
Federated Learning Approach for Distributed
Ransomware Analysis

Aldin Vehabovic1, Hadi Zanddizari1, Farook Shaikh1, Nasir Ghani1, Morteza
Safaei Pour2, Elias Bou-Harb3, and Jorge Crichigno4

1 University of South Florida, Tampa, FL 33620, USA
{vehabovica,hadiz,nghani}@usf.edu

2 San Diego State University, San Diego, CA 92182, USA
msafaeipour@sdsu.edu

3 University of Texas San Antonio, San Antonio, TX 78249, USA
elias.bouharb@utsa.edu

4 University of South Carolina, Columbia, SC 29208, USA
jcrichigno@cec.sc.edu

Abstract. Ransomware is a form of malware that uses encryption meth-
ods to prevent legitimate users from accessing their data files. To date,
many ransomware families have been released, causing immense dam-
age and financial losses for private users, corporations, and governments.
As a result, researchers have proposed a range of ransomware detec-
tion schemes using various machine learning (ML) methods to analyze
binary files and action sequences. However as this threat continues to
proliferate, it is becoming increasingly difficult to collect and analyze
massive amounts of ransomware executables and trace data at a com-
mon site (due to data privacy and scalability concerns). Hence this paper
presents a novel distributed ransomware analysis (DRA) solution for de-
tection and attribution using the decentralized federated learning (FL)
framework. Detailed performance evaluation is then conducted for the
case of static analysis with rapid/lightweight feature extraction using an
up-to-date ransomware repository. Overall results confirm the effective-
ness the FL-based solution.

Keywords: Ransomware · malware detection · federated learning

1 Introduction

Ransomware has evolved rapidly over the last decade and is now one of the
most serious cyberthreats facing users and organizations today. This malware
executes a multi-stage kill-chain to find and infect victim hosts, encrypt their
data files, and extract ransom payments. Expectedly, ransomware represents
one of the most lucrative revenue stream for cybercriminals today, many of
who now offer ransomware-as-a-service (RaaS) [1] as well. Furthermore, many
attackers are also targeting large organizations due to the potential of sizeable
payouts. Overall, many different ransomware “families” have been developed and

ar
X

iv
:2

30
6.

14
09

0v
1 

 [
cs

.C
R

] 
 2

5 
Ju

n 
20

23



2 A. Vehabovic et al.

weaponized, with most focusing on Windows users as this is still the most widely-
used operating systems (OS) type in the enterprise today.

Given these challenges, researchers have been actively studying ransomware
analysis schemes in recent years. The main objective in many of these efforts is
to identify ransomware programs based on their static or dynamic characteristics
and prevent harmful activities. For example, static analysis schemes [2] analyze
the artifacts of malicious binary files. Hence these methods can be integrated
into network-based defenses to analyze incoming files or attachments and detect
ransomware earlier in the transmission stage of the kill-chain [1]. Meanwhile,
dynamic analysis methods [2] track host system and/or network communica-
tion activities to detect ransomware after infection. These schemes can also be
integrated into host/network-based defenses, but focus on later stages in the kill-
chain (post-infection). Overall, many static and dynamic analysis designs also
use machine learning (ML) algorithms to process large amounts of ransomware
data and extract generalized behaviors, see surveys in [1],[2],[3].

Nevertheless, as ransomware threats continue to proliferate and diversify,
users are being impacted across many domains and sectors. Therefore it is becom-
ing increasingly difficult to collect and analyze massive amounts of ransomware
executables and user/system/network trace data at a common (centralized) site.
Clearly, this approach poses major privacy and scalability concerns. Foremost,
off-site transmission and sharing of sensitive end-host data and network logs is
problematic for many users and organizations [2]. Data pre-processing and ML
training at a single location also imposes high computational burdens and band-
width transfer overheads depending upon the type of data being shared (static,
dynamic). Inevitably, these limitations complicate the real-world application of
many ransomware solutions that use centralized ML training. In addition, most
studies have used datasets containing a mixture of older ransomware families
targeting Windows 7/8 systems (from mid-2010s time frame) [2].

In light of the above, there is a pressing need to develop new ransomware
analysis schemes to detect and attribute the latest threats with improved scala-
bility and privacy. Of key concern are threats targeting Windows 10/11, the most
prevalent OS in enterprise environments. Hence this paper presents a novel ran-
somware solution which leverages federated learning (FL), a decentralized and
collaborative ML framework designed to address scalability and privacy concerns
[4],[5]. Indeed, FL has already been applied to range of problems in image/voice
recognition, keystroke prediction, smart grids, fraud detection, etc [5],[6]. Recent
studies have also proposed some FL-based cybersecurity schemes, e.g., for Inter-
net of Things (IoT) intrusion detection, network anomaly detection, and traffic
recognition [7],[8],[9],[10]. However the further application of this distributed ML
paradigm for ransomware analysis (particularly detection and attribution) has
not yet been considered. Hence this topic forms the key motivation for the work
herein, and several key contributions are made:

1. Novel distributed ransomware analysis (DRA) architecture for ransomware
detection and attribution based upon the FL framework. This solution em-



Federated Learning Approach for Distributed Ransomware Analysis 3

bodies a generic approach which can implement a wide range of static and
dynamic ransomware analysis schemes.

2. Use of a new ransomware dataset repository with some of the latest families
targeting Windows 10/11, i.e., including Babuk/Babyk, BlackCat, Chaos,
DJVu/STOP, Hive, LockBit, Netwalker, Sodinokibi/REvil, and WannaCry.
Since new malware can have much fewer available samples, this repository
is limited to under 1,500 binary executables to model realistic scenarios.

3. Detailed evaluation of the DRA framework for the case of static ransomware
analysis. Specifically, rapid/lightweight feature extraction is done using Win-
dows portable executable (PE) files, and FL performance is then tested using
decentralized neural-network (NN) based classifiers.

