
A Survey on Security Applications of P4 Programmable
Switches and a STRIDE-based Vulnerability Assessment

Ali AlSabeha, Joseph Khouryb, Elie Kfourya, Jorge Crichignoa, Elias Bou-Harbb

aCollege of Engineering and Computing, University of South Carolina, Columbia, USA
bThe Cyber Center For Security and Analytics, University of Texas at San Antonio, USA

Abstract

The emergence of the IoT, cloud systems, data centers, and 5G networks is increasing the demand for a rapid development of new
applications and protocols at all levels of the protocol stack. However, traditional fixed-function data planes have been characterized
by a lengthy and costly development process at the hand of few chip manufacturers. Recently, data plane programmability has
attracted significant attention, permitting network owners to run customized packet processing functions using P4, the de facto
data plane programming language. Network security is one of the key research areas exploiting the capabilities of programmable
switches. Examples include new encapsulations and secure tunnels implemented in short times, mitigation techniques for DDoS
attacks that occur at terabit rates, customized firewalls that track hundreds of thousands of connections per second, and traffic
anonymization systems that operate at line rate. Moreover, applications can be reconfigured in the field without additional hardware
upgrades, facilitating the deployment of new defenses against unforeseen attacks and vulnerabilities. Furthermore, these security
applications are designed by network owners who can meet their specific requirements, rather than by chip manufacturers.

Despite the impressive advantages of programmable data plane switches, the literature has been missing a comprehensive survey
on security applications. To this end, this paper provides a concise background on programmable switches and their main features
that are relevant to security. It then presents a taxonomy that surveys, classifies, and analyzes articles related to security applications
developed with P4. Additionally, the paper employs a STRIDE analysis to examine vulnerabilities related to general P4 applica-
tions (e.g., congestion control, load balancing, in-network cache) and proposes plausible remediation approaches. Furthermore,
challenges associated with programmable data planes, the impact of these challenges on security implementations, and schemes to
eliminate or mitigate them are discussed. Finally, the paper discusses future endeavors and open research problems.

Keywords: P4 language, programmable data plane, P4 security applications and implications, STRIDE model, challenges and
solutions in P4.

1. Introduction

Computer networks have been vulnerable to a myriad of at-
tacks partially attributed to the lack of flexibility of networking
devices (e.g., routers, switches, security appliances). The tra-
ditional closed-design paradigm has limited the data plane ca-
pability to proprietary implementations which are hard-coded
by chip manufacturers, thus preventing reprogrammability and
hindering new defenses against zero-day attacks. Such limi-
tations have bolstered the ascendance of the Software-Defined
Networking (SDN) [1]. While SDN reduced network complex-
ity and spurred control plane innovation at the speed of software

E-mail addresses: aalsabeh@email.sc.edu (Ali AlSabeh),
joseph.khoury@utsa.edu (Joseph Khoury), ekfoury@email.sc.edu
(Elie Kfoury), jcrichigno@cec.sc.edu (Jorge Crichigno),
elias.bouharb@utsa.edu (Elias Bou-Harb)

development, it is restricted to the OpenFlow specifications and
the fixed-function data plane [2]. Consequently, attack mitiga-
tion is mainly offloaded to the control plane or to a third-party
middlebox that operates at significantly lower speeds than the
data plane. This has pushed the research community to contin-
uously extend the OpenFlow data plane specification, as well as
devise new data plane abstractions [3, 4]. For instance, Open-
State [5] add stateful data plane programming to OpenFlow
using eXtended Finite State Machines (XFSM) to do include
some intelligence in the switch.

Large scale attacks such as Denial of Service (DoS) and Dis-
tributed DoS (DDoS) have been ravaging the Internet with peak
volume reaching Terabits per second (Tbps). On one hand,
software-based defenses are lagging behind, incapable of keep-
ing up with such attack rates. On the other, traffic scrubbing
centers, one of the most widely used defenses, deploy expen-
sive and proprietary hardware appliances. Thus, despite their

Preprint submitted to Computer Networks January 19, 2022

AlSabeh et al. / Computer Networks 00 (2022) 1–43 2

Sec�on 1: Introduc�on

A Survey on Security Applica�ons of P4 Programmable Switches and a STRIDE-based

Vulnerability Assessment

Sec�on 2: Related Work

Sec�on 4: Methodology and

Taxonomy

Sec�on 5-7: P4 Security

Applica�ons

Sec�on 8: STRIDE-based Security

Analysis of P4 Applica�ons

Sec�on 9: Challenges, Current

Ini�a�ves, and Future work

The need for new defense mechanism

Rise of P4 and programmable data planes

Paper contribu�ons

P4 related surveys

Comparison between related work and this

paper

Survey methodology

Taxonomy overview

P4 applica�ons in the context of network

availability, anonymity and confiden�ality,

and opera�onal security provisioning

STRIDE model analysis on P4 applica�ons

(telemetry, load balancing, conges�on

control, caching, telecommunica�ons, etc.)

Challenges, current ini�a�ves, and future

work

Memory capacity, processing capabili�es,

virtualiza�on, interoperability, etc.

Sec�on 3: Background Overview of P4 and the PSA

Specifica�ons, advantages and limita�ons

of programmable switches

Figure 1: Paper road map.

high performance, they are inflexible in terms of functionality,
capacity, and placement location [6].

Additionally, security appliances are limited to operate ac-
cording to standards [2] and innovation is discouraged by
lengthy standardization processes. As an example, after being
initially conceived by Cisco and VMware [7], the Application
Specific Integrated Circuit (ASIC) implementation of the Vir-
tual Extensible Local Area Network (VXLAN) [8], a simple
tunneling protocol, took several years, a process that could have
been reduced to weeks by software implementations.

The popularity of cloud systems has fostered the use of vir-
tual security equipment as well [9]. However, such solutions
run on general-purpose Central Processing Units (CPUs) that
are unable of processing at Tbps rates [10]. Other security and
privacy functions face similar challenges. For example, legacy
anonymity tools used to preserve privacy (e.g., onion routing)
require a series of overlay proxies to redirect traffic with no
performance guarantees, thus imposing bandwidth and latency
issues [11, 12].

Programmable data plane switches have recently emerged,
where the software that describes the behavior of how pack-
ets are processed can be conceived, tested, and deployed in a
much shorter time span by operators, engineers, researchers,
and practitioners in general [13]. The de facto language for
defining the forwarding behavior is P4 [1], which stands for
Programming Protocol-independent Packet Processors. Essen-
tially, P4 programmable switches have removed the entry bar-
rier to network design, previously reserved to chip manufactur-
ers. Enabling users to program the switch ASIC has resulted in
unforeseen applications: replacing hundreds of load balancer

servers with one programmable switch [14], developing Fifth-
Generation (5G) firewalls with General Packet Radio Service
(GPRS) tunneling capability [15], devising in-network mem-
ory cache that can process over 2 billion queries per second
[16], and others.

1.1. Contribution
Despite the wide integration of various security applications

(e.g., firewall, DDoS mitigation, traffic anonymization, etc.),
even the most recent work does not thoroughly explore secu-
rity use cases in P4 as shown in Table 1. This survey cov-
ers the gap by digging deep into each work and presenting
paramount information for security researchers and practition-
ers. For a clear separation and encompassing of the crucial
security objectives, this survey classifies P4 security applica-
tions into network availability, anonymity and confidentiality,
and operational security provisioning.

Furthermore, with the increased flexibility and programma-
bility, a wide range of security implications that can wreak
havoc in the data plane are induced. Nonetheless, no research
work encompasses the notable P4 applications (e.g., congestion
control, network telemetry, load balancing) and highlights the
main attacks on them. Accordingly, this survey explores such
applications, infers potential vulnerabilities, and proposes po-
tential mitigation strategies. The contributions of this paper can
be summarized as follows:

• An overview of the P4 language and the Portable Switch
Architecture (PSA) is presented, along with the advan-
tages and limitations of programmable switches in the con-
text of security.

• A taxonomy of P4 security applications is provided to help
enlighten the cybersecurity research directions.

• A Spoofing, Tampering, Repudiation, Information disclo-
sure, DoS, and Elevation of privilege (referred to as the
STRIDE model) analysis on main P4 applications is pre-
sented. Additionally, plausible remediation solutions are
described.

• Challenges related to programmable switches and the cor-
responding impact of security applications are presented.
Additionally, open research problems and future directions
are discussed.

1.2. Paper Organization
The road map of this survey is depicted in Fig. 1. Section

2 compares existing surveys on P4 and demonstrates the added
value of this work. Section 3 presents an overview of P4 pro-
grammable switches and their features, advantages, and limi-
tations. It also contrasts programmable switches with general-
purpose CPUs. Section 4 discusses the survey methodology
and describes the proposed taxonomy. Sections 5-7 collate
and analyze P4 applications that address network availability,
anonymity and confidentiality, and operational security provi-
sioning. Section 8 studies main P4 applications not (directly)

AlSabeh et al. / Computer Networks 00 (2022) 1–43 3

Table 1: Comparison with Related Surveys

Paper P4 Data Plane P4 Security Applications Security Implications Discussion

Pipeline
Specs., Pros.,

Cons.
Background,

Literature
Intra-category
Comparison

Comparison
with Legacy Vulnerability Mitigation

Challenges
/Initiatives

Future
Work

[17] t dq dq dq dq dq dq dq t
[18] dq dq dq dq dq dq dq dq t
[19] t dq dq dq dq dq dq t t
[20] dq dq dq dq dq dq dq t t
[21] t dq dq dq dq dq dq dq dq
[22] dq dq dq dq dq t dq dq dq
[23] dq dq dq dq dq t dq dq dq
[24] d d dq dq d dq dq t t
[25] t t dq dq d d d t t
[26] t t dq dq dq dq dq dq dq
[27] t t dq dq dq dq dq dq t
[28] t t dq dq dq dq dq t t
This paper t t t t t t t t ttCovered dNot covered dq Partially covered

related to security (e.g., congestion control, load balancing)
and describes security implications using the STRIDE model
[29]. Section 9 lists challenges associated with programming
switches and their impact on security. It then discusses current
initiatives that overcome the challenges and provides a reflec-
tion on open research issues, and Section 10 concludes the pa-
per.

2. Related Work

Satapathy [17] presents a report about SDN/OpenFlow and
the current challenges in this paradigm. Then, the author intro-
duces the P4 language and provides tutorial-like guidelines to
work with P4. Furthermore, a number of P4 use cases and appli-
cations are present, such as network telemetry, load balancing,
and DDoS detection. The work discusses only three use cases
of P4 applications including DDoS detection for security.

Kaljic et al. [18] present a survey that covers topics address-
ing the aspects of SDN data plane flexibility and programmabil-
ity. In particular, the survey presents an overview of hardware-
based and software-based technologies proposed in standard
SDN data plane architectures (e.g., Field-Programmable Gate
Array (FPGA)). Furthermore, the authors study the implica-
tions of SDN-related research on data plane evolution and gen-
eralize four approaches to address the problem of programma-
bility and flexibility in the data plane, namely, programmability
(e.g., P4), stateful data plane, deeply programmable networks
(e.g., caching, conversion of encoding, Deep Packet Inspection
(DPI), etc.), and new data plane architectures. The survey does
not discuss security applications and implications in P4.

Cordeiro et al. [19] survey the literature on data plane pro-
grammability while focusing on P4 and diving into open re-
search questions from recent related work. Furthermore, the
authors survey the opportunities that were harnessed in the pro-
grammable data plane, in addition to a number of challenges
that accompany it. The survey succinctly discusses intrusion

detection and prevention in the data plane and does not present
a comprehensive literature on the related work.

Bifulco et al. [20] publish a small survey on programmable
data plane abstractions, architectures, and open issues. First,
the authors define that a programmable switch must be able to
reconfigure the packet processing logic in a systematic, rapid,
and comprehensive manner. Second, they present a layered
view of the programmable switch architectures. Furthermore,
the authors present a brief overview of software and hardware
switches, as well as the differences between stateless and state-
ful data plane architectures. The authors conclude their work
with a number of open issues coupled with programmable data
planes, such as security and scalability as pinpointed in [30].
The survey lacks a discussion on the security applications and
implications in P4.

Stubbe [21] conducts a survey on the different compilers and
interpreters used for the P4 language. The author describes the
packet processing pipeline in P4 and annotates the major differ-
ence between P414 and P416. The survey lists open source and
proprietary P4 compilers and interpreters, however, it does not
discuss security-related topics in P4.

Agape et al. [22] provide the first STRIDE model analysis
to P4. First, the authors specify the assets of the P4 platform
(e.g., control plane, table entries, compiler, etc.). Then, a high-
level analysis of potential vulnerabilities on the assets is carried
based on the STRIDE model. Also, the authors discuss a num-
ber of vulnerabilities related to the P4 language and compiler
such as inducing an undefined behavior through invalid head-
ers. The work does not discuss potential vulnerabilities in ma-
jor enabling P4 applications, but rather discusses attack points
within some P4 components.

Dumitru et al. [23] observe the actual behavior of P4 tar-
gets, namely Behavioral Model (BMv2) software switch [31],
P4-NetFPGA [32], and Intel Tofino (formerly Barefoot) switch
[33], when they encounter various bugs. Such bugs in P4 pro-
grams include accessing/reading/writing invalid headers, loops,

AlSabeh et al. / Computer Networks 00 (2022) 1–43 4

dead packet resurrection, and implicit forwarding behavior.
Moreover, the authors find a range of potentially exploitable
behaviors that are target-dependent, and succinctly analyze a
group of plausible P4 data plane threats based on the STRIDE
model [29]. The work does not extensively study application-
specific attacks, but rather discusses vulnerabilities in generic
P4 programs.

Black et al. [24] discuss adversarial data plane verification
techniques that detect anomalies while taking into considera-
tion that the data plane could be compromised. The verification
techniques are categorized into those relying on cryptography,
packet probing [34], distributed statistics, and hash collection.
Such verification techniques are compared based on their attack
coverage (e.g., inter-switch collusion, drops redirect, packet in-
jection, etc.) and their performance overhead. Furthermore, the
authors discuss unsolved problems and open new horizons for
future work in adversarial data plane verification techniques.
The work does not comprehensively survey P4 security appli-
cations, but rather focuses on the network verification part.

Michel et al. [25] present a survey on programmable data
plane abstractions, architectures, algorithms, and applications.
Firstly, the survey discusses the available programmable data
plane architectures (e.g., ASIC, FPGA, x86) while comparing
them based on metrics such as the flexibility and processing
speed. Secondly, the survey discusses abstractions in the con-
text of packet parsing and scheduling, stateful processing, pro-
gramming languages, and compilers. Thirdly, the survey con-
siders relevant algorithms and data structures for packet pro-
cessing that enhance the performance of the data plane. The au-
thors of the survey compartmentalize P4 applications into cate-
gories such as telemetry, in-network computations, consensus,
etc., with no emphasis on security applications.

Hauser et al. [26] conduct a survey on data plane pro-
grammability with P4, where they organize the work into two
parts. The first part contains a thorough overview of the P4 lan-
guage, architectures, compilers, targets, and data plane Appli-
cation Programming Interfaces (APIs). The second part of the
survey is comprised of P4-based applied research areas, such as
monitoring, traffic management and congestion control, rout-
ing and forwarding, advanced networking, network security,
and other miscellaneous research domains. In the section re-
lated to network security, the authors subdivide 38 papers into
six categories; namely firewall, port knocking, DDoS mitiga-
tion mechanisms, Intrusion Detection System (IDS) and DPI,
and connection security. The survey only lists the applications
without a thorough discussion of the implementation details,
limitations, or comparison between the work.

Kaur et al. [27] provide a comprehensive overview of the P4
language (architecture, compiler, P4 runtime), in addition to the
research efforts done in this domain. The authors dissect the ef-
forts into four categories including network monitoring, DDoS
attacks detection, load balancing, and packet aggregation and
disaggregation. Additionally, they present challenges related to
security, cost, and design, etc. The survey lacks extensive liter-
ature about the existing security applications in P4.

A recent work by Kfoury et al. [28] present an exhaustive
survey on P4 programmable data plane switches. The work

analyzes more than 150 articles related to P4 and compartmen-
talizes them into seven categories, including In-band Network
Telemetry (INT), measurements, performance, middleboxes,
Internet of Things (IoT), cybersecurity, and network testing.
Furthermore, the authors provide current challenges and future
trends in P4. The survey does not provide comprehensive
details on the discussed P4 security papers. Additionally,
the survey does not analyze the security implications of P4
applications.

Novelty of this work: Table 1 summarizes the related work
described above and compares them with this survey. The orig-
inality of this work is discussed in the concepts below while
comparing with the aforementioned P4 surveys.

• Programmable data plane properties and the correspond-
ing security implications: surveys such as [24, 27, 28] dis-
cuss the features and architectures of P4 without intercon-
necting them with the security implications. This survey
provides a robust background on the programmable data
plane while tightly correlating it with various security con-
cepts (e.g., the effect of the fast packet forwarding speed
on detecting anomalies). Additionally, this survey com-
pares programmable switches and general-purpose CPUs
and discusses the security advantages and limitations in
both schemes (e.g., more expressiveness in CPUs, whereas
faster attack detection in P4).

• Security objectives achieved in P4: to the best of the au-
thors’ knowledge, this survey is the first to focus on P4
applications related to the three network security objec-
tives (network availability, anonymity and confidentiality,
and operational security provisioning) and provide a mi-
croscopic comparison between the works belonging to the
same category (intra-category), as well as a comparison of
P4-based defenses against legacy server-based defenses.
Such categorization is tailored to the P4 security papers
presented in the literature and is tightly correlated with the
well-known security goals (i.e., confidentiality, integrity,
and availability).

• Technical implementation details for security practition-
ers: although P4 surveys such as [27, 28] discuss papers
related to cybersecurity, their discussion is tailored to gen-
eral readers rather than security researchers. This survey
provides more comprehensive details and illustrative fig-
ures for the related literature than other P4 surveys such
as in [26, 28]. For instance, in DDoS attacks, this survey
zooms in to the type of attack mitigated (e.g., volumetric,
slow DDoS, SYN, etc.), compares them based on the tech-
nique used (e.g., pipeline implementation, data structures,
deployment infrastructure, etc.) and the notable results ob-
tained. In addition, this paper pinpoints the limitation of
every work and provides the lessons learned for each net-
work security objective.

• STRIDE-based analysis: papers such as [22] and [23] pro-
vide a succinct STRIDE-based analysis on the P4 lan-
guage and compiler. On the contrary, this survey tailors

AlSabeh et al. / Computer Networks 00 (2022) 1–43 5

Programmable

parser

…

Programmable match-ac on pipeline Programmable

deparser

Memory ALU

Packet
Packet buffer

and replica on

engine

Configurable

component

Ingress pipeline

…
Buffer

queueing

engine

Configurable

component

Egress pipeline

State

Packet recircula on

Stage 1 Stage N

Packet resubmission Clone to egress

Programmable match-ac on pipeline

Stage 1 Stage N

Programmable

parser

Programmable

deparser

Figure 2: Portable Switch Architecture (PSA) [35]. The parser extracts packet header fields. Pipelines consist of match-action stages, each with memory elements
(e.g., SRAM, TCAM) and ALUs. A header field is matched against a value in a table on memory and the matched entry specifies corresponding actions on header
field/s. The system operates at line rate (e.g., 100 Gigabits per second (Gbps)) and thus ALUs execute simple operations only (bit manipulation, simple arithmetic).
Although complex schemes such as encryption extend beyond the intend of PSA, they have been implemented (see [36]) using recirculation and resubmission to
apply further processing over header fields at the expense of lower throughput.

the STRIDE analysis to P4 applications, describes the po-
tential attacks, discusses and proposes possible mitigation
approaches, and provides the lessons learned.

• Challenges and future work pertaining to security: chal-
lenges in P4 are discussed in a number of surveys (e.g.,
[25, 28]). However, none of the related work provides a
thorough discussion on the security implications of such
challenges in contrast to this survey. Furthermore, this sur-
vey centers the future work on possible security endeavors
in P4 (e.g., future work in firewalls, DDoS attacks, cryp-
tography, etc.).

3. Background Information

3.1. P4 Language and the Portable Switch Architecture (PSA)

The match-action paradigm refers to the process by which
a switch first matches a header (e.g., Internet Protocol (IP),
Transport Control Protocol (TCP)) or non-header (e.g., meta-
data) field against a value in a table. Then, the matched entry
specifies corresponding actions that are applied to the packet
header. Consider Fig. 2. The PSA [35] describes the capabili-
ties of switches that can be programmed using P416. The pro-
grammable parser enables the programmer to define the head-
ers (according to custom or standard protocols) and parse them.
The programmable match-action pipeline executes the opera-
tions over the packet headers and intermediate results. A sin-
gle match-action stage has multiple memory blocks (e.g., Static
Random-Access Memory (SRAM) and Ternary Content Ad-
dressable Memory (TCAM) tables) and Arithmetic Logic Units
(ALUs). The memory blocks are used for matching and the
ALUs are the action units. Additional action logic can be uti-
lized through stateful objects (e.g., registers, counters, meters)
that are stored in the SRAM. The deparser specifies the packet
contents to be sent to the packet buffer and corresponding meta-
data. The egress pipeline provides additional match-action ca-
pability, allows more efficient processing of multicast packets

by deferring per-port modifications until after buffering, per-
mits a packet to be recirculated to the ingress pipeline, and en-
ables a packet to be cloned. The components of the ingress
and the egress pipelines are the same (memory, ALU, etc.) and
thus, in practical implementations, they share the same physical
components. Sharing resources reduces implementation cost
[3, 37].

PSA encourages portability; as long as the P4 code conforms
to PSA, the code must run on many platforms that adhere to
PSA [35]. Implementations may include a superset of PSA
primitives (e.g., Tofino Native Architecture [33]).

3.2. Domain-specific Processor for Networking

PSA is a model of a domain-specific processor for network-
ing. PSA implementations are designed to execute packet
header operations efficiently. Features include:

• Memory: many network functions rely on tables. Thus,
dedicating more chip area for memory is desirable. E.g.,
the Reconfigurable Match Tables (RMT) switch [3] allo-
cates over 50% of the chip area for memory. Switches
use SRAM and TCAM. They have a typical access time of
0.5-2 nanoseconds, which is close to a switch clock cycle.
More on-chip memory also reduces expensive data move-
ment to off-chip memory.

• Reduced data size and type: implementations use 8-bit to
32-bit words [3]. Such narrower and simpler data types
suffice for header field operations and can be manipu-
lated with simple ALUs. Since ALUs are simple, more
units can be implemented into the chip. Reduced data
size also increases the effective memory bandwidth and
on-chip memory utilization.

• Domain-specific programming language: switches are
programmed with P4. P4 instructions are limited to typ-
ical operations applied to header fields. P4 is protocol-
independent (the switch is not tight to any protocol) and

AlSabeh et al. / Computer Networks 00 (2022) 1–43 6

Figure 3: Evolution of the packet forwarding speeds of the general-purpose
CPU and the switch chip (reproduced from [38]).

target-independent (the ASIC is hidden from the program-
mer). This programming abstraction makes porting appli-
cations flexible to a variety of targets.

• Performance: switch chips have remained faster at switch-
ing than CPUs for a long time and the gap is only increas-
ing, as shown in Fig. 3. Currently, the fastest switch chip
is over 100 times faster than the CPU.

The performance gain of switches relies on the multiple di-
mensions of parallelism, as described next.

• Parallelism on different stages: each stage of the pipeline
processes one packet at a time [40]. In Fig. 2, the num-
ber of stages is N. Implementations may have more than
10 stages on the ingress and egress pipelines. For exam-
ple, each pipeline in the Tofino architecture allows up to
12 stages on ingress and egress [41]. While adding more
stages increases parallelism, they consume more area on
the chip and increase power consumption and latency.

• Parallelism within a stage: the ASIC contains multiple
match-action units per stage. During the match phase, ta-
bles can be used for parallel lookups. In Fig. 2, there
are four matches (in blue) on each stage that can occur
at the same time. Each header field is processed by an
ALU (e.g., IP destination address, Media Access Con-
trol (MAC) source address, etc.) to execute one opera-
tion over the header field, enabling parallel actions on all
fields. Hundreds of match-action units exist per stage and
thousands in an entire pipeline [40]. Since ALUs execute
simple operations and use a simple Reduced Instruction
Set Computer (RISC)-type instruction set, they can be im-
plemented in the silicon at a minimal cost.

• Very Long Instruction Words: the set of instructions issued
in a given clock cycle can be seen as one large instruction
with multiple operations, referred to as Very Long Instruc-
tion Word (VLIW). A VLIW is formed from the output

of the match tables [37]. A stage executes one VLIW per
packet, and each action unit within the stage executes one
operation. Thus, for a given packet, one operation per field
per stage is applied [3].

• Parallelism on pipelines: the switch chip may contain mul-
tiple pipelines per chip, also referred to as pipes. Pipes
on a PSA device are analogous to cores on a general-
purpose CPU. Examples include chips containing two and
four pipes [37, 42]. Each pipe is isolated from the other
and processes packets independently. Pipes may imple-
ment the same functionality or different functionalities.
For a packet to traverse through two or more pipes, it
must be resubmitted or recirculated. Packet resubmission
and recirculation send the packet back for ingress process-
ing. Packet resubmission occurs at the end of the ingress
pipeline whereas packet recirculation occurs at the end of
the egress pipeline, see Fig. 2.

Table 2 summarizes the features of programmable switches
and contrasts them with general-purpose CPUs.

3.3. Advantages of Programmable Switches
Advantages of P4 programmable switches include:

• Agility: the programmer can design, test, and adopt new
protocols and features in significantly shorter times (i.e.,
weeks rather than years) using the same switch hardware.

• On-field programmability: reprogrammability enables the
programmer to add or modify features that were unfore-
seen at the time of deployment, saving time and cost and
increasing security. For example, as new vulnerabilities
are discovered after the switch is deployed, subsequent re-
programmability can be applied to the device.

• Flexibility and customization: the match process can be
made over multiple header fields associated with different
protocols at different layers (e.g., tuples). Similarly, the
action process can be customized according to the pro-
grammer’s needs, such as performing general and cus-
tomized security-related functions (rewriting header fields,
blocking/dropping a packet, sending a packet to a special
server for DPI).

• Visibility: programmable switches provide greater visibil-
ity into the behavior of the network. Security-related func-
tions can be improved by quickly detecting anomalies such
as DDoS at nanosecond timeframes. On the other hand,
detecting those anomalies with legacy methods (e.g., Net-
flow, sFlow) would take seconds at best. Moreover, events
occurring at very low timeframes may not be detected by
traditional methods.

• Enhanced resource utilization and reliability: fixed-
function switches incorporate a large superset of features.
They consume resources and add complexity to the pro-
cessing logic, which is hard-coded in silicon. With pro-
grammable switches, the programmer has the option to

AlSabeh et al. / Computer Networks 00 (2022) 1–43 7

Table 2: Comparison Between Programmable Switches and General-purpose CPUs

Feature Programmable Switch General-purpose CPU Notes

Packet forwarding
speed Up to 12.8 Tbps ≈ 200 Gbps Switch enables faster detection of anomalies

and security events
Memory Limited fast memory (on-chip

SRAM and TCAM)
Abundant slower memory
(off-chip DRAM)

Switch has limited number of fast tables to
store firewall entries, signatures, etc.

