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Non-programmable Networks
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• Since the explosive growth of the Internet in the 1990s, the networking industry has

been dominated by closed and proprietary hardware and software

• The interface between control and data planes has been historically proprietary
➢ Vendor dependence: slow product cycles of vendor equipment, no innovation from network owners

➢ A router is a monolithic unit built and internally accessed by the manufacturer only



Software-defined Networking (SDN)
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• Protocol ossification has been challenged first by SDN

• SDN explicitly separates the control and data planes, and implements the control plane

intelligence as a software outside the switches

• The function of populating the forwarding table is now performed by the controller



SDN Limitation
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• SDN is limited to the OpenFlow specifications
➢ Forwarding rules are based on a fixed number of protocols / header fields (e.g., IP, Ethernet)

• The data plane is designed with fixed functions (hard-coded)
➢ Functions are implemented by the chip designer



P4 Programmable Switches
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• P41 programmable switches permit a programmer to program the data plane
➢ Define and parse new protocols

➢ Customize packet processing functions

➢ Measure events occurring in the data plane with

high precision

➢ Offload applications to the data plane

• Programmable Data Planes (PDPs)

1. P4 stands for stands for Programming Protocol-independent Packet Processors



PDPs Applications
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Performance Issues in Networks Today
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• Three main issues affecting the performance of networks today:

1. Networks are dominated by under/over buffered routers/switches

Router

Queue

Large/small buffer
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• Three main issues affecting the performance of networks today:

1. Networks are dominated by under/over buffered routers/switches

2. Routers/switches configured with best-effort quality of service (heterogeneous traffic being mixed

without any QoS measures)

3. CPU-based middlebox servers inducing latency and jitter and not keeping up with high traffic

rates

Router

Queue

Large/small buffer

Router

Queue 1
Heterogeneous 

traffic mixed

Queue n

Server (CPU) 

processing packets
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Performance Problem #1: 
Under/over Buffered Networks
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Buffer Size Problem

12

• Routers and switches have a memory referred to as packet buffer

• The size of the buffer impacts the network performance

➢ Large buffers → TCP keeps the buffer full → excessive delays, Bufferbloat

Buffer
Bottleneck link

Router

200ms

Receivers
Delay > 200ms

Senders



Buffer Size Problem

13

• Routers and switches have a memory referred to as packet buffer

• The size of the buffer impacts the network performance

➢ Large buffers → TCP keeps the buffer full → excessive delays, Bufferbloat

➢ Small buffers → packet drops → sender slows down → low link utilization

Buffer
Bottleneck link

1ms

Drop

Receivers
Delay ~ 1ms

Router

Senders



Buffer Sizing Rules: BDP
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• General rule-of-thumb1: bandwidth-delay product (older rule)

➢ 𝐵 = 𝐶 ⋅ 𝑅𝑇𝑇
➢ 𝐶 is the capacity of the link and 𝑅𝑇𝑇 is the average round-trip time

• Example: 𝐶 = 1𝐺𝑏𝑝𝑠 with 𝑅𝑇𝑇 = 50𝑚𝑠→ 𝐵 = 6MB

Bottleneck link

6MB
Senders Receivers

Router

1𝐺𝑏𝑝𝑠

𝑅𝑇𝑇 = 50𝑚𝑠

1. C. Villamizar and C. Song. High performance TCP in ansnet. ACM Computer Communications Review, 24(5):45–60, 1994 199



Buffer Sizing Rules: Stanford

15

• Stanford rule1: smaller buffers are enough to get full link utilization

➢ 𝐵 =
𝐶 ∗𝑅𝑇𝑇

√𝑁

➢ 𝑁 is the number of long (persistent over time) flows traversing the link

• Example: 𝐶 = 1𝐺𝑏𝑝𝑠 with 𝑅𝑇𝑇 = 50𝑚𝑠 and 100 flows → 𝐵 = 0.6MB

Bottleneck link

Receivers

Router

1𝐺𝑏𝑝𝑠

𝑅𝑇𝑇 = 50𝑚𝑠

𝑁 = 100

0.6MB

1. Appenzeller, Guido, Isaac Keslassy, and Nick McKeown. "Sizing router buffers." ACM SIGCOMM Computer Communication Review 34.4 (2004)

Senders



Buffer Size Rules
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• Problem: 𝑅𝑇𝑇, 𝑁, and other metrics, continuously change over time

• Most networks today use very large buffers1

• Questions:

➢ Is it possible to change the buffer size dynamically?

