
Jorge Crichigno, Elie Kfoury, Jose Gomez, Ali AlSabeh
University of South Carolina

Virtual Labs on SDN and P4

Programmable Switches

2022 Winter ICT Educators Conference
January 6-7, 2021

Online

Agenda

• Motivation

• Software-Defined Networking (SDN) motivation

• Lab environment

• SDN lab series

• P4 motivation

• P4 lab series

2

Motivation

• Since the explosive growth of the Internet in the 1990s, the networking industry has

been dominated by closed and proprietary hardware and software

• There has been a lack of flexibility to design protocols

• Standardized requirements cannot be easily removed to enable changes, leading to a protocol
ossification

3

Traditional (Legacy) Networking
• The interface between the control plane and data plane has been historically

proprietary

• A router is a monolithic unit built and internally accessed by the manufacturer only

• There is a vendor dependence: slow product cycles of vendor equipment,

standardization, no room for innovation from network owners

4

SDN
• Protocol ossification has been challenged first by SDN

• SDN explicitly separates the control and data planes, and implements the control

plane intelligence as a software outside the switches

5

SDN
• The function of populating the forwarding table is now performed by the controller

• The controller is responsible for programming packet-matching and forwarding rules

6

SDN
• SDN also provides a framework for a more general way to forward packets

• “match plus action” abstraction: match bits in arriving packet header(s) in any layers, then take action

• local actions: drop, forward, modify, or send matched packet to controller

• Possibility of experimentation and innovation (custom policies, apps can be deployed)

• Packets can be forwarded based on other fields, such as TCP port number

7

Environment: Mininet

8

Mininet

9

• Mininet is a virtual testbed for developing and testing network tools and protocols

• Nodes are sometimes called containers, or more accurately, network namespaces

• Features
➢ Fast prototyping for new protocols

➢ Simplified testing for complex topologies without the need of buying expensive hardware

➢ It runs real code on Unix/Linux kernels (realistic emulation)

➢ Open source

➢ Containers consume few resources; complex networks can be created (100s or 1,000s of nodes)

MiniEdit

10

• To build a topology, we use MiniEdit

• MiniEdit is a simple GUI editor for Mininet

• Example:

Host Configuration

11

• Configure the IP addresses at host h1 and host h2

• A host can be configured by holding the right click and selecting properties on the

device

Executing Commands on Hosts

12

• Open a terminal on host by holding the right click and selecting Terminal

SDN Lab Series

13

SDN Lab Series

The labs provide learning experiences on essential SDN topics

• Legacy networks, Border Gateway Protocol (BGP)

• MPLS and FRR (an open-source router)

• SDN fundamentals – controllers, switches
• ONOS controller

• Open vSwitch (OVS)

• Traffic isolation with VXLAN

• OpenFlow

• Interconnection between SDN and legacy networks

OpenFlow Specification 14

SDN Lab Series

The labs provide learning experiences on essential SDN topics

15

Lab 1: Introduction to Mininet

Lab 2: Legacy Networks: BGP Example as a distributed system and autonomous forwarding decisions

Lab 3: Early efforts of SDN: MPLS example of a control plane that establishes semi-static forwarding paths

Lab 4: Introduction to SDN

Lab 5: Configuring VXLAN to provide network traffic isolation

Lab 6: Introduction to OpenFlow

Lab 7: SDN-routing within an SDN network

Lab 8: Interconnection between legacy networks and SDN networks

Lab 9: Configuring Virtual Private LAN Services (VPLS) with SDN networks

Lab 10: Appling Equal-Cost Multi-Path (ECMP) within SDN networks

Organization of Lab Manuals

Each lab starts with a section Overview
• Objectives

• Lab settings: passwords, device names

• Roadmap: organization of the lab

Section 1
• Background information (theory) of the topic being covered (e.g., fundamentals of SDN)

• Section 1 is optional (i.e., the reader can skip this section and move to lab directions)