To the best of the authors’ knowledge, this is the first known study on FL for ran-
somware detection and attribution. This paper is organized as follows. Section
2 presents a review of ransomware detection schemes as well as recent FL-based
cybersecurity schemes. Subsequently, Section 3 details the new DRA architecture
and its distributed FL algorithm. The ransomware dataset repository is then de-
tailed in Section 4, including sample collection and feature selection/extraction.
Detailed performance results are then presented in Section 5 for the case of static
analysis, followed by conclusions and future work directions in Section 6.

2 Literature Review

Ransomware follows a well-established kill-chain sequence comprised of several
key stages, i.e., reconnaissance, distribution/delivery, installation/infection, com-
munication, encryption, and extortion/payment [2]. As a result, researchers have
proposed a range of schemes for ransomware detection and mitigation targeting
different stages in this sequence. A brief taxonomy and overview of some of these
methods is presented along with recent FL-based security solutions.

2.1 Ransomware Detection

Ransomware analysis has received much attention in the past decade. Various
survey articles have also appeared in this domain, detailing different (sometimes
overlapping) taxonomies to classify the proposed solutions, e.g., including static
or dynamic analysis schemes, network-based or host-based methods, forensic
analysis techniques, etc [1]-[3]. Consider some details.

Static analysis methods analyze binary malware executables to detect arti-
facts of malicious behaviors [1]. Common techniques here include code analysis
for malware author attribution, code/segment de-anonymization, reverse engi-
neering, ransomware server address and domain prediction, etc [2]. For exam-
ple, [11] specifies a multi-level framework to classify ransomware. This scheme
analyzes raw binary files, assembly code, and libraries using Linux object-code
dumps and portable executable parsers. ML classifiers are then trained using the
extracted data, yielding detection rates around 90%. Meanwhile, [12] presents a



4 A. Vehabovic et al.

scheme to analyze operational code sequences. These sequences are transformed
into N-grams, and term frequency-inverse document frequencies (TF-IDF) fea-
tures are generated to train classifiers (decision tree, RF, etc). Results show
detection rates around 90%. However, code-based analysis is a slow and labor-
intensive approach [13] which is better suited for post-infection forensic analysis.

Recent efforts have also generated other features for static analysis. For ex-
ample, [14] presents a unique ransomware classification scheme which uses im-
age processing for feature extraction. Namely, ransomware binary files are first
converted to grayscale images, and texture analysis is then used to compute
features. Results for several classifiers show good accuracy (97%) for a small
dataset containing a mix of older and newer ransomwares (379 samples). How-
ever, this scheme imposes higher computational burdens for large datasets and
does not consider benign applications. Meanwhile, [15] details another static
ransomware analysis scheme which computes/extracts entropy and image-based
features from binary files and uses them to train a Siamese NN classifier. Tests
for a small dataset with about 1,000 samples and 10 ransomware families show
accuracy values in the mid-90% range but notably lower precision and recall
rates (upper 70% range). Also, most of the ransomware families used here are
older (from mid-2010s time frame) and benign applications are not considered.

Researchers have also used Windows PE format files for static malware anal-
ysis. These files contain metadata and other information for binary executables
and enable very fast/lightweight feature extraction, i.e., versus more compute-
intensive image or entropy-based methods above. However, most studies using
PE files have focused on the generic malware detection problem (and not ran-
somware classification). For example, a 2016 study [16] uses malware samples
from VX Heaven (now inactive) to train several ML-based detection classifiers us-
ing about 10 PE file features. Results show detection rates over 90%. Meanwhile,
[17] extracts PE file features from a dataset with 5,500 malware and 1,200 benign
samples (from the early 2010s) and uses customized rules to achieve 95% detec-
tion rates. Also, [18] extracts a small set of PE file features from a dataset with
1,200 malicious and benign samples. Several classifiers are then trained, yielding
over 95% detection accuracy. However, these studies use malware datasets which
are almost a decade old and provide few details on composition. To address this
concern, [19] presents an updated study on ransomware detection and attribu-
tion using static PE file analysis. A new repository is curated comprising of 9
of the latest ransomware families (about 1,200 samples) and benign applications
(2,000 samples). Results for several ML classifiers show impressive detection and
attribution percentages in the mid-90% range with up to 15 features.

Meanwhile dynamic analysis examines run-time actions and events at the net-
work and/or host levels. Namely, dynamic network-based schemes analyze packet
traces for ransomware activity, e.g., server communications, domain name service
(DNS) queries, networked storage access, etc. For example, [20] presents a de-
tection scheme for the Locky ransomware (2016) which collects behavioral/non-
behavioral traffic features in a testbed and then trains several classifiers. Results
show a mean detection rate of 97%. Meanwhile, [21] presents a ransomware de-



Federated Learning Approach for Distributed Ransomware Analysis 5

tection scheme using advanced neural network (NN) classifiers which yields over
97% detection rates for older ransomware threats such as CryptoWall, Torrent-
Locker, and Sage. The NetConverse scheme [22] also uses ML methods to analyze
Windows host traffic for several families from the 2010s time frame. Results show
high detection rates, over 95%. Finally, [23] presents a deep learning approach
to detect and classify abnormal traffic from Windows 7 hosts, and results show
high detection rates for several families.

Dynamic host-based schemes monitor local system activities to detect ran-
somware operations and possibly recover encryption keys. These methods are
more latent as they use virtual run-time environments to execute binary files
and capture traces, i.e., virtual machines (VM) or sandboxes. A range of actions
can be tracked here, including application programmer interface (API) calls, dy-
namic link library (DLL) calls, and memory and file operations. For example, [24]
monitors for file encryption/deletion, persistent desktop messages, etc. Results
show successful detection of about 96% of older ransomware. Meanwhile, [25]
presents a scheme to monitor/store encryption keys and facilitate ransomware
detection and recovery. This solution can mitigate about 12 out of the 20 families
tested. Recent efforts have also targeted ransomware “paranoia” activities, i.e.,
pre-attack actions to detect environments and avoid fingerprinting. For example,
[26] monitors pre-attack API calls and uses natural language processing (NLP)
to extract features. Findings confirm that many ransomware families generate
distinguishable API fingerprints. Also, [27] presents a host-based framework for
API call monitoring. Some older ransomware families (such as Reveton, Locky,
Teslacrypt, etc) are fingerprinted to extract features and build frequency pattern
trees for real-time detection of API sequences.