➢ How to identify the small number of long flows from all the flows?

➢ How to calculate the average RTT from millions of flows at line rate?

➢ Are the existing buffer sizes adequate for all traffic scenarios?

1. McKeown, Nick, Guido Appenzeller, and Isaac Keslassy. "Sizing router buffers (redux)." ACM SIGCOMM Computer Communication Review (2019)
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(𝑁)

Proposed System

• The buffer size is dynamically modified and set to 𝐵 =
𝐶 ∗𝑅𝑇𝑇

√𝑁
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Proposed System
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Proposed System

• The buffer size is dynamically modified and set to 𝐵 =
𝐶 ∗𝑅𝑇𝑇

√𝑁

1. Copy of the traffic is forwarded to a programmable switch using TAPs

2. The programmable switch identifies and track buffer sizing metrics

3. The programmable switch modifies the legacy router’s buffer size

(𝑁)

𝐶 ∗ 𝑅𝑇𝑇

√𝑁
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RTT Calculation

• Relate the TCP sequence (SEQ) and acknowledgement (ACK) numbers1

• The RTT is calculated as the time difference between the two packets

1Chen, Xiaoqi, et al. "Measuring TCP round-trip time in the data plane." Workshop on Secure Programmable Network Infrastructure. 2020.
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• The Count-Min Sketch (CMS) is used to store the counts of the flows

Long Flows Counting
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• The Count-Min Sketch (CMS) is used to store the counts of the flows

• If the minimum exceeds a predefined threshold, the flow is identified as long

Long Flows Counting
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• The Count-Min Sketch (CMS) is used to store the counts of the flows

• If the minimum exceeds a predefined threshold, the flow is identified as long

• Table timeouts are used to evict flows

Long Flows Counting
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• Topology and experimental setup

• Different congestion control

algorithms1

• iPerf3

• Default buffer size of the router is

200ms2

• Wedge100BF-32X, ASIC chip

(Intel’s Tofino)

Implementation and Evaluation

1Mishra et al. “The great Internet TCP congestion control census,” ACM on Measurement and Analysis of Computing Systems, 2019

2N. McKeown et al. “Sizing router buffers (redux),” ACM SIGCOMM Computer Communication Review, vol. 49, no. 5
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• Two scenarios are considered:

1. Default buffer size on the router, without any dynamic modification

2. P4 switch measures and modifies the buffer size of the router

Implementation and Evaluation
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• Various number of long flows, CCAs, and propagation delays

• Average link utilization

• Average fairness index

• Average RTT

Results
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• Performance of short flows sharing the bottleneck with long flows

• 1000 short flows are arriving according to a Poisson process

• Flow size distribution resembles a web search workload (10KB to 1MB)

• Background traffic: 200 long flows, propagation delay = 50ms

Results

wo/ buffer modification w/ buffer modification wo/ buffer modification w/ buffer modification
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• The proposed system improved:

➢ The FCT and the RTT of short flows

➢ The fairness and the RTT of long flows

• However, packet loss rates increased

• The buffer size assumes Additive Increase Multiplicative Decrease flows

Discussions
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Additive increase
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• Dynamic adaptation to heterogeneous traffic

• Service-level Agreement (SLA) compliance

• Smooth integration in existing networks

• Extensibility

Design Goals
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• Dynamic adaptation to heterogeneous traffic

• Service-level Agreement (SLA) compliance
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• Extensibility
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• The buffer size is dynamically modified

• A P4 switch is deployed passively to compute:

➢ Number of long flows

➢ Average RTT

➢ Queueing delays New

➢ Packet loss rates New

➢ Link utilization  New

Proposed System
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• The buffer size is dynamically modified