Data type and size Reduced, simpler (bool, int, var-
bit, etc. [35])

General, complex (8-bit word,
32-bit float, etc. [39])

Switch has simpler data types that affect sev-
eral security implementations (e.g., no float-
ing points to store measures such as entropy)

ALU Simple 8-bit to 32-bit ALUs opti-
mized for line-rate packet header
operations

Complex computation units
optimized for memory load
and store operations

Switch operations are limited to simple
arithmetic, logical, and bit manipulation; no
encryption, regex processing, etc.

Language P4 Java, Python, etc. Level of abstraction for networking opera-
tions is raised with p4; compiler exploits in-
herent operation parallelism

Parallelism Multiple pipelines, multiple
stages per pipeline, multiple
ALU and tables per stage

Multiple cores (multi- core
microprocessors)

Switch has higher throughput for packet
header operations (e.g., faster detection of
attacks, multiple operations at a time, etc.)

implement only those features that are needed. Remov-
ing unused features minimizes the risk of software vulner-
abilities and failures, increases the reliability of the device,
and reduces power consumption. Furthermore, unused re-
sources can be better utilized.

• Top-down design: for decades, the networking industry
operated in a bottom-up approach. A fixed-function ASIC
is at the bottom and enforces available protocols and fea-
tures to the programmer at the top. With programmable
switches, the programmer rather than the chip manufac-
turer describes protocols and features in the ASIC. The
evolution of protocols and features is quicker and cus-
tomized to the needs of the network owner.

• Enhanced performance: when security functionalities are
offloaded to the switch ASIC, the performance is enhanced
accordingly.

3.4. Limitations of Programmable Switches

Limitations of P4 programmable switches include:

• ALU capability: the amount and type of processing are
limited by the simple instruction set, which is not intended
for manipulation of the packet body, such as encryption or
regular expressions [3].

• On-chip memory capacity: on-chip memory is expen-
sive and limited in size. Switch chips incorporate a cer-
tain amount of TCAM and SRAM. Current programmable
switches have capacities of approximately 20 megabytes
[42]. This contrasts with general-purpose CPUs which
have abundant off-chip memory.

• Simple per-stage actions: to preserve line-rate processing,
only a specific number of simple operations are permitted
[43].

• Limited concurrent memory access: packets can read or
write to specific memory addresses. Thus, simple func-
tions such as finding the minimum of k-heavy hitters in
the data plane are challenging to implement [43].

• Single stage memory access: the RMT model allows ac-
cess to the stateful memory only from one pipeline stage
at a time to avoid read-write hazard [43].

• Monolithic P4 program: Despite the flexibility of the P4
language and its accommodation of a range of targets, it
creates a tight coupling between P4 programs and the un-
derlying architectures. Thus, P4 programs are often writ-
ten with a flat top-level structure and a specific set of head-
ers and metadata that are scattered throughout the whole
program. Such a design hinders code reuse and makes mi-
nor modifications to the code result in altering the rest of
it [44].

• Architecture-specific P4 program: P4 programs depend
on the pipeline model of the architecture they are devel-
oped on. The available architectures differ in a number
of functionalities. For instance, the Tofino model allows
packet resubmission only once, whereas BMv2 allows in-
finite packet resubmission [23, 44].

4. Methodology and Taxonomy

4.1. Survey Methodology

The survey starts with a broad search scope to provide rel-
evant information related to the history of data plane pro-
grammability. Then, it narrows the scope towards literature
exclusive to P4 and more specifically to security techniques
implemented in the data plane. In the later part, the survey
describes the main P4 applications and pinpoint a number of
security implications using the STRIDE model.

AlSabeh et al. / Computer Networks 00 (2022) 1–43 8

P4 Security Applications

Network Availability (Section 5) Anonymity and Confidentiality (Section 6) Operational Security Provisioning (Section 7)

Spoofing Attacks [45–49]

DDoS Attacks [6, 43, 46, 50–67]

Network Verification [68–75]

Privacy and Anonymity [76–79]

Cryptography and Secu-
rity Protocols [36, 80–85]

Firewalls [15, 86–92]

Generic Defenses [93–100]

Figure 4: A security-centric taxonomy of programmable switches literature based upon relevant, explored research areas.

4.2. Taxonomy Overview

The proposed taxonomy of P4 security applications is shown
in Fig. 4. It classifies applications based on network avail-
ability, anonymity and confidentiality, and operational security
provisioning. Each subsection presents a brief background of
the discussed topic (e.g., DDoS, firewall, etc.) followed by
a literature review comprising of related P4 papers. Then the
subsection dedicates two segments to discussions and compar-
isons. The first segment dives into implementation details of
the discussed P4 papers and compares them against each other
(intra-category comparison). The second segment compares the
P4 applications with their traditional counterparts.

5. Network Availability

The first category in the taxonomy (Fig. 4) presents applica-
tions and techniques pertaining to network availability. In gen-
eral, this category ensures that a network is available and work-
ing as expected. In this section, three main types of P4 appli-
cations related to network availability are addressed. First, the
P4 applications that mitigate spoofing attacks. Second, those
targeting DDoS attacks that hinder the availability of the net-
work and disrupt its operations. Finally, network verification
techniques that aim to verify the correctness of the P4 program,
thus, avoiding faulty programs that would undoubtedly affect
the network’s availability.

5.1. Spoofing Attacks

5.1.1. Background

A spoofing attack occurs when a malicious party imper-
sonates another device for the purpose of launching attacks
(e.g., DDoS) that can render the network unavailable, stealing
data, and disseminating malware, or bypassing access controls.
For instance, CloudFlare [101] reports that all layer-3 gigan-
tic DDoS attacks require spoofing. Common types of spoof-
ing are IP address spoofing attacks, Address Resolution Proto-
col (ARP) spoofing attacks (modified MAC address), and Do-
main Name Server (DNS) server spoofing attacks (DNS server

is modified to redirect specific domains to a different IP ad-
dress). DNS server spoofing can be realized via Dynamic Host
Configuration Protocol (DHCP) spoofing, where the attacker
can modify the default gateway and the DNS server of DHCP
clients [48].

Spoofing attacks remain a major threat in the network as ex-
isting anti-spoofing defenses (e.g., host-based approaches) can-
not cope with the increasing attack rates. For instance, reports
from CAIDA show that 30,000 spoofing attacks occur per day
[102]. Recently, programmable switches are realized to prevent
spoofing attacks by utilizing stateful memory processing, where
switches can store information about hosts and detect spoofing
attempts on the fly.

5.1.2. Literature

Li et al. [45] propose NetHCF, a line rate in-network sys-
tem for filtering spoofed traffic based on the Hop Count Fil-
tering (HCF) approach. NetHCF maintains a mapping table
between the IP addresses and the number of hops (IP-to-Hop-
Count (IP2HC) mapping table) a packet takes while traversing

...

h2

N/A

P4 registers

Hash (IP, MAC)

t1

...

...

Timestamp

valid

invalid

...

A ack flag

Hash = h1 Hash = h2

h4 t4 invalid

Hash = h3 Hash = h4'

Host 1 Host 2 Host 3 Host 4

Figure 5: DroPPPP workflow [46]. Traffic from host 1 is denied since the flag
is valid and the time difference is less than 1 s. Traffic from host 2 is allowed
since the hashes match and the flag invalid. Traffic from host 3 is allowed since
there are no stored hashes (subsequently, the entry gets updated after the first
occurrence). Traffic from host h4 is denied since the hashes do not match and
the time difference is less than 5s.

AlSabeh et al. / Computer Networks 00 (2022) 1–43 9

IPv6_1

IPv6_2

...

Preferred

Preferred

...

IPv6_1

IPv6_3

...

Tenta ve

Tenta ve

...

P4 registers P4 registers

Host 1 Host 2 (a!acker) Host 3

NA(IPv6_1) NS(IPv6_1)
NA(IPv6_1)

NA(IPv6_3)

S1 S2

NS(IPv6_3)

Host 4

IPv6_1 IPv6_2 DAD target = IPv6_1 DAD target = IPv6_3

Update entry to

“Preferred”

1

2 2

3

4
4

5 5

6

Figure 6: P4DAD workflow. 1- Switch S1 binds the entries IPv6_1 and IPv6_2
of hosts h1 and h2. 2- Hosts 3 and 4 send Neighbor Solicitation (NS) messages
to be assigned an IPv6 address. 3- Switch S2 stores the corresponding IPs in its
registers as tentative. 4- Host 1 sends a Neighbor Advertisement (NA) to point
that it is assigned IPv6_1, and host h2 (attacker) sends an NA messages with
IPv6_1 and IPv6_3. 5- Switch S1 will only permit non-spoofed NA messages
(from host h1) based on the mapping table. 6- Switch s2 will remove IPv6_1
entry, and set IPv6_3 to permanent.

the network. The IP2HC table can be used to infer spoofed IP
traffic by comparing the number of hopes in the table with that
belonging to spoofed traffic. Such an approach is effective as-
suming that the table maintains hop-count values of legitimate
traffic, and the attacker cannot easily use the correct hop-count
values in the attack traffic.

DroPPPP [46] is an approach that detects spoofed addresses
by hashing the source IP and MAC addresses of an incoming
packet and matching it against the old hash values stored in
the switch. Fig. 5 illustrates how DroPPPP performs packet
filtering to detect spoofing based on different scenarios.

Duplicate Address Detection (DAD) is used in the process of
IPv6 address configuration, where nodes verify if an IPv6 ad-
dress conflicts with another node. Since DAD messages are not
authenticated or encrypted, an attacker can launch a spoofing

attack against nodes in the IPv6 network. Motivated by such a
vulnerability, Kuang et al. [47] propose P4DAD to secure DAD
against spoofing attacks by storing bindings between the IPv6
addresses and ports in the switch similar to DroPPPP’s design
[46]. Fig. 6 depicts the workflow of P4DAD.

Narayanan et al. [48] implement commonly used defense
mechanisms against spoofing attacks using the P4 language.
The proposed approach is based on match-action table rules
initially inserted by the controller (or statically hardcoded) to
specify trusted users. Gondaliya et al. [49] explore differ-
ent implementation techniques of anti-spoofing mechanisms us-
ing programmable switches. Namely, the anti-spoofing mecha-
nisms implemented are: Network Ingress Filtering (NIF) [103];
Loose Reverse Path Forwarding (RPF-Loose) [104]; Strict Re-
verse Path Forwarding (RPF-Strict) [104]; Feasible Path Re-
verse Path Forwarding (RPF-Feasible) [104]; Spoofing Preven-
tion Method (SPM) [105]; and Source Address Validation Im-
provement (SAVI) solution for DHCP [106].

5.1.3. Anti-spoofing Defenses: Comparison, Discussions, and
Limitations

Table 3 summarizes and compares the aforementioned ad-
dress spoofing implementations in P4. NetHCF stores a small
portion of the IP2HC table in the data plane and the entire ta-
ble in the controller. IP2HC entries in the data plane corre-
spond to the most active IPs in the network. NetHCF utilizes
the available memory on the switch by storing the IP2HC map-
ping table in a binary tree format using registers (tree nodes
with a common IP prefix and hop-count value are aggregated
into one node). Furthermore, NetHCF captures legitimate hop-
count changes at line rate (using P4 registers and bitmaps) and
uses message digests (IP address, Time To Live (TTL), and TCP
flag) instead of the whole packet to reduce the communication
cost between the control and data planes.

DroPPPP [46] and P4DAD [47] store heuristics for every port
connected to a host. In particular, DroPPPP uses three registers

Table 3: Address Spoofing Implementations in P4

Paper
Attack Vector Anti-spoofing

Technique
Control-Data
Interaction

Stateful
Memory

Target Limitations
IP ARP DHCP

NetHCF
[45]

✓ IP-to-Hop-Count
mapping table

Medium Rule table Tofino Vulnerable to saturation attacks
on the controller

DroPPPP
[46]

✓ ✓ Matching packet
hash with old
heuristics

Low Rule table, src IP,
MAC hash, time-
stamp, flag

BMv2 Requires full deployment for
high detection rate

P4DAD
[47]

✓ Binding be-
tween IPv6 ad-
dresses/ports

Low Rule table, IPv6,
states

BMv2 Might be inscalable for large
number of hosts

[48] ✓ ✓ ✓ DHCP snooping,
IP source guards,
MAC source
guards

Low Rule table BMv2
Net-
FPGA

Requires maintenance of entry
tables from the administrator

[49] ✓ ✓ NIF, RPF-Loose,
RPF-Strict, RPF-
Feasible, SPM,
SAVI

Low Rule table Net-
FPGA

Requires maintenance of entry
tables from the administrator

AlSabeh et al. / Computer Networks 00 (2022) 1–43 10

Table 4: P4 and Traditional Anti-spoofing Defenses

Feature P4-based Traditional Anti-Spoofing
Host-based Router-based

Performance High (intelli-
gence is on the
switch)

Low (at-
tacks reach
the hosts)

High (intelli-
gence is on the
router)

Latency Low High Low
Visibility High (network-

wide)
Low per-
host)

High (network-
wide)

Flexibility Medium (lim-
ited to P4 and
the available
resources)

High
(easily
modified;
abundant in
resources)

Low (requires
hardware mod-
ification that
takes years)

to store a hash value of the source IP and MAC addresses of the
host, a timestamp for the last detected attack packet, and a flag
that is valid if an attack is ongoing (attack flag). DroPPPP work-
flow is depicted in Fig. 5. On the other hand, P4DAD’s registers
store the IPv6 addresses (only the 64-bit interface identifier) and
their corresponding states (e.g., preferred, tentative).

[48] and [49] implement the different anti-spoofing tech-
niques using match-action tables. Evaluations in [49] show that
SPM consumes the highest number of resources among all anti-
spoofing techniques operating at the network layer. Such an
observation is due to the fact that SPM requires an extra match-
action table compared to the other schemes.

5.1.4. Comparison with Traditional IP Spoofing defenses

Table 4 compares P4-based anti-spoofing defenses with their
traditional counterparts. Traditional source spoofing defenses
are categorized into router-based [107–109] and host-based
[110–112] defenses. Router-based anti-spoofing installs the de-
fense mechanism into the router to trace the source of the at-
tack and blocks the malicious traffic. Such an approach might
require vendors to modify the hardware to support the anti-
spoofing mechanism. Host-based anti-spoofing installs the de-
fense mechanism on the end system, thus making it easier in
terms of deployment. However, host-based defenses use com-
plex source-discrimination schemes [113–115], or reduce the
resource consumption of each request [116, 117] to mitigate at-
tacks. P4-based anti-spoofing approaches combine the perfor-
mance gain in traditional router-based defenses, with the ease
of deployment (programmability) in traditional host-based de-
fenses.

5.2. DDoS Attacks
5.2.1. Background

DDoS attacks have been persistent as a large scale threat
among network attacks for a long time. Throughout the years,
DDoS attacks have evolved to become more diverse and com-
plicated to cope with, leading to more than 400,000 DDoS
attacks with a peak volume topping terabits. Emerging pro-
grammable switches can facilitate the development of robust
techniques for DDoS defense while maintaining high through-
put and accuracy [6]. The specifications of such programmable

devices and their adoption to stateful packet processing al-
low them to process packets at terabits line rate. Further-
more, programmable switches proved to overcome several lim-
itations of traditional heavy hitter detectors (e.g., packet sam-
pling [118]) that have limited accuracy since they are imple-
mented on general-purpose CPUs. Heavy hitters are flows with
large traffic volumes measured in terms of the number of pack-
ets, bytes, connections, etc. [119]. Heavy hitters constitute
most of the network traffic over a period of time, and they can be
used for malicious purposes such as volumetric DDoS attacks.

5.2.2. Literature

Sivaraman et al. [50] propose HashPipe, a heavy hitter de-
tection algorithm that identifies the k-heaviest flows with high
accuracy entirely in the data plane. Probabilistic RECircu-
lation admisSION (PRECISION) [43] is a heavy hitter algo-
rithm that recirculates a small fraction of packets for a sec-
ond pipeline traversal. MV-Sketch [51] is an invertible sketch
that applies the majority vote algorithm [120] to find candidate
heavy flows, i.e., flows having a high likelihood of carrying the
largest amount of traffic among all the flows. Kucer et al. [52]
present another line of research that targets hierarchical heavy
hitters, changes in traffic patterns, and superspreaders. Hierar-
chical heavy hitters (hierarchical aggregates) extend the notion
of frequent items to data arranged in a hierarchy. Aggregation
can be in the form of source/destination IP address and port,
protocol fields, etc. The developed approach, namely Elas-
tic Trie, can perform security tasks, such as DDoS, anomaly,
worm, and spam detection. Harrison et al. [53] focus on detect-
ing network-wide heavy hitters to mitigate attacks that cannot
be detected when monitored at a single switch, such as port
scanners and superspreaders/DDoS. Ding et al. [54] build on
top of [53] and propose an approach for incrementally deploy-
ing programmable switches in legacy infrastructure for moni-
toring as many distinct flows as possible. The authors also pro-
pose a network-wide heavy hitter detector that is compatible
with the incremental deployment approach.

As for schemes that solely focus on DDoS detection, Zhang
et al. [6] propose POSEIDON, a notable approach against var-
ious volumetric attacks. The high-level architecture is depicted
in Fig. 7. Essentially, POSEIDON provides network operators
with a simple and modular expressive policy language to spec-
ify their DDoS attack mitigation. POSEIDON partitions the
needed functions across the available P4 switches and general-
purpose servers. Furthermore, POSEIDON can adapt to dy-
namic attacks by generating a new defense policy and recon-
figuring the switch with a new P4 program through the inter-
vention of the controller and temporary servers. POSEIDON
relies on flow-level states instead of per-packet information to
detect DDoS. This approach could be easily evaded in stateful
protocols-based DDoS traffic. Accordingly, the authors extend
their work in [55] to include a Finite State Machine (FSM)-
based monitor, which can capture these stateful packet process-
ing behavior. In contrast to POSEIDON, Jaqen [56] is a switch-
native DDoS detection and mitigation approach that runs en-
tirely in the data plane without relying on external hardware. In
particular, the approach covers a broad spectrum of volumetric

AlSabeh et al. / Computer Networks 00 (2022) 1–43 11

POSEIDON

High-level defense policies

(e.g., SYN flood, DNS amplifica"on defenses)

Resource orchestra"on (ILP for

placing defense primi"ves)

Run"me management (for

dynamic defenses)

P4 program Configura"on file

P4 switches General-purpose servers

State packet parser

State replica"on

module

DDoS defense module

Figure 7: POSEIDON high-level architecture. POSEIDON runs on an external
server to take the policies defined by the operator, configure, and orchestrate the
underlying data plane. The latter consists of P4 switches and general-purpose
servers that assist the switches in complex operations.

DDoS attacks within Internet Service Providers (ISPs) without
interrupting client-side servers. Furthermore, Jaqen provides an
API to obtain metrics for detection (e.g., querying User Data-
gram Protocol (UDP) heavy flows), as well as a flexible mitiga-
tion API that can be used to cover other types of attacks.

Lapolli et al. [57] overcome the limitations of standardized
monitoring techniques, such as packet sampling, which incur
substantial overheads on the network performance, by design-
ing a fully in-network inspection mechanism against DDoS
attacks. The detection mechanism, namely DDoSD-P4, en-
compasses three stages, namely, entropy estimation [121], traf-
fic characterization, and anomaly detection. The authors of
DDoSD-P4 extend their work to develop EUCLID [58], which
enables scalable detection and mitigation of volumetric DDoS
attacks entirely in the data plane. Dimolianis et al. [59] com-
bine three essential traffic metrics of DDoS attacks discussed
as follows. (1) Total number of incoming traffic flows within an
interval. (2) Percentage of flows directed towards a network out
of the total incoming flows, referred to as the significance of a
network. (3) Symmetry ratio of incoming to outgoing packets.
Furthermore, the approach can pinpoint the victim’s destina-
tion by monitoring incoming and outgoing flows of a specific
network. Ding et al. [60] design BACON, a probabilistic data
structure that combines Bitmaps [122] and Count-Min Sketch
(CMS) [123]. In contrary to entropy-based DDoS detection,
which can only detect attacks, BACON is cardinality-based
that can estimate per-destination flow cardinality and identify
the victim. Furthermore, the authors propose INDDoS, an ap-
proach that employs BACON data structure entirely in the data
plane to perform DDoS detection with victim identification.

Friday et al. [61] propose a unified in-network detection and
mitigation approach against a broad spectrum of attacks, mainly
volumetric and stealthy DDoS attacks. The detection is based
on statistics (e.g., flow count, timestamp) collected from the
P4 switch. Musumeci et al. [62] use Machine Learning (ML)

Packets

...

Feature

extractor
ML classifier

ML-assisted DDoS a!ack detec"on module

CPU or P4

switch
CPU

Traffic Info (len,

TCP/UDP ra"o, etc.)
Decision

P4 switch

Features

Figure 8: Workflow of [62] depicting the interaction between the switch and
the DDoS detection module.

classification techniques to perform TCP flood detection from
a set of features (average size of packets, TCP/UDP ratio, etc.)
extracted from P4 registers periodically. The detection frame-
work is mainly composed of two components, the P4 switch,
and the ML module. The former receives the packets and for-
wards them to the latter that indicates the legitimacy of the traf-
fic, see Fig. 8.

Paolucci et al. [63] explore P4 deployment in an SDN mul-
tilayer packet-over-optical networks, specifically at the edge
where a plethora of traffic flows traverse. The approach show-
cases the adoption of P4 in two scenarios, namely traffic en-
gineering and SYNchronize (SYN) flooding based on header
inspection and packet counting. Essentially, the SYN flooding
defense includes a customized parser (up to layer-4) and a state-
ful memory to store the number of attempts matching the TCP
SYN flooding behavior.

Scholz et al. [64] leverage programmable switches to protect
a multitude of servers against SYN flooding attacks, i.e., the
switch is used as SYN proxy. In particular, the authors imple-
ment two strategies against SYN flooding attacks, namely, SYN
cookies and SYN authentication. In SYN cookie, instead of
storing the state of the connection (timestamp, maximum seg-
ment size, hash of 4-tuple), the state is encoded and sent as the
sequence number by the client. The SYN proxy (characterized
by the P4 switch), in turns, decodes and verifies (cookie cal-
culation) the sequence number before establishing the connec-
tion. In SYN authentication, the SYN proxy expects a certain
response to a triggered event (whitelisting).

Simsek et al. [46] propose DroPPPP, a P4-based approach to
detect and mitigate spoofed-based DoS attacks. The IP spoofing
mitigation is summarized in Section 5.1.2. In the DoS detec-
tion, the authors employ Two Rate Three Color Marker [124]
to identify and block hosts performing the attack. Two Rate
Three Color Marker compares the rate of incoming packets to
a certain threshold and acts accordingly.

Kuka et al. [65] present an approach that defends against am-
plification attacks. Conceptually, the operator specifies a set of
rules to monitor a subset of traffic (e.g., based on destination IP
address) and the traffic limit. Subsequently, the data plane sends
statistics (stored outside the P4 pipeline) related to the con-
troller, which analyzes the traffic and inserts rules to block ma-
licious activities. Similarly, the authors in [66] propose DIDA,

AlSabeh et al. / Computer Networks 00 (2022) 1–43 12

a distributed in-network defense architecture against Amplified
Reflection DDoS (AR-DDoS) attacks, also referred to as DNS
reflection/amplification, using P4. The authors implement their
defense strategy entirely in the data plane without relying on
any third-party tools and with the mere involvement of the con-
troller. To make DIDA scalable and efficient, the authors count
the responses at the border routers, while the requests are mon-
itored at the access routers. Once an attack is detected, the bor-
der router installs Access Control Lists (ACLs) in its flow table
to drop future packets from the corresponding IP address.

Contrary to [66], Febro et al. [67] present a first-hop DDoS
detection and mitigation, i.e., only the switch nearest to the at-
tack source performs traffic counting and filtering. The pro-
posed approach targets Session Initiation Protocol (SIP) DDoS
attacks based on the number of SIP INVITE and REGISTER
packets.

5.2.3. DDoS Defenses: Comparison, Discussions, and Limita-
tions

Table 5 summarizes and compares the aforementioned P4-
based DDoS attack mitigation techniques. HashPipe is adapted
from a strawman solution, HashParallel [50], that requires recir-
culating every unmatched packet. HashPipe enhances the accu-
racy at the expense of the throughput, while HashParallel sac-
rifices the accuracy to achieve higher throughput. In contrast
to HashPipe and HashParallel, PRECISION [43] recirculates a
small fraction of packets to conform to the memory limitations
of the programmable switch while achieving high accuracy and
performance. The invertible data structure MV-Sketch [51] is
shown to achieve higher accuracy and smaller resource usage
than PRECISION using the same CAIDA dataset. However,
PRECISION has a lower relative error than MV-Sketch. As for
network-wide heavy hitters, the authors in [54] show that the
work by Harrison et al. [53] has low accuracy when a legacy
switch exists in the network and a switch is more likely to fail in
detecting heavy hitters when it receives few distinct flows. As a
result, the proposed approach in [54] uses HyperLogLog [125]
to estimate the number of distinct flows. Evaluations show that
the network-wide heavy hitter detection in [54] outperforms the
one presented in [53] while incurring additional packet process-
ing time.

The main advantage of Jaqen [56] over POSEIDON [6] is its
ability to fully work in the switch, thus reducing the costs of
external servers and achieving line rate speed. In particular, the
authors utilize universal sketches [126] for network monitor-
ing since they can estimate a range of network statistics from
multiple algorithms, such as heavy hitters, distinct flows, and
entropy. To combat the hardware constraints in switches, Jaqen
assumes that the ISP encompasses several hardware resources
and develops a network-wide DDoS detection. Jaqen has a
broader detection coverage than POSEIDON, such as identify-
ing anomalies using entropy, handling distinct TCP/UDP flows,
etc.

[57], [59], and [60] implement their DDoS defense in the data
plane without relying on external resources. For entropy esti-
mation in [57], the authors use count sketch data structure (im-
plemented via P4 registers) to approximate the frequencies of

Observa�on

window

(m packets)

...

Frequency est.

(CMS,

registers, hash)

Entropy norm

es�ma�on

(LPM lookup

table)

Entropy

measurement

Traffic

characteriza�on

Anomaly

detec�on

P4 pipeline

Entropy calcula�on

P4 switch

Figure 9: Entropy estimation in the data plane [57].

IP addresses. Furthermore, binary logarithmic values are pre-
calculated using Longest Prefix Match (LPM) lookup tables im-
plemented in TCAMs, see Fig. 9. Results show that the entropy
estimation error fluctuates between 5% and 1%, where higher
accuracy means higher processing, e.g., more hash functions
processing. In [59], the monitored networks are initially speci-
fied as match-action table rules. Registers hold statistics, such
as flow counters, and the storing of values is based on Bloom
Filter (BF) data structure. Floating point operations are realized
by multiplication and bitwise shifting operations (for division).
INDDoS [60] uses BACON data structure to identify destina-
tion IPs (victims) that are targeted by source IPs exceeding a
dynamic threshold. INDDoS can be considered as complemen-
tary to approaches that assume the DDoS victim is known in
advance (e.g., POSEIDON).

To mitigate volumetric attacks, the approach in [61] first
hashes the SYN packet’s fields (window size, TTL, IP options
length, etc.) and the index is used to access P4 counters and in-
crement the value representing the number of SYN requests for
a specific flow. Likewise, stealthy attacks are mitigated by hash-
ing the source IP address and storing the timestamps. Likewise,
[62] relies on statistics extracted from the packet’s header to
feed an ML classifier that detects SYN flooding attacks. In the
feature extraction process, evaluations show that the P4 switch
is capable of extracting the packets’ header and metadata sig-
nificantly faster than the deployed server.

