
Understanding the Performance of TCP BBRv2
using FABRIC

Jose Gomez∗, Elie Kfoury∗, Jorge Crichigno∗, Gautam Srivastava†
∗Integrated Information Technology Department, University of South Carolina, Columbia, SC, USA

†Department of Mathematics and Computer Science, Brandon University, Canada
{gomezgaj, ekfoury}@email.sc.edu, jcrichigno@cec.sc.edu, srivastavag@brandonu.ca

Abstract—This paper presents a performance evaluation of the
Bottleneck Bandwidth and Round-trip Time version 2 (BBRv2)
TCP congestion control. The experiments are conducted in
FABRIC, a national-scale experimental network infrastructure
that enables large-scale testing. Google released BBRv2 in 2019
as an improvement over its predecessor, BBRv1. Previous evalu-
ations showed that BBRv2 demonstrates better coexistence with
loss-based congestion control algorithms (CCAs), presents low
retransmission rates, and produces shorter queueing delays even
with large buffers. Evaluations conducted in this paper used
FABRIC to reproduce the network conditions observed in Wide
Area Networks (WANs). The tests presented in this paper evaluate
the throughput as a function of the Round-trip Time (RTT) of
BBRv2 compared to various CCAs, the RTT unfairness of BBRv1
and BBRv2, the queue occupancy, and the packet loss rate as
a function of the router’s buffer size. Additionally, this paper
presents and discusses the influence of Active Queue Management
(AQM) algorithms to mitigate performance degradation produced
by the RTT unfairness and the interaction of different CCAs when
sharing a bottleneck link.

Index Terms—Bottleneck Bandwidth and Round-trip Time
(BBR), congestion control, Bandwidth-Delay Product (BDP),
router’s buffer size, RTT unfairness, FABRIC.

I. INTRODUCTION

The Transmission Control Protocol (TCP) [1] is the most
widely adopted transport protocol that enables reliable end-
to-end data transfers between applications. A key function of
TCP is its congestion control mechanism, which regulates the
sending rate in the presence of congestion. Various TCP con-
gestion control implementations aim to mitigate congestion by
reacting to packet loss, delay, and other network metrics. Early
TCP variants considered packet losses as a signal of congestion
[2], other implementations considered delay as an indication of
network congestion [3], whereas hybrid approaches used the
combination of multiple metrics [4]. The Additive Increase
Multiplicative Decrease (AIMD) control principle governs
traditional TCP CCAs. Such algorithms include CUBIC, Reno,
HTCP, and others. More recently, BBRv1 periodically esti-
mates the bottleneck bandwidth and uses pacing to set the
sending rate. This approach differs from traditional loss-based
CCAs.

Although BBRv1 improved TCP throughput, it presents
an unfair bandwidth share with other TCP flows and high
retransmission rates. BBRv2 has been proposed as a solution

to the shortcomings of BBRv1. The approach of BBRv2 is to
create a network traffic model by estimating the bandwidth,
observing the RTT, measuring the loss rate, and incorporating
Explicit Congestion Notification (ECN) capabilities. The liter-
ature [5–7] reported that BBRv2 tolerates higher packet loss
rates than loss-based CCAs, presents lower retransmission rates
than BBRv1, shows a better coexistence with CUBIC, reduces
the impact of the RTT unfairness, and exhibits lower queueing
delays.

While previous studies have made significant contributions
to understanding the performance of BBRv2 using emulation
tools and real hardware, there is a gap in the literature.
Specifically, there is a need for a performance evaluation that
utilizes large-scale testbeds. This paper aims to fill this gap
by presenting an experimental evaluation of BBRv2 using
FABRIC [8], a novel research infrastructure that supports
large-scale research in various domains such as networking,
distributed computing, machine learning, and science applica-
tions. By leveraging large-scale testbeds, this paper evaluates
the behavior of BBRv2 with realistic network conditions. The
contributions of this paper can be summarized as follows:

• Evaluating the performance of BBRv2 using WAN con-
ditions.

• Illustrating the influence of FABRIC’s inherent delay on
BBRv1 and BBRv2 bottleneck bandwidth estimation.