• A P4 switch is deployed passively to compute:

➢ Number of long flows

➢ Average RTT

➢ Queueing delays New

➢ Packet loss rates New

➢ Link utilization  New

• The control plane sequentially searches for a

buffer that minimizes delays and losses

• The searching algorithm is Bayesian

Optimization (BO) with Gaussian Processes

Proposed System



Queue Delay Calculation

35

• The queueing delay is calculated by leveraging the precise timer of the hardware

switch (nanosecond resolution)

• The queueing delay sample is fed to an Exponentially Weighted Moving Average

(EWMA)
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• Intrinsic relationship between packet loss/delay and buffer

• Increasing the buffer → packet loss decreases, delay increases

Impact of Buffer on Loss and Delay
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• Find the buffer size that minimizes the losses and the delays

• Performance function:

• Goal: finding a buffer size that maximizes the performance function

• 𝑓(. ) is a blackbox function

Goal

𝑓(. ) = − [ 𝑤1𝑓1 (. ) + 𝑤2𝑓2(. ) ]

Packet loss Queueing delay

෍

𝑖=1

2

𝑤𝑖 = 1,𝑤𝑖 ∈ [0, 1]

𝑥∗ = argmax
𝑥∈𝑋

𝑓(𝑥)
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• Efficiently optimize expensive black-box functions

• Build a surrogate statistical model and use it to search the space

• Replace expensive queries with cheaper queries

• Use uncertainty of the model to select expensive queries

Bayesian Optimization
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• Efficiently optimize expensive black-box functions

• Build a surrogate statistical model and use it to search the space

• Replace expensive queries with cheaper queries

• Use uncertainty of the model to select expensive queries

Bayesian Optimization

Gaussian process
Expected 
Improvement
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Shrinking the Search Space
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Shrinking the Search Space
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• 500 long flows

• Cubic CCA

• 𝐶 = 2.5𝐺𝑏𝑝𝑠

Searching Example
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• 500 long flows

• Cubic CCA

• 𝐶 = 2.5𝐺𝑏𝑝𝑠

Searching Example
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• Topology and experimental setup

• Different congestion control
algorithms1

• iPerf3

• Access network:

➢ 𝐶1 = 40Gbps

➢ 𝐶2 = 1Gbps

• Core network:

➢ 𝐶1 = 10Gbps

➢ 𝐶2 = 2.4Gbps

• Wedge100BF-32X, ASIC chip
(Intel’s Tofino)

Implementation and Evaluation

1Mishra et al. “The great Internet TCP congestion control census,” ACM on Measurement and Analysis of Computing Systems, 2019



51

• Average 𝑓(. ) over the test duration (higher/green is better)

• Top heatmaps: access network

• Bottom heatmaps: core network

• The Mixed scenario combines multiple congestion control algorithms

Results
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• 100 VoIP calls playing 20 reference speech samples (G.711.a)

• PESQ compares an error-free audio signal to a degraded one (higher is better)

• The z-score considers both the delay and the PESQ (higher is better)

Results (VoIP)



53

• Web browsing traffic

• Background traffic is generated

➢ The sizes of the web pages are in the range [15KB, 2.5MB]

Results (Web Browsing)
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• Real traces

• Center for Applied Internet Data

Analysis (CAIDA) traces from

Equinix NYC

• MAWI traces from Widely

Integrated Distributed Environment

(WIDE)

• P4BS found a balance such that:

➢ The FCT of long flows is close to

that of the bloated buffer

➢ The FCT of short flows is close to

that of the Stanford buffer

Results (Real Traces)



Performance Problem #2: 
Heterogeneous Traffic in Switches/Routers

55



TCP Traditional Congestion Control
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• The principles of window-based CC were described in the 1980s1

• Traditional CC algorithms follow the additive-increase multiplicative-decrease (AIMD)

form of congestion control
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1. V. Jacobson, M. Karels, Congestion avoidance and control, ACM SIGCOMM Computer Communication Review 18 (4) (1988).