In [64], initially, the P4 program parses up to the TCP header.
Since P4 does not support cryptographic hash functions (e.g.,
SHA1, SHA2), the authors use SipHash function [127] imple-
mented as a P4 extern for efficiency. After a client establishes
the TCP handshake with the SYN proxy, it can immediately
start sending data. Meanwhile, the SYN proxy could be still
establishing a TCP handshake with the server; thus, the sent
data could be dropped. To cope with such a limitation, the P4
switch forwards the packets to an external storage server for
packet buffering until the TCP handshake is established (with
the involvement of the controller). The workflow of [64] is de-
picted in Fig. 10.

[65] modifies the parser to match on rules specified by the
operator, however, they did not utilize the stateful memory pro-
cessing on the switch to perform line rate attack detection (the
controller analyzes and insert the rules).

In [46], the authors use P4 meters to implement the two rate

AlSabeh et al. / Computer Networks 00 (2022) 1–43 13

Table 5: DDoS Defenses Schemes in P4
Paper Attack

Vector
P4-specific Implementation Data Struc-

ture
Rules Based on Target Limitations

HashPipe
[50]

Volumetric Heavy hitter detection using
a pipeline of hashes

Hash tables 5-tuple BMv2 Sacrifices accuracy for
performance

PRECISION
[43]

Volumetric Heavy hitter detection using
probabilistic recirculation

Hash tables IP src, dst Tofino Recirculation may impact
the accuracy

MV-Sketch
[51]

Volumetric Heavy hitter detection using
invertible sketches

Invertible
sketches

5-tuple Tofino Predefined (static) thresh-
old, requires controller in-
teraction

Elastic Trie
[52]

Volumetric Hierarchical heavy hitter de-
tection

Elastic Trie IP src BMv2 Predefined (static) thresh-
old, requires controller in-
teraction

[53] Volumetric Network-wide heavy hitter
detection

N/A IP src Tofino High memory overhead
due to per-key state stor-
ing

[54] Volumetric Incremental deployment for
network-wide heavy hitters

CMS IP src, dst BMv2 Cannot handle adding
new switches (only re-
placement)

POSEIDON
[6, 55]

Volumetric* Expressible DDoS defense
policies

CMS Generic (ICMP,
TCP, HTTP, etc.)

Tofino Spoofed IP addresses
can overwhelm switch’s
memory

Jaqen [56] Volumetric* In-line detection and
network-wide coordina-
tion

Universal
sketches

Generic (ICMP,
TCP, HTTP, etc.)

Tofino Requires few seconds to
react to attacks

DDoSD-P4
[57]

Volumetric Shannon entropy (detection) Count
sketch

IP src, dst BMv2 No granular precision,
limited attack coverage

EUCLID
[58]

Volumetric Shannon entropy (detection
and mitigation)

Count
sketch

IP src, dst Tofino No granular precision,
limited attack coverage

[59] Volumetric (1) Traffic feature (2) Net-
work significance (3) Sym-
metry ratio

BF 5-tuple hash Netronome Limited measurements,
deteriorating performance
for high packet rates

INDDoS
[60]

Volumetric Threshold-based victim de-
tection

BACON IP src Tofino Consumes all the avail-
able pipeline stages

[61] SYN
flooding /

stealthy

Packet and timestamp count-
ing (on signature matching)

BF SYN header
(e.g., IP options
len.), IP src hash

BMv2 Hash collisions are not ad-
dressed

[62] SYN
flooding

ML on features from packet
header (e.g., packet length)

N/A IP, UDP, TCP BMv2 Latency incurred by the
ML decision

[63] SYN
flooding

Packet counting N/A IP, TCP BMv2,
NetFPGA-S

Manual configuration of
threshold

[64] SYN
flooding

SYN cookie, SYN auth. N/A TCP header
fields

Netronome,
NetFPGA-S
BMv2, t4p4s

Extra latency incurred by
the controller and the ex-
ternal storage server

DroPPPP
[46]

Spoofed-
based DoS

Two rate three color marker N/A MAC, IP src BMv2 High CPU load under at-
tacks and a poor choice of
thresholds

[65] Amplifica-
tion

Extract header fields from af-
fected traffic

N/A IP, UDP, TCP FPGA No intelligence in the
switch

DIDA [66] Amplifica-
tion

Request/response tracking CMS , CHT IP, port (src, dst) BMv2 Hash collisions are not ad-
dressed

[67] SIP DDoS INVITE and REGISTER
packets counting

N/A SIP packets
Ethernet, IP,
UDP, SIP

Saturation attack on the
controller

Volumetric*: Can defend against a wide variety of volumetric attacks NetFPGA-S: NetFPGA-SUME

three color technique. On the other hand, [66] performs traffic
monitoring entirely in the data plane by counting packets based
on the CMS data structure and resetting the counters periodi-

cally. Furthermore, to maintain ACLs used in blocking attacks,
the authors use Cuckoo Hash Tables (CHT) with four hash func-
tions. Finally, [67] performs DPI to monitor and count INVITE

AlSabeh et al. / Computer Networks 00 (2022) 1–43 14

SYN proxy

(P4 switch)Client Server

Controller
Rules

(whitelis ng)

Storage

server

Packet

buffering

TCP

handshake

TCP

handshake

1

2

3

TCP packets
4

5

Figure 10: High-level architecture of [64]. 1- The client tries to establish a
TCP connection with the P4 switch (SYN proxy). 2- The switch establishes
the connection once validated via SYN cookie or SYN authentication using a
controller. 3- The switch establishes a TCP connection with the server. 4- After
the TCP session is established, the client starts sending packets. 5- Packets
arriving from clients after the TCP handshake with the switch and before the
TCP handshake with the server are buffered using the storage server.

and REGISTER packets on each port within the switch. Ad-
ditionally, a controller periodically monitors the counters col-
lected by the P4 switches. Based on the collected statistics,
if the rate of SIP INVITE packets exceeds a threshold, the con-
troller inserts rules to drop subsequent INVITE and REGISTER
packets from the corresponding port.

5.2.4. Comparison with Traditional DDoS defenses

Table 6 shows a comparison between P4 and traditional
DDoS defenses. Traditional defenses can be mainly categorized
into two, traffic scrubbing centers, and SDN/Network Function
Virtualization (NFV).

A traffic scrubbing center collects, analyzes, and mitigates
malicious traffic. However, such an approach is expensive and
proprietary, as it requires the deployment of a large cluster of
commodity servers or proprietary middle-boxes. Furthermore,
when new attacks emerge, upgrades to the middleboxes are of-
ten required to defend against these new variants, which usu-
ally takes time due to the compulsory negotiations between the
vendor and the customer. These factors hinder the process of
mitigating continuously evolving DDoS attacks [6].

SDN/NFV DDoS defenses provide a cheaper and centralized
solution for DDoS detection and mitigation. Nonetheless, it is
limited to OpenFlow, and saturation attacks on the controller
could be exploited.

P4-based DDoS defense offer several orders of magnitude
higher throughput than highly-optimized packet processing
software [14, 16]; thus, making them perfect candidates against
such attacks. However, resource constraints impose several
challenges on DDoS defense implementations.

As for traditional heavy hitter approaches, they include
packet sampling [118] that use general-purpose CPUs, thus,
limiting the accuracy and performance. Advantages of P4-
based heavy hitters include their ability to operate at line rate,
as well as perform per-packet inspection rather than sampling-
based heavy hitters.

Table 6: P4 and Traditional DDoS Defenses
Feature P4 switch Traffic Scrub-

bing Center
SDN/NFV

Cost Cheap Expensive Cheap
Flexibility High, agile Low, propri-

etary
Medium (re-
stricted to Open-
Flow)

Latency Low
(ASIC
speed)

High (general-
purpose CPU)

High (control de-
cision + rule in-
sertion)

Memory Low High Low
Per-packet
counting

Granular Limited Limited

Statistical
/ policy
based

Difficult Easy Easy (at the con-
troller)

ML Difficult Requires
custom-built
appliance

Easy (at the con-
troller)

DPI Limited Flexible Restricted to
Open-Flow

5.3. Network Verification

5.3.1. Background

Faulty data plane programs can wreak havoc in the net-
work. For instance, faulty routers in two airline networks have
grounded airplanes for days (for both Delta and Southwest Air-
lines), showing just how disruptive the effects of incorrect net-
work behavior can be [69]. Thus, the practice of verifying the
correctness of the data plane is inevitable to preserve the avail-
ability of the network.

Increased programmability has a plethora of advantages in
the networking industry, yet it has introduced new challenges
related to program verification and correctness. In this section,
state-of-the-art network verification approaches that ensure the
safety and correctness of P4 networks are surveyed. Such tech-
niques can guarantee that the network behaves well under un-
precedented scenarios, and is immune to various attacks.

5.3.2. Literature

Kheradmand et al. [68] propose P4K, an executable formal
semantics of the P4 language using the K, a framework used to
define programming languages using rules and configurations
[128]. P4K supports multithreading (e.g., multiple threads of
execution within a single P4 program) as well as network se-
mantics (network topology, links, etc.), in which it analyzes a
network of P4 programs rather than a single one.

Stoenescu et al. [69] develop Vera, a scalable solution for
verifying and debugging P4 programs before and during run-
time using symbolic execution. Based on program verifica-
tion, Vera automatically unveils several bugs related to loops,
parsing, deparsing, tunneling, overflows, and underflows within
seconds. Furthermore, Vera verifies the correctness of a pro-
gram by modeling its properties using Computation Tree Logic
(CTL) [129] and checking them by running Vera on the P4 pro-
gram.

AlSabeh et al. / Computer Networks 00 (2022) 1–43 15

Table 7: Verification techniques in the context of P4

Paper Technique What It Does Applications / Use cases Limitations

P4K [68] (1) Symbolic
model checker
(2) Symbolic
execution

(1) Define executable formal semantics to the
P4 language (2) Symbolic model checker and
deductive program verifier for P4

(1) Detect unportable program
(2) Uncover P4 bugs (3) Verify
P4 programs (4) State space ex-
ploration

No support for clone
into egress

Vera [69] Symbolic exe-
cution

(1) Scalable P4 program verifier (2) Guarantee
bug-free program (3) Support multiple snap-
shot

Uncover P4 bugs State explosion

bf4 [70] Static verifica-
tion

(1) Verify P4 programs (2) Generate controller
assertions and propose fixes (3) Throws ex-
ceptions on errors

(1) Uncover P4 bugs (2) Fix P4
programs

(1) Partial support of
the primitives (2) Static
verification bounded to
safety rules

p4v [71] Z3 theorem
prover on GCL

(1) Verify P4 programs (2) Define control
plane interfaces to constrain data plane behav-
ior

(1) Verify header validity (2)
Verify round tripping (3) Un-
cover P4 program bugs

Cumbersome process
of writing the control
plane interfaces

ASSERT-
P4 [72]

(1) Assertion
checking (2)
Symbolic exe-
cution

(1) Verify P4 programs (2) Expressive asser-
tion language to express properties

Uncover P4 program bugs State explosion

Gauntlet
[73]

(1) Z3 SMT
solver (2)Sym-
bolic execution

Find bugs in P4 compilers using: (1) Transla-
tion validation (2) Symbolic execution

Uncover P4 compiler bugs (1) Partial finding of
bugs (2) Inefficient for
large P4 programs

p4pktgen
[74]

Symbolic ex-
ecution SMT
solver

Generate test cases for P4 programs automat-
ically (packets, table entries, and expected
paths)

Uncover P4 program bugs Limited support of P4
features (e.g., header
stack, header unions,
hashes)

P4RL
[75]

DDQN (1) Query language for specifying properties
(2) Verifying P4 programs using reinforce-
ment learning-fuzz testing

(1) Validate P4 program’s be-
havior (using p4q) (2) Uncover
program bugs

Only models device-
independent queries

Dumitrescu et al. [70] present a novel verification approach
to ensure a bug-free P4 program (bf4) for a class of bugs at
any given configuration. To guarantee a bug-free program, bf4
is comprised of two components that run at compile-time and
runtime to check the P4 program and the inserted rules. Essen-
tially, bf4 differs from other existing approaches in the sense
that it does not stop after discovering bugs. Instead, it generates
predicates that eliminate these bugs and fixes the P4 program
when predicates cannot be generated with existing keys.

Liu et al. [71] develop p4v, a powerful scalable language-
based verification tool for P4 that aims to decrease the preva-
lence of bugs during development. p4v defines a control plane
interface that limits the behavior of the data plane using sym-
bolic constraints.

Freire et al. [72] develop a data plane verification approach
called ASSERT-P4, capable of model checking general security
and correctness properties of P4 programs at compile-time. One
of the checked properties, for instance, is to verify that dropped
packets will not be forwarded eventually (can be used to evade
resurrecting dead packets).

In a different approach, Gauntlet [73] tries to find as many
bugs as possible in P4 compilers, rather than in P4 programs.
The approach specializes to test front and mid-end compilers
independent of the target, as well as it supports restricted forms
of back-end testing. Gauntlet aims to find bugs in P4 compil-
ers by generating random programs that trigger crashes in the

compiler.
Nötzli et al. [74] develop p4pktgen, an approach for automat-

ically generating test cases consisting of packets, table entries,
and expected paths for P4 programs. To generate a packet, it has
to follow the correct parser transitions, conditional branches,
and table actions. Such requirements are translated into a set of
Satisfiability Modulo Theory (SMT) constraints by symbolic
execution of a given path.

Finally, P4RL [75] is a different scheme that uses a combi-
nation of fuzzing and reinforcement learning to automatically
verify P4 switches at runtime. The authors define a high-level
query language, namely, p4q, so that operators can specify the
intended properties of the P4 program.

5.3.3. Verification Schemes: Comparison, Discussions, and
Limitations

Table 7 summarizes and compares the aforementioned P4
verification schemes. Essentially, the aforementioned schemes
differ in the way they approach the verification process (e.g.,
symbolic execution, static verification, etc.), in addition to the
bugs they discover in existing P4 programs.

Programming languages in K need to be defined syntactically
and semantically. In [68], the syntax is defined by converting
the Backus-Naur form of P4 to K. As for the semantic, it is
given using semantic rules over configurations holding the pro-
gram and its context.

AlSabeh et al. / Computer Networks 00 (2022) 1–43 16

Vera [69] and bf4 [70] verify P4 programs at compile-time
and runtime. On one hand, Vera translates P4 to SEFL [130]
(network verification language), uses symbolic execution, and
program modeling using CTL. On the other hand, bf4 uses
static analysis.

p4v [71] and ASSERT-P4 [72] limit the behavior of the data
plane by introducing constraints and assertions written by the
designer. p4v defines the semantic of P4 by translating it to
Guarded Command Language (GCL) and performs the valida-
tion on the generated GCL code. The adoption of GCL allows
the approach to be portable to newer languages (e.g., P416).
On the contrary, ASSERT-P4 translates the P4 program into C-
based model and uses a symbolic execution engine to explore
all paths searching for assertion failures.

Gauntlet [73] and p4pktgen [74] follow the same rationale
in uncovering bugs in the data plane by generating test cases
against the tested target. In particular, Gauntlet grows an ab-
stract syntax tree from the P4 compiler, i.e., expanding branches
of the tree at random, then converts it into a P4 program.
p4pktgen generates custom packets for specific P4 programs us-
ing SMT constraints and solver. The SMT constraints are used
to guarantee that the crafted packet follows the correct parser
transitions. Subsequently, the SMT solver is used in the pro-
cess of generating packets.

5.3.4. Comparison with Traditional Verification Approaches

Traditional data plane verification techniques reactively
check network-wide properties by analyzing snapshots of the
current data plane configuration. Techniques such as VER-
MONT [131], Anteater [132], Hassel [133], VeriFlow [134]
mainly verify properties related to host reachability, isolation,
blackholes, and loop-freedom.

Furthermore, traditional network verification techniques rely
on brute force techniques to generate dozens of input packets
and check whether the network device produces the expected
output. Although this procedure is expensive to be performed,
it is widely adopted in conventional closed-source devices as it
is done only once at manufacturing. However, the prosperity
of flexible programmable data planes has rendered this tech-
nique ineffective as the capabilities of the device are not fixed
but rather customized by the programmer.

5.4. Summary and Lessons Learned
Spoofing: While anti-spoofing defenses that rely on the con-

troller to keep a full view of information (e.g., IP2HC filter-
ing in [45]) might be more scalable than switch-only defenses,
they incur more overhead and are vulnerable to attacks on the
controller (e.g., saturation attacks). Basic router-level filtering
(ingress/egress filtering, RPF) can protect against all spoofing
attacks only if this mechanism is deployed on all the routers.
Distributed anti-spoofing approaches, such as SPM, have high
detection efficacy but require periodic key distribution and more
switch resources.

DDoS: Existing heavy hitter detectors in the data plane
include schemes that work separately at each switch (e.g.,
[43, 50, 51]), as well as network-wide approaches (e.g., ([53]).
The former approach detects heavy hitters at each switch, then

pushes the results to the controller for further analysis. On the
other hand, the latter approach includes coordination between
multiple switches. While network-wide heavy hitter detection
can be more efficient in terms of the switch’s resources com-
pared to per-switch detectors, they can incur more communica-
tion overhead in the network. Additionally, network-wide de-
tectors need to consider the existence of hybrid networks con-
taining legacy switches.

The majority of DDoS detection approaches focus on volu-
metric attacks (e.g., [6, 56, 57]). While some research work
uses external hardware to handle computation-heavy tasks,
such as in POSEIDON [6], a notable recent work, Jaqen [56],
proves that it is feasible to detect a wide range of attacks only
using programmable switches. Approaches that do not rely
on external hardware are advantageous to infrastructures since
they entail low capital costs and provide line rate performance.
Additionally, a common practice among notable DDoS detec-
tors is the interface they provide to the operator for analyzing,
managing, and extending the detection process.

Other DDoS detection approaches focus on utilizing existing
data structures (e.g., sketches), as well as designing new ones
(e.g., BACON) to fit the whole mechanism in each switch with-
out the need for network-wide coordination nor external hard-
ware. As for application layer DDoS attacks, [67] parses the
top layer in the Open Systems Interconnection (OSI) model to
detect SIP DDoS. Since a select few P4-based DDoS detectors
involve parsing beyond the traditional fields, this opens new
horizons for future endeavors.

Network verification: In network verification schemes, tra-
ditional techniques are insufficient for programmable networks
due to their dynamic and flexible behavior. Current existing ap-
proaches focus on verifying P4 programs and compilers to find
the maximum number of bugs possible using techniques such as
symbolic model checker, static and dynamic verification, SMT
solver, etc. While symbolic execution is widely adopted, it suf-
fers from state explosion when handling complex P4 programs.
Another important property in network verification is automa-
tion since it reduces the burden on operators. Finally, it is cru-
cial that the developed approaches are generic for all admissible
topologies and network events.

6. Anonymity and Confidentiality

The second category in the taxonomy (Fig. 4) discusses
anonymity and confidentiality solutions in P4. The first sec-
tion discusses privacy and anonymity implementations to hide
and/or obfuscate necessary information. The second section
discusses cryptography and security protocols that can achieve
confidentiality.

6.1. Privacy and Anonymity

6.1.1. Background

Anonymization tools can be mainly classified into two cate-
gories, offline and online. Offline anonymization tools collect

AlSabeh et al. / Computer Networks 00 (2022) 1–43 17

and store network traffic and perform the anonymization tech-
nique offline. On the other hand, online anonymization is per-
formed on the fly while the traffic is traversing the network.
Anonymization can be achieved in several ways, for instance,
source information hiding involves the rewriting of the source
address of the packet. Several fields in the packet’s header can
be modified as well, such as the TTL, IP identification field, and
TCP initial sequence number [77].

6.1.2. Literature

Compiler

Data plane driver

(BMv2, Tofino)

P4 switch

Live traffic Anonymized live traffic

Policy Interface

(anonymiza#on policy)

P4 program
Match-ac#on

rules commands

P4 program

srcmac_id dstmac_id ds#pv4… …

Data plane

ONTAS

Figure 11: ONTAS [76] compiles the operator-defined policy into a P4 program
compatible with the target, then pushes it to the underlying P4 switch.

Kim et al. [76] present an Online Network Traffic
Anonymization System (ONTAS) by leveraging the capabilities
of the programmable switches. ONTAS enables anonymiza-
tion for packet fields independently. The network operator can
choose whether to anonymize multicast and broadcast packets,
Ethernet addresses, source and destination IP addresses, target
MAC and IP addresses in ARP packets, etc.

Moghaddam et al. [77] introduce Practical Anonymity at the
NEtwork Level (PANEL), a lightweight solution that enhances
anonymization solutions in online communications between In-
ternet users. Similarly, Datta et al. [78] propose Surveillance
Protection in the Network Elements (SPINE) to obscure IP
addresses and relevant TCP fields from the intermediate Au-
tonomous Systems (ASes). SPINE only requires two trusted
ASes (e.g., edge nodes) and host interference is not needed.

Another line of research focuses on obfuscating DNS traffic.
Wang et al. [79] propose Programmable In-Network Obfus-
cation of Traffic (PINOT), a packet header obfuscation mecha-
nism that obfuscates the association between client IP addresses
and DNS requests, without modifying the DNS protocol, nor
requiring any host-based interaction.

6.1.3. Privacy and Anonymity Schemes: Comparison, Discus-
sions, and Limitations

Table 8 summarizes the aforementioned anonymization
schemes. ONTAS [76] obfuscates Personally Identifiable In-
formation (PII) addresses before sending them to a collector.

Trusted en�ty Trusted en�tyUntrusted en�ty

Controller

(Private keys, serial number)

Intact host Intact host

Original traffic SPINE traffic SPINE traffic Original traffic

P4

switch

P4

switch

Figure 12: In SPINE [78], the IP addresses are encrypted before entering the
intermediate ASes and decrypted when the packet exits the intermediate ASes.

The high-level architecture of ONTAS is depicted in Fig. 11.
ONTAS supports prefix-preserving information for source and
destination IP addresses, i.e., given an IP address, the prefix
remains intact, and the remaining bits are obfuscated. Since
anonymization results in changing the packet’s header, and
perhaps the packet’s forwarding behavior, ONTAS applies a
match-action table that clones the original packet and updates
the packet’s header before sending it to the egress port. Thus,
updating the packet’s field only for the cloned copy.

PANEL and SPINE ensured the anonymity of Internet users
by manipulating certain header fields of the packet. PANEL
[77] achieves anonymity, and session unlinkability. Anonymity
is preserved using source address rewriting, source information
hiding (randomized header fields), and path information hiding
(randomized TTL). Session unlinkability is achieved by replac-
ing session identifiers (e.g., TCP ports) with a pseudorandom
number generator outputted by the local CPU. To preserve In-
ternet routing and be able to route the response back, PANEL
switches store the original session information in match-action
tables. An additional property of PANEL is the compatibility
with other legacy anonymity systems.

On the other hand, SPINE encrypts the IP addresses before
the packets enter the intermediary ASes, see Fig. 12. Addi-
tionally, it encrypts the TCP sequence and ACKnowledgment
(ACK) numbers to prevent associating a group of packets to
the same TCP flow (session unlinkability). SPINE generates a
fresh randomly-generated bit string and a one-time pad for each
packet; thus, future encrypted IP addresses cannot be recovered.
The encryption process in SPINE includes transforming IPv4
headers into IPv6 headers when packets leave the trusted entity
and restoring the IPv4 headers upon entering the trusted entity.
Such an approach is used to ensure that the routing remains suc-
cessful despite IP address encryption. SPINE uses a centralized
controller to generate and update keys and push them to the data
plane match-action tables.

Finally, PINOT runs at the border of a trusted network, where
it obfuscates each packet separately with a probabilistic encryp-
tion scheme, namely, two-round Even-Mansour (2EM) [135].
Thus, achieving sender anonymity, packet unlinkability, low
deployment barriers, and low performance overhead. Techni-
cally, PINOT converts the IPv4 packet to an IPv6 packet that
holds the encrypted IPv4 address; hence, the approach is state-
less as all the needed information (except the secret key) for

AlSabeh et al. / Computer Networks 00 (2022) 1–43 18

Table 8: Privacy and Anonymity Schemes in P4

Paper Anonymization Technique Hash / Crypto.
Function

Target Limitations

ONTAS [76] Header fields hashing CRC Tofino (1) Does not support TCP/UDP field anonymization
(2) One policy at a time

PANEL [77] Source information rewriting and nor-
malization, and path information hiding

N/A Tofino (1) Extra overhead during session initiation (2) First
AS must be trusted (3) Limited number of served
sessions

SPINE [78] Header fields encryption XOR, SipHash BMv2 Supports IPv4 only
PINOT [79] Header fields encryption 2EM Tofino Requires controller interaction for key management

Table 9: P4 and Traditional Anonymity Schemes

Feature P4 Schemes Traditional Schemes
[76] [77] [78] [79] [136] [137] [138]

Online ✓ ✓ ✓ ✓ × ✓ ✓
Offline × × × × ✓ ✓ ×

Line Rate ✓ ✓ ✓ ✓ × × ×

TCP/UDP × ✓ ✓ × ✓ ✓ ✓
Advanced
Privacy × × × × ✓ × ✓

Controller
Interaction × × ✓ ✓ × × ×

encryption/decryption is stored in the packet’s header. A con-
troller is involved in the approach in order to distribute the net-
work encryption key. PINOT can encrypt the IP addresses in
a single pipeline pass, which is a performance gain over other
approaches such as SPINE that requires at least three passes.

6.1.4. Comparison with Traditional Approaches

Table 9 shows a comparison between P4 and traditional
anonymization defenses. Traditionally, network practitioners
and researchers used offline network traffic anonymization tools
(e.g., tcpanon [136] and Crypto-pan [139]). Such tools re-
quire network operators to collect and store raw packets, then
perform the anonymization technique offline. Although these
methods were widely adopted, they incur several burdens. For
instance, wasteful usage of computation, memory, and re-
sources, as well as the inability to anonymize traffic at line rate
in high-speed networks.

On the other hand, traditional online anonymization tools,
such as PktAnon [137] suffer from a low processing perfor-
mance. Anonymization tools in the programmable data plane
[76–79], have significant improvements in performance, yet
they do not perform payload encryption and advanced privacy
preserving mechanisms (e.g., anonymous web browsing) such
as onion routing [138].

6.2. Cryptography and Security Protocols

6.2.1. Background

Implementing cryptographic functions in the data plane al-
lows for achieving confidentiality and authentication at high
speeds. Such functions often require complex arithmetic op-
erations and are resource-intensive. For the switch to operate

at line rate, the supported operations in the P4 language are
limited (e.g., additions, subtractions, bit concatenation, etc.).
Recently, a number of research contributions proposed some
workaround to implement cryptographic functions and security
protocols in the programmable data plane, such as Advanced
Encryption Standard (AES) [140], Media Access Control secu-
rity (MACsec) protocol [141], and Internet Protocol Security
(IPsec) protocol [142].

6.2.2. Literature

Hauser et al. [80] propose P4-MACsec, a MACsec imple-
mentation using the P4 language. MACsec protocol [141] pro-
vides point-to-point security between MACsec-enabled end-
points within the same local area network. The same authors
extend their work to propose P4-IPsec [81], an IPsec imple-
mentation using the P4 language. IPsec [142] can ensure con-
fidentiality, integrity, and authentication for IP packets, and it
is widely adopted in Virtual Private Network (VPN) protocols.
IPsec comprises different protocols and modes; however, for
simplification, P4-IPsec only implements Encapsulating Secu-
rity Payload (ESP) in tunnel mode with two cipher suites (AES
Counter Mode (AES-CTR) and NULL ciphers).

