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Abstract—This paper presents a system that mitigates the
Round-trip Time (RTT) unfairness issue in non-programmable
networks using P4-programmable data planes. In traditional loss-
based congestion control algorithms (CCAs), RTT unfairness oc-
curs when the flows with shorter RTTs obtain higher bandwidth
shares with respect to the flows with longer RTTs. This behavior
occurs due to the faster recovery period that flows with shorter
RTTs experience after a loss event. On the other hand, more
recent CCAs, such as the Bottleneck Bandwidth and Round-
trip Time (BBR), present the opposite behavior, where the flows
with longer RTTs achieve higher throughput than the ones with
shorter RTTs.

In this paper, the proposed system employs a P4-
programmable data plane to monitor the RTT of flows traversing
a non-programmable router at line rate using passive taps. The
P4-programmable data plane analyzes the RTT of each flow, sub-
sequently segregating them into different queues. This separation
is aimed at minimizing the interaction between flows with varying
RTTs. Results show that implementing flow separation improves
the fairness of long flows, reduces the RTT of individual flows
allocated in different queues, and improves the Flow Completion
Times (FCTs) of short flows.

Index Terms—P4, RTT unfairness, Transmission Control Pro-
tocol (TCP), Congestion Control Algorithm (CCA), Bottleneck
Bandwidth and Round-trip Time (BBR).

I. INTRODUCTION

The Transmission Control Protocol (TCP) plays a funda-
mental role in establishing reliable end-to-end communication.
One of the fundamental functions of TCP is congestion
control, which is a mechanism that constantly aims for the
highest data transfer rate that can be used without causing
network congestion. Congestion control algorithms (CCAs)
typically operate as a function of the Round-trip Time (RTT),
where they probe for a target transfer rate and use the
RTT as a metric to determine the amount of data to inject
into the network. CCAs adjust the sending rate based on
feedback received during data transfer cycles, either increasing
or decreasing it for the next cycle. This design that relies
on RTT often results in a problem known as RTT unfairness
[1]. RTT unfairness significantly impacts network performance
in transport protocols. It typically occurs when two senders
located at different distances from the receiver share the same
bottleneck link. In such a scenario, these competing data flows
go through varying recovery times after a congestion event,

leading to an unequal bandwidth distribution. Traditional loss-
based CCAs such as CUBIC [2] experience RTT unfairness,
where flows with longer RTTs face significant disadvantages
compared to those with shorter RTTs. CUBIC flows with
shorter RTTs can probe the network more frequently, increas-
ing their sending rate faster than flows with longer RTTs.
This situation results in suboptimal network utilization and
decreased overall Quality of Service (QoS). Conversely, newer
CCAs like Bottleneck Bandwidth and Round-trip Time (BBR)
[3] exhibit the opposite behavior, with flows having longer
RTTs achieving higher throughput [4–6]. BBR aims to identify
Kleinrock’s optimal operating point [7] and restrict the amount
of data in transit to one Bandwidth-delay Product (BDP),
calculated as the product of the RTT and the bottleneck
bandwidth (Btlbw) (i.e., BDP=RTT×Btlbw). Consequently,
BBR flows with longer RTTs obtain a larger bandwidth share.

This paper presents a system that utilizes P4-programmable
data planes to identify TCP flows, calculate their RTTs, and
classify them into distinct queues, aiming to reduce the impact
of RTT unfairness. P4 is a programming language that enables
the definition of how data planes process network packets
[8]. The system employs passive optical taps and a P4-
programmable switch as a measurement instrument. The P4-
programmable switch receives a mirrored copy of traffic from
a bottleneck link between two non-programmable routers.
Then, the P4-programmable switch generates a set of rules to
configure a non-programmable router to segregate TCP flows
in different queues. This reallocation results in reducing the
impact of the RTT unfairness. The P4-programmable switch
implements the Jenks optimization method [9] to segregate
flows with similar RTTs into separate queues. Additionally,
the system adjusts the buffer size to minimize delays caused
by bufferbloat [10]. The results demonstrate the system’s
capability to identify and classify TCP flows while improving
fairness, reducing the RTT of individual flows resulting from
queueing delay, and improving the Flow Completion Times
(FCTs) of short flows.