Although the above works provide some key contributions, notable concerns
still remain. Foremost, the majority of studies have focused on older ransomware
families targeting dated Windows 7/8 systems (mid-2010s). Given the persis-
tent nature of this malware, it is imperative to focus on newer threats to Win-
dows 10/11 OS users. Furthermore, new releases will likely have fewer samples
to analyze, posing added challenges. Hence “data-centric” ML solutions must
achieve effective performance with constrained datasets. Finally, ransomware
detection/attribution schemes must have amenable run-time complexity and ide-
ally tackle threats in the earlier distribution/delivery stages to minimize damage
[2]. It is here that static analysis is more expedient for examining suspicious exe-
cutable payloads/downloads. By contrast, dynamic analysis requires more latent
tracking and analysis of network or host activities and is is better suited for lat-
ter stages in the kill-chain. Finally, it is important to consider attribution, i.e.,
ransomware classification, as this represents a logical next step after detection.

2.2 Federated Learning (FL) in Cybersecurity

FL is a decentralized learning framework developed by Google in 2016. This
solution uses multiple end-point clients to train ML models under the coor-
dination of a central server [4]. Namely, “global” learning is done over multiple
(synchronous or asynchronous) communication rounds. In each round, the server



6 A. Vehabovic et al.

selects a subset of clients and sends them its latest global ML model parameters.
Clients then perform “local” training with their own data and only send back
model parameter updates. The central server uses these updates to revise its
global ML model parameters and then repeats the process.

Overall, FL provides some key benefits for large ML problems. Foremost, user
privacy is greatly improved as sensitive data stays at local hosts. Computational
scalability is also much better since many systems are involved in the distributed
learning process. Finally, bandwidth scalability (efficiency) also increases since
raw datasets do not need to be transferred to a central server. As a result, FL
has seen strong traction in a diverse range of areas, e.g., image/voice recog-
nition, keystroke prediction, smart grid operation, fraud detection etc [5],[6].
Many further variants of this approach have also been proposed, as surveyed
in [28]. Although a detailed review of these works is out of scope herein, some
key contributions include revised training and averaging methods for unbalanced
datasets, compression/quantization methods to reduce FL communication over-
heads, client failure recovery techniques, detection and mitigation of malicious
clients (adversarial FL), and fully distributed “peer-to-peer” FL schemes.

Now researchers have also applied FL to the security domain. For example, [7]
presents a FL framework to train deep NN (DNN) models for multiple tasks such
as anomaly detection, traffic recognition, and classification. Tests with older traf-
fic profiles (2016) show good detection accuracies for various anomalous events,
on par with centralized schemes. Meanwhile, [8] details a FL-based DeepFeed
solution for intrusion detection in cyberphysical systems using convolutional NN
(CNN) models. Results with real-world industrial network data show good de-
tection accuracy, exceeding some centralized schemes. Meanwhile, [9] presents
a FL scheme for anomaly detection of compromised IoT devices. Here, local
access gateways monitor traffic and map packet streams to symbols. Language
processing methods are then used in conjunction with recurrent NN (RNN) al-
gorithms. Results for the Mirai malware show very good attack detection (over
95%) and low run-time complexity. Finally, [10] presents another FL approach
for IoT malware detection using supervised and unsupervised ML algorithms for
anomaly detection (with packet data). Again, FL gives very good performance,
closely matching centralized classifiers. The authors also test several adversar-
ial FL setups with model poisoning attacks. Results show a notable decline in
accuracy when over 25% of clients are compromised. However, as noted earlier,
the further application of FL for ransomware analysis has not been considered.

3 Distributed Ransomware Analysis (DRA)

The continued growth of ransomware is posing many operational challenges for
threat detection and mitigation. Most notably, it is increasingly difficult (infeasi-
ble) to collect large amounts of raw data from massive user bases and transfer it
to a common site for analysis. Indeed, privacy concerns will prevent many users
and organizations from sharing their sensitive file/trace logs in the first place.
Additionally, bandwidth transfer overheads can be very high, and a single cen-



Federated Learning Approach for Distributed Ransomware Analysis 7

tralized computing facility may not be able to process extreme amounts of data
and train large models. Inevitably, these constraints will limit the effectiveness of
ML-based solutions. Hence there is a pressing need to develop new ransomware
analysis frameworks which address these critical concerns.

Now scalability and privacy demands in large ML problems are not new, and
researchers have proposed various solutions such as privacy preserving computa-
tion and federated learning (FL) [4] (Section 2.2). Of these, the latter is the most
scalable as it distributes and decentralizes training over multiple computational
nodes. Hence a novel distributed ransomware analysis (DRA) solution is devel-
oped using the FL framework. This setup is shown in Fig. 1 and comprises of
several client sites communicating with a central server. This architecture fea-
tures a generic design that can be tailored for a full range of ransomware analysis
schemes, both static and dynamic (Section 2.1). Furthermore, it is assumed that
the whole setup operates in a trusted manner, i.e., careful vetting/pre-selection
of client sites, authenticated and encrypted communications, encryption of train-
ing data, etc. The DRA architecture and its associated FL algorithm are now
presented, followed by a detailed performance evaluation study in Section 5.

Fig. 1. Distributed ransomware analysis (DRA) framework using federated learning

3.1 Client Sites

Client sites in the DRA architecture mirror the roles of client nodes in the FL
architecture [4]. These entities are located at carefully-selected, trusted organi-
zations with large user bases, e.g., such as corporate campuses, government facil-
ities, academic institutions, and even network service provider points of presence



8 A. Vehabovic et al.

(PoP). Note that it is not feasible for individual systems (such as servers, lap-
tops, etc) to act as FL clients. The main reason here is that individual devices
will not be able to collect a sufficient number of ransomware samples for effec-
tive ML training (data scarcity). Hence DRA client roles are placed at vetted
institutional sites which have access to much larger volumes of raw data from
many users and systems. As there are generally fewer client sites involved here,
i.e., tens-hundreds, this approach embodies a cross-silo FL approach [10].

