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Abstract—The performance of networked applications can be
dramatically impacted by the size of the buffer at the bottleneck
router. Shallow buffers may increase packet losses and decrease
link utilization, while deep buffers may increase the queueing
delays for latency-sensitive flows. Operators nowadays configure
large buffers statically without considering the characteristics
of flows or dynamic traffic patterns. This paper presents P4BS,
a system that dynamically modifies the buffer size of a legacy
router. P4BS leverages programmable switches as passive instru-
ments to measure various metrics that are vital when deciding
on buffer size. The measured metrics include the number of
long-lived flows and their round-trip times, the packet loss
rates, and the queueing delays. Using these measurements, the
programmable switch sequentially searches for a buffer size that
minimizes the queueing delays and the packet loss rates. The
system was implemented on a Tofino hardware switch and the
system was tested on a wide range of network scenarios. The
results show improvements in the quality of service of various
applications including web browsing, video streaming, and voice
over IP.

Index Terms—Buffer sizing, P4, Measurements, Bayesian Op-
timization, Passive Deployment.

I. INTRODUCTION

Packet-switched devices (e.g., routers, switches) are
equipped with buffers that help in accommodating transient
bursts, absorbing traffic fluctuations, reducing packet drop
rates, and ensuring high link utilization [1]. The size of
a buffer significantly impacts the performance of network
applications [2–4]. Despite the continuous research efforts
on buffer sizing throughout the years [5–9], there is still no
convention on “How big should a buffer be?”. One might think
that large buffers are favorable to improving the performance
of the network. This intuition is incorrect; deep buffers incur
unnecessary delays as packets have to wait in a long queue.
In contrast, short buffers might decrease link utilization and
increase packet drop rates.

For a long time, buffers were sized based on the general
rule-of-thumb [5] which recommends a size equal to at least
C · RTTmin, where C is the link capacity and RTTmin is
the average minimum Round-Trip Time (RTT). The quantity
C ·RTTmin is also referred to as the Bandwidth-delay Product
(BDP). In 2004, a seminal paper by Appenzeller et al. [6]
demonstrated that the buffer size can be significantly reduced
to C·RTTmin√

N
, where N is the number of large flows that

are persistent over time. This buffer size rule (known as
the Stanford rule) was proposed based on the dynamics of
the Additive-Increase Multiplicative-Decrease (AIMD) control

law used by early versions of TCP (e.g., NewReno). Since
then, numerous works criticized and proposed variations to
this rule [10–13].

A recent study [14] analyzed the Alexa Top 20,000 websites
to infer which Congestion Control Algorithms (CCAs) are
being used. The findings indicate a significant shift in the rep-
resentation of CCAs over the years. Back in 2001, NewReno
(loss-based variant) accounted for 100% of the traffic, but in
2019, it only constituted 1% of the traffic. Cubic, which is the
dominant TCP variant, represented 42% of the traffic in 2019.
Despite also being a loss-based variant, Cubic necessitates
a distinct buffer size compared to NewReno [15]. Another
noteworthy development is the emergence of BBR [16], which
constitutes 33% of the traffic in 2019. The prevailing buffer
sizing rules were designed under the assumption that flows
would primarily use NewReno. Consequently, these rules may
not align optimally with Cubic’s or BBR’s requirements. The
diversity of CCAs on the Internet and their distributions
resuscitate the problem of buffer sizing [9].

Specifying a static buffer size might not yield optimal
performance for two main reasons. First, distinct CCAs re-
quire different buffer sizes; a recent study [15] analyzed the
buffer requirements for various CCAs under different network
conditions, and the reported buffer sizes vary significantly.
Second, metrics used for buffer sizing such as the RTT
and the number of large flows, frequently change over time.
The other alternative to static buffer sizing is to leverage
live measurements to dynamically modify the buffer size in
a closed-loop. The advantage of this approach is that the
buffer is changing according to network conditions, and little
knowledge is required about the dynamics of CCAs traversing
the bottleneck link. The drawback, however, is that the metrics
are very hard to estimate in contemporary deployments [17],
especially with high traffic rates. Another drawback is the
lack of availability of such techniques in today’s routers and
switches.

In the past few years, programmable switches have emerged
as a promising approach to customize the data plane behavior
and to accelerate a wide range of applications (e.g., congestion
control [18], telemetry [19], load balancing [20], caching [21],
machine learning training [22], and many others [23]). Due to
their high precision, low cost, and compute power, recent work
[24], [25] has investigated using these switches as instruments
to process traffic measurements at terabits per second rates.
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A. Contributions

This paper proposes P4 Buffer Sizing (P4BS), a cost-
efficient scheme that dynamically modifies a legacy router’s
buffer size after measuring the current network conditions. The
traffic is analyzed by tapping on the router’s ports and forward-
ing the traffic to a programmable switch. The programmable
switch then calculates various metrics that affect the buffer
size such as the number of long flows, the RTTs, the packet
loss rates, and the queueing delays, and then derives a buffer
size by solving an optimization problem. The calculated buffer
size is then configured on the legacy router. The contributions
can be framed as follows:
• Devising a dynamic buffer size allocation scheme that relies

on programmable switches as passive measurements.
• Identifying large flows, tracking their counts, measuring

their RTTs, calculating the packet loss rates, and the queue-
ing delays, entirely in the data plane.

• Deriving a buffer size using Bayesian Optimization, a se-
quential design strategy used to solve blackbox functions.
The derived buffer size minimizes the queueing delays and
the packet losses, and maximizes the utilization of the link.

• Improving the quality of service of various user-centric
applications including web browsing, Voice over IP (VoIP),
and HTTP-based video streaming.

B. Paper roadmap

The paper is organized as follows. Section II provides
a background on the existing buffer sizing techniques and
motivates the need for P4BS. Section III describes an overview
of the proposed system and the design goals. Section IV
explains how P4BS calculates and tracks the metrics in both
the data and the control planes of the switch. Section V
formulates and solves an optimization problem to derive a
final buffer size. Section VI discusses the results obtained from
experiments conducted on physical routers and switches. Sec-
tion VII provides some discussions and challenges faced when
implementing the system. Finally, Section VIII concludes the
paper and highlights potential future work.

II. BACKGROUND AND MOTIVATION

This section provides a short background on different buffer
sizing regimes proposed in the literature. Moreover, it provides
discussions that motivate the need for the proposed system.

A. Static buffer sizing

The different static buffer size recommendations in the
literature assume that a router is carrying long-lived TCP flows
that adhere to the AIMD control law.

Rule-of-thumb (BDP). For a long time, buffers were sized
based on the general rule-of-thumb [5] which recommends a
size equal to at least C ·RTTmin, where C is the link capacity
and RTTmin is the average minimum RTT. This quantity
assumes a single long-lived TCP flow (or many synchronized
flows experiencing losses within the same RTT) going through
the bottleneck link.

Small buffer rules. In a realistic environment, the bottleneck
link may be shared by many flows with different RTTs.
The large number of flows and the variation in their RTTs
cause desynchronization. In such case, the buffer can be
significantly reduced to C·RTTmin√

N
, where N is the number

of large flows that are persistent over time [6]. Another rule
that recommends even smaller sizes known as the “Tiny buffer
rule” [26] suggests that the buffer can be further reduced to
B ≥ O(logW ), where W is the average window size. In this
rule, the buffer size is as small as 20-50 packets, but at the
cost of a 10-20% drop in link utilization. This model assumes
that flows are not synchronized and the traffic is not bursty
(e.g., when pacing is enabled on end-hosts stacks, or when
bursts are absorbed by core routers which operate at a higher
speed than access routers).

Large buffers. According to [9], router vendors recommend
larger buffers (up to 200ms of line rate), and operators
typically use such buffers to mitigate packet losses and to
meet Service-Level Agreements (SLAs). However, with such
buffers, flows will suffer from excessive queueing delays.

