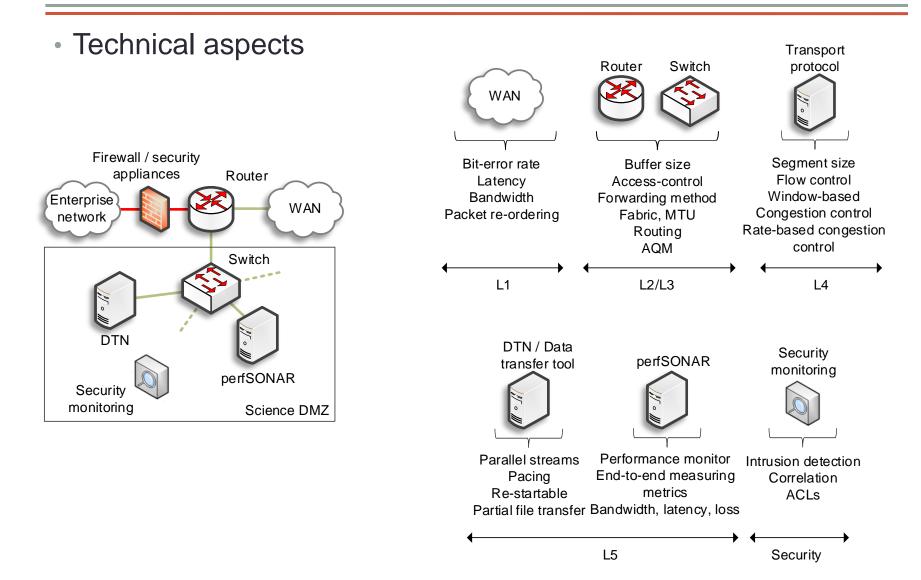
WORKSHOP ON NETWORK TOOLS AND PLATFORMS

Jorge Crichigno, Elie Kfoury, Jose Gomez Department of Integrated Information Technology University of South Carolina


NSF Award 1829698

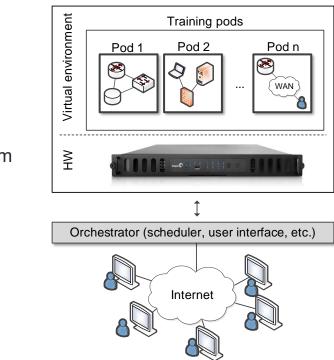
"CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers"

Hands-on Workshops

- The need for hands-on workshops
- Technical knowledge and skills to learn networks, high-speed protocols, security appliances, perfSONAR, etc.
- Earlier workshops: "Operating Innovative Networks" (CC*OIN): 2015 - 2017(see <u>https://tinyurl.com/uf3fysz</u>)

Hands-on Workshops

Hands-on Workshops


- Needs for hands-on tools at all levels
 - > Industry certificate programs
 - >Two-year technical colleges
 - Four-year universities
 - > Graduate programs

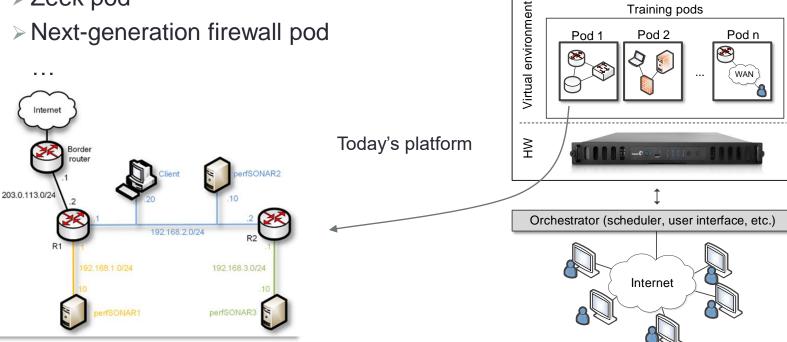
Virtual Platform

- We aggregate content to run on a common platform
 The Network Development Group (NDG) (netdevgroup.com)
- Multiple pod types
- A pod is a set of equipment need to complete a lab experiment
 - > perfSONAR pod
 - >Zeek pod

. . .