Li et al. [82] propose P4-based Network Immune Scheme
(P4NIS) against eavesdropping attacks in IoT networks. P4NIS
involves three lines of defenses. The first line involves multi-
ple forwarding policies the operator can select for different IoT
traffic and defense eavesdroppers. The policies could split the
packets into different network paths disorderly. The second line
of defense offers network operators several encryption algo-
rithms for encrypting the transport layer of the packet’s header.
Finally, the third line of defense encrypts the packet’s payload.

In a different line of work, Scholz et al. [83] extend three
P4 targets to support multiple cryptographic hash functions and
achieve authentication and resilience. The proposed work is
motivated by the support of only non-cryptographic hash func-
tions (CRC) in P4, which are often not secure and produce hash
collisions. The CRC hash function is commonly used in P4
implementations since it is supported, easy to implement, and
incurs low computational overhead.

The aforementioned security protocols (P4-IPsec, P4-
MACsec) use a local or central controller to delegate complex
operations. On the contrary, Chen [36] proposes a technique,
namely scrambled lookup table, to implement AES encryption
entirely in the data plane without controller interaction. AES

AlSabeh et al. / Computer Networks 00 (2022) 1–43 19

Table 10: Cryptographic Functions and Security Protocols Implementations in P4

Paper Approach Security Goal Control-Data
Interaction

Target Limitations

P4-MACsec
[80]

MACsec implementation in
P4

Provide Conf., Integ., and Auth. for
Ethernet frames

✓ BMv2 Does not validate a full
compliance to all IEEE
802.1AE standards

P4-IPsec
[81]

IPsec ESP tunnel mode im-
plementation in P4

Provide Conf., Integ., and Auth. for IP
packets

✓ BMv2,
Tofino

Only supports IPsec
ESP in tunnel mode

P4NIS [82] Multiple defenses (double
encryption, packets distribu-
tion)

Protect against eavesdropping in IoT ✓ BMv2 Encryption completely
in the control plane

[83] Various cryptographic hashes
implementation in P4

Support protocols and applications re-
quiring message authentication

× t4p4s,
NPU,
FPGA

Key material is not used
for generating message
authentication code

[36] AES encryption in P4 via
scrambled lookup table

Build in-network security and privacy
applications, such as IP header encryp-
tion and onion routing

× BMv2 Side-channel attacks to
retrieve keys via probing

[84] Enhanced content permuta-
tion to protect 5G packets

Provide Conf. for 5G packet payload × Tofino Limited codeword shuf-
fling

[85] Crypt./hash functions, digital
signature called as P4 externs

Accelerate generic security implemen-
tations and facilitate their usage in P4

✓ FPGA No line rate operation

encryption is a symmetric block cipher encryption algorithm
designed to encrypt data. The proposed approach supports all
three variants of the AES algorithm (AES-128, AES-192, and
AES-256) that vary based on the size of the encryption key. Es-
sentially, the adopted technique is effective in programmable
switches as it reduces the number of sequential arithmetic op-
erations needed for the AES encryption.

In 5G/IoT networks, Lin et al. [84] propose a new secret per-
mutation mechanism in the P4 switches to protect 5G packets.
The approach is similar to [36] in the sense that it is imple-
mented in the data plane, thus, it does not incur extra packet
processing overhead and operates at line rate.

In a different approach, Malina et al. accelerate crypto-
graphic operations for FPGA-based network cards and use them
as P4 externs. In particular, the authors implement main crypto-
graphic functions, such as symmetric cipher (AES-GCM-256),
digital signature (EdDSA), and a hash function (SHA3) using
VHDL.

6.2.3. Cryptography and Security Protocols Schemes: Com-
parison, Discussions, and Limitations

Table 10 summarizes the aforementioned approaches in P4.
P4-MACsec [80] features a two-tier control plane structure to
implement the functionalities locally (using the switch’s local
control) and globally (using the centralized controller). Uti-
lizing the local controller eliminates dependencies on external
devices, reduces traffic in the management network, load on
the central controller, and latency from packets exchanged with
the central controller. For encryption, decryption, and packet
authentication, P4-MACsec uses AES in Galois/Counter Mode
(AES-GCM) [143] implemented as P4 externs.

As for P4-IPsec [81], it supports two tunnel mode operations,
namely, host-to-site and site-to-site. The Security Association
(SA) management is achieved via the SDN controller instead

of the Internet Key Exchange (IKE) protocol in order to re-
duce message exchanges. Additionally, the authors restrict the
support to ESP in tunnel mode and IPv4 packets only. The
authors provide a working IPsec protocol on two targets. In
the BMv2 software switch target, the authors used P4 externs
to apply AES-CTR for encryption and decryption, and Hash-
based Message Authentication Code (HMAC) using the MD5
hash function (HMAC-MD5) for packet authentication. In the
Tofino target, the P4 externs of P4-IPsec are relocated to the
main CPU module due to design constraints. In the NetFPGA
SUME board target, the authors could not build a working pro-
totype due to platform limitations.

In P4NIS [82], the encryption in the second line of defense is
performed in the switch’s controller. On the contrary, the third
phase encryption is executed by the IoT device due to the lim-
ited switch resources. Evaluations show that the three lines of
defenses adopted in P4NIS increase the difficulty of eavesdrop-
ping significantly compared to state-of-the-art approaches.

The cryptographic hash function implementations in [83]
depends on the target, since each platform has its own way
of adding P4 externs. The implemented cryptographic hash
functions include SipHash-2-4 [127], Poly1305-AES [144]
BLAKE2b [145], HMAC-SHA256 and HMAC-SHA512 on the
CPU target t4p4s [146]. SipHash-2-4 is also supported on
the NPU target [147]. Additionally, SipHash-2-4 (64-bit out-
put) [148] and a SHA3-512 [149] are supported on the FPGA
(NetFPGA SUME) target [32]. Evaluations show that although
CPU targets are easily extensible, they incur the highest latency
reaching up to several milliseconds. Furthermore, the NPU tar-
get offers the highest throughput, whereas the FPGA target of-
fers the lowest latency. While cryptographic hash functions are
feasible on P4 targets, further optimization techniques can be
used to improve performance and resource utilization.

The implementation of AES-128, AES-192, and AES-256

AlSabeh et al. / Computer Networks 00 (2022) 1–43 20

algorithms requires 10, 12, and 14 rounds, respectively, to com-
plete. As a result, the authors in [36] leverage packet recircula-
tion, see Fig. 2, capability in P4 to pass the packet over several
rounds, i.e., to simulate looping. Evaluations show that AES-
128, AES-192, and AES-256 can perform at 10.92, 8.76, and
7.37 Gbps.

In [84], the controller initially generates a permutation cipher
key and installs it to the switches. Accordingly, the payload of
the incoming packets is partitioned into codewords and shuffled
using the key at the first switch (e.g., entry switch), then the
second switch (e.g., exit switch) recovers the original payload.
The enhanced permutation algorithm executes in parallel and
permutes the codewords across multiple stages in the ingress
pipeline. Evaluations show that the switches can perform per-
mutation at line rate without packet queueing.

Finally, the proposed approach in [85] focuses more on the
VHDL implementation on FPGA-based cards and does not op-
erate at line rate. Evaluations show that the implementation
achieves 26.24 and 4.51 Gbps for cryptographic and hash func-
tions, respectively, on a NIC with 200 Gbps throughput.

6.2.4. Comparison with Traditional Cryptographic and Secu-
rity Protocols Implementations

Traditionally, cryptographic functions are implemented on
general-purpose servers that are abundant in resources and can
accommodate computational arithmetic operations. However,
programmable switches are limited in memory and computa-
tional resources, and thus the supported hash functions in P4
are simple (non-cryptographic) due to their ease of implementa-
tion and low overhead. Currently, researchers are continuously
exploring techniques and workaround to implement such func-
tions in the data plane, as well as delegating some functional-
ities to the centralized controller. Furthermore, programmable
Smart Network Interface Cards (SmartNICs) are gaining more
attention from the P4 research community and practitioners to
improve performance, resources efficiency, and security [150].
One significant value proposition of SmartNICs is CPU offload
for computationally intensive tasks (e.g., hashing, cryptogra-
phy, DPI etc.) [151].

6.3. Summary and Lessons Learned
Privacy and anonymity: In network anonymization

schemes, existing approaches operate at high speeds to achieve
anonymity via techniques such as source address rewriting and
normalization, one-pad encryption, etc. An early P4-based
anonymization approach (ONTAS) provides an interface for the
operator to specify the anonymization policy. More recent ap-
proaches perform anonymization up to the TCP/UDP layers but
require a trusted first hop or autonomous system (e.g., PANEL
and SPINE). Recent ongoing research work includes DNS traf-
fic obfuscation without degrading the throughput in the switch.
The limited number of research work on anonymization tech-
niques in P4 opens new horizons to explore and implement ad-
vanced anonymization (e.g., application layer anonymization).

Cryptography and security protocols: Early cryptographic
implementations in the data plane offload complex computa-
tions either to the local CPU of the switch or to an external

server, thus incurring additional latency. However, recent works
have demonstrated that it is applicable to implement AES com-
pletely in the switch’s ASIC; thus, achieving higher processing
rates. Essentially, a common technique used in P4 to emulate
loops (rounds) is to use recirculation/resubmission. Similarly,
content permutation can be realized by partitioning the payload
and shuffling it across multiple stages. Other approaches such
as in [85] focus on accelerating cryptographic functions and
calling them as P4 externs could be beneficial for organizations
that can sacrifice performance in favor of security.

7. Operational Security Provisioning

The third category in the taxonomy (Fig. 4) focuses on pro-
grammable data plane techniques that envision operations to
protect critical infrastructures from malicious access. This sec-
tion is divided into two main subsections concerned with fire-
walls and defense mechanisms against generic attacks in order
to authorize benign access and prohibit malicious one.

7.1. Firewalls
7.1.1. Background

A firewall allows an administrator to control access between
the outside network and resources within the administered net-
work by managing the traffic flow to and from these resources.
Firewalls can be classified into stateless packet filters, state-
ful packet filters, and Next-Generation Fire Walls (NGFWs).

Packet parser to classify packets

Packet forwarder to apply firewall rules

Packet generator to assemble packets

with modifed headers

Control plane

Data plane

Interpret security policy language

Manage firewall rules

Collect sta!s!cal informa!on, etc.

Provide firewall

services

Report sta!s!cal

informa!on

High-level security policies

<1, table_add, firewall, IP_src, IP_dst, TCP, 80, drop>

P4 switch

Controller

Figure 13: P4Guard architecture [86]. The controller generates and pushes
match-action table rules to the switch based on the security policy defined by
the operator. The switch acts as a firewall to filter network traffic and reports
statistics to the controller for further analysis.

Management

server
Switch + firewall

Flow table
Add/del flows

Flow ID = h(5-tuple)

Internal network

... ...

Flo
flows

Outside

network

S

State

t

Figure 14: CoFilter Architecture [87]. The switch implements a stateful firewall
by storing the state of the flows added by the management server.

AlSabeh et al. / Computer Networks 00 (2022) 1–43 21

A stateless packet filter examines each datagram in isolation.
A stateful packet filter tracks connections. Filtering decisions
on stateless and stateful packet filters are typically based on
layer-3 and layer-4 header fields. NGFWs operate at a higher
level. They inspect application-layer data to identify applica-
tions, users, URLs, etc. based on specific application features
rather than on IP addresses or ports. The administrator config-
ures the firewall based on the policy of the organization. Poli-
cies are then translated into rules which are stored in a table
(rules table). Additional tables may be required to track the
connections and corresponding statistics (e.g., flow, rule, and
protocol statistics).

7.1.2. Literature Review

Datta et al. [86] propose P4Guard, a configurable firewall us-
ing the P4 language. P4Guard defines a high-level, hardware-
independent, security policy language for defining the firewall
rules. These rules are defined by the network operator and
translated by the controller to match-action table rules that are
later pushed to the P4 switch as illustrated in Fig. 13. Cao et al.

[87] propose CoFilter, a stateful packet filter on the switch. For
each flow, the switch stores a flow id (fid) and state information
indicating the state of the connection, as depicted in Fig. 14.
Similarly, Li et al. [88] propose a stateful firewall in the cloud
using P4 switches. The core idea of this work is to exploit the
expressiveness of the P4 language so that it parses packets and
filters them based on firewall policies. In addition, the approach
tracks TCP connections and allows packets belonging to initi-
ated sessions only. The authors of [87, 88] did not specify any
high-level language for defining the firewall rules.

Almaini et al. [89] propose an authentication mechanism on
the switch using a port knocking service. Generally, port knock-
ing is a mechanism performed by firewalls to authenticate hosts
that send a predefined sequence of ports (TCP SYN packets)
before establishing a connection. Essentially, the proposed ap-
proach stores authenticated and unauthenticated nodes (connec-
tions), represented by the IP source and destination addresses,
using match-action table rules inserted by the controller. The
authors later extend their approach in [90] to protect against
replay attacks by implementing One-time Password (OTP) au-

Table 11: Firewall implementations using P4

Paper Classification Control-Data
Interaction

Stateful
Memory

Target Advantages over
Traditional FW

Rules Based
on

Limitations

Stateless Stateful

P4guard
[86]

✓ Medium Rule table,
counter
table (flow
stats.)

BMv2 Easy to manage
(policy language);
more flexible fire-
wall rules

IP, TCP,
UDP, ARP
header fields

Scalability issues un-
der large packets and
high transmissions

CoFilter
[87]

✓ Medium Rule table,
5 tuple
hash

Tofino Performance, la-
tency

IP addresses
and port
numbers

TCP segments only

[88] ✓ Low Rule table,
4 tuple
hash

N/A Performance IP, TCP (src,
dst)

TCP segments only

[89, 90] ✓ Low Rule table,
flow states

BMv2 Performance, la-
tency

IP (src. and
dest.), TCP
port number

Manual config of
conn. timeouts, ad-
versary impersonates
switch (OTP)

P4Knocking
[91]

✓ Low Rule table,
flow states
(IP)

N/A Performance, la-
tency, less com-
plexity on hosts

IP src., TCP
port number

Huge register size

✓ Low Rule table,
flow states
(IP hash)

Hash collisions

✓ Medium Rule table,
flow states
(IDs)

Controller interven-
tion

✓ High Rule table
No wire speed (contro-
ller intervention)

[15] ✓ Low Rule table NetFPGA-
SUME

Customized
parser for tunnel
de-encapsulation

IP, TCP,
UDP, GTP,
header fields

Cannot detect attacks
that require heuristics
(e.g., packet count)

[92] ✓ Low Rule table NetFPGA-
SUME

Customized
parser for tunnel
de-encapsulation

IP, TCP,
UDP, GTP,
VXLAN
header fields

Cannot detect attacks
that require heuristics
(e.g., packet count)

AlSabeh et al. / Computer Networks 00 (2022) 1–43 22

thentication, where a password is only valid for one transaction.
In a similar extended approach, Zaballa et al. [91] present four
implementations of the port knocking service that are either im-
plemented in the data plane, control plane, or a hybrid of both.

The aforementioned firewall schemes are mainly applicable
to cloud and data center networks. However, efforts in P4 are
not exclusive to such infrastructures, but rather they extend to
support mobile networks. Accordingly, Ricart et al. [15] pro-
pose a firewall for 5G network infrastructure located between
the edge and the core networks. In a follow up work [92], the
authors extended their work to support multi-tenant 5G infras-
tructures.

7.2. Firewall: Comparison, Discussions, and Limitations

Table 11 compares the aforementioned firewall schemes. P4-
based firewalls mainly differ in terms of their control plane and
data plane implementations, as well as the services they provide
to the operator.

In the data plane, P4Guard [86] implements new tables for
the firewall rules (based on IP, TCP, UDP, and ARP header
fields), in addition to a counter table that records statistical
flows (packet counters) and periodically sends them to the con-
troller. The involvement of the controller is only required to
translate the high-level firewall policies into match-action table
rules on the switch, or to detect various flooding attacks (from
the collected statistics).

CoFilter [87] and [88] save memory space on the data plane
by computing the digest of the hash function of the 5-tuple and
storing it as the fid for the corresponding flow. In addition,
CoFilter uses a simple hash function available at the data plane
that may produce collisions. As a result, CoFilter involves a
management server, which is abundant in resources, to resolve
these collisions and update the flow table and/or other tables.

As for authentication techniques, Almaini et al. [89] imple-
ment a timeout for the stored connections to accommodate the
available resources and avoid attacks, such as those exhaust-
ing the memory. For enhanced security and customization, the
approach allows network operators to define the length of the
sequence (i.e., the number of ports that need to be knocked).
As for the OTP implementation, the system uses cryptographic
hashing functions (e.g., SHA3) to calculate the next expected
password and is based on Leslie Lamport algorithm [152].

In [91], the first two implementations solely implement port
knocking in the data plane by storing the knocking state within
a register. The first implementation uses the source IP address
as the index for the register. However, large register sizes (e.g.,
32-bit) are impractical due to the limited memory size in exist-
ing P4 switches. As a result, the second implementation uses
the digest of the CRC16 from the source IP address as the reg-
ister index to allocate a smaller register space. The CRC16 pro-
duces collisions, thus, the third implementation delegates the
controller to assign IDs for new clients and insert rules to a ta-
ble in the data plane that matches sources IPs with their IDs.
The fourth implementation offloads the port knocking service
entirely to the control plane, where switches no longer keep
track of the knock states.

In 5G mobile networks, GPRS is carried via the GPRS Tun-
neling Protocol (GTP). In the communication process, a tun-
nel is created between two GPRS support nodes and the orig-
inal IP packets are encapsulated within a GTP header [153].
As a result, the authors of [15] and [92] customized the parser
to inspect deeper into the header fields than conventional fire-
walls. The firewall implements a TCAM table that stores fire-
wall rules and performs packet filtering based on several keys
(e.g., VXLAN, GTP, inner and outer IP and TCP/UDP headers).

7.3. Comparison with Legacy Firewalls
Table 12 shows a comparison between P4, SDN/NFV, tradi-

tional, and next-generation firewalls. Traditional firewalls in-
spect network traffic up to, and including layer-4 header fields.
Such a technique is ineffective against contemporary attacks
that can only be detected by deeply inspecting the packet (e.g.,
application layer attacks). On the other hand, NGFWs are
able to perform DPI and more complex operations than pro-
grammable switches. However, NGFWs are based on general-
purpose CPUs that are much slower than the switch’s ASIC.

Other types of firewalls include SDN/OpenFlow firewalls.
Essentially, the adoption of OpenFlow by enterprise networks
means that it is inevitable that legacy security appliances, such
as firewalls, have to be migrated to OpenFlow-based networks.
However, studies reveal that OpenFlow brings great challenges
for building firewalls. For instance, the OpenFlow forward-
ing plane is almost stateless, rendering it incapable of ac-
tively monitoring flow status without the controller interven-
tion [154]. Such limitations can be mitigated using the stateful

Table 12: P4, Traditional, and Next-Generation Firewalls

Feature P4 Switch SDN/NFV Traditional FW NGFW

Header inspection (up to layer-4) Supported Supported Supported Supported
DPI Limited N/A N/A Flexible
Custom header inspection Flexible, user can define custom

parser based on the network (e.g.,
BYOD)

Limited to OpenFlow Fixed to the vendor Fixed to the ven-
dor

User-defined policies Flexible, policies can be cus-
tomized based on the parser

Limited to OpenFlow Fixed to the vendor Fixed to the ven-
dor

Stateful memory Limited to the P4 target Limited to the switch High High
Speed High (terabits) High (without con-

troller interaction)
Medium Low (during DPI)

AlSabeh et al. / Computer Networks 00 (2022) 1–43 23

...

Device

configura!on
P4 programs

Context and

data packets

BYOD devices P4 switches

Internet

Poise compiler

High-level policies

Figure 15: Poise architecture [94]. The operators define the policy they want
to enforce in their network, and Poise translates the policy into a compatible
configuration/program that is installed on the devices and the P4 switches.

programmable data plane, which can host additional firewall
capabilities and act in real-time.

7.4. Generic Defenses
7.4.1. Background

Efforts in the P4 community have proven that programmable
switches are effective against various types of network attacks.
Such approaches are cost-effective (no middleboxes required),
easily deployable (immediate programmability of the switch),
and more efficient (line rate mitigation). In this context, a num-
ber of P4-based solutions that mitigate various network attacks
are surveyed. Such attacks include Explicit Congestion Notifi-
cation (ECN) protocol abuse, which can disrupt the congestion
control process [96]; Optimistic ACK attack, which can mis-
lead end-hosts to increase their TCP congestion window [97];
covert channels, which can exfiltrate secret data from compro-
mised machines using timing and storage channels [93]; and
rolling attacks, which can evade traffic engineering.

7.4.2. Literature

Xing et al. [93] propose NetWarden, a new defense mech-
anism that preserves the TCP performance while supporting
a range of storage and timing covert channel defenses in the
switch. Kang et al. [94] propose PrOgrammable In-network
SEcurity (Poise), a system that defines a language for context-
aware policies and translates the imposed policies to a P4 pro-
gram as depicted in Fig. 15. Context-aware policy is an ap-
proach used to enforce dynamic access control on devices’ run-
time context (e.g., permit devices with updated operating sys-
tem only). Such policies are applicable in enterprise networks,
where employees use their own devices (Bring Your Own De-
vice (BYOD)).

In contrast to the aforementioned techniques that target spe-
cific attacks (e.g., BYOD attacks, covert channels), FastFlex
[95] is an approach that develops architectural support for a
variety of defenses. In particular, the authors showcase Fast-
Flex defense mechanism against rolling attacks, where suspi-
cious traffic is routed to longer paths (topology obfuscation).
Likewise, Laraba et al. [96] propose a method for modeling
a stateful security monitoring function as an Extended FSM

Protocol

specifica!on
EFSM model

Misbehaving

state

Mapping
Control

Ac!ons

Registers

M/A ...

P4 program

P4 switch

compila!on

Manual

transla!on

Figure 16: Modeling stateful security monitoring function as EFSM in P4 [96].

(EFSM) using P4. EFSM is simply an FSM that stores per-
sistent values in variables rather than states to limit state explo-
sion. Essentially, the authors require the designers to translate
the protocol with its possible misbehaviors to an EFSM model.
Subsequently, the proposed approach maps the EFSM to P4 as
shown Fig. 16. The authors showcase their proposed approach
to mitigate misbehaving end-hosts abusing the ECN protocol.
The authors later extend their work in [97] to provide a for-
mal description of the mapping between the EFSM and the P4
primitives. Additionally, the extended work can also detect and
mitigate Optimistic ACK attack.

Efforts in 5G networks include FrameRTP4 [98], a P4-based
system that detects and mitigates attacks in real-time within 5G
network slices. The latter is a technology in which the physical
network is partitioned into slices, each with its virtual resources
to accommodate diverse network infrastructures [155].

A different line of research includes [99]. Essentially, se-
curity applications that resort to ML for flow classification
heavily rely on collecting features such as packet length, and
inter-packet arrival time frequency distribution. However, per-
packet collection of these features is infeasible considering
the memory constraints of current programmable switches.
Furthermore, feature selection of the classifier is application-
dependent. Motivated by such needs, Barradas et al. [99]
present FlowLens, a system that leverages programmable
switches to enable efficient flow classification for multi-purpose
ML security applications. FlowLens presents a new compact
representation of packet length and inter-time packet arrival dis-
tributions devised in a way that maintains the accuracy and ad-
dresses the memory constraints on the switch, referred to as
flow markers. Flow markers are parametrizable based on the
operator needs (e.g., operator requires a target accuracy to be at-
tained), and automatically generated by a P4 primitive, namely
Flow Marker Accumulator (FMA). The overall architecture of
FlowLens is depicted in Fig. 17.

In contrast to approaches that use ML in the control plane,
such as in [98, 99], Qin et al. [100] implement Binarized Neural
Network (BNN) [156] in the switch at the network edge to per-
form line rate intrusion detection. Additionally, the approach
applies federated learning [157] that allows for scalable train-
ing from multiple edge switches while preserving privacy.

AlSabeh et al. / Computer Networks 00 (2022) 1–43 24

FMA: collects concise encodings of

packet length or inter-packet ming

distribu on (ASIC).

Collector: configures FMA, collect

results, etc. (CPU).

Classifier: runs ML classifier and classify

flows (CPU).

Control plane

Data plane

Uses applica on-specific classifer to

generate a profile that finds the

adequate FMA parameters

Profile

Classifica on results

Training data, metrics (accuracy, maximum

flow marker size)

P4

switch

Profiler

server

Figure 17: FlowLens Architecture [99]. The external server takes training data
and other operator metrics and runs optimization techniques to generate and
install a profile on the switch. The latter collects statistics based on the profile,
classifies flows, and sends them to the server for further analysis.

7.4.3. Generic Defenses: Comparison, Discussions, and Limi-
tations

Table 13 summarizes and compares the aforementioned sur-
veyed work. NetWarden [93] performs header inspection and
modification to the fields (e.g., TTL, TCP reserved) used in
covert channels. For advanced storage channel overloading
necessary header fields that cannot be randomized by the switch

(e.g., TCP sequence number), NetWarden replaces old headers
with newly generated ones and leverages the stateful memory to
store a mapping between the original and the new headers for
each flow. Moreover, NetWarden leverages the programmable
switches to support an additional covert storage defense requir-
ing per-packet monitoring; such a defense would not have been
possible without utilizing the programmable switches. Timing
channel mitigation requires statistical computations for a batch
of packets (no per-packet inspection required). Accordingly,
NetWarden uses the software (either switch’s CPU or exter-
nal server) to perform these computations. In an approach that
trades the granularity for space saving, NetWarden uses CMS
with a variation of the CRC hash to store connections identified
by the 4-tuple (source and destination of the IPs and port).

In Poise [94], the compiler encodes context fields in cus-
tomized P4 headers (e.g., Ethernet, IPv4, TCP, Global Position-
ing System (GPS), etc.). Context operations are translated to
control blocks and P4 tables (e.g., calculating the distance from
the parsed GPS header and matching it with table rules). Poise
receives policy rules/updates from the controller for new con-
nections and stores them in match-action tables as key (source
IP and port, and protocol) value (allow, drop, etc.) store. Since
the process of updating the match-action table requires con-
troller intervention, Poise buffers decisions in a small cache
(the key is the digest of the CRC16 from the 3-tuple) that can
be updated at line rate until tables are updated from the con-

Table 13: Generic defense mechanisms using P4

Paper Applications Control-Data
Interaction

Data
Structure

Target Advantages Over
Traditional Defenses

Rules Based on Limitation

NetWarden
[93]

Covert channel Medium CMS Tofino Performance, accu-
racy

4-tuple (src
/ dst IPs and
ports)

Communication be-
tween ASIC and CPU
is a bottleneck

[94] BYOD attacks Low N/A Tofino Customized parser
(context-aware)

IP, TCP, context Lack auth., requires
external cryptography

Poise [95] Generic, rolling
attacks

Low N/A BMv2 Flexibility (wide
range of defenses),
performance, re-
source sharing

Based on the
boosters

No cross-domain
network support, re-
quires stability across
mode changes

[96] Generic, ECN
protocol abuse

Low Hash
chaining

BMv2 Seamless integration,
Flexibility (stateful
security modeling)

5-tuple Manual mapping to
EFSM models

[97] Generic, ECN
protocol abuse
Optimistic
ACK

Low Hash
chaining

BMv2 Seamless integration,
Flexibility (stateful
security modeling)

5-tuple Manual mapping to
EFSM models

FrameRTP4
[98]

5G NS attacks High BF,
CMS,
IBLT

BMv2 Performance (real-
time), scalability,
centralized orches-
trater

5-tuple Static threshold for
SFCMon

FlowLens
[99]

Generic, covert
channel, web-
site fingerprint-
ing, botnets

High FMA Tofino Modular, automated,
scalable

5-tuple Packets of new flows
are skipped until rules
are inserted

[100] IDS Medium N/A Netro-
nome

ML (BNN) at line
rate

Generic (TCP,
IP, etc.)