Discussions. The static rules consider link utilization as the
sole constraint to satisfy. This metric is operator-centric (i.e.,
it makes sure that the network resources are fully utilized) but
not necessarily user-centric. The packet loss rate increases with
smaller buffers. In such cases, some flows might experience
TCP timeouts, and the per-flow throughput of the various
competing flows significantly varies. It was shown in [7]
that smaller buffers can result in unacceptable loss rates
(up to 15%). Furthermore, high loss rates can degrade the
performance of interactive media flows. Other buffer sizing
rules such as BSCL [13] consider loss rates and queueing
delays, but require many parameters to estimate, which is not
feasible in contemporary routers.

Active Queue Management (AQMs) Active Queue Manage-
ment (AQMs) such as CoDel [27], PI2 [28], and dualPI2[29],
offer a complementary approach to static buffers. AQMs
can monitor the minimum queueing delay and drop packets
strategically to maintain low latency. This approach prevents
excessive buildup and congestion in the network, reducing the
impact of the challenges associated with buffer sizing.

B. Dynamic buffer sizing

The idea of dynamically modifying the buffer started with
Flow Proportional Queuing (FPQ) [30]. FPQ adjusts the
amount of buffering in proportion to the number of TCP flows.
The paper proved that the loss rate increases with the square
of the number of flows. The method used the Mathis equation
[31] (w = 0.87√

l
, where w is the average window size, and

l is the loss rate) to calculate a target queue and a target
loss. Both targets require estimating the number of flows, a
function that is implemented in FPQ. They also accept the
BDP as input. FPQ does not estimate the BDP, but requires
operators to hardcode it according to typical RTTs seen in
their networks.

Stanojević et al. [32] proposed ADT, a method that regulates
the queue to a minimum size so that the queueing delay is



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

TABLE I
COMPARISON OF VARIOUS BUFFER SIZING RULES PROPOSED IN THE

LITERATURE WITH THE PROPOSED WORK (P4BS).

Rule Constraint Deployability Thresh
Mode Name ρ d p CC-A CR d̂ p̂

Static

BDP [5] ✓ × × × ✓ × ×
Stanford [6] ✓ × × × ✓ × ×
Tiny [26] ✓ × × × ✓ × ×
BSCL [13] ✓ ✓ ✓ × × ✓ ✓

Dynamic

FPQ [30] ✓ ✓ × × × × ×
ADT [32] ✓ × × × × × ×
ABS [33] ✓ × ✓ ✓ × ✓ ✓
N/A [34] ✓ × × × ✓ × ×
P4BS ✓ ✓ ✓ ✓ ✓ ✓ ✓

ρ: Link utilization, d: queueing delay, p: packet loss, CC-A: congestion
control-agnostic, CR: current routers, d̂: delay bound, p̂: loss bound

reduced, while maintaining a 98% link utilization. The method
assumes that the network conditions do not vary frequently,
and hence, doubles and halves the MIMD parameter (a con-
stant that is multiplied by the current queue size).

Zhang and Loguinov [33] presented ABS, a mechanism
that leverages the monotonic relationship between the buffer
size and the link utilization, loss rate, and queueing delay,
to adjust the buffer size. ABS uses integral controllers to
modify the buffer size and gradient-based components to train
its parameters.

Discussions. The dynamic buffer sizing techniques are in-
teresting because they are responsive to changing network
conditions. They can provide better performance than the static
ones since they reap the rewards of smaller buffers, but at the
same time, enlarge the buffer when needed [9].

The main issue with the existing dynamic buffer sizing
schemes is their lack of availability in contemporary routers.
In fact, although proposed more than ten years ago, none of the
existing solutions are implemented in today’s routers/switches.
While it is feasible to implement simplistic schemes (e.g., FPQ
and ADT) in the router, their performance limitations are not
worth the change in the hardware. More complicated schemes
(e.g., ABS) are specifically designed for traditional CCAs
with low traffic rates. Hardcoding such an algorithm in the
router not only consumes resources but may get obsolete in a
short amount of time. Moreover, all of the existing algorithms
were tested in simulations, but none have been tested on real
equipment with realistic traffic. Another issue is that they
only consider loss-based AIMD congestion control. However,
emerging congestion control algorithms such as BBR have
completely different dynamics [35], and therefore, cannot be
used with existing dynamic buffer sizing schemes.

C. Novelty

Table I highlights the differences between P4BS and the ex-
isting buffer sizing techniques. Unlike the existing techniques,
P4BS can be easily deployed and tested on contemporary
routers. It is agnostic to the dynamics of the CCA, considers
packet loss and queueing delays when deriving the buffer size,
and can be configured with upper bounds on the loss rates and
queueing delays whenever possible.
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Fig. 1. Proposed system architecture.

III. PROPOSED SYSTEM

This section describes the design goals, scope, and archi-
tecture of the proposed system.

A. Design goals
The primary design goals of P4BS are summarized as

follows:

Dynamic adaptation to heterogeneous traffic. Traffic
traversing networks today is heterogeneous in many aspects.
Flows can have different CCAs, RTTs, and/or (in)activity
times. For instance, in a small campus network, there is
an order of magnitude difference in activity time between
weekdays and weekends [36]. When selecting a buffer size,
all these dynamic factors must be considered.

SLA-compliance. Service Level Agreements (SLAs) specify
performance guarantees that an ISP provides to its customers.
It was shown in [37] that while the majority of the buffer
sizing rules achieve high throughput and link utilization, other
metrics such as packet loss rates and queueing delays are often
sacrificed. From an SLA perspective, neither high loss rates
nor long queueing delays are acceptable. Thus, limits should
be imposed to define the tolerable quantities of such metrics
whenever possible.

Smooth integration in existing networks. None of the
existing dynamic buffer sizing methods are implemented or
tested in current networks. These methods require modifying
the proprietary router to keep track of various statistics that are
relevant when deciding on the buffer size. The dynamic buffer
sizing algorithm should be easily and cheaply integrated into
any type of network with proprietary routers.

Extensibility. The traffic profile on the Internet keeps chang-
ing over time; new CCAs, higher link speeds, etc. Moreover,
switches/routers with small buffers mainly used in data centers
are emerging. It is important for a system to accommodate and
be adaptable to potential changes in the future.

B. Overview
Consider Fig. 1 which demonstrates the high-level ar-

chitecture of P4BS. The system continuously and passively
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monitors the traffic traversing a legacy router to derive a
buffer size. Passive TAP devices are installed on the links
of the router, and the traffic is forwarded to a customized
packet processing pipeline in the P4 programmable switch that
operates at line rate. In the data plane of the programmable
switch, metrics such as the RTT, the packet loss rate, the
link utilization, and the average queueing delay are computed.
Additionally, the number of large flows (N ) (i.e., flows that
constitute a large portion of the traffic) is determined. Note that
quantifying the aforementioned metrics is not possible with
general-purpose servers since CPUs often rely on sampling
and polling techniques which are only suitable for coarse-
grained measurements. The measured metrics are then pushed
to the control plane of the programmable switch. The control
plane uses Bayesian Optimization (BO), a sequential search
strategy, to derive a buffer size in a closed-loop. The goal is to
minimize queueing delays and packet losses while maintaining
high link utilization.

C. The need for programmable switches

The selection of the buffer size is determined based on
metrics such as the number of flows, the flows’ RTTs, the
loss rate, the queueing delay, etc. There is a need to measure
these metrics on-the-fly when devising a dynamic buffer sizing
algorithm. Estimating these metrics without a P4 switch is not
feasible:

Estimating the number of flows. Spang and McKeown
[17] outlined the complications that arise when estimating
the number of flows in contemporary networks. Specifically,
collecting and analyzing traffic at high rates is not feasible on
a general-purpose CPU. Other techniques like packet sampling
can lead to errors in the estimations. Ideally, each packet
traversing the network is inspected to identify the number
of flows. Programmable switches are specifically designed to
enable programmers to devise custom algorithms that execute
on each packet.