BBR: Model-based CC
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• TCP Bottleneck Bandwidth and RTT (BBR) is a rate-based congestion-control

algorithm1

• BBR represented a disruption to the traditional CC algorithms:

➢ is not governed by AIMD control law

➢ does not the use packet loss as a signal of congestion

• At any time, a TCP connection has one slowest link bottleneck bandwidth (btlbw)

1. N. Cardwell et al. "BBR v2, A Model-based Congestion Control." IETF 104, March 2019. 

S
e

n
d

in
g

 r
a

te

Time

btlbw

probe

drain

8 RTTs

100

125

75

cycle 2        ...cycle 1

Sender Receiver

Bottleneck 

(btlbw)

Output port buffer

Router



Fairness
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• Fairness: how fair is the capacity of the link being divided among the competing flows

• Jain’s fairness index:



Fairness
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• Fairness: how fair is the capacity of the link being divided among the competing flows

• Jain’s fairness index:



Fairness
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• The fairness between flows belonging to different CCAs is often low

• E.g., the fairness among Cubic and BBR flows1



Proposed System
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• Passive PDPs for congestion control algorithm (CCA) identification at line rate
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• Passive PDPs for congestion control algorithm (CCA) identification at line rate



Proposed System
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• Passive PDPs for congestion control algorithm (CCA) identification at line rate



Bytes-in-flight Calculation

65

• Bytes-in-flight (BIF) is the amount of data sent but not yet acknowledged

• BIF is correlated to the TCP congestion window



Model Training 
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• The model is trained on CAIDA’s traffic for two minutes

• The model is also trained with synthetically generated traffic



Model Testing 
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• The model was tested against 10 minutes of traffic from the remaining CAIDA dataset

• The bottleneck bandwidth was configured to 1Gbps, 1.5Gbps, 2Gbps, and 2.5Gbps

• Results outperformed the state-of-the-art CCA identification systems



Fairness Evaluation
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• Alternating flows joining every 15

seconds

• The system promptly identifies

the CCA and assigns the flow

• Fairness is ~ 100%



Fairness Evaluation
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• 10 long flows started at the same time, with alternating CCAs
➢ Flow1 uses CUBIC, Flow2 uses BBR, Flow3 uses CUBIC, etc.

• Various propagation delays and various router buffer sizes are used

Without separation With separation



Flow Completion Time (Short Flows)
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• 100 long flows (50% Cubic, 50% BBR) are generated over a bottleneck link of

3Gbps

• The queue size for the “w/o separation” scenario is 200ms

• 10,000 short flows, whose inter-connection times are generated from an

exponential distribution with a mean of one second, are initiated



Performance Problem #3: 
CPU-based Middleboxes Processing Packets
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Voice over IP Use Case
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• Signaling protocol (e.g., SIP) initiates, maintains, and terminates multimedia

sessions between endpoints

➢ User agent client (UAC)

➢ User agent server (UAS)

• Media protocol (e.g., RTP) transports real-time data, such as audio and video

SIP server, 
registrar

UAC UAS

Media (RTP)

SIP SIP



Voice over IP Use Case
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• Communicating parties are often behind a Network Address Translation (NAT)

• Since they do not have public IP addresses, they cannot communicate directly

SIP server, 
registrar

UAC UAS

Media (RTP)

SIP SIP

NAT NAT



Voice over IP Use Case
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• The most common solution is to use a relay server

• The server allocates ports to be used to receive RTP traffic on behalf of both users

SIP server, 
registrar

UAC UAS

Media (RTP)

SIP SIP

NAT NAT

Relay 
server



Voice over IP Use Case
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• The most common solution is to use a relay server

• The server allocates ports to be used to receive RTP traffic on behalf of both users

SIP server, 
registrar

UAC UAS

Media (RTP)

SIP SIP

NAT NAT

Relay 
server

Latency, jitter, 

packet loss



Proposed System
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• Emulate the behavior of the relay server using programmable switch

