

UCF / FLR Workshop on Networking Topics Session 1: iPerf3, TCP Buffers, Science DMZ Motivation and Impact of Packet Loss

> Jorge Crichigno, Elie Kfoury University of South Carolina http://ce.sc.edu/cyberinfra

University of Central Florida (UCF) Florida LambdaRail (FLR) The Engagement and Performance Operations Center (EPOC) Energy Sciences Network (ESnet) University of South Carolina (USC)

> Orlando, Florida February 16th, 2023

Workshop on Networking Topics

• Webpage with PowerPoint presentations:

http://ce.sc.edu/cyberinfra/workshop_2023_feb.html

• Hands-on sessions: to access labs for the hands-on sessions, use the following link:

https://netlab.cec.sc.edu/

- Username: email used for registration
- Password: nsf2023

NTP Lab Series

Lab experiments

- Lab 1: Introduction to Mininet
- Lab 2: Introduction to iPerf
- Lab 3: WANs with latency, Jitter
- Lab 4: WANs with Packet Loss, Duplication, Corruption
- Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)
- Lab 6: Traditional TCP Congestion Control (HTCP, Cubic, Reno)
- Lab 7: Rate-based TCP Congestion Control (BBR)
- Lab 8: Bandwidth-delay Product and TCP Buffer Size
- Lab 9: Enhancing TCP Throughput with Parallel Streams
- Lab 10: Measuring TCP Fairness

- Lab 11: Router's Buffer Size
- Lab 12: TCP Rate Control with Pacing
- Lab 13: Impact of Maximum Segment Size on Throughput
- Lab 14: Router's Bufferbloat
- Lab 15: Hardware Offloading on TCP Performance
- Lab 16: Random Early Detection
- Lab 17: Stochastic Fair Queueing
- Lab 18: Controlled Delay (CoDel) Active Queue Management
- Lab 19: Proportional Integral Controller-Enhanced (PIE)
- Lab 20: Classifying TCP traffic using Hierarchical Token Bucket (HTB)

Organization of the Lab Manuals

Each lab starts with a section Overview

- Objectives
- Lab topology
- Lab settings: passwords, device names
- Roadmap: organization of the lab

Section 1

- Background information of the topic being covered (e.g., fundamentals of perfSONAR)
- Section 1 is optional (i.e., the reader can skip this section and move to lab directions)

Section 2... n

Step-by-step directions

Mininet

- Mininet provides network *emulation* opposed to simulation, allowing all network software at any layer to be simply run as is
- Mininet's logical nodes can be connected into networks
- Nodes are sometimes called containers, or more accurately, *network namespaces*
- Containers consume sufficiently few resources that networks of over a thousand nodes have been created, running on a single laptop

MiniEdit

• MiniEdit is a simple GUI network editor for Mininet

MiniEdit

• To build Mininet's minimal topology, two hosts and one switch must be deployed

iPerf3

- iPerf3 is a real-time network throughput measurement tool
- It is an open source, cross-platform client-server application that can be used to measure the throughput between the two end devices
- Measuring throughput is particularly useful when experiencing network bandwidth issues such as delay, packet loss, etc.

iPerf3

- iPerf3 can operate on TCP, UDP, and SCTP, unidirectional or bidirectional way
- In iPerf3, the user can set *client* and *server* configurations via options and parameters
- iPerf3 outputs a timestamped report of the amount of data transferred and the throughput measured

Connecting to host 10.0.0.2, port 5201								
[13] local 10.0.0.1 port 59414 connected to 10.0.0.2 port 5201								
[ID]	Interval		Transfer	Bitrate	Retr	Cwnd		
[13]	0.00-1.00	sec	5.18 GBytes	44.5 Gbits/sec	Θ	843	KBytes	
[13]	1.00-2.00	sec	5.21 GBytes	44.7 Gbits/sec	Θ	1.11	MBytes	
[13]	2.00-3.00	sec	5.20 GBytes	44.7 Gbits/sec	Θ	1.18	MBytes	
[13]	3.00-4.00	sec	5.21 GBytes	44.7 Gbits/sec	0	1.24	MBytes	
[13]	4.00-5.00	sec	5.19 GBytes	44.6 Gbits/sec	Θ	1.24	MBytes	
[13]	5.00-6.00	sec	5.22 GBytes	44.8 Gbits/sec	Θ	1.30	MBytes	
[13]	6.00-7.00	sec	5.24 GBytes	45.0 Gbits/sec	Θ	1.44	MBytes	
[13]	7.00-8.00	sec	5.22 GBytes	44.9 Gbits/sec	Θ	1.44	MBytes	
[13]	8.00-9.00	sec	5.21 GBytes	44.8 Gbits/sec	Θ	1.45	MBytes	
[13]	9.00-10.00	sec	5.22 GBytes	44.8 Gbits/sec	Θ	1.52	MBytes	
[ID]	Interval		Transfer	Bitrate	Retr			
[13]	0.00-10.00	sec	52.1 GBytes	44.8 Gbits/sec	Θ		sender	
[13]	0.00-10.04	sec	52.1 GBytes	44.6 Gbits/sec			receiver	
iperf Done.								
root@admin-pc:~#								

TCP Traditional Congestion Control

- The principles of window-based CC were described in the 1980s¹
- Traditional CC algorithms follow the additive-increase multiplicative-decrease (AIMD) form of congestion control

1. V. Jacobson, M. Karels, Congestion avoidance and control, ACM SIGCOMM Computer Communication Review 18 (4) (1988).

BBR: Model-based CC

- TCP Bottleneck Bandwidth and RTT (BBR) is a rate-based congestion-control algorithm¹
- BBR represented a disruption to the traditional CC algorithms:
 - is not governed by AIMD control law
 - does not the use packet loss as a signal of congestion
- At any time, a TCP connection has one slowest link bottleneck bandwidth (btlbw)

TCP Buffer Size

- In many WANs, the round-trip time (RTT) is dominated by the propagation delay
- To keep the sender busy while ACKs are received, the TCP buffer must be:

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Lab Goal and Topology

- Deploy emulated WANs in Mininet
- Modify the TCP congestion control algorithm in Linux using sysctl tool
- Compare the performance of TCP Reno and TCP BBR in high-throughput highlatency networks
 - Without 30ms propagation delay
 - With 30ms propagation delay
- Demonstrating the impact of packet loss on the throughput of TCP
- Lab topology:

Additional Slides

- BBR performance on FABRIC
- Performance measurements for a single flow, 0.0046% packet loss rate

Site 1	Site 2	RTT
TACC (TX)	TACC (TX)	0.3ms
DALL (TX)	TACC (TX)	6ms
DALL (TX)	WASH (DC)	27ms
SALT (UT)	FIU (FL)	44ms
GPN (MO)	DALL (TX)	61ms
UTAH (UT)	WASH (DC)	72ms
GPN (MO)	FIU (FL)	113ms

Additional Slides

- BBR performance on FABRIC
- Performance measurements for a single flow, 0.0046% packet loss rate

BDP

- Bandwidth = 1Gbps
- RTT = 30ms
- BDP (bytes) = 3,750,000 bytes
- BDP (MB) = 3.57MB