
Effective DGA Family Classification using a Hybrid
Shallow and Deep Packet Inspection Technique on

P4 Programmable Switches

Ali AlSabeh∗, Kurt Friday†, Jorge Crichigno∗, Elias Bou-Harb†
∗College of Engineering and Computing, University of South Carolina (USC), Columbia, South Carolina, USA

†The Cyber Center For Security and Analytics, Information Systems and Cyber Security Dept.

University of Texas at San Antonio (UTSA), San Antonio, Texas, USA

Email: ∗aalsabeh@email.sc.edu, †kurt.friday@utsa.edu, ∗jcrichigno@cec.sc.edu, †elias.bouharb@utsa.edu

Abstract—Domain Generation Algorithms (DGAs) are one of
the most effective strategies for malware to obtain a connec-
tion with the adversary’s Command and Control (C2) server.
Moreover, the growing number of DGA families makes it in-
creasingly challenging for defense strategies to promptly identify
the DGA family behind a given compromise. State-of-the-art
high-dimensional DGA detection models perform poorly in such
multiclass classification scenarios because their domain name-
based features fail to distinguish between DGA families.

To this extent, this paper proposes a novel framework that
harnesses the flexibility, per-packet granularity, and Terabits per
second (Tbps) processing capabilities of P4 Programmable Data
Plane (PDP) switches to swiftly and accurately classify DGA
families. In particular, the P4 PDP switch is leveraged to extract
a combination of unique network heuristics and domain name
features through shallow and Deep Packet Inspection (DPI) with
minimal throughput reduction. Such collected features cannot be
tracked on commodity hardware without significantly degrading
the throughput in high-speed networks, nor on traditional layer
2/3 switches due to their limited and fixed functionalities. We
crawled hundreds of Gigabytes (GBs) of malware samples from
different sources to obtain instances of 50 DGA families and
show that the proposed approach can promptly classify each
family with high accuracy. Such a reliable multiclass classification
enables the immediate halting of malicious communications while
allowing network operators to initiate appropriate mitigation,
incident management, and provisioning strategies.

Index Terms—DGA family classification, botnets, P4 pro-
grammable switches, high-speed networks, DPI

I. INTRODUCTION

A common evasive approach that is increasingly being relied

upon by modern malware variants to communicate with their

C2 servers is to employ a DGA [1, 2]. DGAs evade domain-

based firewall controls by frequently changing the domain

name selected from a large pool of candidates (reaching tens of

thousands of domains per day). To determine the rendezvous

point(s), the malware makes Domain Name System (DNS)

queries in an attempt to resolve the IP addresses of these

generated domains, where only a few IPs will typically be

registered and associated with the C2. Non-Existent Domain

(NXD) responses will coincide with the remainder of the DNS

queries, denoting that the domain is not registered or the DNS

server could not resolve it [3].

Currently, most DGA detection approaches perform binary

classification in order to segregate DGAs from benign traffic.

Generally, such approaches either rely on contextual network

traffic collected retrospectively (context-aware) or analyze

features of the domain name without depending on other

metadata (context-less). Beyond the task of DGA detection

is the desire to attribute DGA families, which is a much

harder problem than binary classification of DGAs. This is

the result of having to cope with multiple classes instead of

just two classes (binary) within the context of the detection

problem. Essentially, the multiclass classification of DGA

families allows security professionals to assess the severity

of the exploit and apply the appropriate remediation policies

in the network [1]. While context-less approaches can obtain

high accuracy, they require a general-purpose Central/Graphics

Processing Unit (CPU/GPU) to process and analyze the do-

main names, which could create a bottleneck and significantly

impact throughput due to the ubiquitous use of DNS on the

Internet. On the other hand, context-aware approaches can be

slow since they typically analyze batches of traffic offline (e.g.,

using NetFlow [4]).

To address the aforementioned shortcomings, this paper

proposes a novel framework for performing the multiclass

classification of DGA families via the P4 PDP technology.