A. Contributions

This paper proposes a system that separates TCP flows
according to their RTT. The traffic is passively measured by



tapping on the egress interface of a non-programmable router.
The P4-programmable data plane separates the flows using a
classification algorithm. The contributions of this paper can be
listed as follows:

• Reducing the impact of RTT unfairness observed when
long TCP flows share a bottleneck link.

• Implementing a system that categorizes and segregates
flows into distinct queues based on their RTT. This system
leverages the programmability and granularity offered
by P4-programmable data planes, enabling it to execute
actions in non-programmable routers.

• Enhancing multiple performance objectives [11] such as
fairness, FCTs, and RTTs of individual flows. Isolating
the dynamics of competing TCP flows results in a more
efficient utilization of resources.

The rest of the paper is organized as follows: Section II
presents background on P4-programmable data planes and
related works. Section III describes the proposed system.
Section IV describes the experiments and the results. Section
V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. P4-programmable Data Planes

P4-programmable data planes offer programmers the flexi-
bility to define how packets are processed by a pipeline [8].
A P4 processing pipeline consists of three key components: a
programmable parser, a programmable match-action pipeline,
and a programmable deparser. The programmable parser in-
terprets the stream of bits the switch receives and organizes
them in standard and custom header fields previously defined
by the programmer. Then, the match-action pipeline executes
operations on packet headers and intermediate results. Lastly,
the deparser reassembles the packet headers and serializes
them for transmission.

P4-programmable data planes provide high-precision timers
with nanosecond granularity and stateful memories such as
registers, counters, and meters, all of which can be accessed
at a line rate. These capabilities enable the execution of
per-packet operations, which have found extensive use in
adding visibility to network events and enhancing network
performance [12–14]. In this paper, the data plane of a P4-
programmable switch is programmed to identify and calculate
the RTTs of individual flows. Then, the control plane employs
a classification algorithm to determine the allocation of these
flows into different queues.

B. RTT Unfairness Characterization

Gavaletz and Kaur [1] proposed a novel method for an-
alyzing and decomposing the sources of RTT unfairness in
transport protocols. They demonstrated that the sources of
RTT unfairness vary between protocols. The authors also
proposed a modification to TCP called FairTCP that addresses
the feedback delay component of RTT unfairness by allowing
connections to obtain more accurate congestion feedback.
Tao et al. [15] proposed a mathematical model to study the
problem of RTT unfairness in the BBR CCA. The authors
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Fig. 1. High-level system overview. Step (1): a copy of the traffic is forwarded
by the tap to the data plane of the P4 switch. Step (2): the RTT of each TCP
flow is calculated and identified at the P4 switch’s data plane. Step (3): A
classification algorithm running in the P4 switch’s control plane assigns a
queue to each flow.

evaluated a queueing model that captures the interactions
between BBR flows and the underlying network. The authors
also proposed a modification to BBR that addresses this issue
by adjusting the pacing rate during the bandwidth probing
phase based on the RTT of the connection.

C. Flow Separation

Kfoury et al. [16] addressed the impact of buffer size at
bottleneck routers on network application performance. The
authors highlight the challenges of static buffer configurations,
which can lead to increased packet losses, reduced link utiliza-
tion, and higher latency. The paper proposes P4BS, a dynamic
buffer sizing system that leverages programmable switches to
measure key metrics such as long-lived flow counts, RTTs,
packet loss rates, and queueing delays. P4BS optimizes buffer
sizes using these metrics to minimize queueing delays and
packet loss rates. The system was implemented and tested on
a Tofino hardware switch, demonstrating improved quality of
service across various applications like web browsing, video
streaming, and voice over IP. In another work, Kfoury et
al. [17] identified CCAs using P4-programmable data planes.
The goal of this work is to reduce the impact of CCAs that
present more aggressive behavior in terms of fairness and link
utilization. P4CCI achieves this by computing and extracting
the “bytes-in-flight” metric for each flow and then passing
this data to a deep learning model for classification. Once
classified, flows are sorted into dedicated queues based on their
respective CCA types. The system was implemented and tested
on real hardware. The results show that P4CCI’s ability to
detect and separate CCAs accurately leads to an enhancement
in network performance.

