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Abstract—This paper presents a system designed to enhance
Transmission Control Protocol (TCP) fairness by rebalanc-
ing router queues and reducing the impact of Round-Trip
Time (RTT) unfairness. The proposed system utilizes a P4-
programmable Data Plane (PDP) to process a copy of the
traffic from the link between two non-programmable routers.
The PDP measures the throughput and calculates the RTT of
competing flows in the data plane. Then, the control plane
generates the rules to be implemented in a non-programmable
router that will allocate flows in different queues to isolate
their dynamics. The limits for each queue result from the Jenks
optimization algorithm. This approach ensures that flows with
similar characteristics share the same queue.

The results demonstrate that the system efficiently identifies
and segregates flows into multiple queues, thereby enforcing
fairness among competing flows and enhancing the Flow Com-
pletion Time (FCT). The experiments were executed on traffic
provided by Measurement and Analysis on the WIDE Internet
(MAWI). The system effectively rebalances queues and dynami-
cally redistributes underutilized bandwidth independently of the
design principles of the transport protocol. Furthermore, the
results show that the system effectively mitigates the effects of
bufferbloat and successfully detects and reduces the impact of
protocol abuses at the network layer.

Index Terms—P4, Programmable Data Plane (PDP), Trans-
mission Control Protocol (TCP), Congestion Control Algorithm
(CCA), Bottleneck Bandwidth and Round-trip Time (BBR).

I. INTRODUCTION

A key challenge in next-generation networks is to efficiently
utilize computational and networking resources to deliver
services that satisfy diverse Quality of Service (QoS) require-
ments. As the demand for high-speed data transfers increases,
there is a need to distribute the available bandwidth fairly
among competing flows. The Transmission Control Protocol
(TCP) plays a key role in enabling reliable end-to-end commu-
nication over the Internet. TCP aims at optimizing data transfer
rates while minimizing network congestion by regulating the
sending rate through its congestion control mechanism. In
the realm of congestion control mechanisms, there exists
a diverse range of algorithms known as congestion control
algorithms (CCAs). These algorithms regulate the sending
rate dynamically, responding to network parameters such as
packet loss and Round-Trip Time (RTT). However, since TCP
is implemented in the end hosts, it lacks full visibility into
network events, which can lead to unfair resource utilization.

For instance, RTT differences among competing TCP flows
create an unfair bandwidth distribution, resulting in the RTT

unfairness problem [1]. This issue arises when two senders,
situated in different locations, encounter varying propagation
delays in relation to the receiver. These delays can be attributed
to factors such as physical distance, network capabilities, and
QoS policies. Consequently, competing TCP flows experience
different recovery times in the presence of packet losses.
Traditional loss-based CCAs, such as CUBIC [2], exhibit RTT
unfairness by favoring flows with shorter RTTs. Therefore,
flows with shorter RTTs can increase their sending rates
more quickly, leaving flows with longer RTTs at a disadvan-
tage. Conversely, more recent CCAs such as the Bottleneck
Bandwidth and Round-Trip Time (BBR) favor flows with
longer RTTs [3]. Hence, flows with shorter RTTs achieve
a lower throughput. This distinctive bias carries significant
implications for the design of Internet protocols. Firstly, it
introduces a trade-off between minimizing latency and max-
imizing delivery rate, undermining efforts to reduce end-to-
end latency. For instance, prioritizing routes with minimal
RTT using protocols such as Open Shortest Path First (OSPF)
may become less effective, as flows along these routes can
easily be overwhelmed when competing with others on less
optimal routes with higher latency. Secondly, the advantage
gained by flows with long RTTs creates a vulnerability, as
malicious receivers can exploit this by artificially increasing
their inbound traffic with higher latency, thereby obtaining
more bandwidth from competing flows.

The emergence of P4-programmable Data Planes (PDPs)
offers the functionalities for addressing these issues. P4
(Programming Protocol-Independent Packet Processors) [4]
is a data plane programming language that allows network
operators to define custom packet processing logic directly
within the data plane, enabling fine-grained control over traffic
management. Leveraging PDPs, this paper proposes a system
to enhance throughput allocation and reduce the impact of
RTT unfairness. The proposed system uses a PDP to passively
process the traffic between two non-programable routers. This
passive measurement mechanism is implemented with optical
taps. The data plane measures the throughput, calculates the
RTT of individual flows, and categorizes them into separate
queues to reduce interaction among flows with significant
differences. Queue boundaries are set using the Jenk’s classi-
fication algorithm [5], which groups flows with similar RTTs
together. Results indicate that the proposed system effectively
identifies and separates flows into multiple queues, enhancing