Next-generation firewall pod

USC's virtual platform

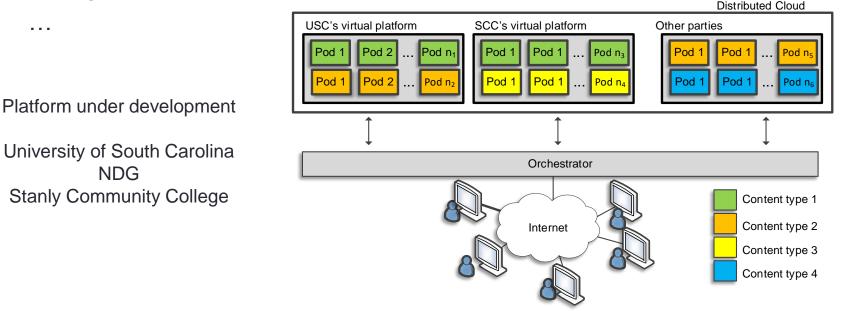

Today's platform

Virtual Platform

6

USC's virtual platform

- We aggregate content to run on a common platform The Network Development Group (NDG) (netdevgroup.com)
- Multiple pod types
- A pod is a set of equipment need to complete a lab experiment
 - > perfSONAR pod
 - Zeek pod
 - Next-generation firewall pod



Virtual Platform

- We aggregate content to run on a common platform The Network Development Group (NDG) (netdevgroup.com)
- Multiple pod types
- A pod is a set of equipment need to complete a lab experiment
 - > perfSONAR pod
 - Zeek pod

. . .

Next-generation firewall pod

"HANDS-ON SESSION TCP, NETWORK TOOLS"

Jorge Crichigno, Elie Kfoury, Jose Gomez Department of Integrated Information Technology University of South Carolina

NSF Award 1829698

"CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers"

Lab Series: Networks Tools and Protocols

- Elie Kfoury is a second-year PhD student in the College of Engineering and Computing at the University of South Carolina. His research focuses on programmable switches, telecommunications, network security, Blockchain, Internet of Things (IoT), and Software Defined Networking (SDN). Besides working in academia, Elie acts as the CTO of the Swedish startup "Secumobi". The company develops security solutions backed by hardware encryption and Trusted Execution Environments (TEE).
- **Jose Gomez** is a second-year PhD student in the College of Engineering and Computing at the University of South Carolina. Prior to joining USC, he received his bachelor degree in Electrical Engineering from the Catholic University in Paraguay.

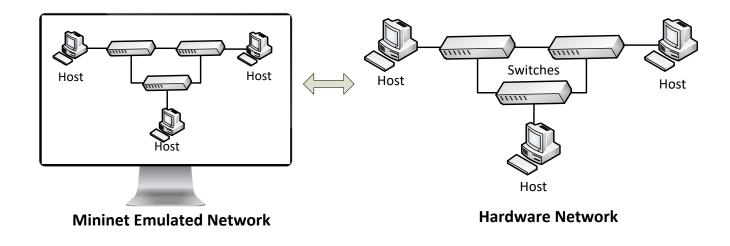
LAB SERIES: NETWORK TOOLS AND PROTOCOLS

Lab Series: Networks Tools and Protocols

- Lab 1: Introduction to Mininet
- Lab 2: Introduction to iPerf
- Lab 3: Emulating WAN with NETEM I Latency, Jitter
- Lab 4: Emulating WAN with NETEM II Packet Loss, Duplication, Reordering, and Corruption
- Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)
- Lab 6: Understanding Traditional TCP Congestion Control (HTCP, Cubic, Reno)
- Lab 7: Understanding Rate-based TCP Congestion Control (BBR)
- Lab 8: Bandwidth-delay Product and TCP Buffer Size
- Lab 9: Enhancing TCP Throughput with Parallel Streams
- Lab 10: Measuring TCP Fairness
- Lab 11: Router's Buffer Size
- Lab 12: TCP Rate Control with Pacing
- Lab 13: Impact of Maximum Segment Size on Throughput
- Lab 14: Router's Bufferbloat

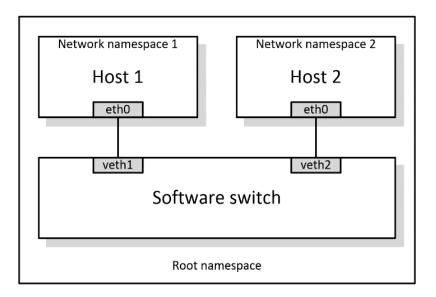
Lab Series: Networks Tools and Protocols

- Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance
- Lab 16: Random Early Detection
- Lab 17: Stochastic Fair Queueing
- Lab 18: Controlled Delay (CoDel) Active Queue Management
- Lab 19: Proportional Integral Controller-Enhanced (PIE)
- Lab 20: Classifying TCP traffic using Hierarchical Token Bucket (HTB)


Organization of Lab Manuals

- Each lab starts with a section Overview
 - > Objectives
 - Lab settings: passwords, device names
 - Roadmap: organization of the lab
- Section 1
 - Background information of the topic being covered (e.g., fundamentals of TCP congestion control)
 - Section 1 is optional (i.e., the reader can skip this section and move to lab directions)
- Section 2... n
 - Step-by-step directions

LAB 1: INTRODUCTION TO MININET


What is Mininet?

- A virtual testbed capable of recreating realistic scenarios
- It enables the development, testing of network protocols
- Inexpensive solution, real protocol stack, reasonably accurate

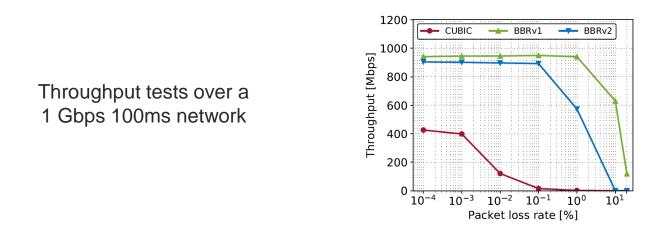
What is Mininet?

- Mininet nodes are network namespaces
 - Each node has different / separate virtual interfaces, routing tables
- Nodes use the underlying protocol stack of the host device
- Nodes are connected via virtual Ethernet (veth) links, which behave as Ethernet links

Where is Mininet used?

- Reproducing network research (buffers size, congestion control, long fat networks, datacenters)¹
- Prototyping Software Defined Networking (SDN) ideas²
- Open Networking Foundation (ONF)³: SDN, NG-SDN, P4.org
- Teaching and research at undergraduate and graduate levels⁴

¹ B. Heller, "Reproducing network research with high-fidelity emulation," http://yuba.stanford.edu/~nickm/papers/brandon-thesis.pdf


² De Oliveira, Rogério Leão Santos, et al. "Using mininet for emulation and prototyping software-defined networks." 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), 2014.

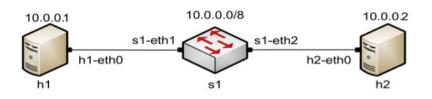
³ Open Networking Foundation, "Mininet ONF," https://www.opennetworking.org/mininet/

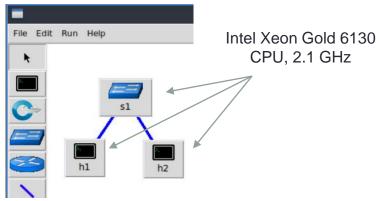
⁴ Lantz, Bob, Brandon Heller, and Nick McKeown. "A network in a laptop: rapid prototyping for software-defined networks." Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

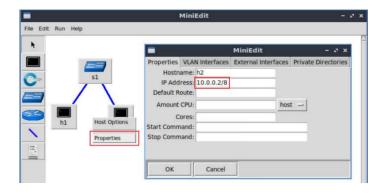
Where is Mininet used?

- Reproducing network research (buffers size, congestion control, long fat networks, datacenters)¹
- Prototyping Software Defined Networking (SDN) ideas²
- Open Networking Foundation (ONF)³: SDN, NG-SDN, P4.org
- Teaching and research at undergraduate and graduate levels⁴

¹ B. Heller, "Reproducing network research with high-fidelity emulation," http://yuba.stanford.edu/~nickm/papers/brandon-thesis.pdf

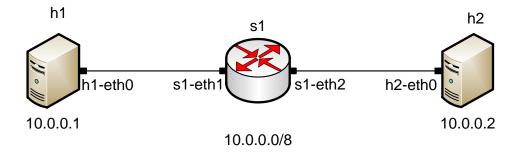

² De Oliveira, Rogério Leão Santos, et al. "Using mininet for emulation and prototyping software-defined networks." 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), 2014.