• Demonstrating that BBRv2 attains comparable perfor-
mance to BBRv1 presenting a lower retransmission rate.

• Analyzing the impact of different buffer sizes, propaga-
tion delays, and loss rates on the performance of BBRv2.

The experiments presented in this paper consider scenarios
that involve TCP flows with different RTTs, routers with small
and large buffer sizes, and queues controlled with AQMs. The
rest of the paper is organized as follows: Section II presents the
related works. Section III explains the motivation of this work.
Section IV provides background on BBRv2 and FABRIC.
Section V describes the experiments and the results. Section VI
discusses the limitations and section VII concludes the paper.

II. RELATED WORK

Kfoury et al. [5] used Mininet to conduct a performance
evaluation of BBRv2. Mininet [9] is a network emulator based
on namespaces to run experiments using a real protocol stack
in Linux. In this paper, the authors evaluated the alpha version



6 7 8 9 10 11
Throughput [Gbps]

0.0

0.5

1.0
CD

F

BBRv1
BBRv2

(a)

6 7 8 9 10 11
Throughput [Gbps]

0.0

0.5

1.0

CD
F

BBRv1
BBRv2

(b)

FIG. 1: CDFs of the bottleneck bandwidth estimation of BBRv1 and
BBRv2. (a) with 45ms emulated delay. (b) with 45ms propagation
delay.

of BBRv2 by conducting experiments with small and large
buffer sizes, reproducing RTT unfairness scenarios, measuring
the coexistence of BBRv2 with competing TCP flows, and
evaluating the impact of AQMs in the performance of BBRv1
and BBRv2. Similarly, Gomez et al. [6] evaluated BBRv2
using a Mininet emulation. The authors demonstrated a better
coexistence between BBRv2 and CUBIC than between BBRv1
and CUBIC. The paper shows how BBRv2 mitigates the RTT
unfairness problem and presents a better bandwidth share than
BBRv1 in changing network conditions.

Song et al. [7] evaluated and compared BBRv1 and BBRv2
using Mininet and a physical testbed. The authors showed how
BBRv2 could alleviate the unfairness issues of BBRv1. In their
evaluations, BBRv2 presented better fairness with competing
flows in routers with small buffers. The paper demonstrated
that BBRv1 flows experience flow synchronization and co-
existence issues with loss-based CCAs. Tierney et al. [10]
described and performed experiments to assess the suitability
of BBRv2 for use on Data Transfer Nodes (DTNs). The authors
tested BBRv2 in a production network and a controlled testbed
environment. Their evaluations showed that BBRv2 presents
better performance in large data transfer scenarios. The paper
also highlights that BBRv2 is a promising option in high-speed
short-queue networking environments. Moreover, the authors
verified that results obtained with Mininet are valid on real
networks.

Scherrer et al. [11] presented a fluid model of BBRv1
and BBRv2 to complement the previous studies. The authors
conducted simulations using ns-3 under various network set-
tings and presented analytical evaluations such as stability
analysis. Their evaluations show that the proposed model can
accurately predict BBRv2 dynamics. The paper also confirmed
that BBRv2 mitigated the undesirable behavior of BBRv1 and
identified the scenarios in which BBRv2 leads to bufferbloat
and unfairness.

III. MOTIVATION

Discrete-event simulators are valuable tools for evaluat-
ing and testing network protocols, services, and applications
[12, 13]. Similarly, network emulators enable researchers to
test services and applications using actual protocol stacks [9].
However, they may face limitations in reproducing the behavior
of large-scale and high-speed networks due to constraints in

transmission speeds, processing power, and memory. On the
other hand, network testbeds allow researchers to test real-
world network conditions more accurately than emulators and
simulators, as they use actual hardware infrastructure.