Estimating the RTT. Operators today use active measure-
ments tools [38–41] to measure the RTT [25]. Such tools do
not produce RTT samples on the actual traffic; RTT samples
are generated for the probes. Besides their inaccuracy, probes
can take different paths, leading to incorrect RTT samples.
On the other hand, passive tools are only used to measure
RTT samples from the three-way TCP handshake [42, 43].
Such measurements cannot capture the delay changes in long-
lived flows and can produce biased samples. P4 switches can
precisely measure the RTT throughout the lifetime of the
flows. This is possible due to their capability of processing
each packet entering the switch, and due to the high precision
timer provided by the hardware.

Estimating the loss rate and the queue delay. The proposed
system creates a closed control loop where the packet loss rate
and the queue occupancy measurements are used to calculate
a new buffer size. Estimating such metrics in today’s network
is challenging. Consider Fig. 2 (a) which shows the estimated
packet loss on the P4 switch versus the loss obtained through
polling from hardware using the Simple Network Management
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Fig. 2. (a) Estimated loss in P4BS vs. polling (SNMP). (b) Estimated queue
occupancy vs SNMP with various CCAs.

Protocol (SNMP). The vertical gray stripes denote newly
joined flows. It can be seen that polling is at least five seconds
behind whenever the network conditions change (e.g., new
flows join, the buffer was modified, etc.). This is problematic
for the buffer sizing problem as the algorithm must wait for
at least five seconds after each buffer size modification. The
loss rate can also be approximated using the Mathis equation;
however, this approximation assumes the CCA of the flow to
be loss-based.

Fig. 2 (b) shows the estimated queue occupancy in P4BS
and SNMP. SNMP only produced two samples throughout the
test which lasted 150 seconds. The samples are approximately
produced each minute. Note how the SNMP measurements
are at least 30 seconds behind, which is not acceptable for a
dynamic buffer sizing algorithm.

Fig. 2 (b) also shows flows with different CCAs (Cubic
and BBRv2). It also shows the value of the configured buffer
size at any given time. Note how Cubic attempts to fill the
buffer due to its AIMD dynamics. BBRv2 on the other hand
tries to minimize queuing delays, and thus, does not fill the
queue. The different behaviors of CCAs motivated the need
to measure the queueing delay rather than assuming that the
current queueing delay is equal to the configured buffer size.

Buffer tuning timescales. A primary objective is to reach
an optimum buffer size as quickly as possible in order to
cope with the ever-changing activity times in a busy network.
The coarse measurements obtained through polling/sampling
(tens of seconds or even minutes) are not only inaccurate, but
also become stale. P4BS modifies the buffer size and retrieves
statistics at much faster timescales due to the capability of a
programmable switch to process packets at a line rate.

D. The need for TAPs

The first step consists of forwarding the traffic traversing a
router to a programmable switch for custom packet processing.
It is essential to preserve the traffic characteristics when
replicating packets. For instance, computing the RTT requires
associating packets’ acknowledgment numbers with their cor-
responding sequence numbers. Methods such as port mirroring
are inaccurate and cannot be used here. Port mirroring may
modify the timing information of traffic, introduce random
packet drops, and mirror traffic in an out-of-order manner,
even when the switch is experiencing minimal usage [44].
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Fig. 3. TAPs positioning. (a) TAPs placed on the egress link in both
directions. (b) TAPs placed on the ingress and egress links, unidirectional.
(c) Combination of placements (a) and (b).

In contrast, network TAPs are hardware devices that provide
an exact duplicate of network traffic passively, even when the
network is saturated. Network TAPs operate at the physical
layer, and hence require zero changes in the configuration of
the upper layers (e.g., IP addressing). It is also worth noting
that TAPs are relatively cheap devices, making the whole
system cost-efficient.

TAPs positioning. The position of the TAPs in the network
is based on the metrics of interest. In Fig. 3 (a), two TAPs
are placed on the link of the router, each in a different
direction. This placement enables calculating the round-trip
time (e.g., [25]), while excluding the queueing delays. The
other positioning depicted in Fig. 3 (b) places TAPs at the
ingress and egress links of the router, in a unidirectional
way. Such placement allows monitoring metrics such as the
queueing delay and the number of lost packets due to buffer
overflow. P4BS uses the placement of Fig. 3 (c), such that the
RTT, the packet loss resulting from buffer overflow, and the
queueing delays are calculated.

IV. METRICS COMPUTATION

The system computes the buffer size by considering the
following metrics: the average RTT, the packet loss rate, the
number of large flows, and the average queueing delay. The
subsequent subsections describe how each of those metrics is
computed.

A. Round-trip time

P4BS adopts the method presented in [25] to calculate the
RTT of individual flows. This method relates the sequence
numbers (SEQ) of TCP packets with their acknowledgments
(ACKs) and uses the precise timing information of the switch
to produce an RTT sample (the difference between the times-
tamps of two packets). The flow identifier (FID) of an outgoing
packet is derived by hashing the 5-tuple (source/destination
IP, source/destination port, and protocol), and the expected
ACK (eACK) is calculated by adding the SEQ number to the
length of the payload. The timestamp of the current packet is
stored in a register array indexed by the FID and the eACK.
Upon receiving an incoming TCP packet, the FID and the ACK
number are used to fetch the table for an existing record. If
there is a match, the timestamps are subtracted, and an RTT
sample is produced. The method uses a timeout threshold to

evict the idle records. It also uses multi-stage hash due to the
constraints on accessing the data plane memory.

B. Packet loss rate

P4BS also computes the packet loss rate. This metric is
important since it strongly affects the selection of buffer
size and directly impacts the performance of the network. In
addition, it can violate SLAs if it is not controlled properly.

The packet loss rate can be computed in two different
methods. The first method checks for packet retransmissions
which are produced by the TCP sender on the occurrence of
loss events. Because TCP is a reliable transport, all segments
lost in the network should be repaired with retransmissions
from the sender. A packet is considered retransmitted if
its SEQ is lower than the expected next sequence number
(eSEQ). Note that eSEQ is the same as the eACK, which
was previously computed during the RTT calculation; thus,
reusing the same value will save memory on the switch.
Additionally, the packet must not be a keepalive packet and
its segment length must be greater than zero. After counting
the number of retransmitted packets and the total number
of packets in the data plane, the control plane can compute
the packet retransmission rate. Note that the retransmission
rate is only an estimation of the packet loss rate due to
factors such as spurious retransmissions or the presence of
non-TCP flows sharing the queue. While this method counts
the losses that occurred in the whole path, it is easy to
consider only those that are dropped due to buffer overflow by
using a simple heuristic (e.g., counting only when the queue
occupancy reaches the configured buffer). Alternatively, the
loss rate can be computed when two copies of each packet
(before and after the buffer) are sent to the programmable
switch (placement (b) in Fig. 3). Empirically, the first method
produced more accurate and consistent measurements than the
second. This is because by the time the counts are polled in
method 2, outstanding packets in the queue are not counted.

C. Large flows count

Appenzeller et al. [6] proved that short flows (TCP and
non-TCP) have a much smaller effect on the buffer size than
long-lived TCP flows. Short flows are those that send a few
packets and never reach their equilibrium sending rate. When
mixed with long-lived flows, short flows will be dominated,
and the buffer size can be determined by solely relying on the
number of long-lived flows. Therefore, it would make sense to
only estimate the number of long-lived flows when deciding on
buffer size. There are many schemes that estimate the number
of flows in the data plane. Due to the limited memory in the
switching hardware, existing schemes (e.g., [45, 46]) largely
rely on probabilistic data structures (e.g., sketch, bloom filter,
HyperLogLog algorithm, etc.), sampling methods, and top-k
counting.