The P4 language [5] is utilized to describe in software (i.e., the

P4 program) the behavior dictating how packets are processed

on the switch. Such programming allows network operators

to customize their data plane to suit the requirements of

their network. The P4 language overcomes the limitations of

the traditional Software Defined Networking (SDN) protocol

coupled with the OpenFlow protocol, which is restricted to a

fixed set of header fields [6]. In turn, the proposed framework

leverages the customization that P4 PDP switches offer to

offload a unique hybrid feature extraction technique to the

data plane. The selected features are a hybrid of context-

aware and context-less attributes, extracted via shallow and

deep inspection of the packet, respectively. Such a frame-

work allows bypassing the classification latency associated

with context-aware analysis and the potential bottlenecks and

privacy issues coupled with context-less techniques. To this

end, the contributions of this paper are summarized as follows:

• Presenting a novel framework that leverages P4 PDP

switches to employ a hybrid context-aware and context-

less feature extraction technique entirely in the data

plane to overcome the associated obstacles of past DGA

classification techniques.

• Implementing an in-network DPI mechanism on Intel’s

Tofino Application-Specific Integrated Circuit (ASIC)

chipset [7] that processes the entirety of the domain

name to extract its context-less features within ≈ 2-3

microseconds (µs). This preserves the privacy of users

while reducing the overhead on the control plane associ-

ated with the feature extraction and preprocessing.

• Evaluating the proposed approach on 50 notable DGA

families collected by crawling hundreds of GB of mal-

ware samples from multiple sources. The dataset includes

new DGA families that are not reported in the literature.

The proposed approach demonstrated that it can classify

DGAs with very high accuracy from only a small number

of NXD responses. The implementation code and the

collected dataset are made publicly available to facilitate

research developments in this area [8].

The remainder of the paper is organized as follows. In

Section II, we begin by highlighting the related work and

how it compares to our approach. Subsequently, Section III

provides background on DGAs and P4 PDP switches. In

Section IV, we describe the proposed approach, present the

selected features, and detail the P4 implementation. We then

present the experimental results of the proposed approach in

Section V. Lastly, Section VI concludes the paper with a

discussion and future work in this area.

II. RELATED WORK

A. DGA Binary and Multiclass Classification

The vast majority of DGA detection techniques rely on

using either context-aware or context-less features for binary

classification. In terms of context-aware approaches, Grill et

al. [4] utilized NetFlow whereas Iuchi et al. [9] relied on an

SDN controller to perform the feature collection for DGA

binary classification. However, such approaches can cause

classification delays. For example, the average latency in [9]

was approximately three seconds, which is larger than the

timeout limit of the “nslookup” tool used for resolving domain

names (two seconds).

Alternatively, context-less approaches reduce some of the

latency of context-aware methods, at the risk of causing

throughput degradation and bottlenecks in high-rate networks.

In an attempt to alleviate such risk to some extent, EXPO-

SURE [10] reduced the volume of traffic being processed by

sampling subsets of traffic. More recently, research efforts

have found that assessing only the domains that resulted in

NXD responses is more effective [3, 11–13], as this technique

circumvents missed attacks due to sampling oversights. That

said, the aforementioned techniques are at times not sufficient

to counteract the ubiquitous use of DNS on the Internet.

Despite the challenges that multiclass classification has

in comparison to its binary counterpart, the need for the

granularity that DGA family classification offers has become

increasingly apparent. EXPLAIN [1] aspired to satisfy this

need by extracting 76 features from a domain name within

tens to hundreds of µs on a dedicated ML GPU and achieving

81% accuracy. More recently, Tuan et al. [14] improved

DGA family classification accuracy to 99% and 85.55% on

two different datasets; however, the authors did not discuss

key aspects pertaining to the deployment feasibility of their

approach, such as the monitoring of DNS traffic, the time

required to perform feature extract and classification, etc.

Table I compares past DGA approaches with our work,

along with the Feature Extraction (F.E) time required for each.