Fig. 2. Logical view of federated learning (FL) algorithm in DRA architecture

Overall, DRA client sites perform several key functions, including raw data
collection, feature selection/extraction, local ML model training, and communi-
cation with the central server. Foremost, raw data samples are collected from
the internal user base and other systems, e.g., desktops, laptops, tablets, mail
and web servers, routers, and even cyberphysical devices. Depending upon the
ransomware analysis approach being implemented (Section 2.1), data acquisition
can entail a wide range of possibilities, e.g., such as extracting email files from
mail servers, capturing webpage attachments from servers, logging router packet
traces, extracting host/system call logs, etc. Client sites then perform further
data pre-processing and feature selection/extraction on the raw data samples.
Namely, feature selection identifies a subset of parameters of interest, whereas
feature extraction selects parameters to generate ML insights. The extracted
features are then collected to build a local ML training/testing dataset, Fig. 1.

Now client sites must also communicate with the central server to partici-
pate in the distributed FL training process. A logical overview of this strategy
is shown in Fig. 2, along with sample client site psuedocode in Fig. 3. Namely,
the training process is jumpstarted when a client site receives parameters for
the initial global ML model from the central server, i.e., denoted by ω. Since
NN-based algorithms are most amenable to FL implementation [5], these pa-



Federated Learning Approach for Distributed Ransomware Analysis 9

Input: Receive global ML model parameters from central server, ω

Partition local ML dataset (ni samples) into B batches

/* Train local ML model over given epochs and batches */
for j=1 to E do

for k=1 to B do
Train local model over k-th batch of data
Update local ML model parameters ω → ωt

i

Output: Send updated ML model parameters, ωt
i , to central server

Fig. 3. Centralized FL local training algorithm at client site i

rameters will typically correspond to weight vectors for feedforward NN (FNN),
deep NN (DNN), convolutional NN (CNN), or long short-term memory (LSTM)
networks [29]. Client sites then train the received model using their local data.
In particular, it is assumed that client site i has a local ML dataset with ni

samples, and this is further split into B batches for training over E epochs, see
Fig. 3. Finally, the updated local model parameters at each round t, ωt

i , are sent
back to the central server for further processing and updating. Overall, localized
model training allows client sites to retain their sensitive data.

3.2 Central Server

The central server in the DRA architecture manages the distributed, decentral-
ized ML training process for ransomware analysis. Akin to its namesake in the
FL setup [4], this entity communicates with the client sites to update the global
ML model parameters. Sample psuedocode for the central server algorithm is
also presented in Figure 4 based upon the FedAvg algorithm [4]. Namely, train-
ing is done over T communication rounds with the client sites. In each round,
the central server selects a subset of K client sites to participate in the training
and sends them its latest global model parameters, ω. It then waits for the local
client training sessions to complete and receives/processes parameter updates,
i.e., where ωt

i denotes the updated ML model parameters from client site i in
round t (Figs. 3, 4). Note that Fig. 4 shows a synchronous FL training approach
where all clients respond in each iteration. However, this detail is not specific to
the DRA architecture and can be easily modified for asynchronous operation,
e.g., by specifying client site selection and update processing [4],[5].

Finally, client site updates are appropriately averaged to revise the global
ML model parameters, ω. Although a wide range of options are possible here,
without loss of generality, the FedAvg [4],[5] approach is used in Figs. 2 and
4. Namely, model averaging is done in a weighted manner based upon the size
of each client site’s dataset, i.e., proportional to ni

N , where N =
∑

i ni is the
aggregate amount of training data across all K client sites chosen. Overall, this



10 A. Vehabovic et al.

Input: Initial global ML model parameters, ω0

/* Iterative FL training process over T rounds */
for t = 1 to T do

Select K client sites

for i = 1 to K do
Send latest global ML model ω to i-th client site

Wait to receive local updates from all K client sites, ωt
i

Average to update global ML model parameters: ω ← ωt+1 =
∑K

i=1
ni
N
ωt
i

Output: Final global ML model parameters, ω

Fig. 4. Centralized FL averaging algorithm at central server

method is well-suited for independent identically distributed (IID) datasets. How-
ever, researchers have also proposed modified FL server averaging schemes for
heterogeneous (non-IID) local data [5], and these techniques can be further in-
tegrated into the central server algorithm (left for future study).

4 Ransomware Dataset Repository

Realistic datasets are critical for effective ML solutions. However, as noted in
Section 2, most ransomware detection studies have at least in part, used older
datasets with Windows 7 malwares. Indeed, many old ransomware control servers
are no longer active as malactors have shifted to other families. In light of this,
the new ransomware dataset repository curated in [19] is used. This dataset
contains binary executables of some of the most prevalent ransomware threats
today, as per the IBM X-Force Threat Intelligence Index, i.e., Babuk/Babyk,
BlackCat, Chaos, DJVu/STOP, Hive, LockBit, Netwalker, Sodinokibi/REvil,
and WannaCry (Table 1). Namely, 9 families are chosen, and a number of Win-
dows application executables are also collected to build a benign class and im-
prove classifier performance. As per Fig. 5, repository design involves two key
steps, empirical data collection and feature extraction/selection, detailed next.

4.1 Empirical Data Collection

The work in [19] collects a realistic set of raw binary files, with the goal of mir-
roring data collection at client sites (Section 3.1). Now the size and diversity
of input data will impact ML classifier performance. For example, most algo-
rithms yield better generalization (class separation) with larger datasets and
equal representation across classes. However, given the rapidly-changing nature
of ransomware, it can be difficult to obtain a sufficient number of samples for each
family under consideration. Hence effective solutions must achieve good detec-
tion and attribution performance with more constrained “minimalist” datasets,



Federated Learning Approach for Distributed Ransomware Analysis 11

i.e., only hundreds of samples per ransomware family. Note that other recent
studies have also used smaller datasets with under 2,000 samples [14],[15]. This
requirement is well-aligned with broader trends in artificial intelligence (AI)
to develop more “data-centric” solutions for specialized problems [30]. Consider
some further details.