P4BS uses the Count-Min Sketch (CMS) data structure [47]
to estimate the number of packets for a given flow. The counts
of packets are then compared against a threshold to decide if
a flow should be classified as a long flow. Consider Fig. 4 (a).
The data structure is constructed using d register arrays that
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Fig. 4. Long flows count estimation. (a) the Count-Min Sketch (CMS) is used to store the counts of the flows, and the minimum of these counts is calculated;
(b) if there is a miss on the flow identifier and the calculated count exceeds a predefined threshold, the data plane informs the control plane through a digest
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contain w cells each. Thus, the data structure can be seen as
a matrix of size w ∗ d. The CMS uses d pairwise-independent
hash functions hi, ..., hd that are applied to the 5-tuple fields
in the packet headers. The results of the hash functions
correspond to the indices of the counts in the d register arrays;
these counts are incremented by one. Calculating the minimum
between these counts gives an approximation of the packet
counts per flow; note that this is an approximation and not
the exact count because collisions might occur, which leads to
overestimating the counts. A nice property of the CMS is that
it is designed to have provable L1 error bounds for frequency
queries:

P [x̂i − xi ≥ ϵ||x||1] ≤ δ, (1)

where x̂i is the estimated frequency, xi is the true frequency,
ϵ is the error factor, and δ is the error probability. In other
words, the estimation error exceeds ϵ||x||1 with a probability
smaller than δ. Given ϵ and δ, it is possible to dimension the
sketch with w =

⌈
e
ϵ

⌉
and d =

⌈
ln 1

δ

⌉
. The scalability and the

implementation details of the metrics computation within the
P4 switch are listed in the Appendix.

After counting the number of packets for a given flow, a
match-action table that implements the idle timeout mech-
anism is applied (Fig. 4 (b)). With idle timeout activated,
the table automatically removes an entry when its idle time
exceeds a Time-To-Live (TTL) value. This table matches on
the flow identifier; if there is a miss, and the count of packets
extracted from the CMS exceeds a threshold, the data plane
sends a digest to the control plane to inform it that there is
a new long flow. The control plane then increments its long
flow count (N ) and inserts into the match-action table an entry
indexed with the flow identifier. Subsequent packets belonging
to this long flow will hit when the table is applied, preventing
the control plane from removing the entry. Finally, if the flow
is idle (i.e., there is no match on the entry for a period that
exceeds the entry’s TTL), the control plane decrements N and
clears the entry from the table.

D. Queueing delays

P4BS continuously measures the queueing delay at the
currently configured buffer. This metric is important because

it conveys the share of the buffer that is being used by the
current traffic. Furthermore, measuring the queueing delay is
essential to make sure that SLAs are not being violated.

Recall that network taps are placed before and after the
legacy router. To measure the queueing delay, the data plane
must first associate and match incoming packets from both
taps. Once there is a match (i.e., the same packet arrives from
both taps), the data plane computes the difference between
the arrival time of both packets. Associating packets on the
data plane and calculating the queueing delay is achieved as
follows (see Fig. 5). Let the ingress packet denote the packet
arriving before entering the legacy router, and the egress packet
denote the packet arriving after leaving the legacy router. (1)
When the ingress packet arrives at the P4 switch, a hash of
the flow identifier (5-tuple) along with the TCP SEQ number
of that current packet is calculated. The resulting hash value is
used as an index to an array cell where the arrival timestamp
is stored. (2) When an egress packet arrives, the data plane
computes the hash of the flow identifier (5-tuple) along with
the TCP SEQ number, and retrieves the timestamp stored in
the array index by the hashed value. This item in the array
is now removed. (3) The data plane computes a queueing
delay sample by subtracting the retrieved timestamp from the
current timestamp. (4) The queueing delay sample is fed to an
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Fig. 5. Queue delay calculation in the data plane.
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Exponentially Weighted Moving Average (EWMA) Low Pass
Filter (LPF) to compute the average. (5) The average sample
is pushed to the control plane. A variation of this method
can leverage counting bloom filters (CBF) (as done in [48])
to scalably measure the delay, at the cost of decreasing the
accuracy.

V. BUFFER MODIFICATION

Modifying the buffer size consists of tracking the statistics
of the measured metrics and calculating a buffer size that could
potentially enhance the performance.

A. Statistics tracking

The statistics tracking module resides on the control plane of
the programmable switch. It mainly tracks the averages of the
computed metrics. It also calculates the performance function
which needs to be maximized.

The statistics tracking module continuously tracks the
smooth RTT of the existing flows. Upon receiving an RTT
sample (RTTi) from the data plane for a certain flow i, the
control plane computes the average RTT using the harmonic
mean: RTT = N∑N

i=1
1

RTTi

, and then computes a smoothed

RTT: SRTT = α · SRTT + (1 − α) · RTT , where α
is a smoothing factor (0 ≤ α ≤ 1). The value of α =
0.875 is used in this work, following the recommendation of
Jacobson [49]. The choice of this specific value is based on
empirical observations and aims to strike a balance between
responsiveness and stability in estimating the RTT.

The statistics tracking module also gathers the current
packet loss pt and computes a smooth average, denoted as p. It
also gathers the average queueing delay d which is computed
in the data plane.

B. Buffer size calculation

The end goal is to find a buffer size that minimizes both
the average packet loss rate p and the average queueing delay
d, while maximizing the link utilization. The buffer should
also satisfy the constraints (p̂, d̂). Note that in some cases, it
might not be feasible to satisfy both p̂ and d̂. It is important
to highlight the intrinsic relationship between these variables.
When increasing the buffer, p decreases while d increases, and
vice-versa. This relationship has been proven in [6, 13, 30, 33],
and is demonstrated in the Appendix.

Let f1(·) denote the function that returns the average packet
loss rate p, and f2(·) denote the function that returns the
average queueing delay d. Both f1 and f2 are unknown and are
being sampled at given times. In addition to being unknown,
both functions are also possibly noisy. Let f(·) denote the
function that combines f1 and f2 using the weighted sum

method, with weighting coefficients satisfying
2∑

i=1

wi = 1,

wi ∈ [0, 1], as follows:

f(·) = −
[
w1f1(·) + w2f2(·)

]
(2)

f(·) is the performance function that is also unknown
and noisy. f(·) adds a monotonically decreasing function

Algorithm 1: Shrinking the search space
Input

Maximum tolerated queueing delay d̂
Link capacity C
Bandwidth-delay product BDP

begin
x← BDP
set_buffer(x) ▷ Set buffer size to x
wait ( ) ▷ Wait for changes
p← f1(x) ▷ Obtain current loss rate
while p > ϵp do

x← x · 2 ▷ Exponential increase
if x > C · d̂ then

x← C · d̂
break

set_buffer(x)
wait ( ) ▷ Wait for changes
p← f1(x) ▷ Current loss rate

bounds ←
[

C·RTTmin√
N

, x
]

▷ Search space

f1(·) with a monotonically increasing function f2(·) as the
buffer size increases. If both functions f1(·) and f2(·) in-
crease/decrease at consistent rates, then f(·) will be a uni-
modal function1 However, this is not the case here (see
Appendix.B); f(.) is multimodal, and therefore, can have
multiple solutions.

The goal is to maximize the performance function (i.e., the
negative of the delay and the loss) while possibly converging
to the optimal configuration x∗ = argmaxx f(x).

Note that the link utilization is excluded from f(.) because
the minimum allowed buffer size corresponds to a value that
was proven to achieve high link utilization, as described next.

Defining bounds. The buffer size x must be large enough
to ensure a high link utilization (i.e., ρ ≈ 100%). Building
on the analysis of [6], a small buffer of size equals to
C·RTTmin√

N
leads to full link utilization, regardless of the CCAs

being used. Moreover, this buffer size leads to low queueing
delays, and hence, shorter RTTs. Nevertheless, C·RTTmin√

N
was criticized for inducing excessive packet losses when the
number of long flows N is large. Assuming that p is small
when x = C·RTTmin√

N
(i.e., N is small), the value of the

optimum buffer x∗ is close to x. Accordingly, the smallest
x that can ensure high ρ, small d, and in some cases, low p, is
C·RTTmin√

N
. On the other hand, the tolerated queueing delay d̂,

which is specified by the network operator, corresponds to the
largest buffer size that can be configured. Therefore, x will be
configured over the interval [C·RTTmin√

N
, C · d̂].