Essentially, our work is novel as it combines context-aware

and context-less feature extraction techniques entirely in the

P4 PDP, thus, accurately and swiftly classifying DGA families

at line rate. In particular, the switch takes a few µs to extract

the context-less features from NXD responses, which is orders

of magnitude lower than CPU/GPU-based machines [1].

TABLE I
COMPARISON BETWEEN DGA DETECTION/CLASSIFICATION APPROACHES

AND OUR WORK.

Approach
DGA

multiclass.

Context-

less

Context-

aware

F.E.

latency

[4] ✓ minutes •
[9] ✓ seconds •
EXPOSURE [10] ✓ ✓ minutes •
FANCI [3] ✓ ms •
ANCS [11] ✓ ms •
[12] ✓ ms •
[13] ✓ ms •
EXPLAIN [1] ✓ ✓ 100’s µs •
[14] ✓ ✓ ms •

Our approach ✓ ✓ ✓ 2-3 µs ⋆

⋆ : ASIC processing • : CPU/GPU processing

B. DNS and DPI in P4

Meta4 [15] is a network monitoring framework that parses

a limited number of labels and characters of the domain

name in DNS replies. P4DDPI [16] is a previous work of

ours that increases the number of parsed labels in domain

names for the purpose of applying security functionalities.

Kaplan et al. [17] handle the vast majority of DNS packets

in the data plane without tampering with the DNS packets.

Despite the novelty and effectiveness of the aforementioned

DNS inspection approaches, none of them parse the whole

domain name regardless of its size.

Our approach herein is the first approach that leverages P4

programmable switches to analyze network traffic on the fly in

order to classify DGA-based malware infections. In particular,

the P4 programmable switch can (1) perform real-time analysis

and DPI on domain names, (2) flexibly collect relevant features

that are not available in traditional routers, (3) process Tbps of

network traffic, which is infeasible in general-purpose servers.

III. BACKGROUND

A. DGAs

The growing diversity of DGA families is primarily at-

tributed to their ability to dramatically improve the resistance

of many malicious activities to takedowns [18, 19]. For

instance, the Locky ransomware generates domains with 5-18

characters while using one of 14 Top-Level Domains (TLDs).

Other families, such as Gozi and Matsnu combine random

dictionary words to make it more challenging for humans

and traditional defenses to detect. Existing DGA multiclass

classification approaches have solely relied on the features of

the domain name [1, 14, 20, 21]. The network characteristics

of DGAs (e.g., Inter-Arrival Time (IAT) between packets,

protocol counts, etc.) are not considered for several reasons,

such as avoiding the exhaustion of the proposed system under

high traffic loads and preserving the privacy of the users.

However, the aggregation of network heuristics was proven

to be highly effective in malware and botnet detection [22].

To this end, such heuristics are incorporated into the proposed

approach without significantly affecting throughput.

B. Programmable Switch Primer

The Protocol Independent Switch Architecture (PISA) is a

data plane programming model that includes the following

elements: programmable parser, programmable match-action

pipeline consisting of multiple stages, and programmable

deparser. The programmable parser is represented as a state

machine that can define the headers that need to be parsed

(e.g., Ethernet, IP, DNS, or even custom headers). The pro-

grammable match-action pipeline consists of multiple match-

action units to match against packet header fields and apply

actions with supplied action data. Each unit can include one

or more Match-Action Tables (MATs) that are coupled with

Static Random Access Memory (SRAM) or Ternary Content

Addressable Memory (TCAM) for storing lookup keys and

action data. Additional action logic can be implemented using

stateful objects, such as registers that are stored in SRAM.

Lastly, the programmable deparser defines how packet headers

are reassembled when they exit the switch [23]. The high-level

language for programming PISA is P4. Unlike general-purpose

programming languages, P4 is domain-specific and optimized

to handle Tbps of network traffic.

Despite the increasing number of emerging applications

in P4 (e.g., network telemetry, security, etc. [6, 24]), pre-

serving Tbps throughput requires limiting the complexity of

the pipeline stages and permitting only elementary actions

(e.g., removing looping operations and allowing only simple

arithmetic). Such limitations require efforts and knowledge of

the language and architecture in order to devise workarounds

when implementing complex functionalities in the switch.