³ Open Networking Foundation, "Mininet ONF," https://www.opennetworking.org/mininet/


⁴ Lantz, Bob, Brandon Heller, and Nick McKeown. "A network in a laptop: rapid prototyping for software-defined networks." Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

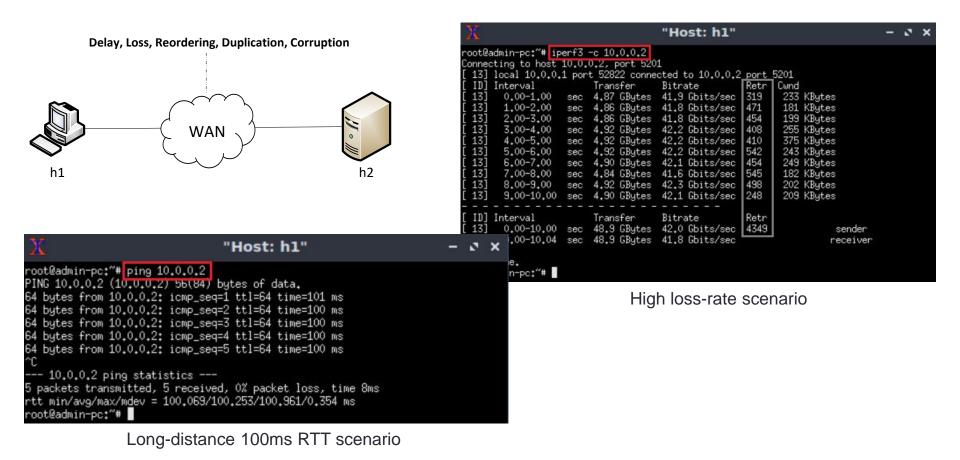
Pod Design with Mininet

- A pod is a set of virtual equipment (routers, switches, etc.)
- A pod is created every time a lab reservation is made
- For the Network Tools and Protocols Lab series, pods are embedded into Mininet



LAB 2: INTRODUCTION TO IPERF

What is iPerf?

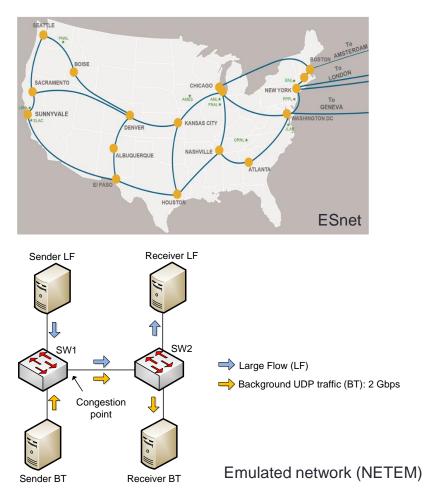

- iPerf is a real-time network throughput measurement tool
- The user can set client (sender) and server (receiver)

X			"	Host: h1"				-	2	×
root@a	admin-pc:~# ip	erf3	-c 10.0.0.2							
Connecting to host 10.0.0.2, port 5201										
				cted to 10.0.0.2	port	5201				
	Interval			Bitrate	Retr	Cwnd				
[19]	0.00-1.00	sec	5.11 GBytes	43.9 Gbits/sec	0	730	KBytes			
[19]	1,00-2,00	sec	5.09 GBytes	43.7 Gbits/sec	0	887	KBytes			
[19]	2,00-3,00	sec	5.14 GBytes	44.1 Gbits/sec	0	887	KBytes			
	3.00-4.00	sec	5.15 GBytes	44.2 Gbits/sec		932	KBytes			
[19]	4.00-5.00	sec	5.15 GBytes	44.2 Gbits/sec	0		KBytes			
	5.00-6.00	sec	5.19 GBytes	44.6 Gbits/sec	0		KBytes			
[19]	6.00-7.00	sec	5.18 GBytes	44.5 Gbits/sec	0	932	KBytes			
	7.00-8.00	sec	5.05 GBytes	43.4 Gbits/sec	0	2.19	MBytes			
[19]	8,00-9,00			44.3 Gbits/sec	0		MBytes			
[19]	9,00-10,00	sec	5.15 GBytes	44.3 Gbits/sec	0	2,19	MBytes			
[ID]	Interval		Transfer	Bitrate	Retr					
				44.1 Gbits/sec	0		sen	den		
[19]	0.00-10.04	sec	51.4 GBytes					eive	n :	
101	0.00 L0.01	000	02:10003003	1010 001001000				0100		
iperf Done. root@admin-pc:~#										