Only handles binary
output decision

AlSabeh et al. / Computer Networks 00 (2022) 1–43 25

troller. Poise recirculates packets a number of times to delay
their processing until the table is populated from the controller
(for recirculation, refer to Fig. 2). Evaluations show that Poise
is agile, has reasonable overheads, and highly resilient against
control plane saturation attacks (e.g., generating a large number
of context changes to exhaust the controller).

FastFlex [95] transforms the defense application (P4 pro-
grams), also referred to as boosters, into Packet Processing
Modules (PPMs), then to dataflow graphs and constraints (rep-
resenting switch’s resources). Such a decomposition can be ex-
ploited to share resources across the PPMs and generate a full
dataflow graph that can be optimally mapped to the underlying
network. FastFlex can dynamically scale boosters when real-
time attacks are detected. Furthermore, the approach dynami-
cally returns back to optimal default mode as soon as the attacks
subside.

In [96], the states of the EFSM model (current state of the
flow) and the persistent variables across the states (e.g., the TCP
sequence number) are represented as P4 registers. On the other
hand, variables that are not persistent across states are modeled
as per-packet metadata (e.g. TTL field). Action, transitions,
and conditions that trigger the transition of states are defined
within P4 actions. For every monitored connection (identified
by the 5-tuple), an instance of the EFSM model is maintained
in the switch. Hash collisions are handled by "hash-chaining"
[158], which creates a linked-list of flows (flows that collide) in
the same index with different keys.

At the data plane level of FrameRTP4 [98], the P4 program
implements three main functionalities. First, Service Function
Chaining (SFC) [159] manages the life cycle of network slices.
Such an implementation mandates a customized P4 parser for
the Network Service Header (NSH) [160], required in the SFC
architecture. Second, tables are utilized to implement ACLs
that perform wildcard filtering (ternary match) based on the 5-
tuple header. Third, network flows are stored and monitored
(SFCMon module) in the data plane. For efficient and scal-
able monitoring, BF, CMS, and Invertible Bloom Lookup Ta-
ble (IBLT) data structures are leveraged. The control plane
manages the lifecycle of the data plane functionalities (e.g., in-
sert/delete rules). Moreover, the controller implements an ML
classifier to detect new attacks offline and update the switch’s
rule table.

FlowLens [99] (see Fig. 17) utilizes match-action tables and
a grid of P4 registers to perform two operations, namely quan-
tization and truncation. The former counts the packet length
in coarse bins (P4 registers), whereas the latter selects the bins
considered as the most relevant features for the ML classifier.
The FMA generates flow markers for each flow based on quan-
tization and truncation parameters. Essentially, for each in-
coming packet, the FMA hashes the 5-tuple to obtain the fid,
matches it in the match-action flow table, and returns the flow
offset (representing the row of the register grid). The bin offset
(representing the row of the register grid) is computed through
aggregation, bit shifting, and table matching operations (using
the control plane of the switch). FlowLens was tested on three
security applications, covert channel detections, website finger-
printing, and botnet detection. The compression scheme allows

FlowLens more flows than the baseline (no compression, raw
packet distribution) while attaining high accuracy in predicting
the classes of traffic flows.

The approach in [100] applies BNN since it can be efficiently
implemented in the switch. Essentially, BNN has a binary de-
cision, and the computations are converted into bitwise opera-
tions supported by the switch. Since training the BNN requires
complex operations, it is handled by the control plane, and the
weights are pushed to the data plane (saved in registers).

7.4.4. Comparison with Legacy Approaches

Defense mechanisms against generic attacks within
legacy networks can be implemented on the end-host, the
router/switch, or using a middlebox. Typically, host-based
defenses and middleboxes add extra probing traffic into the
network and are not as fine-grained as in-network approaches.

In SDN/OpenFlow network monitoring, the majority of
router-based defense solutions [161, 162] are stateless. Thus,
they are incapable of tracking complex protocol behaviors un-
less third-party middleboxes are added.

In contrast to in-network middleboxes, the security boosters
(defenses) such as in FastFlex are not fixed in functionality or
location. Additionally, FastFlex orchestrates network-wide de-
fenses in the data plane rather than the control plane for higher
throughput.

Covert channel defenses require per-packet inspection and a
customized parser to detect exfiltrated data. However, general-
purpose CPU-based defenses mostly work offline over low
speeds or small samples of network traffic. On the contrary,
legacy routers/switches can handle high-speed traffic, yet can-
not perform customized parsing.

7.5. Summary and Lessons Learned

Firewalls: In efforts to reduce the cost incurred by hardware
firewalls, as well as to expedite the performance while allow-
ing legitimate traffic and denying malicious ones, several works
have implemented firewall functionalities in P4. Such function-
alities include packet filtering, port knocking, and defenses used
by 5G network firewalls. Furthermore, programmability in the
data plane allowed vendors to produce custom-built firmware
based on the P4 description delivered by the customer. This
opened new horizons for network engineers to design firewalls
with rules based on header fields specified by the customer, i.e.,
non-traditional fields.

Generic attacks: In the context of operational security pro-
visioning, the programmable data plane was proven to be ef-
fective against various types of attacks with little to no perfor-
mance penalty in the network. Such attacks target the applica-
tion layer, BYOD enterprises, 5G networks, Internet eXchange
Points (IXPs), ISPs, etc.

In the meantime, P4-based approaches, such as those acting
as firewalls, might not completely replace their state-of-the-art
NGFW or middleboxes due to current memory and computa-
tional limitations. However, they can act as an additional line
of defense in highly targeted infrastructures to speed up the pro-
tection and mitigation process.

AlSabeh et al. / Computer Networks 00 (2022) 1–43 26

Table 14: P4 Applications and security implications under the STRIDE model

P4 application Potential Security Implication Threat Remediation

Network telemetry Unencrypted metadata interception through a man-
in-the-middle

(1) Information disclo-
sure (2) DDoS

PBT [163]

Load balancing Exploit the used hash in signature matching, man-
in-the-middle to drop probing packets

DDoS (1) Authentication (2) Crypto-
graphic hashes (3) Automated
attack discovery [164]

Congestion control Telemetry, threshold, and throughput rate tamper-
ing

(1) Tampering (2) DoS (1) VHE [165] (2) Authentication

In-network cache Cache tampering, absense of cache write logs, re-
peated cache and repudiation

(1) Tampering (2) Re-
pudiation (3) DDoS

(1) Authentication (2) Controller
delegation (3) DNSSE [166]

Cryptography CRC function exploitation, infinite loop creation
(e.g., when emulating multiple rounds via recircu-
lation)

(1) Tampering (2)
DDoS

(1) Pseudo-cryptographic hash (2)
Network verification

Telecommunication Turning the switch into a powerful relay for mali-
cious purposes

DDoS Authentication

Consensus Compromising the switch and launch Sybil attack (1) DDoS (2) Tamper-
ing

(1) Authentication (2) Proof-of-
work

Application-
agnostic

Buggy P4 programs (e.g., reading invalid headers) (1) Spoofing (2) Eleva-
tion of privilege

(1) Network verification (2) Use
production-ready targets

8. Stride-based Model Security Analysis of P4 Applications

STRIDE is currently the most mature threat modeling pro-
cess [167]. Such a model identifies spoofing, tampering, repu-
diation, information disclosure, DoS, and elevation of privilege
attacks. Previous work [22] employs the STRIDE model on P4
components only (e.g., parser, compiler). On the other hand,
this work performs threat analysis on P4 applications that are
gaining wide interest from the industry, researchers, and net-
work practitioners. Such an analysis is needed as it highlights
the major threats in each P4 application. Beyond this analysis,
a number of mitigation techniques is presented for each threat
in each application. Table 14 summarizes the P4 applications,
their corresponding security implications, and the remediation
strategy according to the STRIDE model.

8.1. Network Telemetry

8.1.1. Background

Network telemetry has proliferated to fulfill the ever-
increasing demands of network measurements, such as better
scalability, accuracy, coverage, and performance. It is an auto-
mated process in which the measurements are performed at re-
mote or inaccessible points and transmitted to receiving equip-
ment for monitoring. In-band network telemetry is an emerging
representative of network telemetry that deduces the network
status by inserting metadata into the data packet through switch
nodes in the path. Notable research contributions include In-
band Network Telemetry (INT) [168] led by P4.org, In-situ Op-
eration Administration and Maintenance (IOAM) [169] led by
the IEFT, Alternate Marking-Performance Measurement (AM-
PM) [170] and Active Network Telemetry (ANT) [171].

8.1.2. Vulnerability Assessment

INT scheme is illustrated in Fig. 18. The INT architecture
consists of INT source, INT sink, and INT transit hop. Essen-

INT source

Host 1 Host 2

Telemetry

serverINT header INT metadata Original packet

INT transit hop

Telemetry

instruc!on

INT

metadata

INT

metadata

Extract

metadata

INT sink

Figure 18: In INT, the source switch marks the packet for telemetry collection.
Then, each transit switch piggybacks the metadata on the packet’s header. The
INT destination removes the INT header and sends it to a telemetry server, as
well as sends the original packet to the destination.

tially, the INT source embeds telemetry instructions into the
packets, whereas the INT sink extracts and reports the teleme-
try results. In the intermediate state, the INT transit appends
telemetry metadata according to the instructions inserted by the
INT source.

[165] and [163] reported that INT suffers from a number of
security vulnerabilities. INT gets reported to the control plane
through control channels based on the Transport Layer Security
(TLS) or Secure Socket Layer (SSL) connections, which are
vulnerable to man-in-the-middle attack. If an attacker exploits
this vulnerability, they can disclose information and launch se-
vere attacks, such as DoS attacks. Furthermore, the attacker
could be more aggressive to modify the telemetry data for mis-
leading the data analytics system; thus, severely disturbing the
network automation process.

8.1.3. Plausible Remediation Approaches

Postcard-Based Telemetry (PBT) [163] is an improvement
for IOAM technology, in which the data plane processing over-
head and user data packet are reduced. PBT scheme is illus-
trated in Fig. 19. Essentially, PBT collects telemetry data

AlSabeh et al. / Computer Networks 00 (2022) 1–43 27

Head node

Host 1 Host 2

Telemetry

serverTelemetry instruc on Telemetry info (postcard) Original packet

Postcard Remove

telemetry

Path node End node

Telemetry

instruc on

Postcard

Figure 19: In PBT, the head node inserts the telemetry instruction. Each switch
along the path generates telemetry information (postcard) and sends them to the
telemetry server separately. The destination switch removes the PBT header
and sends the original packet to the destination.

by either marking user packets (PBT-M) or inserting teleme-
try instructions into user packets (PBT-I) rather than appending
the actual telemetry metadata to the packet’s header. For ev-
ery marked or instructed packet, the switch generates telemetry
data and exports them directly.

The authors of PBT claimed that the present security vulner-
abilities in INT are mitigated in their approach. As the teleme-
try data is exported separately from the user packets, the pro-
cess of encrypting and securing the collected data without being
exposed to external entities is easier. Thus, deterring passive
eavesdropping, and avoiding critical attacks [163].

8.1.4. Summary and Lessons Learned

Existing network telemetry approaches have a wide range of
applications, such as DDoS, congestion control, traffic engi-
neering, etc. The amount of telemetry inserted in the network is
application-specific. Malicious nodes can exploit this behavior
by constructing telemetry packets and overwhelming the net-
work, possibly creating flooding attacks. Existing telemetry ap-
proaches such as PBT can offer an increased layer of security
using encryption. Nonetheless, it is not enforced on the opera-
tor. Future work around this area could explore a standard that
preserves the authenticity of the participating telemetry nodes
so that operators can protect their networks against telemetry
attacks regardless of the technology used.

8.2. Load Balancing

8.2.1. Background

Data centers often support requests from numerous users by
directing traffic to dedicated servers (load balancers) to dis-
tribute the requests across multiple servers; thus, balancing
the load among them. Recently, programmable switches were
proven to implement load balancing functionalities by leverag-
ing stateful processing [14, 172, 173]. Essentially, the switches
store the state information directly in the data plane (e.g., rep-
resenting the best path to a destination) instead of dedicating an
external device.

8.2.2. Vulnerability Assessment

HULA [172] is a load balancing approach that works sim-
ilarly to distance-vector routing. It uses periodic probing

h(port)=1

s2s1

s3...

A acker h(m) = 1 h(m) = 2

Congested

link

Probing

packets

Packets

dropped

s1 s2

s4s3

Congested

link

A acker

(a)

(b)

Figure 20: Attacking the load balancing application in the data plane by two
methods. (a) Disrupting the communication via a man-in-the-middle attack.
(b) Exploiting the simple hash function used in load balancing.

to proactively update the network switches with path perfor-
mance information and optimize their routing table on the fly.
SilkRoad [14] is a significant ASIC-based load balancer that
maintains per connection consistency during frequent direct IP
address updates by leveraging the stateful processing in P4.
BLINK [174] detects TCP-retransmission and uses it as a link
failure indicator. Indeed, such techniques have a plethora of
benefits in terms of speed and cost for data centers and enter-
prise networks; however, they lack data signals authentication.
Thus, facilitating network attacks without requiring the attacker
to have high privileges in the network.

A man-in-the-middle could craft packets that contain falsi-
fied information about the available links or even drop probing
packets between the switches. In such a scenario, legitimate
switches will overload the network with update packets to es-
tablish new paths. Furthermore, the attacker could reroute the
traffic through a certain path/switch, thus, creating a DDoS at-
tack. Such an attack is depicted in Fig. 20(a), where an at-
tacker (man-in-the-middle) drops all the probing packets sent
from switch s1 to switch s3; thus, mimicking link failure be-
tween the two switches. As a result, switch s3 redirects all the
traffic towards switch s2, possibly creating a DoS attack.

Furthermore, simple hash-based load balancers that do not
involve cryptographic functions can be exploited to launch
DDoS attacks. Such a technique hashes the packet header and
picks one of the available paths based on the hash value. An at-
tacker aware of the used hash function can craft skewed traffic

AlSabeh et al. / Computer Networks 00 (2022) 1–43 28

patterns where the hash of the header fields is constant across
the trace [164]. In Fig. 20(b), switch s3 load balances the traffic
between switches s1 and s2 using a simple modulo function, for
instance, port%2, where port is the source port of the packet.
An attacker can craft packets in which the port always hashes
to 1; thus, exploiting the used hash function and congesting the
link s2-s3.

8.2.3. Plausible Remediation Approaches

To remediate the security breaches on switch-based load bal-
ancers, network operators can use network authentication of the
processed signals. This ensures that an attacker will not be able
to falsify information between the switches as in Fig. 20(a).

To mitigate attacks against load balancers utilizing simple
hash functions, network engineers can utilize cryptographic
hash functions (e.g., those developed in [83]) that are more se-
cure and hard to break. Therefore, an attacker cannot easily
craft packets that always hash to the same value as in Fig. 20(b).

Alternatively, Kang et al. [164] develop an approach to mit-
igate the vulnerabilities in load balancers implemented in the
data plane without the need to authenticate the communication,
as it would downgrade the performance of the switches. The
approach comprises three main steps. The first step derives
the expected behavior of the data plane system via probabilistic
symbolic execution. The second step is to negate the expected
behavior (e.g., in HULA, the expected behavior is modeled by
repeatedly hashing packets to the same value or pattern). The
third step is to synthesize runtime monitors to detect in real-
time malicious traffic.

8.2.4. Summary and Lessons Learned

P4-based load balancers have gained a lot of attention in re-
cent years due to high-performant ASICs that can replace thou-
sands of software-based load balancers [14]. Despite the in-
creasing emergence of switch-based load balancers, few papers
discuss the security aspects of load balancers (e.g., use of strong
encryption). The proposed approaches implement load balanc-
ing in programmable switches and do not take into considera-
tion hybrid networks. This could restrict the deployment of the
approaches as it exacerbates the cost, as well as introduce po-
tential security issues (e.g., handling compromised legacy and
programmable switches).

8.3. Congestion Control
8.3.1. Background

Network congestion is an ongoing problem that requires ap-
plicable solutions, especially with the increase of applications
that require high Quality of Service (QoS). A network suffers
from congestion when a node handles traffic beyond its capabil-
ities; thus, causing queue delays and packet loss. Programma-
bility in the data plane offers flexibility to offload and design
congestion control solutions on the programmable data plane
switches.

8.3.2. Vulnerability Assessment

High Precision Congestion Control (HPCC) is presented in
[175] to achieve low latency, high bandwidth, and network

Sender Receiver

Man-in-the-middle

Unencrypted INT

Unauthen cated

ACK

1

34 Throughput

tampering

2 Metadata

tampering

Figure 21: Congestion control throughput tampering due to unencrypted meta-
data and lack of authentication.

stability in high-speed networks by utilizing flowing packets
to gather relevant information. During the propagation of the
packet from the sender to the receiver, each switch along the
path leverages INT to report the current status of the egress
port. Metadata can include timestamp, queue length, transmit-
ted bytes, and the link bandwidth capacity. Upon the packet’s
arrival at its destination, the receiver copies the metadata in-
formation to an ACK message and sends it back to the sender.
When the initial sender receives the ACK message, its flow rate
is adjusted based on the gathered network load information.
Fig. 21 showcases two potential shortfalls that could emerge
from the design of any unsecured congestion control mecha-
nism on the data plane. Firstly, the lack of encryption could lead
to telemetry data tampering and ultimately mislead the sender
to disrupt the congestion control mechanism. Secondly, the ab-
sence of authentication at the receiver side, which is crucial in
identifying the switches that participate in the telemetry data
collection.

Similarly, the authors in [176] propose a solution that re-
lies on real-time access to gather important packet meta-data
(e.g., queue load) and detect congestion only when the delay
surpasses a certain threshold. That said, instant traffic rerout-
ing is performed in the data plane to address the congestion
problem. Fig. 22 accentuates the problem of threshold-based
function which could lead to unnecessary traffic rerouting and
traffic overhead on the central controller.

Kfoury et al. [177] use programmable switches to enable
TCP pacing, a technique used to minimize traffic burstiness
and packet losses. Since the authors use a custom protocol to
add the number of large flows through unencrypted messages, a
man-in-the-middle can tamper the packets to increase/decrease
the number of senders and change the behavior of the network.
For instance, altering the number of senders from 10 (real) to
100 (fake) will reduce the capacity of the link by an order of
10. Similarly, the same scenario can be used to decrease the
number of senders from 100 (real) to 10 (fake) to increase the
transmission rate by the senders, and thus, create a DDoS at-
tack.

8.3.3. Plausible Remediation Approaches

In order to circumvent the threat of tampering in threshold-
based functions employed in congestion control solution in the

AlSabeh et al. / Computer Networks 00 (2022) 1–43 29

Unnecessary routes

calcula!on and rules

update

A"acker

Controller

Decrease

threshold

Addi!onal load on

central controller

Traffic

rerou!ng

P4 switches

Figure 22: Adding network traffic load through threshold manipulation in con-
gestion control systems.

data plane, lightweight encryption schemes should be enforced
such as the Vector Homomorphic Encryption (VHE) [165].
Moreover, available security practices should be followed to en-
able authentication on end hosts.

8.3.4. Summary and Lessons Learned

With the increasing diversity of network traffic, the prolifer-
ation of IoT devices [178], and high-speed links, limiting the
congestion in the network becomes a challenging task. Exist-
ing congestion control approaches relying on strategies such as
INT [175] share similar security implications as those stated in
the network telemetry section. Consequently, likewise security
approaches can be followed. For instance, authenticating the
nodes participating in the congestion control mechanism (end-
hosts and programmable switches) and enabling lightweight
cryptographic algorithms to avoid computation overhead.

8.4. In-network Cache

8.4.1. Background

In-network caching is a technique used for storing regularly
requested information resulting from previous queries or com-
putations for later use to improve access time to this informa-
tion. Also, caching can help decrease link traffic on servers,
thus, enhancing the QoS for the end-user.

8.4.2. Vulnerability Assessment

NetCache [16] presents an application-level functionality for
in-network caching. It mainly relies on programmable switches
to deliver on-path key-value items by leveraging the match-
action tables to classify keys carried in packet headers. That
said, the register arrays implemented as on-chip memory in pro-
grammable switches are used to store the values. In addition,
NetCache employs a controller to update the caches with hot
items (i.e., frequently accessed items) and storage servers to
guarantee cache consistency and the mapping of query packets
to API calls for the key-value store. In another work, DistCache
[179] is a load balancing scheme for large scale storage systems

(b)

(a)

Cache

tampering

A acker Storage

server

S

Invalidate

Cache Stats

Count

Storage repuda!on

P4 switch

Repeated

cache misses

A acker Storage

server

SP4 switch

Increased load

Miss

Cache Stats

Count

Figure 23: (a) Cache tampering and storage repudiation attacks. (b) DDoS
attack due to increased load on the storage server.

using cache allocation and query routing. More precisely, Dist-
Cache achieves cache allocation by partitioning hot objects with
independent hash functions between cache nodes, and adap-
tively route queries with the power-of-two-choices. The cache
switch mainly implements a key-value module along with other
modules and communicates with the controller using the thrift
API generated by the P4 compiler to compute and notify on
cache partitions.

In-network cache solutions still suffer from shortfalls in their
designs and implementations and require security measures to
reduce attack risks. As such, the lack of prior authentication
in cache nodes depicted in Fig. 23(a) might result in cache
tampering and repudiation threat. Specifically, when a write
query initiated by an incoming packet invalidate stored copies
in the switches that are on the route to the storage servers. Ad-
ditionally, Fig. 23(b) depicts the threat case of repeated cache
misses which can increase the load on the storage node and po-
tentially result in a point of failure if not equipped to handle
increased load. Moreover, in DNS caching implementations,
the absence of adequate security aspects may lead to cache poi-
soning attacks by sending a large number of resolution requests
with spoofed source IP addresses to resolve a specific name.

8.4.3. Plausible Remediation Approaches

Authentication measures in switch-based cache nodes can
limit unauthorized write queries and ultimately prevent cache
tampering and repudiation threats. A potential case for han-
dling single point of failure would be presented by a mitiga-
tion action initiated by a central controller where the partitions
of a failed switch or storage node are redistributed to an alive
surrogate. The adoption of pre-existing security remedies such
as DNS Security Extensions (DNSSEC) [166], which provides
data authentication and digital signature, is of high importance
in order to preserve the integrity of switch-based DNS caching
systems.

AlSabeh et al. / Computer Networks 00 (2022) 1–43 30

8.4.4. Summary and Lessons Learned

The stateful memory in programmable data planes has been
utilized to act as an in-network cache for storing frequently
requested items. This enabled the processing of billions of
queries within seconds without overwhelming the resources
[16]. Data tampering and DDoS attacks can be launched on
in-network caching switches lacking authentication. Such at-
tacks are often out of the scope of the papers (e.g., in [180]),
however, they can wreak havoc, especially with the increasing
switch performance and limited memory resources. Future en-
deavors could explore storing the hot items in a distributed fash-
ion among the switches in the network for better performance
under limited memory resources.

8.5. Cryptography

8.5.1. Background

Data plane implementations of cryptographic functions are
useful for various purposes, such as achieving confidentiality
and authentication. Such functions often require complex arith-
metic operations and are resource-intensive. In order to operate
at line rate, the supported operations in P4 are limited (e.g., ad-
ditions, subtractions, bit concatenation, etc.). Thus, the hash
functions in P4 are non-cryptographic (e.g., CRC). Recently, a
number of papers proposed workaround techniques to imple-
ment cryptographic functions and security protocols in the pro-
grammable data plane.

8.5.2. Vulnerability Assessment

The advent of programmability in the data plane has broad-
ened the scope of applications implemented programmable
switches to include heavy-hitter detection, in-network caching,
in-band network telemetry, etc. A significant number of these
applications, such as those in [50, 52, 126, 181], mainly use
hash-based data structures (e.g., hash tables, BF, or CMS, etc.)
to track flows [83]. The majority of these works either do not
detail the used hash function in their implementation or use the
CRC hash function implemented in P4 [83]. CRC is a non-
cryptographic hash function with a secret modulus k modeled
by:

fk(d) = d mod k

In hash-based sampling, each packet d is sampled if the hash
of the packet d falls within a selection range based on the for-
mula:

S amp(d) =

1, f (d) ∈ [R1,R2].
0, otherwise.

(1)

where f in the case of CRC is a keyed hash function taking on
values in {1, ..., 2n}. An attacker can exploit the linearity of the
CRC hash function in two different ways based on the attacker’s
knowledge [182]. First, if the attacker does not have any history
of the victim (the hash key k is unknown), the attacker starts by
sending a packet p, followed by a linear progression of pack-
ets p + 1, ..., p + sr ∗ 2n, where sr is the sampling rate. The
attacker selects a range [R∗1,R

∗
2] and sends packets that belong

to this range. Using this process, the probability that the range
[R∗1,R

∗
2] will be different from the true range [R1,R2] used by

the sampler is 1 − 2 ∗ sr. The attacker needs to try at most
(log(0.01)/log(1 − sr)) packets before sending a packet p that
falls in the range [R∗1,R

∗
2], and even fewer than this value in

case the key k is known. Second, findings in [182] show that
the attacker can learn the selection range and the CRC hash key
using past history and some leaked information from the sam-
pler. Specifically, the attacker can estimate the value of the key
and each selection range within:

1 + (m + 1) + log2

(
1
sr

)
where m is a value defined to set a lower bound on the size of
the hash key (k > 2n−m). In further analysis, the authors state
that the keys and ranges can be exactly learned within:

6 + 2 ∗ (n + m)

Exploiting the aforementioned vulnerabilities by an attacker
can lead to several evasion scenarios which could be listed un-
der data tampering or DoS. For instance, (1) generating packets
streams that evade selection by the sampler in order to avoid
being billed by providers for network utilization; or (2) evading
the sampler used by an IDS to perform a DoS attack.

The authors in [36] proposed a technique, namely Scrambled
Lookup Table, to implement AES encryption in P4 network
switches. AES-128, AES-192, and AES-256 algorithms re-
quire 10, 12, and 14 rounds, respectively, to complete. The au-
thors leveraged packet recirculation capability in P4 to pass the
packet over several rounds, i.e., to simulate looping. Loops in
P4 are powerful features necessary to a variety of applications,
such as implementing Multiprotocol Label Switching (MPLS),
and multiple levels of encapsulation/decapsulation. However,
creating infinite loops is possible on some targets, which could
disrupt the functionality of the P4 switch and cause a DoS attack
as depicted in Fig. 24. In particular, three techniques can be
used to create loops in P4, namely, packet resubmission, packet
recirculation, and packet cloning. As a proof of concept, Du-
mitru et al. [23] report that they coded a program that infinitely
loops packets on a software switch (BMv2), as well as a hard-
ware switch (Tofino).

8.5.3. Plausible Remediation Approaches

It is often recommended to use cryptographic hash functions
instead of non-cryptographic ones (e.g., CRC) as they aim to
guarantee a number of security properties, such as collision
resistance. However, cryptographic hash functions are slow
(affect line rate processing), and complex (consume the tar-
get’s resources). Pseudo-cryptographic hash functions, such as
SipHash, are optimized for small inputs, as well as for perfor-
mance in software. [83]. Alternatively, network operators may
use more complex hash functions, such as HMAC-SHA512, to
level up the security by sacrificing the line rate processing of
the switch.