IV. PROPOSED SYSTEM

A. Overview

The proposed approach aims to profile (i.e., attribute) the

DGA family in the network rather than detect it amongst

Fig. 1. System overview.

normal traffic. Since the detection of DGAs is a much easier

problem than the multiclass classification [1], our approach

can be easily extended to detect DGAs by incorporating the

traffic of normal users. The high-level architecture of the

proposed approach is shown in Fig. 1 and can be summarized

in the following steps. (1) The P4 PDP switch monitors

the communication of the internal network’s hosts with the

Internet to collect the context-aware features (i.e., network

features) and store them in registers. (2) When an NXD

response is received, the switch parses the whole domain

name and extracts its context-less features (i.e., statistical

and structural domain name features). (3) Next, the switch

sends the aggregated context-less and context-aware features

(associated with the host receiving the NXD response) to

the control plane via message digests. Such features are then

passed through a trained ML classifier to classify the DGA on

the network. (4) Once the DGA family is profiled, the security

operator managing the control plane can immediately apply the

appropriate security policy based on the DGA family (i.e., the

family of malware behind the attack.)

B. Feature Selection

The features extracted in the P4 PDP switch are divided into

context-aware and context-less features. The former is applied

for all IP packets and requires shallow inspection; thus, the

throughput is not affected. The latter performs DPI only on

NXD responses. The features are selected to adhere to the

hardware limitations of P4 PDP switches.

1) Context-aware Features: The context-aware features aim

to characterize the network behavior of DGAs while they

attempt to contact the C2 server. Our approach collects features

in the data plane without involving the control plane until

an NXD response is received. For each host in the internal

network, the features aggregated in the data plane include the

number of IPs contacted, the IAT between such IP packets,

and the number of DNS requests made. Additionally, the time

it takes for the first NXD response to arrive is also included

as a feature, as well as the IAT between subsequent NXD

responses. Such features are relevant to the multiclass classifi-

cation of DGA families. As an example, the IAT between ma-

licious Algorithmically Generated Domains (mAGDs) could

range from hundreds of µs to a few seconds depending on

the family. This requires the nanosecond granularity offered

by the P4 PDP switch to track the shorter IATs.

2) Context-less Features: Our work aims to identify the

features that have been proven to be effective in the literature

[25, 26] and can be implemented in P4. In particular, we utilize

the randomness of a certain domain by implementing the n-

gram character frequency as a statistical feature, in addition

to a number of structural features of the domain name.

The 2-grams (bigrams) of a domain name d is a multiset

of all character sequences b, such that b ∈ d and |b| = 2.

For instance, the bigrams of the word “google” are: “$g”,

“go”, “oo”, “og”, “gl”, “le”, and “e$”. We utilize the bigram

frequency because the distribution of frequencies can vary

between families based on their algorithm [20], in addition

to their practicality in being stored in the limited SRAM in

the data plane. To arrive at the bigram frequency feature on

the switch, the domain name d is first divided into multiple

subdomains, where each subdomain s can be viewed as a

separate word. Subsequently, the bigram frequency distribution

is applied to each subdomain separately. Next, we calculate the

randomness of a domain name d according to the following

formula [25]:

score (d) =
∑

∀ subdomain s ∈ d

∑

∀ bigram b ∈ s

f b
s

where f b
s is the frequency of the bigram b in the subdomain

s, read from the pre-computed match-action tables. The fre-

quency of the bigrams utilized in this equation was obtained

by processing the English dictionary and counting the number

of occurrences of each bigram within every word.

The structural features of a domain name include the length

of the domain name, the number of subdomains, the TLD,

whether the domain has a valid TLD, and if the domain has a

single-character subdomain. These features have been shown

to be useful for distinguishing DGA families [19].

