switches", IEEE International Conference on Communications (ICC), Rome, Italy, June 2023.

- When an NXD response is received, the switch performs DPI on the domain name to extract context-less (domain) features
 - The switch sends the collected features to the control plane
 - The control plane runs the intelligence to classify the DGA family and initiate the appropriate incidence response¹

¹A. AlSabeh, K. Friday, J. Crichigno, E. Bou-Harb, "Effective DGA Family Classification using a Hybrid Shallow and Deep Packet Inspection Technique on P4 Programmable Switches", IEEE International Conference on Communications (ICC), Rome, Italy, June 2023.

- The scheme uses the bigram technique for **context-less (domain)** analysis:
 - It computes the bigram of the domain name; a bigram model may suffice to predict whether a domain name is a legitimate human readable domain

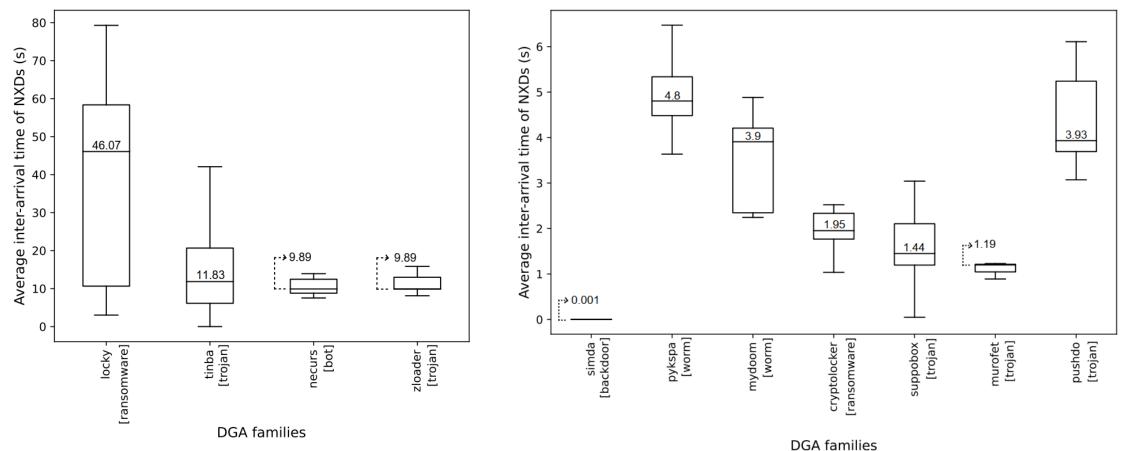

score
$$(d) = \sum_{\forall \text{ subdomain } s \in d} \left(\sum_{\forall \text{ bigram } b \in s} f_s^b \right)$$

Where f_s^b is the frequency of the bigram b in the subdomain *s*

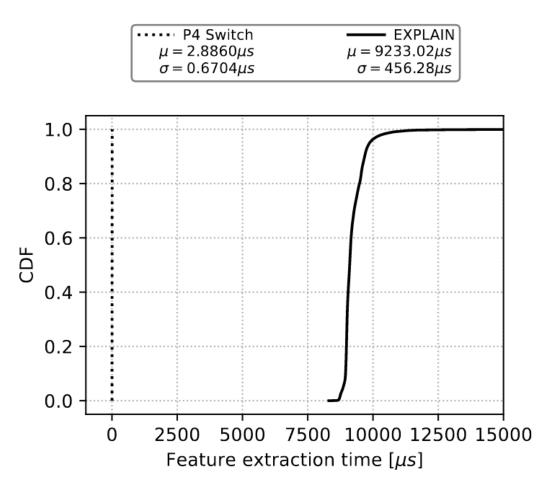
- The frequency value of a bigram b is pre-computed and stored in a Match-Action Table (MAT)
- The lower the score, the more random the domain name
- Example: the bigrams of "google" are: "\$g", "go", "oo", "og", "gl", "le", "e\$"

¹A. AlSabeh, K. Friday, J. Crichigno, E. Bou-Harb, "Effective DGA Family Classification using a Hybrid Shallow and Deep Packet Inspection Technique on P4 Programmable Switches", IEEE International Conference on Communications (ICC), Rome, Italy, June 2023.