Instead of considering the whole search space [C·RTTmin√
N

,
C · d̂], P4BS attempts to shrink the bounds by finding a buffer
where the packet loss rate is very small (below a threshold
ϵp) as shown in Algorithm 1. The intuition here is that when
the packet loss rate is small, increasing the buffer will only
increase the queueing delay, and hence, should be avoided.
The algorithm continues to double the buffer size as long as

1A function f : [a, b] → R is unimodal if and only if there exist x∗ ∈ [a, b]
such that f(x∗) ≥ f(x), x ∈ [a, b], f is strictly increasing in [a, x∗], and f
is strictly decreasing in [x∗, b] [50].
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the loss rate is larger than ϵp or if the buffer size exceeds the
maximum tolerated queueing delay d̂ at line rate. In the latter,
the upper bound is set to C · d̂.

Modeling using Gaussian Process (GP). The performance
function f(.), which combines the loss and the delay, is
modeled as a GP (a collection of random variables), and this
GP is used as an inference engine to predict the value of
a buffer size configuration that has not been tested in the
environment. Bayesian Optimization (BO) [51] technique uses
the GP as the basis routine. BO will suggest the next buffer
size to evaluate in the environment through the learned GP
model. The GP model is constructed using the performance of
the observations from the previous buffer size configurations.
GP has been shown to work efficiently and to provide a
tradeoff between the modeling accuracy and the inference
complexity.

GPs for the buffer sizing problem. GPs are a collection
of random variables where a finite number of these are jointly
normally distributed. Let the history of observations seen after
deploying a sequence of buffer sizes x(1), x(2), ..., x(n) be
noted as:

o(n) = [f̃(x(1)), ..., f̃(x(n))]T (3)

where f̃(.) is the realization of f(.) for a given buffer
size. Using conditioning for normal variable and the GP
posterior probability, the performance function can be inferred
as follows:

p(f(x)|o(n)) = N (µf+ΣfoΣ
−1
o (o(n)− µo),Σf−ΣfoΣ

−1
o ΣT

fo)

(4)
where µ ∈ R is the mean and Σ is the covariance matrix.

The underlined factors in Eq. (4) refer to the corrections in
the mean and covariance of f brought by the knowledge of o.
The mean vectors µf and µo are computed using prior mean
function m(.) : X → R. This function defines for each buffer
size x the system’s prior belief m(x) of the performance. m
can be set to 0 when no prior belief is available. The covariance
matrices Σfo,Σo, and Σf are computed after constructing a
function C(., .) : X ×X → R defined through kernel function
Kθ, where θ is a hyperparameter. In the buffer sizing problem,
the selected kernel function is the Radial Basis Function (RBF)
defined as:

Kθ(x, x
′) := a exp

(
−||x− x′||

2b2

)
(5)

where θ = [a, b] > 0; a is a hyperparameter that regulates
the amplitude of the function and b is a hyperparameter that
controls the smoothness. RBF was selected after thorough
experimentation because it consistently outperformed other
functions, such as Matérn [52], with respect to the average
improvement per iteration, the final value of the objective func-
tion, and the convergence rate. C(x, x′) describes how close
the performance of the system is when trying configurations
x and x′, and ideally, C(x, x′) ≈ Cov(f(x), f(x′)). Since the
system is subject to noise, C is computed by adding K(., .) to
σ2, the observation noise variance, only if x and x′ are equal.

Once C and m are defined, the mean vectors and the
covariance matrices in Eq. 4 can be set as follows.

Algorithm 2: Buffer size searching
begin

Initialize current iteration n = 0
Define a maximum number of iteration n̄
Set prior mean function m(.) to 0
Select a covariance kernel function Kθ(., .);
Initialize hyperparameters θ, σ
Select a termination threshold ϵ
while maxx∈X u(x | o(n)) ≥ ϵ and n ≤ n̄ do

Obtain the next buffer x(n+ 1) using Eq. (12)
Deploy x(n+ 1) and observe f̃(x(n+ 1))
Update hyperparameters θ, σ using Eq. (11)
n← n+ 1

Stabilize on x∗ = argmaxx(i),i=1,...,n f̃(x(i))

µf = [m(x)] (6)

µo = [m(x(1)), ...,m(x(n))]T (7)
[Σo]i,j = Cθ,σ(x(i), x(j)) for i, j = 1, ..., n (8)

Σf = Cθ,σ(x, x) (9)
[Σfo]i = Cθ,σ(x, x(i)) (10)

The GP then tunes the hyperparameters θ and σ in real-
time while seeing new observations by using the maximum
likelihood estimation:

argmax
θ,σ

p(f̃(x(1)), ..., f̃(x(n))) = N (µo,Σo) (11)

BO for the buffer sizing problem. The posterior distribution
allowed predicting the value of the performance function after
seeing the historical observations. BO uses the observations to
select the next buffer x(n+1) to be deployed. At each step, an
acquisition function u(, |o(n)) is optimized by the BO engine:

x(n+ 1) = argmax
x∈X

u(x, o(n)) (12)

In the buffer sizing problem, the selected acquisition func-
tion is the Expected Improvement (EI) [53] (see Section
VI-A):

uEI(x|o(n)) = E
[
f(x)− max

i=1,...,n
f(x(i))|o(n)]

]+
, (13)

where [.]+ = max(0, .). EI has been popular because uEI has
a closed form for GPs. More details can be found in [54].

Algorithm 2 shows the buffer size searching steps. The
search continues while the expected improvement of the
performance exceeds a threshold ϵ and the number of it-
erations is less than the maximum number of iterations
n̄. Afterwards, the system stabilizes on the buffer x∗ =
argmaxx(i),i=1,...,n f̃(x(i)) which attained the maximum per-
formance of the system so far.

Since the traffic conditions change with time, the perfor-
mance function shape might change as well. After stabilizing
on x∗, P4BS continues to compute f(·) and uses the standard
score (z-score) to identify major changes in the network con-
ditions; if the value is several number of standard deviations
away from the moving mean, the change will be signaled and
the searching procedure is restarted. A potential alternative to



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

S1

R1 R2
Bottleneck 

link C2

.

.

.

h1

h1000

h1001

h2000

Senders Receivers

S2

Server 1 Server 2
Edgecore 

(Intel’s Tofino Chip)

OVS

Juniper 
MX 204

Juniper 
MX 204

Lenovo SR630 Lenovo SR630

Management link Data link

.

.

.

Passive tap device

Tx Rx

Tx/Rx lanes

Access 
link C1

Tx

OVS

Fig. 6. Topology used for the experiments.

avoid restarting the search is to use the method proposed in
[55] which applies BO to time-varying dynamic functions; this
is kept for future work.

VI. EXPERIMENTAL SETUP AND RESULTS

Fig. 6 shows the topology used to conduct the experiments.
The topology consists of up to 1000 senders (h1, h2, ...,
h1000), each sending data to a corresponding receiver (h1001,
h1002, ..., h2000). The hosts in the experiments are network
namespaces in Linux. The emulation was carefully designed,
and sufficient resources were allocated: each server has 48
Xeon 4214 cores operating at 2.2 GHz and 80GB of RAM.
The usage of CPUs was at all times below prudent levels,
thus avoiding misleading results. The senders are connected
to an Open vSwitch (OVS) (S1) [56], which is bridged to the
server’s (Server 1) network interface. The server’s interface
is connected to a Juniper router MX-204 (R1). Edgecore
Wedge100BF-32X [57] is the programmable P4 switch used
(Intel Tofino). The end-hosts were carefully tuned; the size
of the TCP send and receive buffers was set to a large value
(≈ 250MB). All tests are configured with a total propaga-
tion delay of 20ms, unless otherwise specified. Additionally,
random emulated delays [0-15ms] were introduced to each
flow to prevent global synchronization. The Network Emulator
(NetEm) tool [58] was used to set the delay. The buffer size
on the router R1 was modified using the buffer-size
command under the class-of-service configuration in
Junos. Every experiment is repeated 10 times and results
are averaged for better accuracy. The bandwidth of the links
connecting S1 to R1 (C1) and R1 to R2 (C2) are configurable.