C. P4 implementation

Parsing the entire domain name and applying complex

arithmetic operations are not trivial in P4 due to hardware

limitations and resource constraints. An example of such

restrictions is the lack of support for variable length headers

(which would require looping operations) that extend deeper

into the packet [15, 16]. Moreover, even if the domain name is

fully extracted in the parser, the limited number of stages in the

ingress and egress pipeline would not allow the manipulation

of all these additional headers (i.e., via applying MATs) for

feature extraction purposes. To address this issue, in each

pipeline pass, we extract seven characters from a subdomain at

maximum, and if more characters exist in the subdomain, then

recirculation is applied until the entirety of the subdomain is

parsed. This procedure is repeated until all such subdomains

are parsed.

The characters extracted from all the subdomains in the pro-

grammable parser are used to compute the bigram frequency

f b
s in the ingress pipeline. Each bigram b of these extracted

characters will be applied to a MAT, which returns the given

frequency. The match keys of the MAT are the bigrams, and

the MATs are pre-populated by the control plane with the

frequency of each bigram based on the English dictionary. A

MAT is required to calculate the frequency of every bigram.

The summation of all the frequencies f b
s over the domain d

is assigned to a custom header that is recirculated with the

packet. In turn, once the domain d is fully extracted, its overall

bigram frequency will already be computed.

The egress pipeline is used to count and aggregate the

context-aware features using registers. The P4 program suc-

cessfully compiles and runs on a Tofino hardware switch and

the source code is made publicly available [8].

V. EVALUATION

A. Dataset

Due to the increased interest in DGA detection, a plethora

of mAGD datasets exist [19, 27]. These datasets only comprise

domain names and therefore are not sufficient for techniques

such as ours that leverage network-related features. Moreover,

there is no online repository comprising a wide variety of DGA

traffic behavior.

To tackle this shortcoming, we crawled and retrieved hun-

dreds of GB of malware samples from notable cyber security

services and websites including VirusTotal (2017 until 2021)

[28], VirusShare [29], Malpedia [30], and Triage [31]. The

hashes of the obtained samples were submitted to VirusTotal to

retrieve their metadata information and determine if they were

previously reported to have DGA behavior. Subsequently, each

sample was instrumented in an isolated environment to capture

its network traffic behavior, i.e., the Packet Capture (PCAP),

file for a variation of 10 to 30 minutes. To further validate that

the collected samples demonstrate DGA behavior, only PCAP

files that have NXD responses registered in DGArchive [19]

are considered. DGArchive contains a database of well-known

DGAs and their generated samples. Furthermore, there were a

number of malware samples that showed DGA behavior (hav-

ing numerous NXD responses), but their generated domain

names were not registered in DGArchive. We attribute such

samples to three new DGA families that were not previously

reported in the literature and incorporate them into our experi-

ments. The resulting dataset includes 1,311 samples containing

50 DGA families. We kindly refer interested readers to our

dataset which we make publicly available for additional details

pertaining to the collected DGA families [8].

B. Experimental Setup

The collected dataset of DGA samples was used to train ML

models offline on a general-purpose CPU. In particular, 80% of

the dataset was used for training and 20% for testing. During

the training phase, 5-fold Cross Validation (CV) was used to

TABLE II
ACCURACY, F1 SCORE, AND PRECISION OF DIFFERENT ML CLASSIFIERS DURING THE FIRST 8 NXD RESPONSES RECEIVED.