PDP

Router 1

Data link

RTT 

calculation

Queue 

assignment

Flow

identification

(2)
Metrics

computation

(3)
Queue 

management

(1) 
Passive traffic 

collection

Data 
plane

Control 
plane

Mgmt link

C
o

n
tr

o
l r

u
le

s

Incoming packets

Throughput 

calculation

Router 2

Bandwidth 

distribution

Fig. 1. High-level system overview. (1): a copy of the traffic is forwarded
by the tap to the data plane of the PDP. (2): The data plane computes the
throughput and RTTs of individual flows. (3): The control plane implements
a classification algorithm and generates the rules to be implemented in a non-
programmable router.

fairness among competing flows and improving the Flow
Completion Time (FCT) for long flows reproduced from a
MAWI trace. Moreover, the system is capable of rebalancing
the queue, minimizing the impact of bufferbloat [6], and mit-
igating the effects of User Datagram Protocol (UDP) abuses.

This paper proposes a system that separates flows according
to the throughput and RTT of individual flows. The traffic is
passively measured by tapping on the egress interface of a
non-programmable router. The PDP separates the flows using
a classification algorithm. The contributions of this paper can
be listed as follows:

• Improving the FCT of long flows by reallocating them in
different queues.

• Enhancing the link utilization [7] by dynamically re-
distributing the bandwidth that is not fully utilized by
competing flows.

• Detecting and reducing the impact of bufferbloat by
separating flows that increase the average queue latency.

• Mitigating UDP abuses by enforcing a bandwidth policy
on UDP flows that exceed a predefined threshold.

The rest of the paper is organized as follows: Section II
presents background on PDPs and related work. Section III
describes the proposed system. Section IV describes the results
and the experiments. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. P4-programmable Data Planes (PDPs)

PDPs offer programmers the flexibility to define how pack-
ets are processed by a pipeline [8]. A P4 processing pipeline
consists of three key components: a programmable parser,
a programmable match-action pipeline, and a programmable
deparser. The programmable parser interprets the stream of bits
the switch receives and organizes them in standard and custom
header fields previously defined by the programmer. Then, the
match-action pipeline executes operations on packet headers
and intermediate results. Lastly, the deparser reassembles the
packet headers and serializes them for transmission. PDPs
provide high-precision timers with nanosecond granularity and
stateful memories such as registers, counters, and meters, all

of which can be accessed at a line rate. These capabilities
enable the execution of per-packet operations, which have
found extensive use in adding visibility to network events and
enhancing network performance [9–11]. In this paper, the data
plane of a PDP is programmed to identify and calculate the
RTTs of individual flows. Then, the control plane employs a
classification algorithm to determine the allocation of these
flows into different queues.

B. RTT Monitoring

Ma et al. [12] investigated the issue of RTT unfairness
in BBR. The researchers identified BBR’s RTT unfairness
root cause as its tendency to send excessive data during
bandwidth probing, favoring long RTT flows. To rectify this,
they proposed BBQ, a variation of BBR that ensures flow
fairness without altering design principles. Gavaletz and Kaur
[1] introduced a novel method for analyzing RTT unfairness
sources in transport protocols, revealing variations among
CCAs. Additionally, they proposed FairTCP, a TCP modifica-
tion mitigating feedback delay in RTT unfairness by providing
more precise congestion feedback to connections. Tao et al. [3]
developed a mathematical model to study RTT unfairness in
BBR. They evaluated a queuing model capturing BBR flows’
interactions with the network and proposed a modification
to dynamically adjust BBR’s pacing rate during bandwidth
probing based on connection RTT.

C. Bandwidth Redistribution

Meng et al. [13] proposed a queue management scheme
aimed at ensuring consistently low latency for real-time com-
munication applications amidst competing flows. It identifies
the root cause of disruptions as the mismatch between abrupt
bandwidth allocation adjustments and gradual congestion win-
dow adjustments. The proposed system slows down bandwidth
adjustment to align with congestion control reactions and gives
time for the application to adapt. Kfoury et al. [14] proposed
P4BS, a dynamic buffer sizing system utilizing PDPs to
optimize buffer and minimize queueing delays and packet loss
rates. Kfoury et al. [15] also identified CCAs using PDPs to
mitigate the impact of the interaction among different CCAs.