To close loops created by buggy P4 programs, network en-
gineers can use network verification techniques. For instance,

AlSabeh et al. / Computer Networks 00 (2022) 1–43 31

...

Processing blocked

Traffic

...

Des!na!on flooded

Traffic

(a)

(b)

Figure 24: DoS attacks can occur due to loops in the P4 program in two ways.
(a) Incoming packets are dropped due to packets looping the ingress pipeline;
thus blocking the processing. (b) The destination is flooded with packets due to
packets being cloned on the egress pipeline.

Vera [69] can always detect loops on the main input port, as
long as there is enough memory.

8.5.4. Summary and Lessons Learned

Cryptographic implementations in the data plane have al-
lowed network operators to achieve various security objectives
without a need for end-host interaction. Due to the limited re-
sources in the data plane, implementing heavy cryptographic
functions in the data plane might drastically affect the perfor-
mance of the switch. For instance, implementing loops in P4
using recirculation not only degrades the throughput but also
can be exploited to launch DDoS attacks. As a result, future en-
deavors could explore feasible lightweight cryptographic func-
tion implementations, while studying the performance penalty.

8.6. Telecommunication Services
8.6.1. Background

Telecommunication providers always strive to improve the
network performance and provide new services by updating
their network infrastructure. To increase cost-efficiency and
flexibility, NFV implements network functions on commodity
processors (based on x86 or ARM architectures) as they have
low cost and can establish innovations at a faster pace compared
to purpose-built, fixed-function hardware products. However,
implementing NFV on general-purpose CPUs does not meet the
performance requirements of high-throughput data plane com-
ponents in large carrier access networks. As the highly flexible
P4 programmable data planes meet the challenging demands
imposed in telecommunication environments, several proposed
approaches are offloading NFV components from commodity
processors to programmable switches [183].

8.6.2. Vulnerability Assessment

Shah et al. [184] redesign the Long Term Evolution Evolved
Packet Core (LTE EPC) mobile packet core to improve the per-
formance of the control plane by offloading a number of its pro-
cedures to the data plane. Singh et al. [185] implement a virtual
Evolved Packet Gateway (vEPG) in P4. SMARTHO [186] is a

scheme that improves handover (i.e., the process of transferring
data from one cell to another while the mobile user is mov-
ing). In another line of work, Kfoury et al. [187] offload media
traffic (e.g., voice over IP) from relay servers to programmable
switches.

Indeed, the deployment of 5G networks and the utilization
of programmable switches significantly improve the speed, ca-
pacity, and latency. However, this also opens for more severe
volumetric attacks. For instance, an attacker can turn a switch
into a very powerful relay of DDoS traffic in the absence of
switch authentication.

8.6.3. Plausible Remediation Approaches

Telecommunication providers should take into considera-
tion the security implications of offloading services to the data
plane. For instance, the potential DoS attack in [184] can be
remediated by tracking the number of unoffloadable handover
messages corresponding to a certain flow. Once the tracked
number exceeds a certain threshold, the operator can be noti-
fied to act accordingly. Furthermore, authentication must be
employed to protect switches from being compromised such as
in [187].

8.6.4. Summary and Lessons Learned

The recent trends and research efforts have demonstrated that
programmable switches are effective in implementing a number
of telecommunication functionalities, especially those pertain-
ing to 5G, due to their low latency and high processing speeds.
Without taking the necessary security measures, programmable
devices can be turned into an attack point to severely disrupt
the network. The authors in [188] pinpointed that their design
of multi-tenant 5G architecture using FPGAs imposed serious
TCAM memory challenges. Consequently, future work can ex-
plore efficient algorithms to prevent possible saturation attacks
on the switches.

8.7. Consensus
8.7.1. Background

Distributed systems have a fundamental problem of achiev-
ing reliability (i.e., to deliver the intended service) even in the
presence of faulty processes. To solve this problem, coor-
dinating processes need to reach consensus to be able to re-
liably agree on some value [189]. Consensus protocols are
inevitable to build fault-tolerant, distributed applications and
services such as Google’s Chubby [190], OpenReplica [191],
Ceph [192], etc. A downside of consensus protocols that has
ever lasted is the additional latency they impose on the system
since they require coordination on every request. Recently, sev-
eral research papers have explored leveraging programmable
switches to achieve high-performance consensus [193–197].

8.7.2. Vulnerability Assessment

Dang et al. [193] present an implementation of Paxos us-
ing the P4 language. The proposed solution defines a custom
header for Paxos messages and encapsulates them inside a UDP
packet. Furthermore, P4 registers are utilized to store the his-
tory of values used in Paxos to achieve consensus. The authors

AlSabeh et al. / Computer Networks 00 (2022) 1–43 32

build a partial implementation of Paxos on the switch (phase 2
Paxos). A more recent work that includes the same group of re-
searchers proposes P4xos [194]. The proposed work provides a
complete Paxos implementation for the data plane (phase 1 and
2 Paxos) without strengthening assumptions about the behav-
ior of the network. Li et al. [195] propose Network-Ordered
Paxos (NOPaxos), an algorithm that relies on network order-
ing to achieve strong consistent replication without the need for
coordination. NetChain [196] provides coordination in data-
centers while minimizing the latency. Eris [197] can process a
large class of distributed transactions while avoiding both repli-
cation and transaction coordination overhead.

Consensus algorithms are often designed according to cer-
tain assumptions in the network. For instance, Paxos assumes
that given 2 f +1 processes, at most f faulty processes can exist.
The aforementioned approaches do not discuss the security im-
plications of distributed systems. Consequently, compromised
P4 switches form a threat to the assumptions made in the con-
sensus protocols. An attacker controlling the majority of the
switches can out-vote the honest nodes and disrupt the con-
sensus process. Thus, the attacker can choose not to agree on
a value, making the consensus protocol run indefinitely, thus,
and potentially causing a DoS. Another attack on distributed
systems is the Sybil attack [198], in which an identity (e.g., ad-
versarial P4 switch) is forged to form multiple identities in the
system. Using the forged identities, Sybil attack can also dis-
rupt the consensus process and lunch several attacks affecting
the availability of the network (out-voting honest nodes). For
instance, in distributed systems such as blockchain, Sybil at-
tack can revert transactions, which can lead to double spending
(tampering of data).

8.7.3. Plausible Remediation Approaches

One approach that prevents faulty processes from imperson-
ating honest replicas is P4 Byzantine Fault Tolerance (P4BFT),
in which the controller authenticates each message using the
message authentication code. While this approach inevitably
increases the latency and communication overhead due to the
controller interaction, it definitely secures in-network consen-
sus protocols. Other proposals to defeat Sybil attacks include
proof-of-work functions, in which every process proves to oth-
ers that a certain amount of computational efforts (e.g., re-
sources) has been expended for some purposes. The proof-of-
work functions require complex computations and are usually
implemented on x86 processors. Thus, although they might
have a feasible implementation on the switches, they can sig-
nificantly degrade the throughput.

8.7.4. Summary and Lessons Learned

Consensus has recently gained substantial treatment from
the P4 research community. Consensus in the data plane was
proven to significantly improve the performance of the core in-
frastructure and services, reduce bottleneck for distributed ap-
plications, amplify the throughput, etc. [193–195]. Without au-
thenticating the participating node, the consensus protocol can
fail and possibly create a DDoS attack.

8.8. Application-agnostic

8.8.1. Background

Traditionally, closed-source fixed-function data planes are
tested and verified over a long period of time before deploy-
ment. Additionally, having a fixed-function data plane reduces
the likelihood of bugs produced by network operators. On the
other hand, the flexibility introduced with data plane program-
ming comes at the cost of the robustness of the P4 program.
Buggy P4 programs can be exploited to breach various security
measures and hence perform severe attacks [23].

8.8.2. Vulnerability Assessment

Reading arbitrary header values in P4 or resurrecting
dropped packets (architecture-specific) can help attackers per-
form spoofing attacks through bypassing ACLs enforced by the
P4 program. For instance, the attacker can revive certain pack-
ets dropped by the controller (e.g., marked as malicious) to
continue their pipeline processing and eventually execute the
intended attack [23].

Likewise, the same factors that allow the attackers to perform
spoofing can permit them to elevate their privileges. For in-
stance, crafting packets to bypass the security filters employed
in the network.

8.8.3. Plausible Remediation Approaches

Attacking P4 programs depends on two factors, the code
written and the target it is deployed on. P4 network develop-
ers must use network verification techniques to infer potential
bugs and patch all possible security vulnerabilities. Further-
more, for robust secure deployments, it is preferred to depend
on production-ready targets (e.g., Tofino target).

8.8.4. Summary and Lessons Learned

The flexibility, programmability, and performance gain of-
fered by programmable data planes have made it one of the
most sought-after fields in networking. As discussed earlier,
applications implemented in P4 include those pertaining to cy-
bersecurity (e.g., DDoS detection), as well as other applications
(e.g., INT, load balancing, cryptography, etc.). Regardless of
the P4 application, the code is susceptible to bugs that are un-
desirable for security purposes. It is highly encouraged that
network operators use network verification techniques to unveil
bugs. Future work can explore more verification techniques and
expressive languages tailored to network operators, so that they
can validate the behavior of the program prior to deployment,
as well as during runtime using a high-level ACL language.

9. Challenges, Current Initiatives and Future Work

In this section, we present the challenges pertaining to pro-
grammable switches and their effects on security implementa-
tions in P4. Furthermore, a number of current initiatives and
future directions addressing the discussed challenges are dis-
cussed.

AlSabeh et al. / Computer Networks 00 (2022) 1–43 33

h2(fid, eACK)

h3(fid, eACK)

h4(fid, eACK)

Stage 1 Stage 2 Stage 3 Stage 4

h1(fid, eACK)
TCP packet

Occupied entry Newly Inserted entry Empty entryExpired Entry

This entry becomes

occupied for the

next TCP packets

Th

p

Figure 25: In multi-stage hash table, several hashes are utilized until an available entry in the memory is located.

9.1. Memory Size and Accessibility

The limited on-chip memory in the switch (e.g., limited num-
ber of SRAM per stage, and limited number of stages), as well
as the restrictions on the memory access (e.g., a packet can
only access few addresses in the memory), have affected sev-
eral applications. For example, several straight-forward func-
tions cannot be performed (e.g., finding the minimum across all
elements). Among the affected applications are those pertain-
ing to network security implementations. For instance, it is not
feasible to maintain a significant per-flow state, i.e., to track and
store every flow in the switch.

In DDoS attack mitigation techniques, the switch’s memory
is utilized to store information about IP prefixes and their cor-
responding counters, e.g., how frequently they are requesting
the network. Memory constraints limit the number of moni-
tored IP prefixes. Similarly, in traffic anonymization, switches
rewrite certain packet headers and store the mapping between
the original headers and the rewritten ones in the forwarding
table. Considering the memory constraints in the switch, it is
challenging to anonymize a large number of network prefixes
as their mappings need to be stored in the forwarding table.
Finally, in data protection, notable research papers have imple-
mented encryption techniques using the stateful data plane. For
instance, P4-IPsec [81] stores packet counters for the SAs in the
data plane using registers. The SA is fundamental to IPsec as
it describes how the entities will use security services to com-
municate securely. Accordingly, encrypted communication is
limited to the number of SAs that can be stored in the switch.

9.1.1. Current Initiatives and Future Work

To utilize the memory and resolve the packets that hash to the
same memory location, Chen et al. [199] implement a multi-
stage hash table using multiple memory arrays across differ-
ent pipeline stages to store the records of outgoing TCP pack-
ets for RTT calculation. The address of the memory of a TCP
packet is computed based on the hash value of the fid and the
expected ACK (eACK) number. If the memory location is avail-
able (empty or expired), then the packet could be inserted. Oth-
erwise, a different memory location is checked using another
hash function. This process keeps repeating until finding a va-
cant entry, or four hashes are computed (4 stages). Fig. 25
summarizes the implemented data structure.

A similar data structure adopted by Khooi et al. [66] is the

CHT [200] with four hash functions (four logical stages) to im-
plement ACLs. Essentially, in CHT, when a new key collides
with an old value using hash h1, the old key is replaced by the
new one. Furthermore, the old key is displaced to a new po-
sition based on hash h2. The process keeps alternating until a
vacant entry is found.

Friday et al. [61] claim that botnet-orchestrated DDoS at-
tacks generally target specific vulnerabilities and produce sim-
ilar signatures. To mitigate this attack, the signature counts are
accumulated in the data plane via BF data structure. The mem-
ory location of SYN packets is calculated using the CRC16 hash
of some header fields. Accordingly, the value of the memory
will be incremented after every hit. Similarly, to mitigate slow
DDoS attacks, the authors used the same technique, such that
the timestamps are stored in the memory. As an extension to
BF, Bonfim et al. [98] use IBLT, which allows the storage of
key-value pairs, to track flows as well as per-flow counters.

Cormode et al. [122] propose a probabilistic data structure,
namely CMS, for summarizing data streams stored in the data
plane. The data structure can be used in a wide range of im-
portant problems. In networking, for instance, CMS is used to
detect heavy hitters [179].

The aforementioned approaches deal with memory limita-
tions using data structures and techniques implemented on the
switch. Kim et al. [201] present a novel approach to ad-
dress the memory limitations in the switch by remotely ac-
cessing a Dynamic Random Access Memory (DRAM) installed
on data center servers comprising Remote Direct Memory Ac-
cess (RDMA)-capable NICs. The data plane remotely accesses
the DRAM through an access channel (RDMA over Converged
Ethernet (RoCE)), see Fig. 26. It is worth mentioning that the
proposed approach is flexible and cost-effective as it uses ex-
isting resources in commodity hardware without adding addi-
tional infrastructure costs. Most importantly, the proposed ap-
proach does not have a major impact on the performance of the
switch as it only incurs 1-2 extra microseconds latency.

In the context of security and memory limitations, several fu-
ture works could be devised. For instance, existing approaches
in heavy hitter detection use approximation, such as sketch-
based data structure, to achieve high accuracy while being re-
stricted to the hardware resources. In practice, it is hard to fit
large sketches in each switch along the data path while achiev-
ing high accuracy (≈99%). Ongoing research work, such as in

AlSabeh et al. / Computer Networks 00 (2022) 1–43 34

ASIC

RoCE

protocol

Remote buffer servers

…

Remote table servers Remote telemetry servers

Remote memory pool (equipped with DRAM)

Commodity

RNICs

Figure 26: Utilizing the DRAM on commodity servers to expand the data plane
memory.

[202], is exploring new data structures that can be fragmented
and allocated on multiple hops along the packet’s path. Fu-
ture endeavors could also discover the integration of multiple
data structures for efficient DDoS detection, e.g., INDDoS [60]
combines Bitmap and CMS, while Jaqen [56] utilizes universal
sketches that encompass multiple algorithms.

9.2. Processing Capabilities

Programmable switches process a limited number of prim-
itives, i.e., they cannot perform arbitrary operations. Instead,
they support a small set of simple operations. For instance,
since division is much slower than addition, the switching hard-
ware usually does not support division. Moreover, floating
point arithmetic is not a mandatory feature that is enforced by
P4. Also, programmable switches support a limited number of
operations per packet in order to operate at line rate. These
limitations affect how a number of security applications are im-
plemented in the network.

In attempts to detect attacks in the network, several pro-
posed techniques implement ML in the control plane since pro-
grammable switches can not perform complex computations.
Moreover, the majority of ML frameworks encompass complex
operations and floating point numbers that are not supported
within the P4 data plane.

Early implementations of secure and private routing in the
data plane use custom-built cryptography functions that did not
achieve the highest level of security, such as CRC32 hash func-
tion. Reasons behind using simple cryptography primitives on
programmable switches might be traced to two factors. First,
the overwhelming engineering efforts required to implement
standardized cryptographic primitives. Second, the high cost
that such implementations impose on the limited hardware re-
sources available [36].

9.2.1. Current Initiatives and Future Work

Current initiatives that overcome the computational limita-
tions in the data plane include in-network workarounds (ap-
proximation and precomputations), as well as approaches that
use external resources (e.g., local CPU or central controller).

Host 1 Host 2

IPSec

ASIC

IP + IPsec processing

IPsec crypto manager

program

PCIe
Data plane

Control plane

IP

P4

switch

(a)

(b)

IPSec

Host 1

IP

Host 2

IP + IPSec processing

IPsec crypto manager

P4

switch

Crypto host

Figure 27: (a) IPsec implementation in the data plane using the switch’s ASIC
chip. (b) IPsec implementation in the data plane using an external crypto host.

In the context of approximation techniques, designers use the
available limited resources on the switch to approximate the
desired value, while sacrificing the precision. As an example,
Ding et al. [203] propose P4Log and P4Exp algorithms to esti-
mate logarithms and exponential functions, respectively, using
only P4-supported arithmetic operations. Based on these algo-
rithms, the authors propose a novel strategy, called P4Entropy,
to estimate traffic entropy entirely in the data plane without us-
ing the TCAM, nor bounding the number of packets observed.

In the context of precomputation techniques, values are pre-
computed and stored in match-action tables or registers. For
example, Sharma et al. [204] approximate aggregate flow statis-
tics (total number of active flows, as well as sources and des-
tinations communicating through a switch) by designing a car-
dinality estimator building block. The latter uses the Hyper-
LogLog algorithm that can estimate cardinalities greater than
one million with a typical standard error of 2% using 1.5 kilo-
bytes of memory.

Alternatively, Hauser et al. [81] present two workarounds
to offload the computationally intensive functions of the IPsec
crypto manager. The first approach considers offloading the
computations to the internal CPU module connected to the
Tofino ASIC via the Peripheral Component Interconnect ex-
press (PCIe), i.e., the computations are performed locally on the
switch’s CPU, see Fig. 27(a). The second approach offloads the
IPsec-related flows to an external crypto host, see Fig. 27(b).

AlSabeh et al. / Computer Networks 00 (2022) 1–43 35

Future security frameworks must utilize the current initia-
tives in processing challenges to perform more operations in
the data plane. For instance, explore attacks that require cryp-
tographic data, such as Malformed SSL flood, SIP DDoS [67]
with packets (e.g., TLS and Datagram TLS (DTLS)). Also, in
P4-based cryptography schemes, future security protocols can
be explored, such as TLS, Point-to-Point Protocol (PPP), etc.

9.3. Program Virtualization
In today’s network, the needs of a specific business are satis-

fied via services (e.g., malware detection and prevention [205],
location services, etc.) that adhere to policies defining oper-
ational characteristics and access control. Inserting such ser-
vices into the network requires one or more Network Functions
(NFs), such as firewall and load balancer, that satisfy the de-
fined policies [206]. Currently, the programmable data plane
does not support virtualization, thus, it is challenging to run
multiple NFs simultaneously on a single switch while achiev-
ing isolation [207]. However, in various cases, operators desire
more than one context (i.e., NF) even when there is only one
physical switch [208].

The main challenges of program virtualization include re-
source isolation, performance isolation, and security isolation.
Resource isolation ensures that some resources in the switch
(e.g., tables, entries, registers, etc.) are dedicated to a specific
program (NF). Performance isolation dictates that the execu-
tion of one program does not affect the performance of another.
Security isolation discusses the access rights and privileges of
resources for each program; for instance, packets that are pro-
cessed by one program cannot access data stored by another
program.

9.3.1. Current Initiatives and Future Work

HyPer4 [208] is a portable virtualization solution that aims
to develop a P4 program that can be dynamically configured to
emulate other programs. HyPer4 can isolate customers and/or
equipment (network slicing), store multiple network device
configurations (network snapshotting), allow modular develop-
ment (create several virtual devices, such as a router, and a fire-
wall within the switch), support multiple tenants, and provide
standard high-level features.

HyperVDP [209] overcomes a number of limitations in Hy-
Per4, such as performance and excessive usage of hardware re-
sources. HyperVDP defines a 4-byte Description Header (DH)
that encapsulates the original packet. The DH includes infor-
mation such as the length of the packet’s header, as a result,
HyperVDP parses the whole packet header at once without the
need for packet resubmission as in HyPer4.

HyPer4 [208] and HyperVDP [209] consist of a P4 pro-
gram that emulates the behavior of multiple programs (i.e.,
emulation-based virtualization). Such approaches feature
seamless reconfiguration by allowing different programs to be
emulated at runtime. Despite this advantage, emulation-based
virtualization techniques exhaust the resources of the switches
since P4 programs are translated into table entries; thus, sig-
nificantly adding overhead as compared to native P4 programs.
Furthermore, such approaches do not provide CPU isolation;

Ingress

pipe 0

Ingress

pipe 1

Egress

pipe 0

Egress

pipe 1

Classifier Firewall
Load

balancer

Virtualiza!on

gateway
Router

Packet

buffer and

replica!on

engine

Figure 28: Example of network function placement on pipelines.

thus, a disruption in one program can affect the others [180].
Sequeira [180] overcomes emulation-based virtualization dis-
advantages by adopting code merging technology, in which
multiple P4 programs are merged into one monolithic program
at compile-time. In particular, the authors extend P4Visor [210]
to merge more than two programs while enforcing correctness
and isolation.

Stoyanov et al. [211] propose a Multi Tenant Portable Switch
Architecture (MTPSA) that achieves performance, resource,
and security isolation. The authors focus on security isolation
to prevent attacks, such as infinitely cloning and recirculating
packets to create a DDoS attack or information disclosure from
packets processed by other user programs. To achieve security
isolation, the authors introduce the concept of superuser and
user programs within the switch pipeline. The superuser pro-
gram includes the ingress and egress pipelines that define the
pre and post-processing of packets (e.g., assign packets to user
programs). User programs are standard P4 programs (identified
by a unique id) and share the same superuser ingress and egress
pipelines. The superuser assigns roles and privileges for user
programs so that each program observes and operates only on
its own packets, and each program can execute actions based on
the assigned privileges (e.g., no recirculation allowed).

Wu et al. [212] present Dejavu, a system that deploys an
entire service chain to a programmable switch. Conceptu-
ally, Dejavu uses a customized header format based on the
IETF NSH proposal [160] that includes platform metadata (e.g.,
ingress/egress ports), recirculate flag (whether to recirculate the
packet), and others. For efficient placement of NFs on the
pipeline, the authors study the tradeoff of sequential and parallel
compositions. Sequential composition places NF back-to-back
on a single ingress/egress pipe (pipelet), thus, the transition be-
tween NFs is cheap but requires a separate match-action unit
stage for each NF. Parallel composition places NF side-by-side,
thus, allowing for resource sharing but requires recirculation/
resubmission to transition between NF. Fig. 28 shows a pro-
totype of Dejavu with five NFs implemented on Tofino ASIC
with two pipelines. In the implemented prototype, the ports cor-
responding to ingress pipe 1 are set into loopback mode, thus,
traffic arriving at ingress pipe 1 comes only from egress pipe 1
(via recirculation). Thus, arriving packets will always pass in
the classifier first (i.e., from ingress pipe 0).

Future work in program virtualization could investigate gen-
eral optimization techniques to efficiently place the NFs in the
switch with respect to the available resources. Additionally, for

AlSabeh et al. / Computer Networks 00 (2022) 1–43 36

NFs that cannot be placed in one switch (e.g., advanced DDoS
schemes), network-wide function placement can be explored to
distribute the functions across multiple switches.

Currently, there is no standard scheme that defines the place-
ment of network devices. For instance, programmable switches
can be placed on the network edge to swiftly filter DDoS at-
tacks, firewalls and IDS can be placed inside the network for
advanced filtering and monitoring, and SmartNICs can easily
employ cryptography between end hosts. The problem of func-
tion placement in the network is still an open problem that is
yet to be addressed.

9.4. Deep Packet Inspection (DPI)
General-purpose CPUs provide poor performance when han-

dling bulk of data, and they should only handle metadata or
a partial amount of the data [213]. The capabilities brought
by programmable switches provide promising opportunities to
handle data processing and perform DPI. However, implement-
ing DPI in the switch is not trivial since P4 applications need to
satisfy high computation, memory, and data transfer require-
ments. Additionally, the P4 language is designed to be re-
stricted (e.g., no looping constructs) in order to preserve the
performance. Accordingly, the majority of P4 applications per-
form limited inspection over the packet’s header. For instance,
application layer P4 defenses are limited, and the literature fo-
cuses on attacks that can be inferred from traditional header
fields (e.g., IP, TCP/UDP, etc.). The same limitations apply to
application-level network monitoring, load balancing, and oth-
ers.

9.4.1. Current Initiatives and Future Work

Jepsen et al. [213] developed a system for locating the occur-
rences of string keywords in the payload using P4. The PISA-
based Parallel Search (PPS) takes a set of search patterns and
converts it to partitioned Deterministic Finite Automata (DFAs)
that can run on each stage, thus, achieving parallelism across
pipelines.

DeepMatch [214] provides a line rate DPI primitive in the
data plane using Netronome SMART [215]. DeepMatch show-
cases new applications in the data plane that were not realized
before, such as QoS policies and network monitoring that re-
quire processing application layer information. Additionally,
IDS can be integrated to perform advanced DPI security poli-
cies. DeepMatch provides stateless intra-packet and stateful
inter-packet regex matching capabilities, as well as supports re-
ordering of packets since the content specified by a regex may
appear anywhere in a flow. Similar to PPS [213], DeepMatch
transforms the regex into a DFA and implements it using a state
transition table.

Considering the limited memory, a complex regex expres-
sion can result in a DFA state explosion. Future work could ex-
plore optimizing the regex to occupy less memory in the switch,
and consequently be able to perform complex matching opera-
tions. Furthermore, future DPI in the context of security could
include: malware detection, in which packets belonging to a
certain flow and encoding malware-based keywords are identi-
fied on the fly; email spam filtering, etc.

9.5. Interoperability
Despite the increasing interest in programmable data planes

and the advantages they bring to the network, operators are un-
likely to fully change their legacy infrastructure in one shot.
This is due to the additional budget costs incurred (e.g., buying
new equipment), as well as operational costs (e.g., training new
staff, maintenance, etc.). During the development of a P4-based
approach, arbitrarily placing the switch in a hybrid network
(a network that contains legacy and programmable switches)
might seem like a simple solution. However, evaluations in
[54] show that the accuracy is largely affected by the position of
the programmable switch in the hybrid network. Thus, placing
switches blindly is not a good practice.

9.5.1. Current Initiatives and Future Work

In network anonymization, PANEL [77] offers partial de-
ployability and compatibility with legacy networks. In heavy
hitter detection, [54] proposes an approach to incrementally
select the suitable legacy devices and replace them with pro-
grammable switches, while monitoring as many flows as pos-
sible. In sketch-based network monitoring, Shi et al. [216]
propose an approach to incrementally deploy programmable
switches with legacy networks. The authors use two Integer
Linear Programming (ILP) models to cover more traffic and im-
prove the accuracy simultaneously.

Future work in incremental deployment should span across
all P4 applications. For instance, in security, network-wide co-
ordination for DDoS detection in the presence of legacy devices
could be devised. This encourages operators to start incorporat-
ing programmability in their network.

9.6. Self-driving Network
Current in-network approaches require manual interaction

and analysis from the network operator in order to create new
policies and adjust to the changes in the network. This hand-
crafted method introduces poor scalability and robustness, as
well as several burdens on the operator. Examples of operator-
required interaction span across all security applications, such
as threshold-based adaptation in volumetric attacks (e.g., DDoS
defenses and heavy hitter detectors), maintenance of ACLs, and
others. Solutions that perform a local control loop of measur-
ing, analyzing, and acting on each in-network device separately
are inefficient since they only operate on a fraction of the sys-
tem’s traffic [217].