• The switch parses packets and modifies headers to relay the traffic

SIP server, 
registrar

UAC UAS

Media (RTP)

SIP SIP

NAT NAT

Relay 
server

P4 
switch

- Line rate
- Low deterministic latency
- Low jitter



Implementation and Evaluation
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• OpenSIPS, an open source implementation of a SIP server

• RTPProxy, a high-performance relay server for RTP streams

• SIPp: an open source SIP traffic generator that can establish multiple concurrent

sessions and generate media (RTP) traffic

• Iperf3: traffic generator used to generate background UDP traffic

• Edgecore Wedge100BF-32X: programmable switch

SIPp (UAC)

SIPp (UAS)

40Gbps

Relay server

SIP server

UDP

Programmable switch

40Gbps
Agent

Mgmt 
port TCP

40Gbps

40Gbps

Intel Xeon
4 cores, 2.20GHz

Edgecore w/
Tofino Chip

Intel Xeon
4 cores, 2.20GHz



Implementation and Evaluation
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• Two scenarios are considered:

➢ “Server-based relay”: relay server is used to relay media between end devices

➢ “Switch-based relay”: the switch is used to relay media

• UAC (SIPp) generates 900 media sessions, 30 per second

• The test lasts for 300 seconds

• G.711 media encoding codec (160 bytes every 20ms)

Relay server

Switch-based
relay

UAC

UAS

Server-based 
relay

Programmable 
Switch



Results
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• Delay contributions of the switch and the relay server



Results
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• Delay variation: the absolute value of the difference between the delay of

two consecutive packets

➢ Analogous to jitter, as defined by RFC 4689



Results
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• Loss rate: number of packets that fail to reach the destination

➢ Calculation is based on the sequence number of the RTP header



Results
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• Mean Opinion Score (MOS): estimation of the quality of the media session

➢ A reference quality indicator standardized by ITU-T

➢ Maximum for G.711 is ~4.4



Results
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• CPU usage: the percentage of the CPU’s capacity used by the relay server



Resource Consumption

84

• The prototype is implemented in two different scenarios:

➢On top of the baseline switch program (switch.p4): implements various features

including Layer 2/3 functionalities, ACL, QoS, etc.

➢ Standalone implementation

Additional hardware resources used when the solution is 
deployed on top of  switch.p4 and as a standalone program



Resource Consumption
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• The prototype is implemented in two different scenarios:

➢On top of the baseline switch program (switch.p4): implements various features

including Layer 2/3 functionalities, ACL, QoS, etc.

➢ Standalone implementation

Additional hardware resources used when the solution is 
deployed on top of  switch.p4 and as a standalone program

Programmable 

Switch

General-purpose 

CPU

Cost $6,000 $ 10,000 - 25,000

Capacity

Million connections 

per switch

~500 connections per 

core

Latency 400 nanoseconds

Tens to hundreds of 

milliseconds



Architecture for Incremental Deployment of PDPs
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Proposed Architecture
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Security appliance

Switch

Router Forwarding, QoS and access control

Data link Switch/Router Network TAPsFirewall P4 switch In-network applicationsSmart NIC

P4



88

Security appliance

Switch

Router Forwarding, QoS and access control

In-network line rate computing

… . . .
...

P4 switch

Smart NICs

FPGAs

M
easu

rem
en

ts

Data plane Data plane

D
ials

P4 P4

NICs…

Data link Switch/Router Network TAPsFirewall P4 switch In-network applicationsSmart NIC

P4

Proposed Architecture



89

Security appliance

Switch

Router Forwarding, QoS and access control

In-network line rate computing

… . . .
...

P4 switch

Smart NICs

FPGAs

M
easu

rem
en

ts

Data plane Data plane

D
ials

P4 P4

NICs…

Data link Switch/Router Network TAPsFirewall P4 switch In-network applicationsSmart NIC

P4

Switch control plane

x86-based server

HW acceleration

M
easu

rem
en

ts

MLRL

Control plane

P4

Collecting and analysisServer Server

D
ials

P4

Proposed Architecture



90

Security appliance

Switch

Router Forwarding, QoS and access control

In-network line rate computing

… . . .
...