III. PROPOSED SYSTEM

A. Overview

Fig. 1 presents a high-level overview of the proposed sys-
tem. This system employs passive taps to collect traffic from
the data link of a non-programmable router by creating a copy
of the traffic without causing any performance disruptions.
Then, this traffic is directed to the data plane of a P4-
programmable switch. Within this switch, RTT calculations
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Fig. 2. Proposed system architecture. The P4 switch serves as a passive
measurement tool for calculating the RTT on a per-flow basis.

are made for each individual flow, with a focus on TCP flows
specifically. Once these flow metrics are computed, they are
transmitted to the control plane. At this point, a classification
algorithm is applied to determine which queues of the non-
programmable router should receive the respective flows. This
allocation action is executed via the management port of the
non-programmable router.

Consider the architecture of the proposed system depicted
in Fig. 2. The steps to identify flows, calculate the RTTs, and
separate the flows in different queues are as follows:

1) The system maintains continuous passive monitoring of
the traffic flowing through the non-programmable router.
To achieve this, a passive tap device is deployed in the
router’s egress interface. The tap redirects the traffic to
the data plane of a P4 switch that operates at line rate.

2) The packets are processed by the data plane of a P4
switch. In this stage, packets are parsed and the flows
are identified.

3) The information resulting from the flow identification
is transmitted to the RTT calculation module, which is
responsible for pairing each flow with its respective RTT.

4) The data plane of the P4 switch sends to the control
plane the RTTs of each flow to the classification module
that implements the Jenks natural breaks algorithm [9] to
separate the flows in different queues.

5) After the P4 switch’s control plane identifies the flows
assigned to each queue, it creates the control rules that
implement the isolation of these flows within the non-
programmable router. These rules consist of an Access
Control List (ACL) that specifies the IP addresses as-
sociated with each queue and setting the buffer size of
individual queues.

6) The classifier of the non-programmable router assigns the
flows to their corresponding queues.
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Fig. 3. RTT calculation in the data plane [19]. The RTT is calculated by sub-
tracting the timestamp of an incoming TCP packet from the timestamp of the
corresponding outgoing packet, using a flow identifier and acknowledgment
number stored in a table for correlation.

7) The buffer size of each queue is adjusted following the
Stanford rule [18] to prevent bufferbloat.

B. Metrics Computation

The proposed system employs a method detailed in [19] to
calculate the RTT of individual flows. This method correlates
the TCP sequence (SEQ) and acknowledgment (ACK) num-
bers found in incoming and outgoing packets. By calculating
the time difference between these two packets, the system can
derive the RTT. The method is described in Fig. 3, and it
comprises the following steps:

1) For each outgoing packet, the system computes the flow
identifier (FID) of the packet by applying a hash func-
tion to the 5-tuple, which consists of source/destination
IP addresses, source/destination port numbers, and the
communication protocol. Additionally, it calculates the
expected acknowledgment number (eACK) by adding the
SEQ number to the payload’s length.

2) The current packet’s timestamp is stored in a table,
indexed by the combination of FID and eACK.

3) Upon receiving an incoming TCP packet, the system uses
the FID and ACK number to search the table for an
existing record. If a match is found, it calculates the
difference between the timestamps, generating an RTT
sample.

In real-world scenarios, devices may not acknowledge every
packet promptly (e.g., due to delayed ACK, where a device
sends a single ACK for multiple packets). Given the limited
memory available on programmable switches (typically in the
tens of megabytes), it is not feasible to store records indef-
initely. Therefore, the system employs a timeout threshold.
When this threshold is exceeded, the corresponding record
is evicted from memory. Furthermore, the method utilizes a
multi-stage hash approach due to constraints on accessing data
plane memory.

The system also employs the Count-Min Sketch (CMS)
data structure [16] to estimate the packet count for a specific
flow. These packet counts are subsequently compared to a
predefined threshold, helping determine whether a flow should
be categorized as a long flow.



C. Classification Algorithm

The Jenks optimization method [9], also known as Jenks
natural breaks algorithm, is a statistical technique employed
for data classification and clustering. This method serves the
purpose of grouping numerical data into meaningful and dis-
tinct categories. It proves particularly valuable when handling
datasets characterized by substantial variability and identifying
thresholds within the dataset.