NXD count
RF SVM MLP LR GNB

Acc F1 Prec Acc F1 Prec Acc F1 Prec Acc F1 Prec Acc F1 Prec

NXD 1 0.923 0.907 0.902 0.872 0.856 0.847 0.87 0.843 0.829 0.716 0.679 0.667 0.726 0.688 0.688
NXD 2 0.951 0.943 0.943 0.899 0.893 0.893 0.904 0.897 0.9 0.76 0.741 0.747 0.727 0.701 0.707
NXD 3 0.964 0.958 0.964 0.918 0.913 0.914 0.924 0.914 0.912 0.767 0.74 0.743 0.649 0.668 0.732
NXD 4 0.966 0.961 0.963 0.906 0.905 0.912 0.916 0.909 0.915 0.79 0.765 0.758 0.633 0.635 0.692
NXD 5 0.97 0.966 0.967 0.915 0.91 0.911 0.919 0.91 0.907 0.77 0.735 0.746 0.604 0.615 0.689
NXD 6 0.975 0.972 0.973 0.914 0.911 0.912 0.922 0.915 0.918 0.794 0.767 0.783 0.617 0.627 0.716
NXD 7 0.977 0.976 0.979 0.92 0.915 0.915 0.929 0.924 0.93 0.799 0.771 0.78 0.61 0.613 0.714
NXD 8 0.98 0.979 0.981 0.917 0.912 0.914 0.93 0.923 0.921 0.764 0.73 0.735 0.631 0.618 0.65

avoid overfitting the model. Since some class imbalance was

observed in our dataset, i.e., a different number of samples

for each DGA family, we assigned weights for every class so

that classes with few samples are not underrepresented. For

hyperparameter tuning, the grid search method was applied

to select the best parameters of each model. The experiments

were performed 10 times for each model and their average is

reported.

We tested five ML models on the features extracted by

the P4 PDP switch, namely, Random Forest (RF), Support

Vector Machine (SVM), Multi-layer Perceptron (MLP) clas-

sifier, Logistic Regression (LR), and Gaussian Naive Bayes

(GNB). Table II shows the accuracy (Acc), F1 score (F1),

and Precision (Prec) of the models amid varying the number

of NXD responses. The RF model performed best among the

tested models, where the accuracy starts at 92% from the first

NXD response received and reaches 98% by the 8th NXD

response. As more NXD responses are received from a certain

host, the accuracy is expected to increase as more information

is collected. Note that while MLP neural network architectures

in general are known for their performance, they necessitate

large amounts of training data to maximize their classification

potential. As such, it can be observed that the RF outperformed

the MLP by a fair amount.

To demonstrate the effectiveness of the proposed approach

on the various families of DGA samples collected, we grouped

NXD1 NXD2 NXD3 NXD4 NXD5 NXD6 NXD7 NXD8

Trojans

Back-
doors

Bots

Ransom-
ware

Spyware

Worm

0.93 0.75 0.87 0.85 0.80 0.87 0.94 0.92

0.46 0.66 0.99 0.75 1.00 1.00 1.00 1.00

0.72 0.78 1.00 0.94 0.94 0.97 0.96 0.89

0.82 0.93 0.89 0.87 0.97 0.96 0.98 0.99

0.50 0.25 1.00 0.33 1.00 0.95 1.00 1.00

0.84 0.70 0.89 0.90 0.78 0.90 0.88 0.91 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 2. Performance of the proposed approach amid varying NXD responses
on a subset of samples grouped by their attack category.

such families based upon the overarching attacks they fall

under, namely trojan, backdoor, bots, ransomware, spyware,

and worm. Fig. 2 shows the grouping of such attacks and

the RF’s ability to accurately classify them. The accuracy of

critical attacks, such as ransomware, is high from the first

NXD capture, and the majority of attacks are classified with

high confidence by the 5th NXD response.

C. Comparison with State-of-the-art

Since existing DGA multiclass classification approaches use

context-less features, they do not discuss the context-aware

features of DGAs and do not publish any network traces

[1, 14]. Consequently, we cannot apply their datasets to our

experiments. That being said, as EXPLAIN’s code has been

open-sourced, we alternatively performed some additional

analysis of EXPLAIN’s feature extraction time and compare

our findings to that of the proposed approach.

While EXPLAIN reports that their feature extraction time

on a dedicated GPU is in the hundreds of µs, we were

rather interested in measuring the feature extraction time on

a general-purpose CPU. To this extent, we apply EXPLAIN’s

available source code to a general-purpose machine with 64

GB RAM and a 2.9 GHz processor with 8 cores. Compara-

tively, we measure the time it takes for the P4 PDP switch

to perform DPI and extract the context-less features from

a domain name according to our proposed approach. The

context-aware feature extraction time is performed at line rate

without degrading the throughput, thus, it is not reported

herein. Fig. 3 shows the Cumulative Distribution Function

(CDF) of the feature extraction time of both approaches. Our

proposed approach allows the P4 PDP switch to extract all

the relevant features within 2-3 µs. Conversely, EXPLAIN

requires up to a few ms using a CPU with one thread.