Fig. 1 shows the Cumulative Distribution Function (CDF) of
the bottleneck bandwidth estimation performed by BBRv1 and
BBRv2 in a 10Gbps bottleneck link with a 45ms delay. Both
CCAs compute the RTT to estimate the available bandwidth
[14, 15]. Therefore, the bottleneck bandwidth estimation is
sensitive to RTT variations. Fig. 1(a) shows the bottleneck
bandwidth estimation obtained in an emulated environment,
whereas Fig. 1(b) shows the results obtained with a 45ms
propagation delay resulting from the physical separation of
FABRIC nodes. It is observed that an emulated environment
induces more underestimations of the current bandwidth (i.e.,
10Gbps) than the one with a real propagation delay. In this
paper, we leverage the distributed architecture of the FABRIC
testbed to reproduce WAN conditions and test the performance
of BBRv2.

IV. BACKGROUND
A. FABRIC

FABRIC (Adaptive Programmable Research Infrastructure
for Computer Science and Science Applications) is a novel
research infrastructure aimed to support large-scale research
in networking, distributed computing, machine learning, and
science applications [8]. Its main goal is to provide an ex-
perimentation testbed to explore methods and techniques to
overcome the current architectural limitations of the Internet.
One of these limitations is produced by the middleboxes in the
network, which breaks the Internet architectural principles and
complicates the process of troubleshooting connection prob-
lems and testing novel ideas. FABRIC’s architecture consists
of distributed resources along national labs, campuses, and
commercial collocation spaces. Each FABRIC site provides
a large amount of computing (i.e., CPUs, GPUs, and FPGAs)
and storage interconnected by high-speed, dedicated optical
links. Additionally, FABRIC integrates specialized testbeds in
areas such as 5G, IoT, and cloud computing to create a rich
environment for a wide range of experiments.

FABRIC allows experimenters to create networks using
VMs residing in different locations in the United States and,
more recently, in Europe. This capability allows the distri-
bution of computing power across different sites. Moreover,
the testbed facilitates orchestrating regular tests by providing
a bastion host that supports configuration scripts where the
experimenter can reserve resources and run tests. These scripts
can be shared and modified by other researchers to address
their experimentation requirements.

B. BBRv2

BBRv2 [15] is a rate-based, model-based CCA created to
overcome the shortcomings of BBRv1. BBRv2 measures the
bandwidth, the RTT, the packet loss rate, and the ECN mark
rate to estimate bottleneck bandwidth and to model the end-
to-end path across the network, referred to as the network path
model. Following this approach, experimental evaluations [5,



Site 2

BtlBw=10 Gbps

h1 h2

Site 1

s1

Packet loss rate, buffer size

FIG. 2: Topology implemented in FABRIC to reproduce various
RTTs. A 0.0046% loss rate is emulated using NetEm.

6] reported that BBRv2 maintains the high throughput and the
bounded queueing delay properties of BBRv1. Additionally,
BBRv2 tolerates much higher random packet loss rates than
loss-based algorithms. Performance evaluations also show that
BBRv2 has better coexistence with loss-based CCAs and lower
retransmission rates than BBRv1. BBRv2 also presents a better
fairness index with flows experiencing RTT unfairness [16].

This paper presents the results obtained with the alpha
version of BBRv2 (v2alpha-2019-07-28) [17] running on FAB-
RIC.

V. RESULTS AND EVALUATIONS

The following experiments use FABRIC to test BBRv2
against traditional CCAs such as CUBIC, Reno, HTCP, and
its predecessor, BBRv1.

A. Experiment 1: Performance in a WAN with packet losses

Packet losses affect the performance of TCP and can occur
at different devices in the network, including routers, switches,
firewalls, and other network appliances. In the presence of
packet losses, TCP CCAs such as Reno, CUBIC, and HTCP
reduce their sending rate leading to lower performance. This
issue increases the higher the RTT. On the other hand, BBRv1
follows a different approach and does not consider packet
losses as a congestion indicator. Instead, BBRv1 periodically
estimates the bottleneck bandwidth and uses pacing to set the
sending rate to the estimated bottleneck bandwidth [14]. The
literature reported that this approach leads to unfairness with
other CCAs and a high retransmission rate [5, 7]. BBRv2
reduces the impact of this issue by considering packet losses
as part of the bottleneck bandwidth estimation.