9.6.1. Current Initiatives and Future Work

A recent work by Mai et al. [217] propose a hybrid in-
network intelligence control architecture that relies on ML
for self-adaptive learning. The architecture includes a pro-
grammable data plane to host control functions (e.g., measure-
ments, firewall, heavy hitter detection). Additionally, an intelli-
gent centralized management plane collects data from the net-
work, learns its behavior, and automatically generates control
strategies. Among the use cases evaluated, a Bayesian-based
in-network DDoS detection was able to constantly learn de-
fense tactics (Bayesian classifier) in a distributed and automated
fashion.

AlSabeh et al. / Computer Networks 00 (2022) 1–43 37

Future security solutions could explore more ML techniques
to make the approach more intelligent, resilient against network
changes, and require minimal user interaction. For instance,
approaches in heavy hitter detection, such as in [54], are in-
effective when the routing and flow statistics are altered. An
enhancement for such approaches is to develop a self-driving
network that can automatically readjust the data plane configu-
ration when changes in the system occur.

Challenges introduced by self-driving networks include com-
munication overhead between the intelligent controller and the
switches; latency introduced by the controller running the ML
module; saturation attacks on a centralized controller. This
could be critical for time-sensitive security solutions and opens
new horizons for future optimization approaches.

10. Conclusion

This work presents a survey on the security of programmable
data plane, specifically those utilizing the P4 language. First,
the survey gives some background information about the P4
language and the PSA, as well as the specifications, advantages,
and limitations of programmable switches. Then, state-of-the-
art related works are presented. Motivated by the lack of an
inclusive P4 security-centric work, the survey provides a tax-
onomy of P4 security implementations while categorizing them
under three fundamental security objectives (network availabil-
ity, anonymity and confidentiality, and operational security pro-
visioning). Afterward, the survey performs a STRIDE-based
vulnerability assessment on driving P4 applications (e.g., net-
work telemetry, load-balancing, congestion control, etc.) and
proposes a number of remediation techniques. Finally, the sur-
vey concludes with a discussion about the current challenges
and initiatives in programmable devices, as well as pinpoints
potential future work and open research areas.

Acknowledgment

This material is based upon work supported by the National
Science Foundation under grant numbers 2118311, 2104273,
and 1925484, funded by the Office of Advanced Cyberinfras-
tructure (OAC).

Table 15: Abbreviations Table

Abbreviation Term

5G Fifth-Generation
ACK ACKnowledgment
ACL Access Control List
AES Advanced Encryption Standard
AES-CTR AES Counter Mode
AES-GCM AES in Galois/Counter Mode
ALU Arithmetic Logic Unit
AM-PM Alternate Marking-Performance Measurement
ANT Active Network Telemetry
API Application Programming Interface
AR-DDoS Amplified Reflection DDoS

Abbreviation Term

ARP Address Resolution Protocol
AS Autonomous System
ASIC Application-Specific Integrated Circuit
BF Bloom Filter
BMv2 Behavioral Model
BNF Backus-Naur Form
BNN Binarized Neural Network
BYOD Bring Your Own Device
CMS Count-Min Sketch
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CTL Computation Tree Logic
DAD Duplicate Address Detection
DDoS Distributed Denial of Service
DFA Deterministic Finite Automata
DH Description Header
DHCP Dynamic Host Configuration Protocol
DNS Domain Name Server
DNSSEC DNS Security Extensions
DoS Denial of Service
DPI Deep Packet Inspection
DRAM Dynamic Random Access Memory
DTLS Datagram TLS
eACK expected ACKnowledgement
ECN Explicit Congestion Notification
EFSM Extended Finite State Machine
ESP Encapsulating Security Payload
fid flow id
FMA Flow Marker Accumulator
FPGA Field-Programmable Gate Array
FSM Finite State Machine
Gbps Gigabits per second
GCL Guarded Command Language
GPRS General Packet Radio Service
GPS Global Positioning System
GTP GPRS Tunneling Protocol
HCF Hop Count Filtering
HMAC Hash-based Message Authentication Code
IBLT Invertible Bloom Lookup Table
IDS Intrusion Detection System
IKE Internet Key Exchange
ILP Integer Linear Programming
INT In-band Network Telemetry
IOAM In-situ Operation Administration
IoT Internet of Things
IP Internet Protocol
IP2HC IP-to-Hop-Count
IPsec Internet Protocol Security
ISP Internet Service Provider
IXP Internet eXchange Point
LPM Longest Prefix Match
LTE EPC Long Term Evolution Evolved Packet Core
MAC Media Access Control
MACsec MAC security
ML Machine Learning
MPLS Multiprotocol Label Switching
NA Neighbor Advertisement

AlSabeh et al. / Computer Networks 00 (2022) 1–43 38

Abbreviation Term

NF Network Function
NFV Network Function Virtualization
NGFW Next-Generation Fire Wall
NIF Network Ingress Filtering
NS Neighbor Solicitation
NSH Network Service Header
OTP One-time password
P4 Programming Protocol-Independent Packet Proces-

sors
PBT Postcard-Based Telemetry
PCIe Peripheral Component Interconnect express
PII Personally Identifiable Information
PPM Packet Processing Modules
PPP Point-to-Point Protocol
PSA Portable Switch Architecture
QoS Quality of Service
RDMA Remote Direct Memory Access
RISC Reduced Instruction Set Computer
RMT Reconfigurable Match table
RoCE RDMA over Converged Ethernet
RPF-Feasible Feasible Reverse Path Forwarding
RPF-Loose Loose Reverse Path Forwarding
RPF-Strict Strict Reverse Path Forwarding
SA Security Association
SAVI Source Address Validation Improvement
SDN Software-Defined Networking
SFC Service Function Chaining
SIP Session Initiation Protocol
SMT Satisfiability Modulo Theory
SmartNICs Smart Network Interface Cards
SPM Spoofing Prevention Method
SRAM Static Random-Access Memory
SSL Secure Socket Layer
SYN SYNchronize
Tbps Terabits per second
TCAM Ternary Content Addressable Memory
TCP Transport Control Protocol
TLS Transport Layer Security
TTL Time To Live
UDP User Datagram Protocol
vEPG virtual Evolved Packet Gateway
VHE Vector Homomorphic Encryption
VLIW Very Long Instruction Word
VPN Virtual Private Network
VXLAN Virtual Extensible Local Area Network
XFSM eXtended Finite State Machines

References

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., P4: Pro-
gramming protocol-independent packet processors, ACM SIGCOMM
Computer Communication Review 44 (3) (2014) 87–95.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, Openflow: enabling innovation in
campus networks, ACM SIGCOMM Computer Communication Review
38 (2) (2008) 69–74.

[3] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, M. Horowitz, Forwarding metamorphosis: Fast pro-

grammable match-action processing in hardware for SDN, ACM SIG-
COMM Computer Communication Review 43 (4) (2013) 99–110.

[4] Open Networking Foundation, Openflow switch specification version
1.5.1, [Online]. Available: https://tinyurl.com/4hepckyu.

[5] G. Bianchi, M. Bonola, A. Capone, C. Cascone, Openstate: program-
ming platform-independent stateful openflow applications inside the
switch, ACM SIGCOMM Computer Communication Review 44 (2)
(2014) 44–51.

[6] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, J. Wu, Poseidon: Mitigating volumetric DDoS attacks with pro-
grammable switches, in: Proceedings of NDSS, 2020.

[7] T. P. Morgan, Vmware, cisco stretch virtual lans across the heavens,
[Online]. Available: https://tinyurl.com/p72a9d77.

[8] M. Mahalingam, D. G. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Srid-
har, M. Bursell, C. Wright, Virtual extensible local area network
(VXLAN): A framework for overlaying virtualized layer 2 networks
over layer 3 networks., RFC 7348 (2014) 1–22.

[9] T. Benson, A. Akella, A. Shaikh, S. Sahu, Cloudnaas: a cloud network-
ing platform for enterprise applications, in: Proceedings of the 2nd ACM
Symposium on Cloud Computing, 2011, pp. 1–13.

[10] S. K. Fayaz, Y. Tobioka, V. Sekar, M. Bailey, Bohatei: Flexible and
elastic DDoS defense, in: 24th USENIX Security Symposium (USENIX
Security 15), 2015, pp. 817–832.

[11] A. Panchenko, L. Pimenidis, J. Renner, Performance analysis of anony-
mous communication channels provided by tor, in: 2008 Third Interna-
tional Conference on Availability, Reliability and Security, IEEE, 2008,
pp. 221–228.

[12] R. Dingledine, S. J. Murdoch, Performance improvements on tor
or, why tor is slow and what we’re going to do about it, Online:
http://www.torproject.org/press/presskit/2009-03-11-performance.pdf
(2009).

[13] A. AlSabeh, E. Kfoury, J. Crichigno, E. Bou-Harb, Leveraging sonic
functionalities in disaggregated network switches, in: 2020 43rd Interna-
tional Conference on Telecommunications and Signal Processing (TSP),
IEEE, 2020, pp. 457–460.

[14] R. Miao, H. Zeng, C. Kim, J. Lee, M. Yu, Silkroad: Making stateful
layer-4 load balancing fast and cheap using switching ASICs, in: Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication, 2017, pp. 15–28.

[15] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, Q. Wang,
Hardware-accelerated firewall for 5G mobile networks, in: 2018 IEEE
26th International Conference on Network Protocols (ICNP), IEEE,
2018, pp. 446–447.

[16] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, I. Stoica,
Netcache: Balancing key-value stores with fast in-network caching, in:
Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 121–136.

[17] A. Satapathy, Comprehensive study of P4 programming language and
software-defined networks, Ph.D. thesis, Institute for Development and
Research in Banking Technology (2018).

[18] E. Kaljic, A. Maric, P. Njemcevic, M. Hadzialic, A survey on data plane
flexibility and programmability in software-defined networking, IEEE
Access 7 (2019) 47804–47840.

[19] W. L. da Costa Cordeiro, J. A. Marques, L. P. Gaspary, Data plane pro-
grammability beyond openflow: Opportunities and challenges for net-
work and service operations and management, Journal of Network and
Systems Management 25 (4) (2017) 784–818.

[20] R. Bifulco, G. Rétvári, A survey on the programmable data plane: Ab-
stractions, architectures, and open problems, in: 2018 IEEE 19th In-
ternational Conference on High Performance Switching and Routing
(HPSR), IEEE, 2018, pp. 1–7.

[21] H. Stubbe, P4 compiler & interpreter: A survey, Future Internet (FI) and
Innovative Internet Technologies and Mobile Communication (IITM) 47
(2017).

[22] A.-A. Agape, M. C. Danceanu, R. R. Hansen, S. Schmid, Chart-
ing the security landscape of programmable dataplanes, arXiv preprint
arXiv:1807.00128 (2018).

[23] M. V. Dumitru, D. Dumitrescu, C. Raiciu, Can we exploit buggy P4
programs?, in: Proceedings of the Symposium on SDN Research, 2020,
pp. 62–68.

[24] C. Black, S. Scott-Hayward, A survey on the verification of adversarial

https://tinyurl.com/4hepckyu
https://tinyurl.com/p72a9d77

AlSabeh et al. / Computer Networks 00 (2022) 1–43 39

data planes in software-defined networks, in: Proceedings of the 2021
ACM International Workshop on Software Defined Networks & Net-
work Function Virtualization Security, 2021, pp. 3–10.

[25] O. Michel, R. Bifulco, G. Rétvári, S. Schmid, The programmable data
plane: Abstractions, architectures, algorithms, and applications, ACM
Computing Surveys (CSUR) 54 (4) (2021) 1–36.

[26] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, M. Menth, A survey on data plane programming with
P4: Fundamentals, advances, and applied research, arXiv preprint
arXiv:2101.10632 (2021).

[27] S. Kaur, K. Kumar, N. Aggarwal, A review on P4-programmable data
planes: Architecture, research efforts, and future directions, Computer
Communications (2021).

[28] E. F. Kfoury, J. Crichigno, E. Bou-Harb, An exhaustive survey on P4
programmable data plane switches: Taxonomy, applications, challenges,
and future trends, IEEE Access (2021).

[29] S. Hernan, S. Lambert, T. Ostwald, A. Shostack, Threat modeling-
uncover security design flaws using the stride approach, MSDN
Magazine-Louisville (2006) 68–75.

[30] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, M. Conti, A survey on
the security of stateful SDN data planes, IEEE Communications Surveys
& Tutorials 19 (3) (2017) 1701–1725.

[31] P4lang, P4 language consortium. behavioral model (BMv2), [Online].
Available: https://github.com/p4lang/behavioral-model
(2020).

[32] S. Ibanez, G. Brebner, N. McKeown, N. Zilberman, The P4-> NetF-
PGA workflow for line-rate packet processing, in: Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2019, pp. 1–9.

[33] Intel Tofino, P4-programmable ethernet switch ASIC that delivers better
performance at lower power, [Online]. Available: https://tinyurl.
com/3mh96jns.

[34] E. Bou-Harb, N.-E. Lakhdari, H. Binsalleeh, M. Debbabi, Multidimen-
sional investigation of source port 0 probing, Digital Investigation 11
(2014) S114–S123.

[35] The P4.org Architecture Working Group, P4_16 portable switch
architecture (PSA), [Online]. Available: https://tinyurl.com/
zyuu8xtd (2021).

[36] X. Chen, Implementing AES encryption on programmable switches via
scrambled lookup tables, in: Proceedings of the Workshop on Secure
Programmable Network Infrastructure, 2020, pp. 8–14.

[37] V. Gurevich, P4 mapping to Barefoot Tofino(tm), [Online]. Available:
https://tinyurl.com/4rax6rvf.

[38] N. McKeown, End-to-end programmable forwarding, [Online]. Avail-
able: https://tinyurl.com/uj6uptkw (2020).

[39] P. Guide, Intel® 64 and ia-32 architectures software developer’s manual,
Volume 3B: System programming Guide, Part 2 (11) (2011).

[40] N. McKeown, Why does the Internet need a programmable forward-
ing plane, [Online]. Available: https://tinyurl.com/zpsv4waz
(2017).

[41] Arista, Arista 7170 Multi-function Programmable Networking, [On-
line]. Available: https://tinyurl.com/3amndwjy.

[42] E. Networks, Wedge 100BF-32X 100GbE Data Center Switch, [Online].
Available: https://tinyurl.com/z6vad83c.

[43] R. Ben-Basat, X. Chen, G. Einziger, O. Rottenstreich, Efficient measure-
ment on programmable switches using probabilistic recirculation, in:
2018 IEEE 26th International Conference on Network Protocols (ICNP),
IEEE, 2018, pp. 313–323.

[44] H. Soni, M. Rifai, P. Kumar, R. Doenges, N. Foster, Composing data-
plane programs with µP4, in: Proceedings of the Annual conference of
the ACM Special Interest Group on Data Communication on the appli-
cations, technologies, architectures, and protocols for computer commu-
nication, 2020, pp. 329–343.

[45] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, H. Duan, Nethcf: En-
abling line-rate and adaptive spoofed IP traffic filtering, in: 2019 IEEE
27th international conference on network protocols (ICNP), IEEE, 2019,
pp. 1–12.

[46] G. Simsek, H. Bostan, A. K. Sarica, E. Sarikaya, A. Keles, P. Angin,
H. Alemdar, E. Onur, Dropppp: A P4 approach to mitigating DoS at-
tacks in SDN, in: International Workshop on Information Security Ap-
plications, Springer, 2019, pp. 55–66.

[47] P. Kuang, Y. Liu, L. He, P4DAD: Securing duplicate address detection
using P4, in: ICC 2020-2020 IEEE International Conference on Com-
munications (ICC), IEEE, 2020, pp. 1–7.

[48] N. Narayanan, G. C. Sankaran, K. M. Sivalingam, Mitigation of security
attacks in the SDN data plane using P4-enabled switches, in: 2019 IEEE
International Conference on Advanced Networks and Telecommunica-
tions Systems (ANTS), IEEE, 2019, pp. 1–6.

[49] H. Gondaliya, G. C. Sankaran, K. M. Sivalingam, Comparative evalua-
tion of IP address anti-spoofing mechanisms using a P4/NetFPGA-based
switch, in: Proceedings of the 3rd P4 Workshop in Europe, 2020, pp. 1–
6.

[50] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, J. Rex-
ford, Heavy-hitter detection entirely in the data plane, in: Proceedings
of the Symposium on SDN Research, 2017, pp. 164–176.

[51] L. Tang, Q. Huang, P. P. Lee, A fast and compact invertible sketch for
network-wide heavy flow detection, IEEE/ACM Transactions on Net-
working 28 (5) (2020) 2350–2363.

[52] J. Kučera, D. A. Popescu, G. Antichi, J. Kořenek, A. W. Moore, Seek
and push: Detecting large traffic aggregates in the dataplane, arXiv
preprint arXiv:1805.05993 (2018).

[53] R. Harrison, Q. Cai, A. Gupta, J. Rexford, Network-wide heavy hitter
detection with commodity switches, in: Proceedings of the Symposium
on SDN Research, 2018, pp. 1–7.

[54] D. Ding, M. Savi, G. Antichi, D. Siracusa, An incrementally-deployable
P4-enabled architecture for network-wide heavy-hitter detection, IEEE
Transactions on Network and Service Management 17 (1) (2020) 75–88.

[55] G. Li, M. Zhang, S. Wang, C. Liu, M. Xu, A. Chen, H. Hu, G. Gu, Q. Li,
J. Wu, Enabling performant, flexible and cost-efficient DDoS defense
with programmable switches, IEEE/ACM Transactions on Networking
(2021).

[56] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, V. Sekar, Jaqen: A high-performance switch-native ap-
proach for detecting and mitigating volumetric DDoS attacks with pro-
grammable switches.

[57] Â. C. Lapolli, J. A. Marques, L. P. Gaspary, Offloading real-time DDoS
attack detection to programmable data planes, in: 2019 IFIP/IEEE Sym-
posium on Integrated Network and Service Management (IM), IEEE,
2019, pp. 19–27.

[58] A. da Silveira Ilha, Â. C. Lapolli, J. A. Marques, L. P. Gaspary, Eu-
clid: A fully in-network, P4-based approach for real-time DDoS attack
detection and mitigation, IEEE Transactions on Network and Service
Management (2020).

[59] M. Dimolianis, A. Pavlidis, V. Maglaris, A multi-feature DDoS detec-
tion schema on P4 network hardware, in: 2020 23rd Conference on Inno-
vation in Clouds, Internet and Networks and Workshops (ICIN), IEEE,
2020, pp. 1–6.

[60] D. Ding, M. Savi, F. Pederzolli, M. Campanella, D. Siracusa, In-network
volumetric DDoS victim identification using programmable commod-
ity switches, IEEE Transactions on Network and Service Management
(2021).

[61] K. Friday, E. Kfoury, E. Bou-Harb, J. Crichigno, Towards a unified
in-network DDoS detection and mitigation strategy, in: submitted to
IEEE Conference on Network Softwarization (NetSoft), Ghent, Bel-
gium, 2020.

[62] F. Musumeci, V. Ionata, F. Paolucci, F. Cugini, M. Tornatore, Machine-
learning-assisted DDoS attack detection with P4 language, in: ICC
2020-2020 IEEE International Conference on Communications (ICC),
IEEE, 2020, pp. 1–6.

[63] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, P. Cas-
toldi, P4 edge node enabling stateful traffic engineering and cyber secu-
rity, Journal of Optical Communications and Networking 11 (1) (2019)
A84–A95.

[64] D. Scholz, S. Gallenmüller, H. Stubbe, B. Jaber, M. Rouhi, G. Carle,
Me love (SYN-) cookies: SYN flood mitigation in programmable data
planes, arXiv preprint arXiv:2003.03221 (2020).

[65] M. Kuka, K. Vojanec, J. Kučera, P. Benáček, Accelerated DDoS attacks
mitigation using programmable data plane, in: 2019 ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems
(ANCS), IEEE, 2019, pp. 1–3.

[66] X. Z. Khooi, L. Csikor, D. M. Divakaran, M. S. Kang, Dida: Distributed
in-network defense architecture against amplified reflection DDoS at-

https://github.com/p4lang/behavioral-model
https://tinyurl.com/3mh96jns
https://tinyurl.com/3mh96jns
https://tinyurl.com/zyuu8xtd
https://tinyurl.com/zyuu8xtd
https://tinyurl.com/4rax6rvf
https://tinyurl.com/uj6uptkw
https://tinyurl.com/zpsv4waz
https://tinyurl.com/3amndwjy
https://tinyurl.com/z6vad83c

AlSabeh et al. / Computer Networks 00 (2022) 1–43 40

tacks, in: 2020 6th IEEE Conference on Network Softwarization (Net-
Soft), IEEE, 2020, pp. 277–281.

[67] A. Febro, H. Xiao, J. Spring, Distributed SIP DDoS defense with P4,
in: 2019 IEEE Wireless Communications and Networking Conference
(WCNC), IEEE, 2019, pp. 1–8.

[68] A. Kheradmand, G. Rosu, P4k: A formal semantics of P4 and applica-
tions, arXiv preprint arXiv:1804.01468 (2018).

[69] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, C. Raiciu, De-
bugging P4 programs with vera, in: Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, 2018, pp.
518–532.

[70] D. Dumitrescu, R. Stoenescu, L. Negreanu, C. Raiciu, bf4: towards
bug-free P4 programs, in: Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applica-
tions, technologies, architectures, and protocols for computer communi-
cation, 2020, pp. 571–585.

[71] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé,
H. Wang, C. Caşcaval, N. McKeown, N. Foster, P4v: Practical verifi-
cation for programmable data planes, in: Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data Communication,
2018, pp. 490–503.

[72] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, M. Bar-
cellos, Uncovering bugs in P4 programs with assertion-based verifica-
tion, in: Proceedings of the Symposium on SDN Research, 2018, pp.
1–7.

[73] F. Ruffy, T. Wang, A. Sivaraman, Gauntlet: Finding bugs in compilers
for programmable packet processing, arXiv preprint arXiv:2006.01074
(2020).

[74] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, P. Athanas, P4pktgen: Au-
tomated test case generation for P4 programs, in: Proceedings of the
Symposium on SDN Research, 2018, pp. 1–7.

[75] A. Shukla, K. N. Hudemann, A. Hecker, S. Schmid, Runtime verification
of P4 switches with reinforcement learning, in: Proceedings of the 2019
Workshop on Network Meets AI & ML, 2019, pp. 1–7.

[76] H. Kim, A. Gupta, Ontas: Flexible and scalable online network traffic
anonymization system, in: Proceedings of the 2019 Workshop on Net-
work Meets AI & ML, 2019, pp. 15–21.

[77] H. M. Moghaddam, A. Mosenia, Anonymizing masses: Practical light-
weight anonymity at the network level, arXiv preprint arXiv:1911.09642
(2019).

[78] T. Datta, N. Feamster, J. Rexford, L. Wang, SPINE: Surveillance pro-
tection in the network elements, in: 9th USENIX Workshop on Free and
Open Communications on the Internet (FOCI 19), 2019.

[79] L. Wang, H. Kim, P. Mittal, J. Rexford, Programmable in-network ob-
fuscation of dns traffic, in: NDSS: DNS Privacy Workshop, 2021.

[80] F. Hauser, M. Schmidt, M. Häberle, M. Menth, P4-MACsec: Dynamic
topology monitoring and data layer protection with MACsec in P4-based
SDN, IEEE Access 8 (2020) 58845–58858.

[81] F. Hauser, M. Häberle, M. Schmidt, M. Menth, P4-IPsec: Implementa-
tion of IPsec gateways in P4 with SDN control for host-to-site scenarios,
arXiv preprint arXiv:1907.03593 (2019).

[82] G. Liu, W. Quan, N. Cheng, D. Gao, N. Lu, H. Zhang, X. Shen,
Softwarized IoT network immunity against eavesdropping with pro-
grammable data planes, IEEE Internet of Things Journal (2021).

[83] D. Scholz, A. Oeldemann, F. Geyer, S. Gallenmüller, H. Stubbe, T. Wild,
A. Herkersdorf, G. Carle, Cryptographic hashing in P4 data planes,
in: 2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), IEEE, 2019, pp. 1–6.

[84] Y.-B. Lin, T.-J. Huang, S.-C. Tsai, Enhancing 5G/IoT transport security
through content permutation, IEEE Access 7 (2019) 94293–94299.

[85] L. Malina, D. Smekal, S. Ricci, J. Hajny, P. Cíbik, J. Hrabovsky,
Hardware-accelerated cryptography for software-defined networks with
P4, in: International Conference on Information Technology and Com-
munications Security, Springer, 2020, pp. 271–287.

[86] R. Datta, S. Choi, A. Chowdhary, Y. Park, P4guard: Designing P4 based
firewall, in: MILCOM 2018-2018 IEEE Military Communications Con-
ference (MILCOM), IEEE, 2018, pp. 1–6.

[87] J. Cao, J. Bi, Y. Zhou, C. Zhang, Cofilter: A high-performance switch-
assisted stateful packet filter, in: Proceedings of the ACM SIGCOMM
2018 Conference on Posters and Demos, 2018, pp. 9–11.

[88] J. Li, H. Jiang, W. Jiang, J. Wu, W. Du, SDN-based stateful firewall

for cloud, in: 2020 IEEE 6th Intl Conference on Big Data Security on
Cloud (BigDataSecurity), IEEE Intl Conference on High Performance
and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent
Data and Security (IDS), IEEE, 2020, pp. 157–161.

[89] A. Almaini, A. Al-Dubai, I. Romdhani, M. Schramm, Delegation of au-
thentication to the data plane in software-defined networks, in: 2019
IEEE International Conferences on Ubiquitous Computing & Com-
munications (IUCC) and Data Science and Computational Intelligence
(DSCI) and Smart Computing, Networking and Services (SmartCNS),
IEEE, 2019, pp. 58–65.

[90] A. Almaini, A. Al-Dubai, I. Romdhani, M. Schramm, A. Alsarhan,
Lightweight edge authentication for software defined networks, Com-
puting 103 (2) (2021) 291–311.

[91] E. O. Zaballa, D. Franco, Z. Zhou, M. S. Berger, P4knocking: Offload-
ing host-based firewall functionalities to the network, in: 2020 23rd Con-
ference on Innovation in Clouds, Internet and Networks and Workshops
(ICIN), IEEE, 2020, pp. 7–12.

[92] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, Q. Wang,
NetFPGA-based firewall solution for 5G multi-tenant architectures, in:
2019 IEEE International Conference on Edge Computing (EDGE),
IEEE, 2019, pp. 132–136.

[93] J. Xing, Q. Kang, A. Chen, Netwarden: Mitigating network covert chan-
nels while preserving performance, in: 29th USENIX Security Sympo-
sium (USENIX Security 20), 2020, pp. 2039–2056.

[94] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, X. Luo, Pro-
grammable in-network security for context-aware BYOD policies, in:
Proc. USENIX Security, 2020.

[95] J. Xing, W. Wu, A. Chen, Architecting programmable data plane de-
fenses into the network with fastflex, in: Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, 2019, pp. 161–169.

[96] A. Laraba, J. François, I. Chrisment, S. R. Chowdhury, R. Boutaba, De-
feating protocol abuse with P4: Application to explicit congestion no-
tification, in: 2020 IFIP Networking Conference (Networking), IEEE,
2020, pp. 431–439.