VI. CONCLUSION AND DISCUSSION

In this work, we propose a hybrid feature extraction tech-

nique relying on context-aware and context-less features to

classify DGA families. In particular, the context-aware feature

extraction characterizes the network traffic behavior of the

DGAs and requires shallow packet inspection, therefore it does

not degrade the throughput. The context-less feature extraction

aims to study the structural and statistical characteristics of

domain names relating to NXDs using DPI. For every NXD

0 2500 5000 7500 10000 12500 15000
Feature extraction time [s]

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

 P4 Switch EXPLAIN
 = 2.8860 s = 9233.02 s
 = 0.6704 s = 456.28 s

Fig. 3. Feature extraction time of our work and EXPLAIN.

reply received, the P4 PDP switch sends the extracted features

to the control plane to run the intelligence, thus, minimizing

the bulk of processing on the server and preserving the privacy

of the users in the network. With 50 DGA families collected by

crawling hundreds of GB from notable security websites, the

proposed approach achieves 92% accuracy with a RF classifier

from the first NXD collected and reaches up to 98% by the

8th NXD.

Our work is crucial in deployments where high throughput

is required while preserving the security and privacy of the

network. In the future, we aim to explore other techniques

that are robust against encrypted DNS traffic. More DGA-

based malware samples will also be collected to characterize

additional DGA families and extend our publicly available

dataset in order to promote related research efforts.

ACKNOWLEDGEMENT

This work was supported by the U.S. National Science

Foundation, awards 2118311 and 2104273.

REFERENCES

[1] A. Drichel, N. Faerber, and U. Meyer, “First step towards explainable
dga multiclass classification,” in The 16th International Conference on

Availability, Reliability and Security, pp. 1–13, 2021.
[2] Y. Li, K. Xiong, T. Chin, and C. Hu, “A machine learning framework for

domain generation algorithm-based malware detection,” IEEE Access,
vol. 7, pp. 32765–32782, 2019.

[3] S. Schüppen, D. Teubert, P. Herrmann, and U. Meyer, “{FANCI}:
Feature-based automated {NXDomain} classification and intelligence,”
in 27th USENIX Security Symposium (USENIX Security 18), pp. 1165–
1181, 2018.

[4] M. Grill, I. Nikolaev, V. Valeros, and M. Rehak, “Detecting dga
malware using netflow,” in 2015 IFIP/IEEE International Symposium

on Integrated Network Management (IM), pp. 1304–1309, IEEE, 2015.
[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.
[6] A. AlSabeh, J. Khoury, E. Kfoury, J. Crichigno, and E. Bou-Harb, “A

survey on security applications of p4 programmable switches and a
stride-based vulnerability assessment,” Computer Networks, vol. 207,
p. 108800, 2022.

[7] Intel, “Intel Tofino P4-programmable Ethernet switch ASIC.” [Online].
Available: https://tinyurl.com/2p97j3pe.

[8] Aalsabeh Github, “P4-DGA-Multiclass.” [Online]. Available: https://
github.com/aalsabeh/P4-DGA-Multiclass.

[9] Y. Iuchi, Y. Jin, H. Ichise, K. Iida, and Y. Takai, “Detection and
blocking of dga-based bot infected computers by monitoring nxdomain
responses,” in 2020 7th IEEE International Conference on Cyber Se-

curity and Cloud Computing (CSCloud)/2020 6th IEEE International

Conference on Edge Computing and Scalable Cloud (EdgeCom), pp. 82–
87, IEEE, 2020.