In this experiment, multiple FABRIC sites are used to
reproduce different RTTs and observe the performance of data

0.3 6 27 40 61 72 113
RTT [ms]

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 [G

bp
s]

CUBIC
Reno

HTCP
BBRv1

BBRv2

(a)

0.3 6 27 40 61 72 113
RTT [ms]

103

104

105

106

107

Re
tra

ns
m

iss
io

ns
 [P

ac
ke

ts
] CUBIC

Reno
HTCP
BBRv1

BBRv2

(b)

FIG. 3: Performance of CUBIC, Reno, HTCP, BBRv1, and BBRv2
as a function of the RTT. (a) Throughput. (b) Retransmissions.

0.1 0.5 1
Buffer size [BDP]

8.0

8.5

9.0

9.5

10.0

Th
ro

ug
hp

ut
 [G

bp
s] BBRv1

BBRv2

(a)

0.1 0.5 1
Buffer size [BDP]

104

105

106

Re
tra

ns
m

iss
io

ns
 [P

ac
ke

ts
]

BBRv1
BBRv2

(b)

FIG. 4: Performance test as a function of the BDP. (a) Throughput.
(b) Retransmissions.

transfers using various CCAs. The goal of this experiment is to
compare how a small packet loss rate affects the performance
of CCAs such as CUBIC, Reno, HTCP, BBRv1, and BBRv2.
Fig. 2 shows the topology used to conduct the experiments.
Multiple sites are combined to produce the desired propagation
delay.

The devices include three VMs implement the topology
comprising two hosts (i.e., host h1 and host h2) and a switch
(i.e., switch s1). The data transfers consist of a 120-second
iPerf3 [18] test between a sender and a receiver. Experiments
are repeated ten times, and the results are averaged. The
bandwidth is limited using Token Bucket Filter (TBF), and
packet losses are induced using NetEm [19].

Fig. 3 shows the TCP throughput of a data transfer across
a 10Gbps path with different CCAs. The emulated packet loss
rate is 0.0046% (i.e., 1/22,000). Fig. 3(a) shows that BBRv1
and BBRv2 perform between 8Gbps and ∼10Gpbs for all
RTTs, whereas the throughput of CUBIC, Reno, and HTCP
collapses for RTTs greater than 6 milliseconds. Fig. 3(b) shows
that the number of retransmissions produced by BBRv2 is
around one million packets less than BBRv1, while BBRv2
achieves similar performance.

S1

GPN

DALL FIU

DALL

BtlBw=10 Gbps

h1

h2

h3

FIG. 5: Topology implemented in FABRIC to reproduce the RTT
unfairness scenario. The RTT between h1 and h3 is 61ms (RTT1),
whereas the RTT between h2 and h3 is 113ms (RTT2). The bottleneck
bandwidth (BtlBw) is limited to 10Gbps using TBF.



60

80

100
Fa

irn
es

s [
%

]

Fairness

10 1 100 101 102

Buffer size [BDP]
0

5

10

Th
ro

ug
hp

ut
 [G

bp
s]

61ms 113ms

(a) BBRv1 with Tail Drop

60

80

100

Fa
irn

es
s [

%
]

Fairness

10 1 100 101 102

Buffer size [BDP]
0

5

10

Th
ro

ug
hp

ut
 [G

bp
s]

61ms 113ms

(b) BBRv2 with Tail Drop

60

80

100

Fa
irn

es
s [

%
]

Fairness

10 1 100 101 102

Buffer size [BDP]
0

5

10

Th
ro

ug
hp

ut
 [G

bp
s]

61ms 113ms

(c) BBRv1 with FQ-CoDel

60

80

100

Fa
irn

es
s [

%
]

Fairness

10 1 100 101 102

Buffer size [BDP]
0

5

10

Th
ro

ug
hp

ut
 [G

bp
s]

61ms 113ms

(d) BBRv2 with FQ-CoDel

FIG. 6: Fairness index and throughput as functions of the buffer size for two competing flows: one flow has 61ms RTT, and the other flow has
113ms RTT. (a) Flows use BBRv1, and switch s1 implements a simple Tail Drop policy. (b) Flows use BBRv2, and switch S1 implements
a simple Tail Drop policy. (c) Flows use BBRv1, and switch s1 implements FQ CoDel. (d) Flows use BBRv2, and switch s1 implements
FQ CoDel.