III. PROPOSED SYSTEM

A. Overview

Fig. 1 provides an overview of the proposed system. Passive
taps are used to get a copy of the traffic from the data link
of a non-programmable router without affecting performance.
This copied traffic is then sent to the data plane of the PDP. In
the data plane, the system identifies each flow, calculates the
RTT for each flow, and measures the throughput of TCP flows.
After computing these flow metrics, they are sent to the control
plane. In this stage, a classification algorithm determines
which queues of the non-programmable router should receive
each flow. The control plane creates the allocation rules that
are carried out through the management port of the non-
programmable router.
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Fig. 2. Proposed system architecture. The PDP serves as a passive measure-
ment tool for calculating the RTT on a per-flow basis.

The architecture of the proposed system is shown in Fig. 2.
The process for identifying flows, calculating RTTs, measuring
the throughput, and segregating the flows into distinct queues
is as follows:

1) The system passively the traffic passing through the non-
programmable router. To accomplish this, passive tap
devices are deployed on the router’s ingress and egress
interface. This tap redirects the traffic to the data plane
of a PDP operating at line rate.

2) The flow identification data is sent to the RTT calculation
module, which pairs each flow with its RTT.

3) The throughput of each TCP flow is determined by
extracting the packet length from the IPv4 header and
summing up this value in a register every second.

4) The RTTs of each flow are relayed from the data plane
of the PDP to the control plane. Here, the classification
module employs the Jenks natural breaks algorithm [5]
to segregate the flows into different queues.

5) Once the control plane of the PDP identifies the flows
designated for each queue, it generates control rules
to enforce the isolation of these flows within the non-
programmable router. These rules include an Access
Control List (ACL) detailing the IP addresses linked to
each queue and configuring the buffer size for individual
queues.

6) The buffer size of each queue is modified according to
the Stanford rule [16] to mitigate bufferbloat.

B. Metrics Computation

The proposed system utilizes a technique outlined in [17] to
compute the RTT of individual flows. This method correlates
the TCP sequence (SEQ) and acknowledgment (ACK) num-
bers present in incoming and outgoing packets. By determining
the time difference between these two packets, the system can
calculate the RTT.

The system employs a hash function to calculate the Flow
Identifier (FID) for each outgoing packet, based on the 5-tuple
comprising source/destination IP addresses, source/destination
port numbers, and the communication protocol. Additionally,
it determines the expected acknowledgment number (eACK)
by adding the sequence (SEQ) number to the payload’s length.
Subsequently, the system indexes the timestamp of each outgo-
ing packet in a table using the combination of FID and eACK.
When an incoming TCP packet is received, the system uses the
FID and acknowledgment (ACK) number to search the table
for a matching record. Upon finding a match, it computes the
difference between timestamps to generate an RTT sample.

In real-world situations, devices might not promptly ac-
knowledge every packet, such as when a delayed ACK occurs,
where a device sends a single ACK for multiple packets. How-
ever, programmable switches typically have limited memory,
usually in the tens of megabytes, making it impractical to store
records indefinitely. Hence, the system implements a timeout
threshold. Once this threshold is surpassed, the corresponding
record is removed from memory. Additionally, the method
employs a multi-stage hash approach because of constraints
on accessing data plane memory.

The system also utilizes the Count-Min Sketch (CMS) data
structure [14] to estimate the packet count for a particular
flow. These packet counts are then compared to a predefined
threshold, helping in determining whether a flow should be
classified as a long flow. A flow is considered long if its size
> 10MB.

C. RTT Separation Method

The proposed system implements the Jenks optimization
method [5] in the PDP’s control plane to separate the RTTs
into independent groups. The Jenks optimization method is
a statistical technique used to organize data into meaningful
categories by identifying distinct thresholds. In this approach,
the algorithm sorts the RTT and groups them into classes
defined by the number of queues. By calculating the sum
of squared deviations within each potential breakpoint, the
algorithm aims to minimize the total sum of squares across
all classes. This effectively maximizes differences between
classes while minimizing variation. Employing a dynamic
programming approach, the algorithm explores various ar-
rangements to find the optimal breakpoints. Once these optimal
breakpoints are determined, the RTTs are then classified into
their respective queues.

D. Bandwdith Allocation Method

The control plane of the PDP implements the Weighted
Max-Min Share (WMMS) fair allocation algorithm [18],
which is a method used to distribute the available bandwidth
fairly among competing flows. In this application, the algo-
rithm assigns weights to competing flows as a function of the
RTT, where higher RTT implies lower priority. Initially, each
flow receives a minimum share of bandwidth (maxmin share),
proportional to the inverse of the number of flows. Iteratively,
flows are given additional bandwidth until fairness is achieved.
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Fig. 3. Topology used to run the experiments.

The goal is to maximize the minimum share while considering
flow priorities, ensuring a balanced allocation.