[10] L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel, “Exposure: A
passive dns analysis service to detect and report malicious domains,”
ACM Transactions on Information and System Security (TISSEC),
vol. 16, no. 4, pp. 1–28, 2014.

[11] L. Fang, X. Yun, C. Yin, W. Ding, L. Zhou, Z. Liu, and C. Su, “Ancs:
Automatic nxdomain classification system based on incremental fuzzy
rough sets machine learning,” IEEE Transactions on Fuzzy Systems,
vol. 29, no. 4, pp. 742–756, 2020.

[12] K. Highnam, D. Puzio, S. Luo, and N. R. Jennings, “Real-time detection
of dictionary dga network traffic using deep learning,” SN Computer

Science, vol. 2, no. 2, pp. 1–17, 2021.
[13] B. Yu, D. L. Gray, J. Pan, M. De Cock, and A. C. Nascimento,

“Inline dga detection with deep networks,” in 2017 IEEE International

Conference on Data Mining Workshops (ICDMW), pp. 683–692, IEEE,
2017.

[14] T. A. Tuan, H. V. Long, and D. Taniar, “On detecting and classifying dga
botnets and their families,” Computers & Security, vol. 113, p. 102549,
2022.

[15] J. Kim, H. Kim, and J. Rexford, “Analyzing traffic by domain name in
the data plane,” in Proceedings of the ACM SIGCOMM Symposium on

SDN Research (SOSR), pp. 1–12, 2021.
[16] A. AlSabeh, E. Kfoury, J. Crichigno, and E. Bou-Harb, “P4ddpi:

Securing p4-programmable data plane networks via dns deep packet
inspection,” in Proceedings of the 2022 Network and Distributed System

Security (NDSS) Symposium, pp. 1–7, 2022.
[17] A. Kaplan and S. L. Feibish, “Dns water torture detection in the data

plane,” in Proceedings of the SIGCOMM’21 Poster and Demo Sessions,
pp. 24–26, 2021.

[18] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, and E. Gerhards-Padilla, “A
comprehensive measurement study of domain generating malware,” in
25th USENIX Security Symposium (USENIX Security 16), pp. 263–278,
2016.

[19] D. P LOHMANN, “DGArchive.” [Online]. Available: https://tinyurl.
com/yc6whwrc.

[20] H. Mac, D. Tran, V. Tong, L. G. Nguyen, and H. A. Tran, “Dga botnet
detection using supervised learning methods,” in Proceedings of the

Eighth International Symposium on Information and Communication

Technology, pp. 211–218, 2017.
[21] M. Zago, M. G. Pérez, and G. M. Pérez, “Umudga: A dataset for

profiling algorithmically generated domain names in botnet detection,”
Data in Brief, vol. 30, p. 105400, 2020.

[22] K. Friday, E. Kfoury, E. Bou-Harb, and J. Crichigno, “Inc: In-network
classification of botnet propagation at line rate,” in European Symposium

on Research in Computer Security, pp. 551–569, Springer, 2022.
[23] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,

R. Frank, and M. Menth, “A survey on data plane programming with
p4: Fundamentals, advances, and applied research,” arXiv preprint

arXiv:2101.10632, 2021.
[24] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey

on p4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE Access, 2021.

[25] C. Qi, X. Chen, C. Xu, J. Shi, and P. Liu, “A bigram based real time
dns tunnel detection approach,” Procedia Computer Science, vol. 17,
pp. 852–860, 2013.

[26] V. Tong and G. Nguyen, “A method for detecting dga botnet based on
semantic and cluster analysis,” in Proceedings of the seventh symposium

on information and communication technology, pp. 272–277, 2016.
[27] Netlab360, “DGA Families.” [Online]. Available: https://tinyurl.com/

348u3pyt.
[28] “VirusTotal.” [Online]. Available: https://tinyurl.com/2p9cscna.
[29] “VirusShare.” [Online]. Available: https://virusshare.com/.
[30] “Malpedia.” [Online]. Available: https://tinyurl.com/28k2snbk.
[31] “Triage.” [Online]. Available: https://tria.ge/.