B. Experiment 2: Retransmissions as a function of the buffer
size

BBRv1 achieves high throughput and low latency by ap-
proximating the inflight data to the Badnwidth-Delay Product
(BDP), which is the product of the bottleneck link capacity and
the link’s round trip delay [20]. However, its aggressiveness
affects loss-based CCAs such as CUBIC, Reno, and HTCP,
leading to massive packet retransmissions [21, 22]. BBRv2
mitigates this issue, presenting lower retransmissions and
reaching similar throughput as BBRv1 [5].

This experiment evaluates the number of retransmissions
as a function of the buffer size using BBRv1 and BBRv2.
Fig. 2 shows the topology used to run this experiment. The
RTT between host h1 and host h2 is 45 milliseconds, and
the bandwidth was limited to 10Gbps using TBF. There are
no emulated packet losses. The TCP flow is generated by
running an iPerf3 test for 120 seconds. The measurements
corresponding to each buffer size are repeated ten times and
then averaged. Fig. 4 shows the throughput and retransmissions
of BBRv1 and BBRv2 as a function of the buffer size from
0.1BDP to BDP. It is observed that the smaller the buffer size,
BBRv1 shows a significantly higher number of retransmissions
than BBRv2. On the other hand, BBRv2 presents similar
throughput to BBRv1 for BDPs ranging from 0.3BDP to BDP
while keeping the number of retransmissions at lower levels.

C. Experiment 3: RTT unfairness

In loss-based CCAs, the RTT unfairness occurs when trans-
fers with smaller RTTs obtain a higher share of the bottleneck
bandwidth [16]. This issue results from the probing frequency
of flows with smaller RTTs that can recover faster after a loss
event than flows with higher RTTs. Thus, two senders using
the same bottleneck link will experience different throughputs
if one is further away from the receiver than the other sender.
On the other hand, BBRv1 does not consider packet losses and
probes the network as a function of the RTT to estimate the
bottleneck bandwidth. The higher the RTT, the more data is
injected into the network. Therefore, flows with higher RTT
are allocated with a higher bandwidth share. The literature has

reported that BBRv1 suffers from RTT Unfairness [5, 6, 23]
and BBRv2 reduces the impact of the RTT unfairness by
considering packet losses when creating the model to estimate
the bottleneck bandwidth.

In this experiment, two senders in different geographical
locations initiate data transfers with a receiver to reproduce
a scenario with RTT unfairness. The topology in Fig. 5 is
implemented using a FABRIC slice comprising two senders
(h1, h2), a switch (s1), and a receiver (h3). The senders are lo-
cated in Dallas, Texas (DALL) and Columbia, Missouri (Great
Plains Networks (GPN)), whereas the receiver is in Miami,
Florida (Florida International University (FIU)). The VM used
to reproduce a switch limits the rate and modifies the buffer
size using TBF. The tests are orchestrated using Application
Programming Interfaces (APIs) available in FABlib 1.4 [24].
The data transfers were conducted using iPerf3, running for
120 seconds. The tests are executed ten times, and the average
is reported.

This experiment compares the RTT unfairness of BBRv1
and BBRv2 to observe whether BBRv2 mitigates this limi-
tation. The first TCP flow occurs between DALL and FIU
(RTT=61ms), whereas the second one is between GPN and
FIU (RTT=113ms). The fairness and throughput are reported
as a function of the buffer size.

Fig. 6(a) shows the throughput of BBRv1 flows. When the
buffer size is below 1BDP, the fairness index is less than
90%. When the buffer size increases above 1BDP, the flow
with 113ms RTT receives more bandwidth than the flow with
61ms RTT, resulting in a fairness index of around 80%. Fig.
6(b) shows the throughput of BBRv2 flows. The two flows
receive similar amounts of bandwidth, and the fairness index
remains above 85%. Figs. 6(c) and 6(d) show that by using
FQ-CoDel, the RTT unfairness is eliminated and the fairness
index is approximately 100% for both BBRv1 and BBRv2.
Results also show that BBRv2 enhances the coexistence of
flows with different RTTs, reducing the severity of the RTT
unfairness. Additionally, implementing an AQM such as FQ-
CoDel ensures a better coexistence between competing flows.