P4 switch

Smart NICs

FPGAs

M
easu

rem
en

ts

Data plane Data plane

D
ials

P4 P4

NICs…

Data link Switch/Router Network TAPsFirewall P4 switch In-network applicationsSmart NIC

P4

Switch control plane

x86-based server

HW acceleration

M
easu

rem
en

ts

MLRL

Control plane

P4

Collecting and analysisServer Server

D
ials

P4

C
o

n
tr

o
l

C
o

n
tr

o
l

APIs

K
n

o
b

s

Proposed Architecture

K
n

o
b

s



Detecting DNS Amplification with P4

• CAIDA traffic replayed

• > 10Gbps DNS amplification attack generated

• Attack was mitigated in < 1s

91



Conclusion

92

• Contributions:

➢ Improving the QoS by dynamically sizing the buffer

➢ Improving the QoS and fairness through traffic classification and separation

➢ Scaling and optimizing media’s QoS by offloading packet processing from CPUs
to PDP

➢ Fostering PDP adoption by proposing a passive PDP deployment architecture

• Future work:

➢ Deploying and testing the systems on
FABRIC, a US-based nation-wide testbed

➢ Exploring network programmability on
SmartNICs
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• Long flows with different emulated propagation delays

• 100 long flows, divided into four groups of each 25 flows each

• Each group starts three minutes after the other

• CUBIC congestion control algorithm

Results

wo/ buffer modification w/ buffer modification



Time Series Preparation and Deep Learning
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• BIF values are pushed to the control plane of the PDP switch during congestion

• A time series is constructed

• Two pre-processing steps:

➢ Outliers Rejection: z-score method, which uses the MAD (Median Absolute Deviation), is used

➢ Normalization: The time series is preprocessed using z-normalization

• Fully Convolutional Neural Networks (FCNs) used to classify the univariate time series



Flow Completion Time (Long Flows)
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• 10 long flows started at the same time, with alternating CCAs
➢ Flow1 uses CUBIC, Flow2 uses BBR, Flow3 uses CUBIC, etc.

• Each flow transfers a 500MB file

• In a fair network with a bottleneck of 2Gbps and 10 active flows:
➢ Each flow is transferring at 200Mbps

➢ FCT = 500MB / 200Mbps = 20s



Middlebox Devices
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• RFC 32341 defines middlebox as a device that performs functions other than the

standard functions of an IP router

• Legacy middleboxes are designed and implemented by manufacturers

• Examples:

➢ Network address translators (NAT)

➢ Firewalls

➢ Intrusion Detection Systems (IDS)

➢ Proxy servers (e.g., VoIP relay server)

• Legacy middleboxes are limited to the functions provided by the manufacturers

➢ Expensive

➢ Difficult to upgrade

➢ Function-specific

1Carpenter, Brian, and Scott Brim. Middleboxes: Taxonomy and issues. RFC 3234, February 2002.



Performance Issues of Middleboxes
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• The trend lately has been moving towards implementing middleboxes in servers

• Network Function Virtualization (NFVs)

• While this shift accelerated innovation, it induced performance issues (e.g., delay,

jitter)

➢ Operating systems’ scheduling delays

➢ Interrupt processing latency

➢ Other low-level OS functions
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P4 Switches Deployment Challenges
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• Data plane programmability knowledge by operators

➢ Operators only configure legacy devices (e.g., modify routing configuration, updating ACL)

➢ Programming P4 targets is complex1

• Cost of replacing the existing infrastructure

➢ Significant costs, time, and efforts spent in building the network and the existing equipment

➢ Replacing these devices with P4 switches would incur significant costs

• Vendor support

➢ The support in legacy devices is readily available

➢ P4 switches are whiteboxes, with little to no support from vendors

• Network disruption

➢ P4 programs might be potential sources of packet-processing error

➢ Bugs can lead to network disruption, affecting the availability of the services

1 The switch.p4 program, which contains the standard switch capabilities, has more than 1030 control paths
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