[97] A. Laraba, J. François, S. R. Chowdhury, I. Chrisment, R. Boutaba,
Mitigating TCP protocol misuse with programmable data planes, IEEE
Transactions on Network and Service Management 18 (1) (2021) 760–
774.

[98] M. Bonfim, M. Santos, K. Dias, S. Fernandes, A real-time attack defense
framework for 5G network slicing, Software: Practice and Experience
(2020).

[99] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos,
A. Madeira, Flowlens: Enabling efficient flow classification for ml-
based network security applications, in: Proceedings of the 28th Net-
work and Distributed System Security Symposium (San Diego, CA,
USA, 2021.

[100] Q. Qin, K. Poularakis, K. K. Leung, L. Tassiulas, Line-speed and scal-
able intrusion detection at the network edge via federated learning, in:
2020 IFIP Networking Conference (Networking), IEEE, 2020, pp. 352–
360.

[101] M. Majkowski, The real cause of large DDoS - IP spoofing, [Online].
Available: https://tinyurl.com/yktw6ud2.

[102] CAIDA, Spoofer, [Online]. Available: https://www.caida.org/
projects/spoofer/.

[103] P. Ferguson, D. Senie, rfc2827: network ingress filtering: defeating de-
nial of service attacks which employ IP source address spoofing (2000).

[104] F. Baker, P. Savola, Ingress filtering for multihomed networks, Tech.
rep., BCP 84, RFC 3704, March (2004).

[105] A. Bremler-Barr, H. Levy, Spoofing prevention method, in: Proceedings
IEEE 24th Annual Joint Conference of the IEEE Computer and Com-
munications Societies., Vol. 1, IEEE, 2005, pp. 536–547.

[106] J. Bi, J. Wu, G. Yao, F. Baker, Source address validation improvement
(SAVI) solution for DHCP, RFC 7513 (2015).

[107] J. Li, M. Sung, J. Xu, L. Li, Large-scale IP traceback in high-speed
internet: Practical techniques and theoretical foundation, in: IEEE Sym-
posium on Security and Privacy, 2004. Proceedings. 2004, IEEE, 2004,
pp. 115–129.

[108] S. Savage, D. Wetherall, A. Karlin, T. Anderson, Practical network sup-
port for IP traceback, in: Proceedings of the conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tion, 2000, pp. 295–306.

https://tinyurl.com/yktw6ud2
https://www.caida.org/projects/spoofer/
https://www.caida.org/projects/spoofer/

AlSabeh et al. / Computer Networks 00 (2022) 1–43 41

[109] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent, W. T. Strayer, Hash-based IP traceback, ACM SIGCOMM
Computer Communication Review 31 (4) (2001) 3–14.

[110] A. D. Keromytis, V. Misra, D. Rubenstein, Sos: Secure overlay services,
ACM SIGCOMM Computer Communication Review 32 (4) (2002) 61–
72.

[111] J. Li, J. Mirkovic, M. Wang, P. Reiher, L. Zhang, Save: Source ad-
dress validity enforcement protocol, in: Proceedings. Twenty-First An-
nual Joint Conference of the IEEE Computer and Communications So-
cieties, Vol. 3, IEEE, 2002, pp. 1557–1566.

[112] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
S. Shenker, Controlling high bandwidth aggregates in the network, ACM
SIGCOMM Computer Communication Review 32 (3) (2002) 62–73.

[113] O. Spatscheck, L. L. Peterson, Defending against denial of service at-
tacks in scout, in: OSDI, Vol. 99, 1999, pp. 59–72.

[114] X. Qie, R. Pang, L. Peterson, Defensive programming: Using an anno-
tation toolkit to build DoS-resistant software, ACM SIGOPS Operating
Systems Review 36 (SI) (2002) 45–60.

[115] G. Banga, P. Druschel, J. C. Mogul, Resource containers: A new facility
for resource management in server systems, in: OSDI, Vol. 99, 1999,
pp. 45–58.

[116] X. Wang, M. K. Reiter, Defending against denial-of-service attacks with
puzzle auctions, in: 2003 Symposium on Security and Privacy, 2003.,
IEEE, 2003, pp. 78–92.

[117] A. Juels, Client puzzles: A cryptographic countermeasure against con-
nection depletion attacks, in: Proc. Networks and Distributed System
Security Symposium (NDSS), 1999, 1999.

[118] Introduction to cisco ios netflow - a technical overview, [Online]. Avail-
able: https://tinyurl.com/52jcc282.

[119] Y. Zhang, S. Singh, S. Sen, N. Duffield, C. Lund, Online identification
of hierarchical heavy hitters: algorithms, evaluation, and applications,
in: Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement, 2004, pp. 101–114.

[120] R. S. Boyer, J. S. Moore, Mjrty—a fast majority vote algorithm, in: Au-
tomated Reasoning, Springer, 1991, pp. 105–117.

[121] C. E. Shannon, A mathematical theory of communication, ACM SIG-
MOBILE mobile computing and communications review 5 (1) (2001)
3–55.

[122] G. Cormode, S. Muthukrishnan, An improved data stream summary:
the count-min sketch and its applications, Journal of Algorithms 55 (1)
(2005) 58–75.

[123] C. Estan, G. Varghese, M. Fisk, Bitmap algorithms for counting active
flows on high speed links, in: Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, 2003, pp. 153–166.

[124] J. Heinanen, R. Guérin, A two rate three color marker, Tech. rep., RFc
2698, SepTeMbeR (1999).

[125] P. Flajolet, É. Fusy, O. Gandouet, F. Meunier, Hyperloglog: the analysis
of a near-optimal cardinality estimation algorithm, in: Discrete Math-
ematics and Theoretical Computer Science, Discrete Mathematics and
Theoretical Computer Science, 2007, pp. 137–156.

[126] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, V. Braverman, One sketch
to rule them all: Rethinking network flow monitoring with univmon,
in: Proceedings of the 2016 ACM SIGCOMM Conference, 2016, pp.
101–114.

[127] A. Jean-Philippe, D. Bernstein, Siphash: a fast short-input prf, Progress
in Cryptology-INDOCRYPT (2012) 489–508.

[128] D. Bogdanas, G. Roşu, K-java: a complete semantics of java, in: Pro-
ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2015, pp. 445–456.

[129] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, H. Veith, Model
checking, MIT press, 2018.

[130] R. Stoenescu, M. Popovici, L. Negreanu, C. Raiciu, Symnet: Scalable
symbolic execution for modern networks, in: Proceedings of the 2016
ACM SIGCOMM Conference, 2016, pp. 314–327.

[131] V. Altukhov, V. Podymov, V. Zakharov, E. Chemeritskiy, Vermont-a
toolset for checking SDN packet forwarding policies on-line, in: 2014
International Science and Technology Conference (Modern Networking
Technologies)(MoNeTeC), IEEE, 2014, pp. 1–6.

[132] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, S. T. King,
Debugging the data plane with anteater, ACM SIGCOMM Computer
Communication Review 41 (4) (2011) 290–301.

[133] P. Kazemian, G. Varghese, N. McKeown, Header space analysis: Static
checking for networks, in: 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12), 2012, pp. 113–126.

[134] A. Khurshid, X. Zou, W. Zhou, M. Caesar, P. B. Godfrey, Veriflow: Ver-
ifying network-wide invariants in real time, in: 10th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 13),
2013, pp. 15–27.

[135] A. Bogdanov, L. R. Knudsen, G. Leander, F.-X. Standaert, J. Stein-
berger, E. Tischhauser, Key-alternating ciphers in a provable setting:
Encryption using a small number of public permutations, in: Annual
international conference on the theory and applications of cryptographic
techniques, Springer, 2012, pp. 45–62.

[136] tcpanon, [Online]. Available: http://netweb.ing.unibs.it/
~ntw/tools/tcpanon/.

[137] T. Gamer, C. Mayer, M. Schöller, Pktanon–a generic framework for
profile-based traffic anonymization (2008).

[138] M. G. Reed, P. F. Syverson, D. M. Goldschlag, Anonymous connections
and onion routing, IEEE Journal on Selected areas in Communications
16 (4) (1998) 482–494.

[139] J. Fan, J. Xu, M. H. Ammar, S. B. Moon, Prefix-preserving IP ad-
dress anonymization: Measurement-based security evaluation and a new
cryptography-based scheme, Computer Networks 46 (2) (2004) 253–
272.

[140] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti,
E. Roback, Report on the development of the advanced encryption stan-
dard (AES), Journal of Research of the National Institute of Standards
and Technology 106 (3) (2001) 511.

[141] 802.1AE: MAC Security (MACsec), [Online]. Available: https://1.
ieee802.org/security/802-1ae/.

[142] S. Kent, R. Atkinson, Security architecture for the internet protocol
(1998).

[143] J. Salowey, A. Choudhury, D. McGrew, AES galois counter mode
(GCM) cipher suites for TLS, Request for Comments 5288 (2008).

[144] D. J. Bernstein, The Poly1305-AES message-authentication code, in:
International Workshop on Fast Software Encryption, Springer, 2005,
pp. 32–49.

[145] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, C. Winnerlein, Blake2:
simpler, smaller, fast as md5, in: International Conference on Applied
Cryptography and Network Security, Springer, 2013, pp. 119–135.

[146] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel, S. Laki, T4p4s:
A target-independent compiler for protocol-independent packet proces-
sors, in: 2018 IEEE 19th International Conference on High Performance
Switching and Routing (HPSR), IEEE, 2018, pp. 1–8.

[147] Nfp-4000 theory of operation, [Online]. Available: https://
tinyurl.com/5fpa4j65.

[148] Siphash, [Online]. Available: https://tinyurl.com/2ut57b8n.
[149] Sha3, [Online]. Available: https://github.com/freecores/sha3.
[150] Pensando, Pensando announces p4-programmable platform and joins p4

community, [Online]. Available: https://tinyurl.com/6bwuyeyp
(2021).

[151] Z. Ni, G. Liu, D. Afanasev, T. Wood, J. Hwang, Advancing network
function virtualization platforms with programmable nics, in: 2019
IEEE International Symposium on Local and Metropolitan Area Net-
works (LANMAN), IEEE, 2019, pp. 1–6.

[152] L. Lamport, Password authentication with insecure communication,
Communications of the ACM 24 (11) (1981) 770–772.

[153] GPRS Tunneling Protocol (GTP) Overview, [Online]. Available:
https://tinyurl.com/4up23wm9.

[154] H. Hu, G.-J. Ahn, W. Han, Z. Zhao, Towards a reliable SDN firewall, in:
Open Networking Summit 2014 (ONS 2014), 2014.

[155] S. Zhang, An overview of network slicing for 5G, IEEE Wireless Com-
munications 26 (3) (2019) 111–117.

[156] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized
neural networks: Training deep neural networks with weights and acti-
vations constrained to+ 1 or-1, arXiv preprint arXiv:1602.02830 (2016).

[157] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, D. Ba-
con, Federated learning: Strategies for improving communication effi-
ciency, arXiv preprint arXiv:1610.05492 (2016).

[158] M. Ghasemi, T. Benson, J. Rexford, Dapper: Data plane performance
diagnosis of TCP, in: Proceedings of the Symposium on SDN Research,
2017, pp. 61–74.

https://tinyurl.com/52jcc282
http://netweb.ing.unibs.it/~ntw/tools/tcpanon/
http://netweb.ing.unibs.it/~ntw/tools/tcpanon/
https://1.ieee802.org/security/802-1ae/
https://1.ieee802.org/security/802-1ae/
https://tinyurl.com/5fpa4j65
https://tinyurl.com/5fpa4j65
https://tinyurl.com/2ut57b8n
https://github.com/freecores/sha3
https://tinyurl.com/6bwuyeyp
https://tinyurl.com/4up23wm9

AlSabeh et al. / Computer Networks 00 (2022) 1–43 42

[159] J. Halpern, C. Pignataro, et al., Service function chaining (SFC) archi-
tecture, in: RFC 7665, 2015.

[160] P. Quinn, U. Elzur, C. Pignataro, Network service header (NSH), in:
RFC 8300, RFC Editor, 2018.

[161] S. R. Chowdhury, M. F. Bari, R. Ahmed, R. Boutaba, Payless: A low
cost network monitoring framework for software defined networks, in:
2014 IEEE Network Operations and Management Symposium (NOMS),
IEEE, 2014, pp. 1–9.

[162] M. Yu, L. Jose, R. Miao, Software defined traffic measurement with
opensketch, in: 10th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 13), 2013, pp. 29–42.

[163] H. Song, T. Zhou, Z. Li, J. Shin, K. Lee, Postcard-based on-path flow
data telemetry draft-song-ippm-postcard-based-telemetry-06, Tech. rep.
(2020).

[164] Q. Kang, J. Xing, A. Chen, Automated attack discovery in data plane
systems, in: 12th USENIX Workshop on Cyber Security Experimenta-
tion and Test (CSET 19), 2019.

[165] X. Pan, S. Tang, S. Liu, J. Kong, X. Zhang, D. Hu, J. Qi, Z. Zhu, Privacy-
preserving multilayer in-band network telemetry and data analytics: For
safety, please do not report plaintext data, Journal of Lightwave Tech-
nology (2020).

[166] S. Ariyapperuma, C. J. Mitchell, Security vulnerabilities in DNS and
DNSSEC, in: The Second International Conference on Availability, Re-
liability and Security (ARES’07), IEEE, 2007, pp. 335–342.

[167] N. Shevchenko, T. A. Chick, P. O’Riordan, T. P. Scanlon, C. Woody,
Threat modeling: a summary of available methods, Tech. rep., Carnegie
Mellon University Software Engineering Institute (2018).

[168] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, L. J. Wobker, In-band
network telemetry via programmable dataplanes, in: ACM SIGCOMM,
2015.

[169] F. Brockners, S. Bhandari, S. Dara, C. Pignataro, H. Gredler, J. Leddy,
S. Youell, D. Mozes, T. Mizrahi, P. Lapukhov, et al., Requirements for
in-situ oam, in: Working Draft, Internet-Draft draft-brockners-inband-
oam-requirements-03, 2017.

[170] G. Fioccola, A. Capello, M. Cociglio, L. Castaldelli, M. G. Chen,
L. Zheng, G. Mirsky, T. Mizrahi, Alternate-marking method for passive
and hybrid performance monitoring., RFC 8321 (2018) 1–33.

[171] T. Pan, E. Song, Z. Bian, X. Lin, X. Peng, J. Zhang, T. Huang, B. Liu,
Y. Liu, INT-path: Towards optimal path planning for in-band network-
wide telemetry, in: IEEE INFOCOM 2019-IEEE Conference on Com-
puter Communications, IEEE, 2019, pp. 487–495.

[172] N. Katta, M. Hira, C. Kim, A. Sivaraman, J. Rexford, Hula: Scalable
load balancing using programmable data planes, in: Proceedings of the
Symposium on SDN Research, 2016, pp. 1–12.

[173] C. H. Benet, A. J. Kassler, T. Benson, G. Pongracz, Mp-hula: Multi-
path transport aware load balancing using programmable data planes, in:
Proceedings of the 2018 Morning Workshop on In-Network Computing,
2018, pp. 7–13.

[174] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
L. Vanbever, Blink: Fast connectivity recovery entirely in the data plane,
in: 16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 19), 2019, pp. 161–176.

[175] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, et al., Hpcc: High precision conges-
tion control, in: Proceedings of the ACM Special Interest Group on Data
Communication, 2019, pp. 44–58.

[176] B. Turkovic, F. Kuipers, N. van Adrichem, K. Langendoen, Fast net-
work congestion detection and avoidance using P4, in: Proceedings of
the 2018 Workshop on Networking for Emerging Applications and Tech-
nologies, 2018, pp. 45–51.

[177] E. F. Kfoury, J. Crichigno, E. Bou-Harb, D. Khoury, G. Srivastava, En-
abling TCP pacing using programmable data plane switches, in: 2019
42nd International Conference on Telecommunications and Signal Pro-
cessing (TSP), IEEE, 2019, pp. 273–277.

[178] F. Shaikh, E. Bou-Harb, N. Neshenko, A. P. Wright, N. Ghani, Internet
of malicious things: Correlating active and passive measurements for
inferring and characterizing internet-scale unsolicited iot devices, IEEE
Communications Magazine 56 (9) (2018) 170–177.

[179] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, I. Stoica,
Distcache: Provable load balancing for large-scale storage systems with
distributed caching, in: 17th USENIX Conference on File and Storage

Technologies (FAST 19), 2019, pp. 143–157.
[180] B. de Haan, Multitenancy and resource management for in-network

caching, Ph.D. thesis, Universiteit van Amsterdam (2021).
[181] E. Cidon, S. Choi, S. Katti, N. McKeown, Appswitch: Application-layer

load balancing within a software switch, in: Proceedings of the First
Asia-Pacific Workshop on Networking, 2017, pp. 64–70.

[182] S. Goldberg, J. Rexford, Security vulnerabilities and solutions for packet
sampling, in: 2007 IEEE Sarnoff Symposium, IEEE, 2007, pp. 1–7.

[183] R. Kundel, L. Nobach, J. Blendin, W. Maas, A. Zimber, H.-J. Kolbe,
G. Schyguda, V. Gurevich, R. Hark, B. Koldehofe, et al., Openbng:
Central office network functions on programmable data plane hardware,
International Journal of Network Management 31 (1) (2021) e2134.

[184] R. Shah, V. Kumar, M. Vutukuru, P. Kulkarni, Turboepc: leveraging
dataplane programmability to accelerate the mobile packet core, in: Pro-
ceedings of the Symposium on SDN Research, 2020, pp. 83–95.

[185] S. K. Singh, C. E. Rothenberg, G. Patra, G. Pongracz, Offloading virtual
evolved packet gateway user plane functions to a programmable ASIC,
in: Proceedings of the 1st ACM CoNEXT Workshop on Emerging in-
Network Computing Paradigms, 2019, pp. 9–14.

[186] P. Palagummi, K. M. Sivalingam, Smartho: A network initiated han-
dover in ng-ran using P4-based switches, in: 2018 14th International
Conference on Network and Service Management (CNSM), IEEE, 2018,
pp. 338–342.

[187] E. F. Kfoury, J. Crichigno, E. Bou-Harb, Offloading media traffic to pro-
grammable data plane switches, in: ICC 2020-2020 IEEE International
Conference on Communications (ICC), IEEE, 2020, pp. 1–7.

[188] R. Ricart-Sanchez, P. Malagon, P. Salva-Garcia, E. C. Perez, Q. Wang,
J. M. A. Calero, Towards an FPGA-accelerated programmable data path
for edge-to-core communications in 5G networks, Journal of Network
and Computer Applications 124 (2018) 80–93.

[189] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zilberman, H. Weather-
spoon, M. Canini, F. Pedone, R. Soulé, Partitioned paxos via the network
data plane, arXiv preprint arXiv:1901.08806 (2019).

[190] M. Burrows, The chubby lock service for loosely-coupled distributed
systems, in: Proceedings of the 7th symposium on Operating systems
design and implementation, 2006, pp. 335–350.

[191] Openreplica, [Online]. Available: https://openreplica.org/.
[192] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, C. Maltzahn, Ceph:

A scalable, high-performance distributed file system, in: Proceedings of
the 7th symposium on Operating systems design and implementation,
2006, pp. 307–320.

[193] H. T. Dang, M. Canini, F. Pedone, R. Soulé, Paxos made switch-y, ACM
SIGCOMM Computer Communication Review 46 (2) (2016) 18–24.

[194] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zilberman, H. Weather-
spoon, M. Canini, F. Pedone, R. Soulé, P4xos: Consensus as a network
service, IEEE/ACM Transactions on Networking 28 (4) (2020) 1726–
1738.

[195] J. Li, E. Michael, N. K. Sharma, A. Szekeres, D. R. Ports, Just say NO to
paxos overhead: Replacing consensus with network ordering, in: 12th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 16), 2016, pp. 467–483.

[196] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, I. Stoica,
Netchain: Scale-free sub-rtt coordination, in: 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), 2018,
pp. 35–49.

[197] J. Li, E. Michael, D. R. Ports, Eris: Coordination-free consistent transac-
tions using in-network concurrency control, in: Proceedings of the 26th
Symposium on Operating Systems Principles, 2017, pp. 104–120.

[198] J. R. Douceur, The sybil attack, in: International workshop on peer-to-
peer systems, Springer, 2002, pp. 251–260.

[199] X. Chen, H. Kim, J. M. Aman, W. Chang, M. Lee, J. Rexford, Measuring
TCP round-trip time in the data plane, in: Proceedings of the Workshop
on Secure Programmable Network Infrastructure, 2020, pp. 35–41.

[200] N. L. Scouarnec, Cuckoo++ hash tables: High-performance hash tables
for networking applications, in: Proceedings of the 2018 Symposium on
Architectures for Networking and Communications Systems, 2018, pp.
41–54.

[201] D. Kim, Y. Zhu, C. Kim, J. Lee, S. Seshan, Generic external memory for
switch data planes, in: Proceedings of the 17th ACM Workshop on Hot
Topics in Networks, 2018, pp. 1–7.

[202] V. Bruschi, R. B. Basat, Z. Liu, G. Antichi, G. Bianchi, M. Mitzen-

https://openreplica.org/

AlSabeh et al. / Computer Networks 00 (2022) 1–43 43

macher, Discovering the heavy hitters with disaggregated sketches, in:
Proceedings of the 16th International Conference on emerging Network-
ing EXperiments and Technologies, 2020, pp. 536–537.

[203] D. Ding, M. Savi, D. Siracusa, Estimating logarithmic and exponential
functions to track network traffic entropy in P4, in: NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium, IEEE,
2020, pp. 1–9.

[204] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson,
S. Peter, Evaluating the power of flexible packet processing for network
resource allocation, in: 14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 17), 2017, pp. 67–82.

[205] E. Bou-Harb, M. Debbabi, C. Assi, A novel cyber security capability:
Inferring internet-scale infections by correlating malware and probing
activities, Computer Networks 94 (2016) 327–343.

[206] C. Pignataro, P. Quinn, Service function chaining, [Online]. Available:
https://tinyurl.com/hsax6vyt.

[207] S. Han, S. Jang, H. Choi, H. Lee, S. Pack, Virtualization in pro-
grammable data plane: A survey and open challenges, IEEE Open Jour-
nal of the Communications Society 1 (2020) 527–534.

[208] D. Hancock, J. Van der Merwe, Hyper4: Using P4 to virtualize the pro-
grammable data plane, in: Proceedings of the 12th International on Con-
ference on emerging Networking EXperiments and Technologies, 2016,
pp. 35–49.

[209] C. Zhang, J. Bi, Y. Zhou, J. Wu, Hypervdp: High-performance virtual-
ization of the programmable data plane, IEEE Journal on Selected Areas
in Communications 37 (3) (2019) 556–569.

[210] P. Zheng, T. Benson, C. Hu, P4visor: Lightweight virtualization and

composition primitives for building and testing modular programs, in:
Proceedings of the 14th International Conference on Emerging Network-
ing EXperiments and Technologies, 2018, pp. 98–111.

[211] R. Stoyanov, N. Zilberman, Mtpsa: Multi-tenant programmable
switches, in: Proceedings of the 3rd P4 Workshop in Europe, 2020, pp.
43–48.

[212] D. Wu, A. Chen, T. E. Ng, G. Wang, H. Wang, Accelerated service
chaining on a single switch ASIC, in: Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, 2019, pp. 141–149.

[213] T. Jepsen, D. Alvarez, N. Foster, C. Kim, J. Lee, M. Moshref, R. Soulé,
Fast string searching on pisa, in: Proceedings of the 2019 ACM Sympo-
sium on SDN Research, 2019, pp. 21–28.

[214] J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. DeHon, J. M.
Smith, Deepmatch: practical deep packet inspection in the data plane
using network processors, in: Proceedings of the 16th International Con-
ference on emerging Networking EXperiments and Technologies, 2020,
pp. 336–350.

[215] Nfp-6000 intelligent ethernet controller family, [Online]. Available:
https://tinyurl.com/r3bkbjwj.

[216] Y. Shi, M. Wen, C. Zhang, Incremental deployment of programmable
switches for sketch-based network measurement, in: 2020 IEEE Sym-
posium on Computers and Communications (ISCC), IEEE, 2020, pp.
1–7.

[217] T. Mai, S. Garg, H. Yao, J. Nie, G. Kaddoum, Z. Xiong, In-network in-
telligence control: Toward a self-driving networking architecture, IEEE
Network 35 (2) (2021) 53–59.

https://tinyurl.com/hsax6vyt
https://tinyurl.com/r3bkbjwj

	Introduction
	Contribution
	Paper Organization

	Related Work
	Background Information
	P4 Language and the Portable Switch Architecture (PSA)
	Domain-specific Processor for Networking
	Advantages of Programmable Switches
	Limitations of Programmable Switches

	Methodology and Taxonomy
	Survey Methodology
	Taxonomy Overview

	Network Availability
	Spoofing Attacks
	Background
	Literature
	Anti-spoofing Defenses: Comparison, Discussions, and Limitations
	Comparison with Traditional IP Spoofing defenses

	DDoS Attacks
	Background
	Literature
	DDoS Defenses: Comparison, Discussions, and Limitations
	Comparison with Traditional DDoS defenses

	Network Verification
	Background
	Literature
	Verification Schemes: Comparison, Discussions, and Limitations
	Comparison with Traditional Verification Approaches

	Summary and Lessons Learned

	Anonymity and Confidentiality
	Privacy and Anonymity
	Background
	Literature
	Privacy and Anonymity Schemes: Comparison, Discussions, and Limitations
	Comparison with Traditional Approaches

	Cryptography and Security Protocols
	Background
	Literature
	Cryptography and Security Protocols Schemes: Comparison, Discussions, and Limitations
	Comparison with Traditional Cryptographic and Security Protocols Implementations

	Summary and Lessons Learned

	Operational Security Provisioning
	Firewalls
	Background
	Literature Review

	Firewall: Comparison, Discussions, and Limitations
	Comparison with Legacy Firewalls
	Generic Defenses
	Background
	Literature
	Generic Defenses: Comparison, Discussions, and Limitations
	Comparison with Legacy Approaches

	Summary and Lessons Learned

	Stride-based Model Security Analysis of P4 Applications
	Network Telemetry
	Background
	Vulnerability Assessment
	Plausible Remediation Approaches
	Summary and Lessons Learned

	Load Balancing
	Background
	Vulnerability Assessment
	Plausible Remediation Approaches
	Summary and Lessons Learned

	Congestion Control
	Background
	Vulnerability Assessment
	Plausible Remediation Approaches
	Summary and Lessons Learned

	In-network Cache
	Background
	Vulnerability Assessment
	Plausible Remediation Approaches
	Summary and Lessons Learned

	Cryptography
	Background
	Vulnerability Assessment
	Plausible Remediation Approaches
	Summary and Lessons Learned

	Telecommunication Services
	Background
	Vulnerability Assessment
	Plausible Remediation Approaches
	Summary and Lessons Learned

	Consensus
	Background
	Vulnerability Assessment
	Plausible Remediation Approaches
	Summary and Lessons Learned

	Application-agnostic
	Background
	Vulnerability Assessment
	Plausible Remediation Approaches
	Summary and Lessons Learned

	Challenges, Current Initiatives and Future Work
	Memory Size and Accessibility
	Current Initiatives and Future Work

	Processing Capabilities
	Current Initiatives and Future Work

	Program Virtualization
	Current Initiatives and Future Work

	Deep Packet Inspection (DPI)
	Current Initiatives and Future Work

	Interoperability
	Current Initiatives and Future Work

	Self-driving Network
	Current Initiatives and Future Work

	Conclusion