Streams 1500 9000 1500 9000 1500 9000 1500 9000 1500 9000

1 0.624 2.5 0.542 2.09 0.612 1.67 10.2 15.4 9.35 17.7

2 1.36 3.9 1.42 3.35 1.56 3.36 21.9 33.3 18.7 31.7

4 3.58 7.84 3.13 5.31 5.77 6.08 35.5 37.2 28.9 42.1

8 9.77 9.93 8.05 9.21 9.01 11.5 32.7 70.1 40.6 73.8

16 11 14.5 8.88 13.5 11.7 13.7 41.2 86 47.6 77.8

32 11.9 18.8 11.8 17.5 12.8 18.5 47 71.3 49.5 78.3

64 12.8 66.9 12.6 22.8 17.1 76.7 44.8 79.4 44.9 80.3

120 17.2 75.7 16.1 68.2 20.5 72.5 44 67.9 43.1 77.2

1000

Throughput [Gbps]

CUBIC Reno HTCP BBRv1 BBRv2

FIG. 7: Average throughput belonging to different CCAs. The throughputs are given as a function of the number of streams and the MTU.

D. Experiment 4: Parallel streams and different MTUs

This experiment evaluates the maximum throughput that
can be achieved between two sites in FABRIC using various
CCAs. The topology used to run this experiment consists
of two hosts (e.g., host h1 and host h2) connected via a
layer two site-to-site network service [25]. The maximum link
bandwidth is 100Gbps, and the latency between the sites is
26 milliseconds. This experiment measures TCP performance
using iPerf with parallel streams. The end hosts are configured
following the tuning guidelines in [26] but without pacing
[27]. The hosts’ interfaces are configured with 1500 bytes
and 9000 bytes MTUs with Path MTU Discovery (PMTUD)
enabled net.ipv4.tcp_mtu_probing=1. The latter con-
figuration prevents PMTU black holes and allows TCP flows
to achieve higher performance.

Fig. 7 shows the average throughput as a function of the
number of parallel streams and the MTU. It is observed
that higher performance is obtained with 9000 bytes MTUs.
BBRv1 and BBRv2 achieve throughputs over 70Gbps with
eight flows, whereas CUBIC, Reno, and HTCP need more than
64 flows to reach similar performance. With 1500 bytes MTUs,
the maximum throughput is obtained with BBRv2 using 32
parallel streams.

10 3 10 2 10 1 100 101

Loss rate [%]

0

2

4

6

8

10

Th
ro

ug
hp

ut
 [G

bp
s]

BBRv1 BBRv2

(a)

10 3 10 2 10 1 100 101

Loss rate [%]

0

2

4

6

8

10

Th
ro

ug
hp

ut
 [G

bp
s]

BBRv1 BBRv2

(b)

FIG. 8: Throughput as a function of packet losses. (a) RTT=26ms.
(b) RTT=57ms.

E. Experiment 5: Throughput as a function of packet losses

This experiment measures the throughput of BBRv1 and
BBRv2 as a function of the packet losses in scenarios with
26ms (DALL, SALT) and 52ms (UCSD, UMASS) propagation
delays. Fig. 2 shows the topology used to run this experiment.
Fig. 8 shows the test results where it is observed that BBRv1
achieves higher throughput with packet loss rates greater than
1%. On the other hand, the performance of BBRv2 is similar
to the one of BBRv1 for packet loss rates lower than 1%.

F. Experiment 6: Queue occupancy

This experiment evaluates the queue occupancy in a router
resulting from CUBIC, BBRv1, and BBRv2. The aim of this
experiment is to observe the impact of enqueued packets on
the performance of TCP flows. Routers implement queues
with buffers, which are intended to absorb traffic bursts and
reduce packet losses. However, there is no consensus on the
right buffer size, which depends on metrics such as the link
bandwidth, RTT, and the number of flows [28]. Traditional
CCAs experience the bufferbloat problem [29]. On the other
hand, BBRv1 and BBRv2 aim at keeping the queueing delay
at lower levels.