- Note that the system incorporates
 - Customized packet parsing and processing
 - Fine-grained measurements
 - Per-packet traffic inspection
 - Stateful memory processing at line rate


- Experimental setup
 - Hundreds of GB of malware samples; 1,311 samples containing 50 DGA families¹
 - We used samples that receive NXD responses containing domain names generated by DGAs¹
 - > The collected dataset was used to train ML models offline on a general-purpose CPU
 - ➢ 80% of data was used for training and 20% for testing

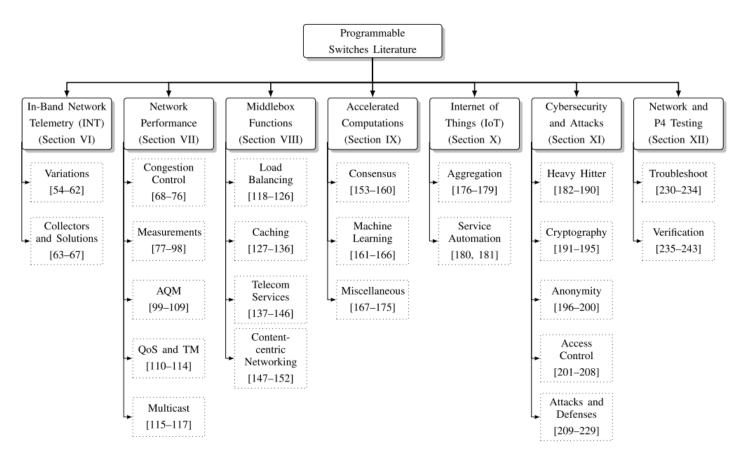
- The evaluation reports the accuracy (Acc), F1 score, and Precision (Prec) of different ML classifiers during the first eight NXD responses
 - > The Random Forest (RF) model performed best
 - The Accuracy (Acc) starts at 92% from the first NXD response received and reaches 98% by the 8th NXD response


NXD count		RF			SVM			MLP			LR		GNB			
	Acc	F1	Prec	Acc	F1	Prec										
NXD 1	0.923	0.907	0.902	0.872	0.856	0.847	0.87	0.843	0.829	0.716	0.679	0.667	0.726	0.688	0.688	
NXD 2	0.951	0.943	0.943	0.899	0.893	0.893	0.904	0.897	0.9	0.76	0.741	0.747	0.727	0.701	0.707	
NXD 3	0.964	0.958	0.964	0.918	0.913	0.914	0.924	0.914	0.912	0.767	0.74	0.743	0.649	0.668	0.732	
NXD 4	0.966	0.961	0.963	0.906	0.905	0.912	0.916	0.909	0.915	0.79	0.765	0.758	0.633	0.635	0.692	
NXD 5	0.97	0.966	0.967	0.915	0.91	0.911	0.919	0.91	0.907	0.77	0.735	0.746	0.604	0.615	0.689	
NXD 6	0.975	0.972	0.973	0.914	0.911	0.912	0.922	0.915	0.918	0.794	0.767	0.783	0.617	0.627	0.716	
NXD 7	0.977	0.976	0.979	0.92	0.915	0.915	0.929	0.924	0.93	0.799	0.771	0.78	0.61	0.613	0.714	
NXD 8	0.98	0.979	0.981	0.917	0.912	0.914	0.93	0.923	0.921	0.764	0.73	0.735	0.631	0.618	0.65	

RF: Random Forest; SVM: Support Vector Machine; MLP: Multilayer perceptron; LR: Logistic Regression; GNB: Gaussian Naive Bayes

- The scheme can accurately characterize traffic flows (context-aware features)
- Interarrival times between NXDs of DGA families with the largest number of samples

- Comparison of the feature extraction time of the proposed approach vs EXPLAIN¹
 - The proposed approach runs on the switch data plane
 - EXPLAIN runs on a general-purposed CPU with 64 GB RAM, 2.9 GHz processor with eight cores


¹A. Drichel, N. Faerber, U. Meyer, "First step towards explainable DGA multiclass classification," in the 16th International Conference on Availability, Reliability and Security, pp. 1–13, 2021.

Conclusion

- This presentation briefly described the evolution of networking devices, from legacy (monolithic) units to SDN to P4 PDP switches
- It discussed the capabilities offered by PDP switches to enable end programmers to produce fine-grained measurements, customized parsers and functions, and linerate computation
- Such capabilities were applied to solve two different problems
 - Buffer sizing problem, where programmability was enabled in non-programmable devices, to solve the buffer sizing problem via a passive deployment of P4 switches
 - DGA problem, where the P4 application was able to detect and classify DGAs using a combination of DNS deep packet inspection and traffic characterization

Conclusion

 The previous two are only a couple of examples of the impressive work produced by the P4 community, which suggests that deep programmability (switches, smart NICs, etc.) will continue in the near future¹

¹E. Kfoury, J. Crichigno, E. Bou-Harb, "An Exhaustive Survey on P4 Programmable Data Plane Switches: Taxonomy, Applications, Challenges, and Future Trends", IEEE Access, June 2021.

Contact Information

Jorge Crichigno College of Engineering and Computing, University of South Carolina jcrichigno@cec.sc.edu http://ce.sc.edu/cyberinfra

UNIVERSITY OF SOUTH CAROLINA