The source code of P4BS is publicly available online1.

A. Algorithm’s evaluation

Buffer searching dynamics. Fig. 7 demonstrates the iterative
process of determining the optimal buffer size in a sample
experiment. Each row corresponds to a step in the buffer
search, where the left figures depict the acquisition function
over time, and the right figures illustrate the GP. The solid
blue line in the right figures represents the mean of the GP

1https://github.com/ekfoury/p4bs-bo
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Fig. 7. Buffer searching dynamics in the access network. Left is uEI

over time; the solid blue line (right) denotes the mean associated to the GP
posterior. The shaded blue region denotes the confidence interval. Each row
shows an iteration. The vertical dotted line, which maximizes uEI , shows the
location of the next buffer x to be tested.

posterior, while the shaded blue region indicates the confidence
interval.

In this experiment, the bottleneck link is shared by 500 large
flows, with C1 = 40Gbps and C2 = 1Gbps, simulating an
access network scenario. During the initial iteration (first row),
the selected buffer size was approximately 1.5BDP, denoted
by the red point in the right figure. Note the considerable
uncertainty associated with larger buffer sizes. The acquisition
function reaches its maximum value at x ≈ 3.5BDP (first
row, first column, indicated by the dashed line), determining
the buffer size to be evaluated in the subsequent iteration. This
process continues until convergence. In BO, the theoretical
number of iterations tends to infinity (T → ∞), although in
practice, the algorithm is typically executed for a finite number
of iterations. The final selected buffer size is the one that
maximizes the performance function, approximately 3.5BDP.

Fig. 8 demonstrates the buffer selection process for the
same experiment but with C1 = 10Gbps and C2 = 2.5Gbps,
resembling a core network scenario. It is noteworthy that
the algorithm favored a smaller buffer size of approximately
2BDP , contrasting with the suggested buffer size in the access
network setting (3.5BDP ).

Convergence. The searching algorithm should ideally find a
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Fig. 8. Buffer searching dynamics in the core network.

buffer with the least number of iterations. Fig. 9 (a) demon-
strates the average number of searching iterations considering
different N . With smaller N , the search space is small (due to
low packet loss rates), and hence, it takes less time to stabilize
on a buffer. A larger number of flows on the other hand
require more iterations. Fig. 9 (b) shows the average number
of iterations as a function of the upper search bound of a given
traffic scenario (determined in the last step of Algorithm 1).
Similar observations to those discussed for the number of flows
can be seen here.

The convergence of BO is commonly measured by using
the cumulative regret which is defined as RT =

∑T
t=1 rt,

where rt = f(x∗)− f(xt) is the instantaneous regret at time
t. According to [59], RT grows almost at a sublinear rate for
the EI function using ymax = maxx∈X u(x) as the incumbent.
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value of f(.) over time. EI found a maximum value of f(.) ≈ −0.07 faster
than UCB and PI. While the figure shows 50 iterations, EI stopped at the
eighth iteration because maxx∈X uEI(x | o(n)) < ϵ (see Algorithm 2).

This experiment evaluates the convergence in an access
network with 100 Cubic flows. Fig. 10 (a) shows the regret
over time for three different acquisition functions (EI, Upper
Confidence Bound (UCB), and Probability of Improvement
(PI)). It can be seen that the system converges as the regret
grows sublinearly with time, regardless of the acquisition
function. Although UCB and PI attained a smaller RT than EI,
EI was selected due to its ability to stop the search and prevent
unnecessary evaluations when the expected improvement is
smaller than a threshold [59]. Fig. 10 (b) shows the maximum
value of f(.) with time for the three acquisition functions.
Note that EI found a maximum value of f(.) ≈ −0.07 faster
than UCB and PI. EI stopped at the eighth iteration.

B. Network metrics

Fig. 11 shows the average performance function, denoted as
f(.), in an access network (top row of heatmaps) and a core
network (bottom row). The test is executed for 120 seconds,
and f(.) is sampled every second2. A higher or greener color
indicates better performance, as f(·) combines the negatives
of loss and delay (see Eq. 2). The heatmaps represent different
buffer sizing regimes, with each row within a heatmap corre-
sponding to a CCA, and each column representing a different
number of flows N .

The experiment compares the performance of P4BS against
several well-known buffer sizing rules, namely the BDP
rule, the Stanford rule, BSCL, the Tiny buffer rule, and the
Bloated buffer. The Bloated buffer refers to the buffer size
recommended by router vendors, typically at least 200ms [9].
Additionally, the comparison includes ADT, a dynamic buffer
sizing algorithm.

When using smaller buffers (such as Tiny, Stanford, and
ADT), f(.) is low due to excessive packet losses. This
observation also holds true for BSCL and BDP when N is
large.

The Bloated buffer has lower loss rates but suffers from
high queuing delays, leading to a low f(.) as well.

In comparison, P4BS improves the packet loss rate com-
pared to all buffer sizing rules except for the Bloated buffer.
The queuing delay in P4BS remains low when N is small, but

2f(.) =
∑120

i=1 f̂i(.)

120
, where f̂i(.) is the sampled f(.) at time i.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