0 200 400 600
Time [seconds]

0
50

100
150
200
250
300
350

Bu
ffe

r S
ize

 [M
By

te
s]

Buffer Size
CUBIC

BBRv1
BBRv2

FIG. 9: Queue occupancy for different buffer sizes for CUBIC,
BBRv1, and BBRv2.



The tests measure the queue occupancy during a data
transfer over a 10Gbps link experiencing a 50ms delay. Fig. 2
presents the topology used to run this experiment. The initial
buffer size is 1BDP (i.e., ∼59MBytes), which increases 1BDP
every 80 seconds up to 4BDP. Then, the buffer sizes decrease
to 1BDP. Results observed in Fig. 9 show the queue occupancy
for CUBIC, BBRv1, and BBRv2 under changing buffer sizes.
It is observed that CUBIC fills up the queue resulting in a
higher end-to-end latency than BBRv1 and BBRv2.

VI. LIMITATIONS

Experimenters in FABRIC cannot configure intermediary
devices such as routers and switches to modify parameters such
as the buffer size, the number of queues, and the transmission
rate. Therefore, experimenters must emulate such devices
using a VM that acts as a switch or router. This approach
produces results with lower realism than the ones that use
real hardware. Furthermore, it should be noted that the Vir-
tual Machines (VMs) utilized for conducting the experiments
share Network Interface Cards (NICs) with the VMs reserved
by other experimenters. While the networks themselves are
isolated, it is possible for performance to be affected when
two experimenters are simultaneously running tests.

VII. CONCLUSION

This paper evaluated the performance of BBRv2 using FAB-
RIC to reproduce WAN conditions. Results show that BBRv2
performs similarly to its predecessor, BBRv1, presenting a
lower retransmission rate. Results show that BBRv2 enhances
the coexistence of flows with different RTTs using tail drop,
the default queue management mechanism most routers use.
AQMs such as FQ-CoDel mitigate the RTT unfairness issue
by allocating flows into different queues and controlling the
delay of enqueued packets. Moreover, higher throughputs can
be achieved by tuning the network interfaces to handle packets
with 9000 bytes MTUs. Finally, results show that the queue
delay is lower when using BBRv1 and BBRv2 than when using
traditional congestion control algorithms. Future works can
evaluate the performance metrics using a P4-programmable
switch to perform fine-grained measurements and compare
them with the ones obtained with legacy devices.

VIII. ACKNOWLEDGEMENT

The U.S. National Science Foundation supported this work
under grant number 2118311.

REFERENCES

[1] J. Postel, “Transmission control protocol,” tech. rep., 1981.
[2] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM

Computer Communication Review, 1988.
[3] R. Al-Saadi, G. Armitage, J. But, and P. Branch, “A survey of delay-

based and hybrid TCP congestion control algorithms,” IEEE Communi-
cations Surveys & Tutorials, 2019.

[4] J. Hespanha, S. Bohacek, K. Obraczka, and J. Lee, “Hybrid modeling of
TCP congestion control,” in International Workshop on Hybrid Systems:
Computation and Control, 2001.

[5] E. Kfoury, J. Gomez, J. Crichigno, and E. Bou-Harb, “An emulation-
based evaluation of TCP BBRv2 alpha for wired broadband,” Computer
Communications, 2020.

[6] J. Gomez, E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Srivastava, “A
performance evaluation of TCP BBRv2 alpha,” in 2020 43rd Interna-
tional Conference on Telecommunications and Signal Processing (TSP),
2020.

[7] Y. Song, G. Kim, I. Mahmud, W. Seo, and Y. Cho, “Understanding
of BBRv2: evaluation and comparison with BBRv1 congestion control
algorithm,” IEEE Access, 2021.

[8] I. Baldin, A. Nikolich, J. Griffioen, I. Monga, K. Wang, T. Lehman, and
P. Ruth, “FABRIC: A national-scale programmable experimental network
infrastructure,” IEEE Internet Computing, 2019.