LAB 5: SETTING WAN BANDWIDTH WITH TOKEN BUCKET FILTER (TBF)

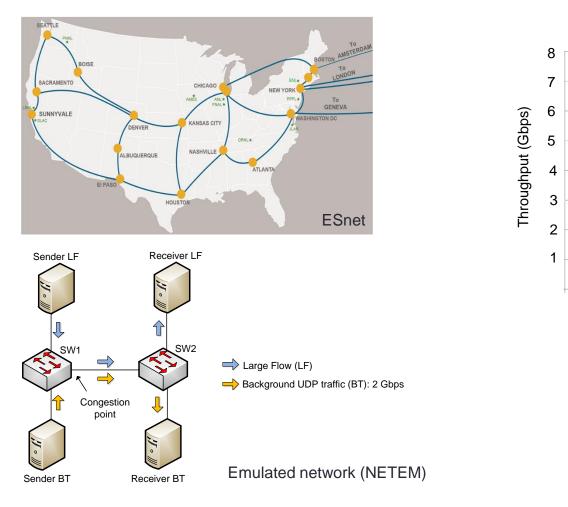
 A Linux network emulator that reproduces long-distance WANs in the lab environment

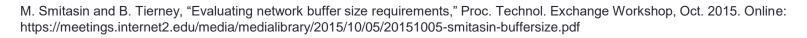
- A Linux network emulator that reproduces long-distance WANs in the lab environment
- Example applications:
 - ≻ESnet¹
 - > Lawrence Berkeley National Laboratory²
 - > Evaluate TCP enhancements³
 - > Evaluate Active Queueing Management (AQM) algorithms⁴
 - > Evaluate network behavior in various conditions (loss, latency, duplication)


¹ ESnet Energy Sciences Network, "Network Switch Buffer Testing," Online: https://fasterdata.es.net/network-tuning/router-switch-buffer-size-issues/switch-buffer-testing/

² Kissel, Ezra, et al. "Scalable integrated performance analysis of multi-gigabit networks." 2012 IEEE Network Operations and Management Symposium, IEEE, 2012.

³ Hock, Mario, Roland Bless, and Martina Zitterbart. "Experimental evaluation of BBR congestion control." 2017 IEEE 25th International Conference on Network Protocols (ICNP), IEEE, 2017.


⁴ Gong, Yixi, et al. "Fighting the Bufferbloat: on the coexistence of AQM and low priority congestion control." Computer Networks 65 (2014): 255-267.


ESnet vs emulated network, 10 Gbps links, 70 msec RTT

M. Smitasin and B. Tierney, "Evaluating network buffer size requirements," Proc. Technol. Exchange Workshop, Oct. 2015. Online: https://meetings.internet2.edu/media/medialibrary/2015/10/05/20151005-smitasin-buffersize.pdf

ESnet vs emulated network, 10 Gbps links, 70 msec RTT

76

Buffer Size of Output Port (MBs)

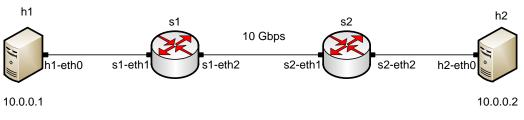
19

ESnet tests

4

114

Emulation tests

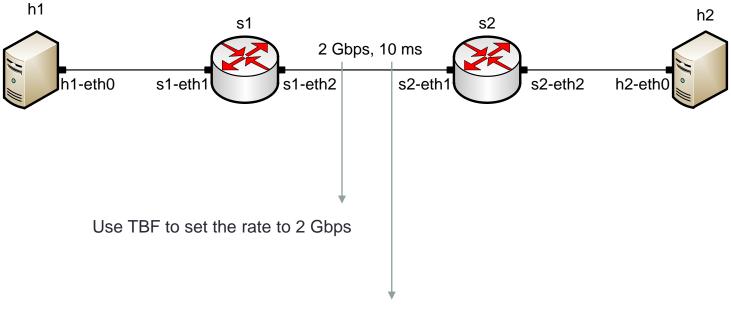

190

Token Bucket Algorithm

- Algorithm used in networks to limit the bandwidth and the burstiness of the traffic
- Linux token bucket implementation is called token bucket filter (TBF)
- Parameters
 - Link rate
 - Maximum burst size
 - > Buffer size