Section 2… n
• Step-by-step directions

16

Examples

Legacy networks

17

BGP scenario

MPLS scenario

s1

h1 h2

s2

r1
r2

h1-eth0

s1-eth1

s1-eth2

r1-eth0

r1-eth1 r2-eth1

r2-eth0

s2-eth2

s2-eth1

h2-eth0

AS 100
AS 200

.10 .10

.1 .1

.1 .2

192.168.1.0/24
192.168.2.0/24

192.168.12.0/30

EBGP

Network 1
Network 2

CE PE CE

P

PE

LAN 1 LAN 2

IP packet IP packet

Examples

SDN networks

18

s1

c0

h1 h2

.2

10.0.0.0/8

h1-eth0 h2-eth0

s1-eth1 s1-eth2

.1

Out-of-band connection

Examples

Interconnection of SDN

and legacy networks

19

c0

h1

r1

r2 r3

s2 s3

s1

r2-eth0

s4-eth2

s4

s4-eth1

h1-eth0

h2

r3-eth0

s5-eth2

s5

s5-eth1

h2-eth0

r2-eth1 r1-eth0

s1-eth1s2-eth1

r3-eth1

s3-eth1s3-eth2

s1-eth2s1-eth3

s2-eth2

192.168.2.0/24 192.168.3.0/24

.1

.10

.1

.10

192.168.12.2/30 192.168.13.2/30

AS 200

AS 100

AS 300

10.0.0.1/24

10.0.0.3/24

Out-of-band connection

r1-eth1

192.168.12.1/30
192.168.13.1/30

Overview SDN Exercises

20

SDN Exercises

Exercise set

21

Exercise 1: SDN Network Configuration

Exercise 2: Configuring VXLAN

Exercise 3: OpenFlow Protocol Management

Exercise 4: Incremental Deployment of SDN Networks within Legacy Networks

SDN Exercises

22

• Configure the SDN network

• Manage the OpenFlow switches

using the ONOS controller

• Navigate through the ONOS

terminal to enable applications,

inspect links, devices, flow tables,

etc.

• Establish connectivity between the

two hosts

SDN network

s1

s1-eth1

s2

h1 h2

h1-eth0

s2-eth1

h2-eth0
15.0.0.0/8

Out-of-band connection

c0

.1 .2

s1-eth2 s2-eth2

SDN Exercises

23

• Configure OSPF within the IP

network

• Isolate the traffic in each server

• Provide an end-to-end

connectivity between hosts with

the same VXLAN identifier (VNID)