Malware samples are extracted from various online sites to capture some of
the latest ransomware threats. Now many portals allow users to upload/download
malware executables, e.g., MalwareBazar, Triage, VirusShare, and VirusTotal,
etc. However, these repositories provide varying access and usability. For ex-
ample, VirusTotal and VirusShare require user registration to access pri-
vate repositories. Detailed cross-checking and analysis of samples also reveals
notable duplication across portals. For example, many Sodinokibi samples on
MalwareBazar match those on Triage. There is also notable discrepancy be-
tween the number of samples for each family. For example DJVu is relatively
abundant whereas Babuk/Babyk is more scarce and harder to find. Finally,
repositories (such as VirusShare) do not label their raw data, further compli-
cating collection. Hence samples from these large unlabeled data dumps have to
be analyzed individually using hashing programs and then cross-checked with
other labelled samples (a tedious and time-consuming process). While other
repositories like VirusTotal may have labelled samples, they do not allow re-
searchers to download them freely. Given these realities, there is potential for a
lack of diversity (even scarcity) of unique samples for new ransomware families.

Fig. 5. Ransomware repository design and static PE file features (as per [19])

In light of the above, a “minimalist” raw dataset is collected for the 9 ran-
somware families [19]. Specifically, only 140 executable samples are gathered for
each family, yielding a total of 1,260 malicious samples (under 1,500 samples).
However, unlike some recent studies in ransomware classification [14],[15], a large



12 A. Vehabovic et al.

Table 1. Empirical ransomware dataset (as per [19])

Family Samples Avg. Size Avg. PE File
Babuk (Babyk) 140 0.19 MB 32.68 KB
BlackCat 140 3.91 MB 1,147 KB
Chaos 140 0.49 MB 35.2 KB
DJVu (STOP) 140 0.71 MB 66.2 KB
Hive 140 3.51 MB 403.9 KB
LockBit 140 1.30 MB 171.5 KB
Netwalker 140 0.26 MB 35.72 KB
Sodinokibi 140 0.30 MB 50.89 KB
WannaCry 140 7.62 MB 21.83 KB
Benign 2,000 26.86 MB 155.88 KB

number of Windows 10/11 applications are also downloaded to build a benign
class (2,000 in total). These programs are collected from a range of websites and
include system utility, entertainment, and productivity tools (Fig. 5). Overall,
the addition of a benign class is crucial for ML purposes as it can help establish
a more clear delineation between malicious programs and reduce classification
errors. Further details on the collected samples are also presented in Table 1.

4.2 Feature Selection/Extraction

ML performance is also very dependent upon the type of input training data. It
is here that feature extraction (engineering) plays a vital role in transforming raw
sample files (executables) and generating meaningful information for classifiers
[29]. Now as noted in Section 2.1, static analysis is more effective for targeting
the early stages of the kill-chain. Hence this strategy is chosen here. In particular
a small set of static parameters are extracted from Windows PE format files to
generate a very lightweight set of features (i.e., hundreds of bytes per sample, Fig.
5). This selection contrasts with other ransomware schemes which use much more
compute-intensive methods to extract larger/heavier feature sets, e.g., using code
extraction [12], image processing [14], and entropy [15] based methods.

Overall, PE format files are used to support executables running in 32-bit
and 64-bit Windows OS settings [31] (and similar constructs also exist for other
OS types). This file uses the common object file format (COFF) and contains key
information for the OS loader to run wrapped executable code. Namely, a PE
file specifies memory mapping and permissions and is comprised of initial lead-in
headers and multiple sections. Each section contains actual file contents (such
as code or data) and has its own header [31]. Overall, PE files contain a wealth
of static information, and different executables can have unique non-overlapping
parameters as per functionality. As a result, it is important to extract a proper
subset of parameters here, i.e., feature vectors. Foremost, a chosen feature should
exist in the PE format files for all executables in the repository. Additionally,
selected parameter ranges should exhibit sufficient variability across classes.



Federated Learning Approach for Distributed Ransomware Analysis 13

In light of the above, PE files are generated for all raw executable files.
Careful experimentation is then done to select a total of 15 PE file parame-
ters and construct labelled feature vectors to build the aggregate ML train-
ing/testing dataset, Fig. 5 (i.e., 1,260 ransomware vectors and 2,000 benign vec-
tors). Only entries from the Image_File_Header, Image_Optional_Header, and
Image_Section_Header sections are chosen here, along the lines of earlier stud-
ies in [16]-[18]. Some selected PE parameters include NumberOfSections, Size-
OfCode, SizeOfHeaders, etc. Note that PE format files also contain information
on dynamic-link library (DLL) calls, and this can shed light on program func-
tionality. For example, most ransomware programs use encryption, socket-based
communication, and registry-modification functions. Hence the total number of
DLL calls is also added to the feature vector, i.e., TotalDLLCalls (Fig. 5). Note
that this is a computed feature and not a parameter read in from the PE file.

5 Performance Evaluation

As detailed in Section 3, the DRA architecture represents a generic approach
which can implement a wide range of (NN-based) ransomware analysis schemes.
Hence this framework is evaluated for the case of static analysis using the ML
training/testing dataset curated in Section 4. All model development and testing
is done using the Keras and TensorFlow libraries, along with other Python-based
toolkits such as Pandas, Numpy, and Sklearn. Complete details on the testing
setup and results from the performance evaluation study are now presented.