Token Bucket Algorithm

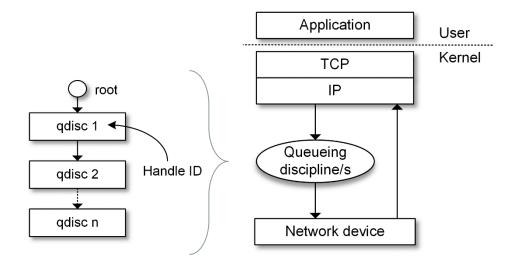
- Algorithm used in networks to limit the bandwidth and the burstiness of the traffic
- Linux token bucket implementation is called token bucket filter (TBF)
- Parameters
 - Link rate
 - Maximum burst size
 - > Buffer size



X	"Host: h1"		- 2 ×
[ID] Interval [15] 0.00-1.00 [15] 1.00-2.00 [15] 2.00-3.00 [15] 3.00-4.00 [15] 4.00-5.00 [15] 5.00-6.00 [15] 6.00-7.00	10.0.0.2, port 5201 1 port 33102 connected to 10.0.0.2 Transfer Bitrate sec 1.12 GBytes 9.52 Gbits/sec sec 1.11 GBytes 9.56 Gbits/sec sec 1.11 GBytes 9.57 Gbits/sec sec 1.11 GBytes 9.56 Gbits/sec	Retr 0 0 0 0 0 0 0 0 0 0	Cwnd 540 KBytes
[ID] Interval [15] 0.00-10.00 [15] 0.00-10.04 iperf Done. root@admin-pc:~#	sec 11.1 GBytes 9.57 Gbits/sec		sender receiver

Test using Linux's TBF, rate 10 Gbps

Lab 5 Topology


- Two hosts: h1 and h2; two switches: s1 and s2
- 2 Gbps, 10 ms latency from s1 to s2

Use NETEM to set the latency to 10 ms

Lab 5 Topology

- NETEM is used to emulate latency
- TBF is used to limit the rate of the link s1-s2
- Then, they are combined as "queueing disciplines"
- A queuing discipline is an object with two interfaces

Lab 5 Topology

- Two hosts: h1 and h2; two switches: s1 and s2
- 2 Gbps,10 ms latency from s1 to s2

	.0.0.2 ping s									
	ets transmitt						me 7ms			
	n/avg/max/mde				10.61	1/0.243 ms				
	dmin-pc:~# ip									
	ting to host							5003		
	local 10.0.0.									
	Interval		Trans		Bitra			Cwnd		
	0.00-1.00									
	1.00-2.00									
	2.00-3.00					Gbits/sec				
	3.00-4.00					Gbits/sec				
	4.00-5.00					Gbits/sec				
	5.00-6.00					Gbits/sec			MBytes	
	6.00-7.00					Gbits/sec			MBytes	
	7.00-8.00	sec	228	MBytes	1.91	Gbits/sec	Θ	2.52	MBytes	
15]	8.00-9.00	sec	229	MBytes	1.92	Gbits/sec	Θ	2.58	MBytes	
15]	9.00-10.00	sec	228	MBytes	1.91	Gbits/sec	O	2.62	MBytes	
ID]	Interval		Tran	sfer	Bitra	ate	Retr			
15]	0.00-10.00	sec	2.21	GBytes	1.90	Gbits/sec	720		sender	
15]	0.00-10.04	sec	2.21	GBytes	1.89	Gbits/sec			receiv	er

Access to Virtual Platform

Availability of Virtual Platform <u>DURING</u> Workshop, May 4 – May 6

- >A total of 110 attendees were allocated resources to access the virtual platform
- > Your credentials have been sent (check email used for registration)
- > Please contact Assistant 1-4 for questions

Availability of Virtual Platform AFTER Workshop, May 6 – August 6

≻URL:	https://netlab.cec.sc.edu/
> Username:	<email address="" for="" registration="" used=""></email>
➢ Password:	nsf2020