Server 1 Server 2

h1

h2

h6

 VNID 10 VNID 20

IP Network

s1 s2r1

r3

20.0.0.0/24

.1

s1-eth0 s2-eth0r1-eth0 r2-eth0

d1-eth0 d3-eth0

.10 .10

Container d1 Container d2

h3

h5

h4

.2

.1

.1

.2

.2

.2

h2-eth0
s1-eth2

 VNID 30

s2-eth2
h5-eth0

20.0.0.0/24

173.0.13.0/30

.1 .1

r2192.168.10.0/24 192.168.20.0/24

r1-eth1 .1

r3-eth0 r3-eth1

.1.2

r2-eth1

173.0.23.0/30

VXLAN network

24

SDN network

s1

s1-eth1

s2

h1 h2

h1-eth0

s2-eth1

h2-eth0
15.0.0.0/8

Out-of-band connection

c0

.1 .2

s1-eth2 s2-eth2

• Configure the SDN network

• Manage the switches manually using the

OpenFlow protocol

• Manage the switches using the ONOS

controller

• Inspect the OpenFlow messages exchanged

between the control plane and the data plane

• Inspect the flow rules on the switches that

forward traffic between the hosts

SDN Exercises

25

SDN and legacy networks
• Configure BGP within the legacy

routers

• Configure the SDN switches to

interconnect with the legacy

networks

• Emulate virtual gateways and

routing within the SDN network

• Establish connectivity between

hosts in different legacy networks,

as well as between hosts within the

SDN network

c0

h1

r1

r2 r3

s2 s3

s1

r2-eth0

s4-eth2

s4

s4-eth1

h1-eth0

h2

r3-eth0

s5-eth2

s5

s5-eth1

h2-eth0

r2-eth1 r1-eth0

s1-eth1s2-eth1

r3-eth1

s3-eth1s3-eth2

s1-eth2s1-eth3

s2-eth2

173.17.2.0/24

.1

.10

.1

.10

173.17.12.2/30 173.17.13.2/30

AS 20

AS 10

AS 30

192.168.1.0/24

10.0.0.3/24

Out-of-band connection

r1-eth1

173.17.12.1/30
173.17.13.1/30
192.168.1.1/24
192.168.2.1/24

h3

h3-eth0

10.0.0.1/24

.1

.10

s2-eth3

h4

h4-eth0

.1

.10

s3-eth3

173.17.3.0/24

192.168.2.0/24

SDN Exercises

Overview P4 Labs

26

SDN Limitation

27

• SDN does not allow the programmer to create a new protocol and parse the protocol

header in the data plane
➢ SDN is limited to the OpenFlow specifications and the fixed-function data plane

SDN Limitation

28

• SDN does not allow the programmer to create a new protocol and parse the protocol

header in the data plane
➢ SDN is limited to the OpenFlow specifications and the fixed-function data plane

P4 Programmable Switches

29

• The programmable forwarding can be viewed as a natural evolution of SDN

• P4 programmable switches permit a programmer to program the data plane
➢ Defining and parsing new protocols

➢ Customizing packet processing functions

➢ Measuring events occurring in the data plane at nanosecond resolution

➢ Inspecting and analyzing each packet (per-packet analysis)

• P4 stands for stands for Programming Protocol-independent Packet Processors

P4 Programmable Switches

30

• Analogy between networks and other computing domains

Domain Year Processing Unit Main Language/s

General computing 1971 Central Processing Unit (CPU) C, Java, Phyton, etc.

Signal processing 1979 Digital Signal Processor (DSP) Matlab

Graphics 1994 Graphics Processing Unit (GPU) Open Computing

Language

Machine learning 2015 Tensor Processing Unit (TPU) Tensor Flow

Computer networks 2016 Protocol Independent Switch

Architecture (PISA)

P4

P4 Programmable Switches

31

• Programmable chip
➢ Parser parses header fields, written by the programmer

➢ Stages contain memory and Arithmetic Logic Units (ALUs)

➢ Memory are used for tables, match bits

➢ ALUs are simple, suitable for header field operations,
actions

➢ Stages are sequentially arranged (1, 2, …, n), for
sequential computation

➢ Deparser assembles packet headers back

Examples of P4 Programmable Switches

32

• Behavioral Model Version 2 (BMv2)
➢Open source

➢ Software switch used for teaching, researching ideas

➢ Good to validate ideas

• Commercial physical devices
➢ E.g., Edgecore Wedge 100BF-65X (based on Intel’s Tofino chip)

➢ 65x100G switch ports

➢ Used in production networks and research

Introduction to P4 and BMv2 Lab Series

33

Lab 1: Introduction to Mininet

Lab 2: Introduction to P4 and BMv2

Lab 3: P4 Program Building Blocks

Lab 4: Parser Implementation

Lab 5: Introduction to Match-action Tables (Part 1)

Lab 6: Introduction to Match-action Tables (Part 2)

Lab 7: Populating and Managing Match-action Tables

Lab 8: Checksum Recalculation and Packet Deparsing

Exercise 1: Building a Basic Topology

Exercise 2: Compiling and Testing a P4 Program

Exercise 3: Parsing UDP and RTP

Exercise 4: Building a Simplified NAT

Exercise 5: Configuring Tables at Runtime

Exercise 6: Building a Packet Reflector

Lab experiments Exercises

Workflow of a P4 Program

34

Workflow used in the lab series

• Workflow used to program the BMv2 switch

Development Environment

35

• Topology constructed with a modified version of the MiniEdit editor

• P4 software switches (BMv2) running inside Docker containers (through Containernet)