Vegas

NewReno

Cubic

Illinois

BBRv2

Mixed

Tiny
0.08 0.20 0.39 0.79

0.09 0.19 0.43 0.98

0.03 0.09 0.33 0.78

0.14 0.34 1.00 1.00

0.19 0.27 0.62 0.95

0.16 0.34 0.93 0.93

Stanford
0.01 0.01 0.29 0.66

0.05 0.09 0.33 0.86

0.05 0.08 0.25 0.68

0.06 0.15 0.85 1.00

0.13 0.18 0.37 0.90

0.14 0.22 0.53 0.70

BSCL
0.01 0.03 0.20 0.45

0.06 0.09 0.25 0.55

0.07 0.09 0.21 0.47

0.09 0.14 0.41 1.00

0.16 0.18 0.31 0.75

0.12 0.18 0.47 0.71

BDP
0.20 0.28 0.33 0.42

0.47 0.47 0.49 0.56

0.48 0.50 0.56 0.65

0.46 0.49 0.51 0.53

0.35 0.14 0.26 0.34

0.49 0.51 0.54 0.66

Bloated
0.15 0.25 0.46 0.73

0.11 0.21 0.47 0.95

0.08 0.12 0.46 0.72

0.88 0.93 1.00 1.00

0.28 0.38 0.71 1.00

0.16 0.41 0.49 0.63

ADT
0.00 0.01 0.20 0.30

0.09 0.08 0.23 0.38

0.03 0.07 0.19 0.34

0.06 0.16 0.21 0.42

0.07 0.08 0.15 0.33

0.05 0.12 0.19 0.30

P4BS

0.0

0.1

0.2

0.3

0.4

0.5

50 100 250 500
N

Vegas

NewReno

Cubic

Illinois

BBRv2

Mixed

0.06 0.10 0.18 0.27

0.06 0.11 0.19 0.31

0.06 0.08 0.16 0.28

0.33 0.52 1.00 1.00

0.18 0.16 0.31 1.00

0.11 0.13 0.67 1.00

50 100 250 500
N

0.02 0.09 0.16 0.27

0.05 0.09 0.16 0.32

0.04 0.06 0.13 0.28

0.10 0.25 1.00 1.00

0.16 0.18 0.31 1.00

0.10 0.13 0.63 1.00

50 100 250 500
N

0.02 0.03 0.07 0.22

0.04 0.06 0.13 0.28

0.06 0.06 0.13 0.26

0.04 0.13 0.80 1.00

0.09 0.16 0.23 1.00

0.07 0.10 0.42 0.88

50 100 250 500
N

0.02 0.03 0.08 0.20

0.06 0.07 0.12 0.23

0.09 0.08 0.12 0.21

0.07 0.11 0.41 1.00

0.10 0.13 0.23 0.85

0.08 0.09 0.39 0.69

50 100 250 500
N

0.17 0.20 0.28 0.47

0.46 0.48 0.53 0.60

0.50 0.52 0.57 0.68

0.48 0.50 0.53 0.61

0.39 0.44 0.40 0.52

0.43 0.44 0.45 0.53

50 100 250 500
N

0.04 0.16 0.29 0.43

0.12 0.19 0.31 0.43

0.11 0.16 0.29 0.44

0.37 0.73 1.00 1.00

0.23 0.32 0.56 1.00

0.20 0.30 0.61 1.00

50 100 250 500
N

0.03 0.07 0.12 0.24

0.01 0.10 0.12 0.31

0.01 0.02 0.10 0.25

0.08 0.11 0.35 0.68

0.11 0.09 0.30 0.51

0.04 0.05 0.29 0.59
0.0

0.2

0.4

0.6

0.8

1.0

0.13  0.24  0.43  0.78

0.13  0.23  0.48  0.99

0.08  0.13  0.34  0.79

0.44  1.00  1.00  1.00

0.23  0.30  0.56  1.00

0.23  0.46  1.00  1.00

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

- - - -

----

-

-

-

-

-

-

-

-

-

-

-

-

 a
cc

es
s 

ne
tw

or
k

 c
or

e 
ne

tw
or

k
f
(. )

f
(. )

Fig. 11. The average performance function f(.) in the access network (top row) and in the core network (bottom row), using various buffer sizing regimes,
various CCAs, and various N .

it gradually increases as N grows. Considering the combined
performance function f(·) (loss and queuing delay), P4BS
outperforms all buffer sizing rules, regardless of N , CCA, or
the deployment setting (core and access).

C. Voice over IP traffic

The router buffer size has a significant impact on the
Quality-of-Service (QoS) of voice traffic [60]. Specifically,
the metrics affecting the QoS include packet losses, jitter, and
transit delay. The experiments discussed in this section follow
the same structure as those conducted in [60]. The speech
signal degradation and the conversational dynamics are often
measured to evaluate the QoS of VoIP. The speech signal
degradation is assessed through the standardized Perceptual
Speech Quality Measure (PESQ) model [61]. PESQ calculates
a score (PESQ-MOS) in the range [1, 5] by comparing
an error-free audio signal to a degraded one. This score is
remapped to [0, 100] using [62] and is now referred to as the
z1 score. The quality worsens with smaller z1 scores. The z1
score is affected by the packet losses and the jitter but not
the transit delay; thus, PESQ only accounts for the listening
quality of audio and not for the conversational dynamics. The
conversational dynamics consider the transit delays and are
assessed through the E-model delay impairment factor of the
ITU-T E. The resulting score is referred to as the z2 score.
The z2 score is in the range [0, 100], and worsens with higher
values (unlike the z1 score). According to the International

Telecommunication Union (ITU G.114) [63], transit delays
should be below 150ms or at most 400ms.

As the QoS of voice is affected by both the speech signal
degradation and the conversational dynamics, it is important
to combine both scores and get a final score that considers all
metrics. Since the semantics of z1 and z2 are reversed, the
final score (z) is computed as z = max (0, z1−z2) [60]. With
such a calculation, if the loss and jitter are negligible (z1 is
high) but the delays are large (z2 is high), then the overall
score z is low, reflecting a poor quality, and vice-versa.

Experiment setup. The test consists of 100 VoIP calls playing
the 20 reference speech samples (G.711.a (PCMA) narrow-
band codec) recommended by the ITU [64] for speech as-
sessment. The SIPp [65] open-source SIP traffic generator is
used to establish multiple concurrent sessions and to generate
media (RTP) traffic. Additionally, 100 hosts are generating
background traffic using iPerf3 to make sure that the link is
fully utilized and the buffer is being used.

Results. Fig. 12 shows the results obtained from this exper-
iment. The transit delay was high with the Bloated buffer
and short with smaller buffers. Note how P4BS has a higher
transit delay than the Stanford, Tiny, and BSCL, but is still
much smaller than the perceivable value specified by the ITU
(100ms). The PESQ-MOS, which captures the packet losses
and the jitter, degrades with smaller buffers or excessively
large buffers. P4BS attained the maximum PESQ-MOS score
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Fig. 12. VoIP metrics for 100 calls playing the ITU’s 20 speech samples, using various buffer sizing regimes.
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Fig. 13. Performance of DASH using various buffer sizing regimes: (a)
number of dropped frames, (b) calculated bitrate, (c) playback buffer, (d)
segment quality.

and outperformed all the other rules. Similarly, when combin-
ing both scores into the z-score, P4BS achieved the best score
among all the other buffer configurations. The reason P4BS
achieved such results is due to its ability to sacrifice a small
amount of transit delays to mitigate packet losses.

D. Video streaming (DASH)
The majority of video streaming traffic is delivered over

HTTP with adaptation protocols such as Dynamic Adaptive
Streaming over HTTP (DASH). DASH has been supported by
dominant video streaming providers like Netflix and YouTube
[66]. Due to the increased popularity of video streaming and
DASH, this section evaluates P4BS with such traffic and
compares key metrics that affect the QoE for the end-user.
In DASH, videos are divided into equal-length segments and
hosted on the web server providing HTTP video streaming ser-
vices. The segments are encoded in various bitrates such that
lower bitrates provide lower video quality but with a smaller
file size. In addition to the videos, there is a manifest file
that describes the metadata of the segments and their bitrates.
When the streaming starts, the DASH client downloads the
manifest file and learns about the available bitrates. The client
then downloads video segments with the goal of maximizing
the user’s QoE.

Metrics. The key metrics that influence the QoE include 1)
Playback buffer size: clients are designed to buffer a specific
duration of the video before triggering the stream playback.
The larger this duration is, the better; 2) Segment quality:
since DASH adapts the current segment quality based on the
available bitrate, there could be multiple segment qualities
during a single video playback. The probability distribution
of the segment qualities is a representative indicator of the
QoE for the end-user; 3) Dropped frames: segments are made
up of a sequence of pictures. The number of dropped frames,
if excessive, can result in a noticeable drop in quality [67];
4) Bitrate: the bitrates used during video playback; 5) Stall
rate: computed as (total playback time – video length) /
video length. A stall rate larger than 0 indicates that the
user experienced re-buffering. The experiment is executed
with the reference open-source DASH player dash.js, using
the reference video [68] which is encoded into 10 different
video quality levels. The total video length is 636 seconds,
with 4-seconds encoded segments, resulting in a total of 160
segments. The experiment runs TCP background traffic to
make sure that the link is oversubscribed.

Results. Consider Fig 13. Significant improvements have been
observed across all metrics. With P4BS, the videos were
streamed using segment quality indices ranging from 6 to
9, surpassing the other rules, except for BSCL. It should be
noted, however, that BSCL yielded indices below 6 half of the
time. The consistent variation in segment quality (witnessed
in all but P4BS) has a negative impact on the user experience.
Similar observations apply to the bitrate. The playback buffer
time is also improved; only P4BS and the BSCL did not
suffer from re-buffering, which is witnessed when the playback
buffer is 0. The dropped frames are kept below prudent levels
with P4BS, in contrast to the other rules. The primary reason
behind the improvement achieved by P4BS lies in its ability to
maintain small RTTs, striking a balance that minimizes packet
drop rates.