The control plane of the P4 switch utilizes the Jenks natural
breaks algorithm to establish the lower and upper limits for a
set of K queues, which are determined according to the RTT
values of individual flows. These limits are used to allocate
flows with similar RTT in each queue. Algorithm 1 outlines
the process of the Jenks optimization method. This method is
employed to derive queue boundaries that maximize similarity
within an input dataset comprising the RTTs of individual
flows. Initially, the queue boundaries are defined by intervals
with the same size. Then, the algorithm refines the boundaries
to minimize the sum of squared deviations from the queue
limits. The Goodness of Variance Fit (GVF) serves as a quality
index in the Jenks algorithm, acting as a stopping criterion.
The ideal data classification is achieved when the GVF=1.
As a result, the Jenks algorithm will produce [loj , hij ] as the
boundaries for j queues.

Algorithm 1: Jenks Natural Breaks Algorithm
1: Input: RTT as the dataset containing the RTTs of

individual flows and K as the number of queues.
2: Define the boundaries for each queue: [loj , hij ] for
j = 1, 2, ...,K.

3: Calculate the sum of the squared deviation SDRTT

of the RTTs as follows:

SDRTT =
∑

(rtti − rtt)2, rtti ∈ RTT

4: While the GVF is lower than maximum value do
5: Calculate the sum of squared deviation for each
queue SDj as follows:

SDj =
∑

(rtti,j − rttj)
2, rtti,j ∈ [loj , hij ]

6: Increase one standard deviation σ =
√
SDj/Kj

into the interval [loj , hij ] from queues with lowest
SDj by decreasing one σj into the interval from
queues with largest SDj .

7: Calculate the GV F as follows:

GV F = 1−
K∑
j=1

SDj/SDRTT

8: End while
9: Output: Return the queue limits, [loj , hij ] for
j = 1, 2, ...,K.
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Fig. 4. Topology used to run the experiments.

IV. RESULTS AND EVALUATION

Fig. 4 illustrates the experimental setup, which comprises
100 senders (labeled h1 to h100), each establishing a TCP
connection with corresponding receivers (h101 to h200). These
hosts, created as network namespaces in Linux via Mininet
[20] on a physical server, were allocated sufficient resources
to ensure the results accurately reflect those obtained in a
real-world scenario. The TCP send and receive buffers on the
end hosts are set to 200MB. The senders run iPerf3 [21] to
resemble large data transfers. The senders are connected to an
Open Virtual Switch (OVS) [22] denoted as S1. S1 bridges
to the server’s (Server 1) network interface (i.e., Mellanox
ConnectX-5 [23]), which, in turn, connects to a Juniper MX-
204 router [24] (i.e., router R1). A similar configuration is
observed on the side of Server 2. The link between the
OVS switches and the routers has a bandwidth of 40Gbps,
whereas the link connecting the routers has a bandwidth
of 10Gbps. The connection between these routers is tapped
in both directions (Tx/Rx) using an optical tap. These taps
duplicate the traffic that is redirected to the P4 switch. The P4
switch used is the Edgecore Wedge100BF-32X [25], equipped
with Intel’s Tofino ASIC chip operating at 3.2 Tbps.

A. Flow Allocation and Bandwidth Distribution in Multi-Flow
Scenarios

This test evaluates the system with four subsequent flows in
scenarios with and without flow separation. Flows with 1ms,
30ms, 50ms, and 70ms are considered. Initially, the flow with
1ms RTT starts, and then, at intervals of 60 seconds, additional
flows join. In this experiment, the P4 separates the flows and
divides the available bandwidth equally as a function of the
number of flows.

Fig. 5(a) shows a scenario with four CUBIC flows. The
results indicate that flows with RTTs of 1ms and 30ms obtain
a larger portion of the available bandwidth, while flows with
RTTs of 50ms and 70ms experience performance degradation.
Fig. 5(b) shows when flow separation is implemented. The
system can identify and separate the flows in different queues
and achieve a fair bandwidth share.

Fig. 5(c) shows what occurs when multiple long BBR flows
interact in the same queue. The results indicate that when a
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Fig. 5. The figure shows the throughput of TCP flows. (a) Four CUBIC flows
wo/separation. (b) Four CUBIC flows w/separation. (c) Four BBR flows wo/
separation. (d) Four BBR flows w/separation.

flow with a longer RTT joins, it immediately deteriorates the
performance of the remaining flows, with the flow having the
longer RTT eventually achieving the higher throughput. Im-
plementing flow separation, as observed in Fig. 5(d), ensures
that each BBR flow will evenly share the available bandwidth
and consequently converge to better fairness.