Given the maximum available bandwidth as C and N as
the number of flows, a TCP flow is guaranteed to obtain at
least:

Ci =
rttwi

N∑
j=1

rttwj

C (1)

where rttw = {rttw1, rttw2, ..., rttwN} represents the nor-
malized RTT weights of individual TCP flows.

IV. RESULTS AND EVALUATION

Fig. 3 shows the experimental setup, consisting of 6000
senders (labeled h1 to h6000), each establishing a TCP
connection with corresponding receivers (h6001 to h12000).
These hosts, created as network namespaces in Linux using
Mininet on a physical server, were allocated sufficient re-
sources to ensure the results closely resemble those obtained
in real-world scenarios. The TCP send and receive buffers on
the end hosts are set to 200MB. The senders and receivers
utilize iPerf3 [19] to exchange large data transfers.

The senders are connected to an Open Virtual Switch (OvS)
denoted as S1. S1 bridges to the server’s (Server 1) network
interface, which connects to a Juniper MX-204 router [20]
(router R1). A similar configuration is replicated for Server
2. The link between the OvS switches and the routers has a
bandwidth of 40Gbps, while the link connecting the routers
has a bandwidth of 1Gbps. An optical tap duplicates the traffic
between these routers in both directions (Tx/Rx), redirecting
it to the PDP. Similarly, there is a tap that duplicates the
traffic between Server 1 and router R1. The PDP is the
Edgecore Wedge100BF-32X [21] equipped with Intel’s Tofino
ASIC chip operating at 3.2 Tbps. The data plane of the
PDP operates at line rate, enabling it to execute operations
swiftly. This capability is leveraged to implement functions for
measuring throughput and RTT. Meanwhile, the control plane
of the switch receives and processes data plane metrics. These
metrics serve as inputs for both the classification algorithm
and the queue rebalancing process.
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Fig. 4. Throughput and link utilization of three competing TCP flows over a
1Gbps link.

A. Test 1: Rebalancing the Queue

This test evaluates the system’s adaptability to changing
network conditions. This experiment aims to show how the
system operates on a per-flow basis. In this scenario, some
flows may not fully utilize the bottleneck link due to the bottle-
neck being located elsewhere. To address the underutilization
of the link, the system is able to track the link utilization on a
per-flow basis and reallocate the remaining bandwidth to flows
capable of utilizing it fully.

Fig. 4 depicts a scenario involving three TCP flows. Initially,
flow 1 fully utilizes the available bandwidth until flow 2 joins
at t=60, where the bandwidth is evenly split between them.
However, at t=120, flow 2 experiences degradation. Conse-
quently, the system detects this fluctuation and reallocates
the unused bandwidth to flow 1, resulting in an increased
throughput of around 750Mbps. Conversely, at t=240, flow
1 experiences degradation, prompting the system to allocate
the unused bandwidth to flow 2. At t=360, flow 3 joins, and
the bandwidth is evenly distributed among the three flows.
However, at t=420, flow 3 experiences degradation, and the
remaining bandwidth is evenly distributed between flow 1 and
flow 2. Similarly, when flow 3 leaves at t=480, flow 1 and
flow 2 utilize the remaining bandwidth. As a result, the system
optimizes link utilization by redistributing queue allocation.

B. Test 2: Reducing Flow Completion Time of Long Flows

This test assesses the FCT of large data transfers ex-
tracted from a MAWI trace dated February 15, 2024 [22].
The extracted values include the RTT of each individual
transfer, the start times of the transfers, and the volume of
data transferred from sender to receiver. Using this data, we
construct 6000 sender-receiver pairs in Mininet to recreate
the observed scenario in the MAWI trace. The senders are
web servers hosting files ranging from 150 megabytes to 2
gigabytes, while the receivers request these files using the
wget command. The RTT of each flow ranges from 1ms to
224ms. Metadata capturing the duration of the data transfers
is stored for result analysis. Fig. 5 examines various scenarios
involving different CCAs and multiple queues. It is worth
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Fig. 5. This experiment presents the Cumulative Distribution Function (CDF) of the FCT for 6000 long flows over a 1 Gbps link using the MAWI traces. The
experiment demonstrates how the number of queues impacts the FCT of long flows. Note that the results corresponding to 4 and 8 queues mostly overlap.