[9] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, 2010.

[10] B. Tierney, E. Dart, E. Kissel, and E. Adhikarla, “Exploring the BBRv2
congestion control algorithm for use on data transfer nodes,” in 2021
IEEE Workshop on Innovating the Network for Data-Intensive Science
(INDIS), 2021.

[11] S. Scherrer, M. Legner, A. Perrig, and S. Schmid, “Model-based insights
on the performance, fairness, and stability of BBR,” in Proceedings of
the 22nd ACM Internet Measurement Conference, 2022.

[12] J. Crichigno, N. Ghani, J. Khoury, W. Shu, M. Wu, “Dynamic routing
optimization in WDM networks,” in IEEE 2010 Global Telecommunica-
tions Conference (GLOBECOM), 2010.

[13] J. Crichigno, W. Shu, M. Wu, “Throughput optimization and traffic
engineering in wdm networks considering multiple metrics,” in IEEE
2010 International Conference on Communications (ICC), 2010.

[14] N. Cardwell, Y. Cheng, S. Gunn, S. Yeganeh, and V. Jacobson, “BBR:
congestion-based congestion control,” Communications of the ACM,
2017.

[15] N. Cardwell, Y. Cheng, S. Yeganeh, P. Jha, Y. Seung, K. Yang, I. Swett,
V. Vasiliev, B. Wu, and L. Hsiao, “BBRv2: A model-based congestion
control performance optimization,” in Proc. IETF 106th Meeting, 2019.

[16] E. Gavaletz and J. Kaur, “Decomposing RTT-unfairness in transport
protocols,” in 2010 17th IEEE Workshop on Local & Metropolitan Area
Networks (LANMAN), 2010.

[17] Google, “TCP BBR v2 Alpha/Preview Release.” [Online]. Available:
https://github.com/google/bbr/tree/v2alpha, Accessed on 03-20-2023.

[18] J. Dugan, S. Elliott, B. Mah, J. Poskanzer, and K. Prabhu, “iPerf - The
ultimate speed test tool for TCP, UDP, and SCTP.” [Online]. Available:
https://iperf.fr/, Accessed on 01-13-2023.

[19] S. Hemminger, “Network emulation with NetEm,” 2005.
[20] N. Cardwell, Y. Cheng, S. Gunn, S. Yeganeh, and V. Jacobson, “BBR:

Congestion-based congestion control: Measuring bottleneck bandwidth
and round-trip propagation time,” Queue, 2016.

[21] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of BBR
congestion control,” in 2017 IEEE 25th International Conference on
Network Protocols (ICNP), 2017.

[22] N. Rao, Q. Liu, S. Sen, J. Hanley, I. Foster, R. Kettimuthu, C. Wu,
D. Yun, D. Towsley, and G. Vardoyan, “Experiments and analyses
of data transfers over wide-area dedicated connections,” in 2017 26th
International Conference on Computer Communication and Networks
(ICCCN), 2017.

[23] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a deeper understanding of TCP BBR congestion
control,” in 2018 IFIP networking conference (IFIP networking) and
workshops, 2018.

[24] FABRIC, “FABLib API.” [Online]. Available: https://tinyurl.com/
4dak7jc2, Accessed on 12-26-2022.

[25] P. Ruth, I. Baldin, K. Thareja, T. Lehman, X. Yang, and E. Kissel,
“FABRIC network service model,” in 2022 IFIP Networking Conference
(IFIP Networking), 2022.

[26] Energy Sciences Network (ESNet), “Linux Tuning.” [Online]. Available:
https://tinyurl.com/y53742pz, Accessed on 01-13-2023.

[27] E. Kfoury, J. Crichigno, E. Bou-Harb, D. Khoury, and G. Srivastava,
“Enabling TCP pacing using programmable data plane switches,” in
2019 42nd International Conference on Telecommunications and Signal
Processing (TSP), 2019.

[28] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
ACM SIGCOMM Computer Communication Review, 2004.

[29] J. Gettys, “Bufferbloat: Dark buffers in the internet,” IEEE Internet
Computing, 2011.