B. Assessing the Effectiveness of the Classification Algorithm

This experiment considers 100 simultaneous flows to be
sharing the bottleneck. Considering that the router has up to
four queues, the P4 switch implements the Jenks optimization
method to group the closely related RTTs in a specific queue.
In this way, the impact of RTT unfairness is minimized. The
RTT distribution assigned to each flow follows a random
distribution with values varying from 1ms to 100ms. When the
system is tested without separation, the buffer size of the single
queue is set to BDP considering the flow with longer RTT (i.e.,
100ms). When the system implements flow separation, the
buffer size is adjusted following the Stanford rule [18], which
takes into account the BDP divided by the square root of the
number of flows (BDP/

√
N ). With this approach, the system

also minimizes the queueing delay resulting from bufferbloat
on a per-queue basis.

Fig. 6(a) shows the fairness index observed for CUBIC
flows. In the lower graph are presented the results without
separation. The fairness value settles around 80%, whereas the
upper graph shows that with flow separation, the 100 CUBIC
flows are identified in less than 2 seconds and allocated in
four different queues. The reported fairness considers the
aggregated throughput of the flows present in each queue. In
Fig. 6(b), it is observed the interaction of 100 BBR flows.
The lower graph shows a scenario without flow separation.
The fairness index settles around 50%, whereas, in the upper
graph, it is observed that the aggregated throughput of the four
queues converges to fairness.
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Fig. 6. Fairness index with and without separation for (a) 100 CUBIC flows
and (b) 100 BBR flows.

Fig. 7 shows the RTT observed in each queue with and
without separation. The experiment consists of 25 CUBIC
flows joining every 180 seconds. Each group of 25 flows
has 20ms, 50ms, 70ms, and 100ms respectively. The results
observed in Fig. 7(a) show that without separation, the flows
experience an RTT of around 100ms due to a large buffer. Fig.
7(b) shows when the system separates the flows into different
queues. In this scenario, the RTT observed in each queue
settles around the value corresponding to individual flows.

C. Separating Long Flows from Short Flows

This experiment assesses the system’s capability to enhance
the FCT of short flows by segregating them from long flows.
The type of traffic used in this experiment resembles web
browsing competing against large data transfers. The FCT
represents the time from the first packet transmission to the
arrival of the last packet at its destination. This test examines
how segregating flows based on their RTT and duration affects
the FCT of short flows. This test presents a scenario where
short flows share the bottleneck link with long flows. The
experiment generates 100 long flows over a 10Gbps bottleneck
link. The buffer size for the scenario without separation is
100ms. These long flows consist of a mix of 50% CUBIC
and 50% BBR. Simultaneously, a sender initiates 10,000 short
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flows with inter-connection times following an exponential
distribution with an average of one second.

Fig. 8 depicts the Cumulative Distribution Functions (CDFs)
of the FCT and RTT of short flows. It is observed that without
traffic separation, the average FCT of at least 60% of short
flows takes more than 0.49 seconds to complete. On the
other hand, separating long flows from short flows reduces
the average FCT to around 0.17 seconds for most flows. Fig.
8(b) shows that without separation, the average RTT of the
short flows is similar to the long flows (i.e., ∼ 113.93ms),
whereas, with separation, the RTT of short flows is reduced to
an average of 24.9ms. By reducing the average FCT and RTT
of short flows, the system can enhance the quality of service
and improve network efficiency.

V. CONCLUSION AND FUTURE WORKS

This paper presented a system that reduces the impact
of RTT unfairness in non-programmable networks using P4-
programmable data planes. The system implemented a classifi-
cation algorithm to separate relocate flows with similar RTTs
in different queues. Results show that performance metrics
including fairness, FCT, and RTT of individual flows can be
improved by isolating the dynamics of competing TCP flows.

A limitation of the system is that when separated flows
within a queue are not fully utilizing the available bandwidth,
it results in the queue imbalance problem. To address this limi-
tation, the authors intend to extend this work by implementing
a mechanism to measure the throughput of individual flows.
This mechanism will ensure that each queue efficiently utilizes
its allocated bandwidth, and any remaining bandwidth can be
reallocated to other queues as needed. Moreover, the authors
aim to test the system’s realism and scalability by using real
traffic traces.
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