Table 2. Aggregate dataset partitioning (1,260 ransomware and 2,000 benign samples)

Clients
Ransomware Benign

Malware %Training Testing Training TestingPer Family Total Per Family Total
K=1 120 1,080 20 180 1,700 300 38%
K=2 60 540 20 180 1,700 300 24%
K=3 40 360 20 180 1,700 300 17%
K=4 30 270 20 180 1,700 300 14%

FL performance is tested for a varying number of client sites (K=2, 3, 4) by
partitioning the ML training/testing dataset, see Table 2. Recall that this aggre-
gate dataset contains feature vectors (samples) for each raw binary file (where
each feature vector contains 15 extracted PE file parameters, Fig. 5). Now there
are 140 samples per family and 2,000 benign applications, i.e., total of 10 classes.
Hence 120 samples from each ransomware family are randomly selected for train-
ing (1,080 total) and the remaining 20 are used for testing (180 total). This par-
titioning represents a 85/15% split between training and testing data. Next, the
120 ransomware samples (per class) are further partitioned between the client
sites, yielding several local ML training datasets, i.e., full 120 samples per class



14 A. Vehabovic et al.

for K=1 (centralized ML), 60 samples per class for K=2 client sites (540 total),
40 samples per class for K=3 client sites (360 total), and 30 samples per class
for K=4 client sites (270 total), see Table 2. Meanwhile the benign dataset is
not partitioned between the client sites, thereby yielding a higher percentage of
non-malicious training data. This choice mirrors realistic settings where regular
applications downloads will exceed ransomware downloads. Moreover, there may
be high commonality between application downloads across organizations, and
hence it is plausible to use the same set of benign samples across client sites. Ac-
cordingly, the benign samples are split in a 85/15% manner, with 1,700 samples
randomly selected for training and the remaining 300 for testing (per client site).
Overall, the proportion of ransomware training data declines with the number
of client sites, i.e., malware percentage, Table 2. For example, with 4 client sites
there is more than 6 times less training data (i.e., 270 vs 1,700 samples). Care-
fully note that in practice, different regions (client sites) will experience varying
types of ransomware attacks. These differences will yield unbalanced datasets
with possibly different underlying distributions, and are left for future study.

Ransomware analysis is conducted using a range of supervised ML classifiers.
These algorithms are trained and tested for the classification/attribution prob-
lem with 10 classes, i.e., 9 ransomware, 1 benign (Section 4). Foremost, the FL
approach uses the supervised FNN algorithm (with gradient descent) to train
local ML models at client sites. This network has 2 hidden layers and 32 nodes
per layer, yielding a relatively small set of parameter weights (i.e., ω, Section 3).
As noted earlier, FL can be used with many NN variants, but the FNN algorithm
is chosen here given the smaller dataset sizes and feature vectors involved. Client
sites train their local models over E epochs and send model parameter updates
to the central server. Meanwhile, global training is done over T rounds. Several
centralized ML algorithms are also used for comparison purposes, including cen-
tralized FNN (K=1), support vector machines (SVM), and random forest (RF)
[29]. These classifiers are evaluated using the complete dataset with a 85/15%
partitioning between training/testing samples. All results (FL, centralized) are
averaged over 50 independent trails, with each using different randomized selec-
tions of the requisite dataset partitions. The control parameters for different ML
algorithms are also fine-tuned to achieve the best classification rates.

Several metrics are used to gauge the ML classifiers, including accuracy, pre-
cision, recall, and F1 score. For example, precision is a measure of correctness
whereas recall is a measure of relevance [29]. Two additional metrics are also
defined to capture the binary detection capabilities of multi-class classifiers, i.e.,
selection between ransomware and benign. Consider mis-classification in more
detail. Here, incorrectly classifying ransomware as benign is much more prob-
lematic than mis-classifying it as another family (as it may bypass network or
host defenses). To quantify this, a ransomware detection rate (RDR) is defined:

RDR =
Trs

Trs + Frs
(1)

where Trs is the total number of ransomware testing samples across all families
that are classified as (any family of) ransomware, and Frs is the total number of



Federated Learning Approach for Distributed Ransomware Analysis 15

ransomware testing samples across all families that are mis-classified as benign,
i.e., total number of ransomware testing samples is (Trs + Frs). This metric is
similar to recall and treats all ransomware families as a single malicious class, i.e.,
tracks false negatives. Similarly, a benign detection rate (BDR) is also defined:

BDR =
Tbn

Tbn + Fbn
(2)

where Tbn is the total number of benign testing samples classified as benign, and
Fbn is the total number of benign testing samples mis-classified as ransomware,
i.e., total number of benign testing samples is (Tbn + Fbn). Note that the false
negative classification of benign applications is generally less of a security threat
than false negative classification of ransomware programs.

Table 3. Results for FL with varying client sites, K (FedAvg)

2 Client Sites Accuracy Precision Recall F1 Score
Global Avg. Model 91.87% 86.01% 86.67% 91.82%

Client site 1 86.52% 78.57% 79.37% 86.30%
Client site 2 88.34% 78.59% 79.22% 87.34%

3 Client Sites Accuracy Precision Recall F1 Score
Global Avg. Model 92.11% 87.40% 86.57% 91.90%

Client site 1 86.02% 77.86% 75.64% 85.33%
Client site 2 82.90% 73.89% 74.56% 82.13%
Client site 3 81.47% 73.55% 75.95% 81.49%

4 Client Sites Accuracy Precision Recall F1 Score
Global Avg. Model 92.46% 87.69% 86.40% 92.43%

Client site 1 79.93% 72.22% 72.61% 79.53%
Client site 2 83.70% 73.29% 74.41% 83.48%
Client site 3 85.48% 71.91% 71.73% 83.76%
Client site 4 85.49% 72.23% 71.41% 80.20%

Detailed results for the FL scheme are first presented in Table 3 for varying
numbers of client sites (K values). In each case, the table lists the accuracy,
precision, recall, and F1 scores for the global averaged FNN model (in bold)
followed by the individual local client site models. These findings show vastly
improved model generalization with FL, with the global models exceeding the
individual client models by sizeable margins for all metrics. For example, average
accuracy is 3-12% higher, precision is 7-15% higher, recall is 7-15% higher, and
F1 scores are 4-13% higher. These are very impressive results and indicate that
organizations can greatly improve their ransomware defenses by participating
in FL-based schemes, i.e., while retaining data privacy and maintaining smaller
datasets. Furthermore, FL accuracy is also very high. For example, the accuracy
(and F1 score) with 4 client sites is close to 92.5%, i.e., correct attribution of
over 18 out of 20 samples. These results also closely match some centralized ran-
somware classification schemes (Section 2.1) many of which implement heavier



16 A. Vehabovic et al.

feature extraction and ML computation algorithms, e.g., image and entropy-
based features, deep NN designs, etc [14],[15]. By contrast, the FL setup herein
uses very small feature vectors (15 parameters) and basic FNN models.