noting that while the MAWI traces do not directly provide
information on the CCA in use, most Internet applications
commonly employ CUBIC and BBRv1 [23]. Additionally,
the result also includes HTCP [24] which is a variant of
TCP that is used for high-speed long-distance networks and
BBRv2 [25] which is a newer version of TCP BBR. Fig.
5(a) illustrates that the system enhances the average FCT
of long flows by segregating them into multiple queues and
allocating bandwidth to each queue based on its average RTT.
It’s observed that employing multiple queues improves the
average FCT compared to using just one queue, primarily
by alleviating the bufferbloat issue. Bufferbloat occurs when
routers have large buffer sizes, leading to additional delay as
loss-based CCAs fill the buffer excessively. In Fig. 5(b), it’s
shown that HTCP exhibits a similar average FCT to CUBIC.
Additionally, no significant difference is observed when flows
are separated into 4 or 8 queues. Figs. 5(c-d) indicate that
increasing the number of queues does not significantly impact
the performance of BBRv1 and BBRv2 flows. This behavior
can be attributed to BBR’s design, which aims to estimate
Kleinrock’s operating point [26], thus reducing delays caused
by bufferbloat. Consequently, segregating flows into more than
two queues does not substantially alter BBR’s operating point.

C. Test 3: Minimizing Bufferbloat

Bufferbloat arises when router buffers become oversized,
holding more packets than the port’s sending rate can handle
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Fig. 6. RTT of two CUBIC flows. (a) wo/ bufferbloat prevention. (b) w/
bufferbloat prevention.

[6]. As a result, the end-to-end delay is increased. This issue
is widespread across the Internet and is often incorrectly at-
tributed to network congestion. Unlike end hosts, intermediary
devices have a clearer view of network events beyond just
packet losses and delays. They can discern the source of these
events and complement the actions taken by CCAs on end
hosts. The proposed system monitors flow RTT and identifies
when a flow is introducing unnecessary latency. It then takes
action by segregating such flows into different queues to
isolate their effects. Fig. 6(a) illustrates how RTT changes over
time when two flows share the same buffer. At first, flow 1
encounters a low RTT. However, when flow 2 joins and injects
more packets than the egress port can manage, it leads to
increased latency for both flows. In contrast, Fig. 6(b) demon-
strates the bufferbloat prevention mechanism implemented by
the system. Here, the operator can set a threshold for RTTs
on a per-queue basis. If a new flow increases overall latency
beyond this threshold, it is reallocated to a different queue
alongside flows experiencing similar latency.

D. Test 4: Mitigating UDP Abuses

While widely utilized by many multimedia applications,
UDP is a protocol that is susceptible to abuse [27]. Unlike
TCP, UDP lacks any congestion control and connection man-
agement mechanisms such as the TCP three-way handshake.
This limitation allows an application employing UDP to
generate traffic at a high rate, potentially causing congestion
and overflows at routers, switches, and other network devices.
In contrast, TCP employs congestion control by significantly
reducing the sending rate when congestion is detected. Con-
sequently, UDP abuse can lead to detrimental effects such as
one UDP flow monopolizing most of the network bandwidth,
crowding out TCP flows, and resulting in unfair bandwidth
allocations and starvation.

The proposed system can mitigate UDP abuses, which
are common in Domain Name System (DNS) amplification
attacks, which is type of Distributed Denial of Service (DDoS)
attack [11, 28]. Fig. 7(a) shows a scenario without UDP abuse
prevention. In this case, all flows share a single queue which
is typically the case in enterprise routers. A UDP flow starts
sending data at t=0 and and after 60 seconds, subsequent TCP
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Fig. 7. UDP abuse scenario. (a) wo/ UDP abuse prevention. (b) w/ UDP
abuse prevention.

flows join. It is observed that the performance of the TCP
flows is degraded and the fairness index fluctuates from 50%
to 33% finally settling around 25% when all the four flows
are present. On the other hand, Fig. 7(b) shows a scenario
with flow separation and bandwidth limitation. In this case, the
UDP flow can fully utilize the available bandwidth if no other
flow is present. When the TCP flows join, the system allocates
them in different queues in order to isolate their dynamics and
enforce a fair bandwidth utilization.

V. CONCLUSION AND FUTURE WORK

This paper proposes a system designed to enhance the fair-
ness among competing flows by computing their throughput
and RTTs. The system employs a passive approach to take
corrective actions to mitigate potential negative interactions
among competing flows. The experiments illustrate the sys-
tem’s ability to reduce the FCT of long flows, considering
a large number of flows and latencies observed in real-
world traces. Additionally, the system can rebalance queues
to minimize the impact of bufferbloat and mitigate the effects
of well-known DDoS attacks at the network layer. Future work
will focus on extending the system to perform flow separation
based on the CCA employed by the flows.
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