• Code written in Visual Studio Code with P4 syntax highlighting and a built-in terminal

P4 switches

Development Environment

36

• Programmer has the flexibility of

designing complex networks

• P4 programmable switches use BMv2

• Legacy/OpenFlow switches are Open

vSwitch (OVS)

• Routers use a real routing stack

(FRR)

• Hosts use Linux’s network stack

Overview P4 Labs

37

Examples

38

• Compiling a P4 program and pushing the output to the data plane

• Starting the switch daemon and allocating interfaces

s1-eth0 0 s1-eth11

Examples

39

• Defining headers and programming a parser for Ethernet, IPv4, and IPv6

Bit 0 2 3 4 5 6 7 81 9 11 12 13 14 15 16 1710 18 20 21 22 23 24 25 2619 27 29 30 3128

Version IHL DSCP ECN Total Length

Identifier Flags Fragment Offset

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options (if IHL > 5)

0

32

64

96

128

160

Examples

40

• Programming match-action tables:
➢ Exact

➢ Longest Prefix Matching (LPM)

• Forwarding using port information:
➢ Packets arriving at port 0 are sent through port 1

➢ Packets arriving at port 1 are sent through port 0

• Routing using layer-3 information:
➢ Matching on the destination IP address

➢ Modifying the source and destination MACs

➢ Decrementing the Time-to-live (TTL)

➢ Assigning the output port

10.0.0.1

20.0.0.1

h1

h2

h1-eth0 s1-eth0 s1-eth2

h2-eth0

s1

30.0.0.1

h3

h3-eth0

s1-eth1

Examples

41

• Populating and managing match-action tables

• Dumping table entries

• Adding/removing/modifying table entries

• Obtaining switch information

• Checking tables

Overview P4 Exercises

42

Exercises

43

• Parse UDP and Real-time Transport Protocol (RTP)

• UDP is identified by the “protocol field = 17,” in the IPv4 header

• Within UDP, if the destination port = 5004, then the packet is RTP

UDP header

RTP header

Ethernet

IPv4

UDP

RTP

Packet headers

Exercises

44

• Implement a simplified version of the source and destination Network Address

Translation (NAT)

• Modify the source IP address of the packet when leaving the network

• Modify the destination IP address of the packet when entering the network

10.0.0.1

h1 s110.0.0.1 172.32.0.10

Source IP Destination IP

172.32.0.10

h2172.32.0.1 172.32.0.10

Source IP Destination IP

172.32.0.10 10.0.0.1

Source IP Destination IP

172.32.0.10 172.32.0.1

Source IP Destination IP

0 1

Exercises

45

• Push the table entries to the switches so that a packet sent from h1 to h2

traverses switches s1-s2

• Modify the path so that the packet traverses the switches s1-s3-s4-s2

• Write the rules that create a loop in the switches s1-s2-s4-s3-s1-s2-s4-s3…

10.0.0.1

h1 s1

10.0.0.2

h2s2

s3 s4

Exercises

46

• Combining all concepts into a single program

• Define headers and parsing IPv4, IPv6

• Implement tables for reflecting IPv4 and IPv6 packets

• Populate the tables from the control plane

• Update the checksum of the IPv4 header

10.0.0.1

h1 s110.0.0.1 172.32.0.10

Source IP Destination IP

10.0.0.1

Source IP Destination IP

Source IP

10.0.0.0/8

New source IP

15.0.0.1

20.0.0.0/8 30.0.0.1
simple_switch_CLI

reflect_ipv4

... ...

15.0.0.1

Source IP

aaaa::/64

New source IP

bbbb::1

bbbb::/64 cccc::1

reflect_ipv6

... ...

Additional Information

47

• Jorge Crichigno:

➢ jcrichigno@cec.sc.edu

• Cyberinfrastructure lab at the University of South Carolina:
➢ http://ce.sc.edu/cyberinfra/

mailto:jcrichigno@cec.sc.edu
http://ce.sc.edu/cyberinfra/