Table 4. Results for ML models (averaged over 50 independent runs)

Distd. FL Accuracy Precision Recall F1 Score Binary
RDR BDR

2 clients (FNN) 91.87% 86.01% 86.67% 91.82% 94.92% 94.99%
3 clients (FNN) 92.11% 87.40% 86.57% 91.90% 93.04% 95.86%
4 clients (FNN) 92.46% 87.69% 86.40% 92.43% 93.27% 96.43%

Centralized Accuracy Precision Recall F1 Score Binary
RDR BDR

FNN 91.48% 86.84% 84.68% 91.27% 92.06% 96.69%
SVM 90.44% 91.16% 75.60% 89.86% 80.39% 97.85%
RF 96.02% 94.41% 92.07% 95.98% 95.72% 99.05%

Next, the performance of all ML classifiers is presented in Table 4. Here
the respective FL percentages are the same as the global model averages from
Table 3. First consider multi-class attribution, as measured by the accuracy,
precision, recall, and F1 scores. Foremost, the FL approach outperforms its cen-
tralized FNN counterpart for varying numbers of client sites. In particular with
K=4 client sites the accuracy and F1 scores are 1% higher. These gains come
despite using much smaller training datasets at the client sites, e.g., only 270
ransomware samples for K=4, Table 2. Again, this is another key result as it
demonstrates the ability of decentralized FL setups (with smaller client sites)
to achieve similar or better ransomware attribution compared to less practical
centralized setups (requiring much more training data). Furthermore, the FL
approach also outperforms the SVM algorithm by over 2% in terms of accuracy.
However, the centralized RF scheme (trained with global data) gives the best
results, with accuracy and F1 scores averaging about 3.5% higher than FL.

Also, Table 4 presents binary detection results, as measured by the RDR and
BDR metrics (Eqs. 1, 2). The former is deemed more important as it captures
the mis-classification rate of ransomware. Overall, FL gives very good RDR
values, up to 94.92%, and within 1% of the RF scheme which has the best binary
results. Namely, this scheme yields a false negative rate of about 1 in 20 malicious
samples. These results are impressive and match those from earlier studies on
binary detection of older ransomware threats, Section 2. Also, the BDR values
are higher than the RDR values since training datasets have a larger proportion
of benign data as per real-world settings (Table 2). Note that the FNN-based
schemes (including distributed FL) give slightly lower BDR values than the other
ML algorithms, i.e., by about 1-2.5%. Nevertheless, the related BDR percentages
are still close to 97%, i.e., 1 error in about 33 benign samples.

To investigate detailed per-class behaviors, Fig. 6 shows a sample averaged
confusion matrix for FL with 4 client sites (rows 0-9 represent ransomware fami-



Federated Learning Approach for Distributed Ransomware Analysis 17

Fig. 6. Sample multi-class confusion matrix for FL (K=4 client sites, E=1 epoch)

lies and row 10 represents benign applications). Note that the numbers in row 10
are larger as there are more benign testing samples, Table 2. Here, the majority
of ransomware and benign application samples are correctly classified, i.e., di-
agonal entries dominate. Furthermore, most mis-attributed ransomware samples
are still classified as some form of ransomware, although LockBit and Babuk
show higher averages, i.e., 4.5 (22.5%) and 3.5 (17.5%) out of 20, respectively.
Hence the potential damage from false negatives is relatively small for most
ransomware cases. Meanwhile, Fig. 7 plots the average accuracy and F1 scores
for the global FL model with K=4 client sites and varying epoch counts (E).
These results shed light on the local FL training process and indicate better
performance with E=4 epochs (also observed for several other K values).

Finally, Fig. 8 plots the accuracy, precision, recall, and F1 scores at the end
of each communication round for the global FL model with K=4 client sites (and
E=4 epochs). For reference sake, corresponding accuracy values for the central-
ized FNN classifier are also plotted. The objective here is to observe the FL
training process over multiple rounds. These plots show very rapid progression,
with performance improving rapidly within the first 10 rounds and stabilizing
by about 15 rounds. By contrast, the centralized FNN tales more rounds to
improve, with accuracy picking up after 9 rounds. Overall, these results demon-
strate improved responsiveness and learning with the distributed FL approach,
further complementing its inherent privacy and scalability benefits.



18 A. Vehabovic et al.

Fig. 7. Accuracy and F1 score results for K=4 client sites (averaged over 50 trials)

Fig. 8. Sample progression of FL training (FedAvg, K=4 client sites, E=4 epochs)

6 Conclusions & Future Work

Ransomware presents a persistent threat to users and organizations. Researchers
have developed various solutions to detect and classify this malware using ma-
chine learning (ML) schemes to analyze binary files and system/network ac-
tivities. However, growing scalability and privacy concerns make it difficult to
collect and analyze massive amounts of data at a centralized site. Hence this
study presents a novel distributed ransomware analysis (DRA) framework for
detection and attribution using federated learning (FL). This architecture em-
bodies a generic approach which can implement both static and dynamic anal-
ysis schemes. A realistic dataset repository comprising of some of the latest
ransomware threats is used to conduct a detailed performance evaluation study
for the case of static analysis with rapid/lightweight feature extraction from
Windows portable executable (PE) format files. Overall findings confirm supe-
rior performance for the FL-based approach, with global ML model performance
notably exceeding locally trained models. The FL approach also closely matches



Federated Learning Approach for Distributed Ransomware Analysis 19

or outperforms some centralized ML algorithms in terms of attribution accuracy
and binary detection.

Overall, this effort presents one of the first studies on ransomware detection
and attribution using the decentralized FL framework and provides a strong basis
for further study. Foremost, a broader set of static and dynamic features can be
used to improve local model training (leveraging existing work on ransomware
detection). Further efforts can also address FL bias and variability concerns.

7 Acknowledgements

This work has been supported in part by Cyber Florida. The authors are very
grateful for this support.

References

1. R. Moussaileb, N. Cuppens, J.-L. Lanet, and Bouder, “A survey on windows-based
ransomware taxonomy and detection mechanisms: Case closed?” ACM Computing
Surveys, vol. 54, no. 6, July 2022.

2. A. Vehabovic, N. Ghani, E. Bou-Harb, J. Crichigno, and A. Yayimli, “Ransomware
detection and classification strategies,” in IEEE Black Sea Communications Con-
ference 2022, Sofia, Bulgaria, June 2022.

3. E. Berrueta, D. Morato, E. Magaña, and M. Izal, “A survey on detection techniques
for cryptographic ransomware,” IEEE Access, vol. 7, pp. 144 925–144 944, October
2019.

4. H. McMahan, “Communication-efficient learning of deep learning from decentral-
ized data,” in AISTATS 2017, Ft. Lauderdale, FL, April 2017.

5. Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, and B. He, “A survey on federated
learning systems: Vision, hype and reality for data privacy and protection,” in
arXiv 1907.09693, December 2021.

6. N. Hudson, M. Hossain, M. Hosseinzadeh, H. Khamfroush, M. Naeini, and
N. Ghani, “A framework for edge intelligent smart distribution grids via federated
learning,” in IEEE ICCCN 2021, July 2021.

7. Y. Zhao, J. Chen, D. Wu, J. Teng, and S. Yu, “Multitask network anomaly de-
tection using federated learning,” in 10th Intl. Symposium on Information and
Communication Tech. (SoICT 2019), Ha Long Bay, Vietnam, December 2019.

8. B. Li, Y. Wu, J. Song, R. Lu, T. Li, and L. Zhao, “Deepfed: Federated deep learning
for intrusion detection in industrial cyberphysical systems,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 8, pp. 5615–5624, August 2021.

9. T. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A. Sadeghi,
“Dïot: A federated selflearning anomaly detection system for iot,” in IEEE Intl.
Conf. on Distributed Computing Systems (ICDCS) 2019, Dallas, TX, July 2019.

10. V. Rey, P. Sanchez, A. Celdran, G. Bovet, and M. Jaggi, “Federated learning for
malware detection in iot devices,” in arXiv 2104.09994, November 2021.

11. S. Poudyal, K. P. Subedi, and D. Dasgupta, “A framework for analyzing ran-
somware using machine learning.” IEEE 2018 SSCI, Nov. 2018.

12. H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, and A. Sangaiah, “Classifi-
cation of ransomware families with machine learning based onn-gram of opcodes.”
Future Generation Computer Systems, vol. 90, pp. 211–221, 2019.



20 A. Vehabovic et al.

13. D. Mulders, “Network based ransomware detection on the samba protocol,” MS
Thesis, Department of Mathematics, TU Eindhoven, 2017.

14. B. Wang, H. Liu, X. Han, and D. Xuan, “Image-based ransomware classification
with classifier combination,” in ACM Advanced Information Science and System
(ACM AISS) 2021, Sanya, China, November 2021.

15. J. Zhu, J. Jaccard, A. Singh, I. Welch, and H. A.-S. amd S. Camtepe, “A few-shot
meta-learning based siamese neural network using entropy features for ransomware
classification,” Computers & Security, vol. 117, pp. 1–11, June 2022.

16. D. Kim, S. Woo, D. Lee, and T. Chung, “Static detection of malware and benign
executable using machine learning,” in 8th International Conference on Evolving
Internet, Barcelona, Spain, November 2016.

17. Y. Liao, “Pe-header-based malware study and detection,” in Semantic Scholar,
2021.

18. T. Rezaei and A. Hamze, “An efficient approach for malware detection using pe
header specifications,” in 6th International Conference on Web Research (ICWR),
Tehran, Iran, April 2020.

19. A. Vehabovic, H. Zandizzari, F. Shaikh, N. Ghani, M. S. Pour, E. Bou-Harb,
and J. Crichigno, “Data-centric machine learning approach for early ransomware
detection and attribution,” in 8th IEEE/IFIP NOMS Workshop on Analytics for
Network and Service Management (AnNet 2023), Miami, Florida, May 2023.

20. A. Almashhadani, M. Kaiiali, S. Sezer, and P. O’Kane, “A multi-classifier network-
based crypto ransomware detection system: A case study of locky ransomware,”
IEEE Access, vol. 7, no. 1, pp. 47 053–47 067, 2019.

21. S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, and S. Hashemi, “Drthis: Deep
ransomware threat hunting and intelligence system at the fog layer,” Future Gen-
eration Computer Systems, pp. 94–104, Jan. 2019.

22. O. Alhawi, J. Baldwin, and A. Dehghantanha, “Leveraging machine learning tech-
niques for windows ransomware network traffic detection,” Advances in Informa-
tion Security, p. 93–106, July 2018.

23. K. C. Roy and Q. Chen, “Deepran: Attention-based bilstm and crf for ransomware
early detection and classification. information systems frontiers,” Information Sys-
tems Frontiers, vol. 0, pp. 1–17, 2021.

24. A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, “Unveil: A large-
scale, automated approach to detecting ransomware,” in USENIX Security 2016,
Austin, TX, August 2016.

25. E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, “Paybreak: Defense against
cryptographic ransomware,” in Asia CCS 2017, Abu Dhabi, UAE, April 2017.

26. R. M. A. Molina, S. Torabi, K. Sarieddine, E. Bou-Harb, N. Bouguila, and C. Assi,
“On ransomware family attribution using pre-attack paranoia activities,” IEEE
Transactions on Network and Service Management, vol. 19, no. 1, pp. 19–36, 2022.

27. R. M. A. Molina, “Rpm: Ransomware prevention and mitigation using operating
systems sensing tactics,” submitted, 2022.

28. P. Kairouz, “Advances and open problems in federated learning,” in arXiv
1912.04977, March 2021.

29. A. Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow,
Second Edition. O’Reily Media, 2019.

30. A. Ng, “Ai minimalist,” IEEE Spectrum, vol. 59, no. 4, pp. 23–25, April 2022.
31. Q. Li, Definitive Guide to Windows PE large systems security technology. Ma-

chinery Industry Press, 2000.


	Federated Learning Approach for Distributed Ransomware Analysis