E. Web browsing

A major share of the Internet traffic consists of web
browsing. This section evaluates the Flow Completion Time
(FCT) of traffic that resembles web browsing. To make sure
that the buffer will be utilized, this experiment generates
background traffic in the form of long flows with various
loads. Alongside the long flows, the experiment initiates 5, 000
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Fig. 14. Flow completion time of 10, 000 short flows sharing the link with long flows. Each figure shows the results with a different number of long flows
(N ). The CCA used is Cubic.
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short flows whose inter-connection times are generated from
an exponential distribution with a mean of one second. The
web pages are generated to cover a wide range of sizes, from
relatively small web pages to large web pages with images
and figures [60]. The sizes are in the range [15KB, 2.5MB].

Consider Fig. 14. Regardless of the background traffic load,
P4BS attained the lowest FCTs. When the load is small
(N = 25 or N = 50), the packet loss rate is low, and thus,
smaller buffers are preferable. This is why the FCTs in P4BS
are comparable to those observed with the Stanford rule. The
FCTs with the BDP and the Bloated rules are higher because
packets are waiting in long queues. ADT selects the smallest
buffer while maintaining 98% of link utilization. With such an
extremely small buffer, the packet losses are high, leading to
retransmissions and timeouts; thus, the flows’ FCTs are high
with the ADT rule.

When the load increases (N = 100), the packet losses
increase, and thus, small buffers are no longer preferred. P4BS
suggested a larger buffer, close to the BDP. This is why P4BS
outperformed Stanford and ADT rules. Note, however, that
the Stanford rule had few flows terminating faster; those flows
were “lucky” and terminated without retransmissions.

Finally, with N = 250, the small buffer rules and the BDP
are not preferred due to the large packet loss rates. P4BS
suggested a large buffer that mitigates packet losses but is
not too large to induce excessively large queueing delays, as
with the Bloated rule.

It is important to note that P4BS was able to adapt to the
network conditions and produced shorter FCTs regardless of
the load. This shows that having a fixed rule will never be
optimal in all cases.

F. Real backbone traces testing

Running P4BS over traffic from real-world traces is impor-
tant to test its capabilities under varying network conditions
and heterogeneous flows. The traces are typically available
in PCAP format, where packets are stored exactly as they
were observed during the capture. Unfortunately, replaying
such traces on a per-packet basis (e.g., using a tool such
as tcpreplay) will not be useful since the closed-loop
feedback of TCP sources will not be captured. Changing
the buffer size on-the-fly will influence the TCP sources
(decreasing the buffer size will cause some packets to be lost;
increasing the buffer size will increase the RTT).

The replaying approach used in this test is as follows:
1) The PCAP files are analyzed to extract the TCP flow

sizes (i.e., how many bytes a certain flow sent during its
lifetime).

2) Only the long flows are selected. The selection is based
on comparing the flow size against a predetermined
threshold.

3) The inter-arrival times between the long flows are calcu-
lated.

4) The distributions of the size of short flows and their
arrival times are analyzed.

5) The minimum RTT of a flow is extracted and configured
as the flow’s propagation delay.
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Fig. 15. Flow completion time of short (left) and long (right) flows of the
CAIDA (top) and MAWI (bottom) datasets. The CCA used is Cubic.

6) The long flows are replayed based on their sizes and their
starting times; the short flows are emulated based on the
flow size and starting time distributions observed in the
traces.

Two real-world traces are used in this test. The first is from
the Center for Applied Internet Data Analysis (CAIDA) [69]
which contains packet headers derived from 10Gbps traces
on Equinix NYC monitor. The second is from Measurement
and Analysis on the WIDE Internet (MAWI) which contains
packet headers derived from 1Gbps traces on the transit link
of WIDE to the upstream ISP [70]. Both traces are tested on
a bottleneck link of 1Gbps.

The test compares the FCTs of short and long flows against
the other buffer sizing rules. Fig. 15 shows the results. As
expected, the Bloated buffer is the most convenient for the
FCT of long flows; however, it increases substantially the FCT
for short flows. This increase is significantly noticeable from
an end-user perspective as short flows are mostly interactive
flows (e.g., web browsing traffic). Moreover, the increase in the
RTT can potentially violate the delay limits in the SLAs. The
opposite is true for the Stanford rule; while it shortens the FCT
for short flows dramatically, those for long flows are greatly
impacted. Furthermore, the loss rates imposed by Stanford and
the ADT rules are significantly high, potentially violating the
loss limits of the SLAs. P4BS was capable of finding a balance
between the two such that the FCT of long flows is very close
to that of the Bloated buffer and the FCT of short flows is
close to that of the Stanford buffer. Additionally, both the loss
rate and the queueing delays are minimized, making P4BS an
SLA-compliant solution for the buffer sizing problem.

G. Research and Education (R&E) networks testing

Research and Education (R&E) networks carry flows that
initiate large data transfers between research institutions. Inter-
net2 is an example of a regional and national backbone R&E
network. The traffic behavior in such networks is different
from that of campus/enterprise networks; a small number of
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Fig. 16. Top: FCTs of long flows (left is fixed large buffer, right is P4BS);
bottom left: buffers selected by P4BS; bottom right: FCTs of long flows using
a 30ms buffer.

flows constitute the bulk of science flow traffic, consuming a
large amount of bandwidth. Consequently, a large buffer size is
preferred to absorb transient packet bursts generated by large
flows [71, 72].

This experiment tests P4BS in a R&E network deployment
where the bottleneck link (C2) is 10Gbps and the access link
(C1) is 40Gbps. The Climate dataset which is provided by
ESnet for testing the performance of Data Transfer Nodes
(DTNs) is used [73]. The dataset is about 245GB in total
size. While it is expected for flows to finish faster with a
large buffer, the goal of this test is to infer how small can
a buffer be to achieve FCTs comparable to those of a large
buffer. This is important to understand the buffer requirements
in such networks, and thus, plan/dimension smaller buffers in
the future to save energy and money.

Fig. 16 shows the FCT of the transfers using a large buffer
(top left) and P4BS (top right). The large buffer size is 100ms
of line rate, equivalent to ≈125MB on a 10Gbps link. The
test includes various propagation delays (RTTProp) which
emulate geographically distant transfer nodes (e.g., [0-12ms]
RTT corresponds to a local/metro network, [12-49ms] RTT
corresponds to a regional network, etc.). The RTTProp values
are the same as those used by various throughput tests by
ESnet. It can be noted that with parallel streams, the FCTs are
barely affected since the losses only affect individual flows.
Note how even with large buffers, losses might occur, causing
the TCP flows to slow their transmission rates, and thus,
increasing the FCT.

Fig. 16 (bottom left) shows the buffers selected by P4BS
during the test. Note how 80% of the configured buffers were
< 30ms, a 70% decrease from the large buffer. The test is now
repeated with a fixed 30ms buffer to see how well the derived
buffer is (Fig. 16, bottom right). It can be observed that only
negligible differences in the FCTs were witnessed, as long as
the transfer uses parallel streams.

These preliminary results suggest that smaller buffers are
acceptable as long as parallel streams can be used. Tools

used by the R&E community for data transfers (e.g., Globus
[74]) are capable of launching parallel streams. While these
results are preliminary, and more extensive tests are needed
to generalize such a conclusion, the findings indicate that
excessively large and Bloated buffers may not be necessary
for R&E networks; if this is true, the reduction in the prices
of routers can be significant.

VII. DISCUSSIONS

A. Cost-efficiency and low overhead

P4BS requires installing a P4 switch and passive optical
TAPs on the bottleneck router. The cost of such devices is
negligible when comparing them to other devices acquired by
network operators. A P4 switch is cheaper than most legacy
switches used on campus/enterprise networks. Furthermore,
it is possible for a single switch running P4BS to serve
multiple bottlenecked routers (e.g., in ISP networks). It is
worth mentioning that TAPs do not affect the line rate of the
original traffic and do not impose memory/storage overheads.

The concept of utilizing passive P4 switches has been
successfully applied in production networks, notably in Prince-
ton’s P4Campus project [75]. With such a deployment, appli-
cations other than buffer sizing can also be implemented. For
instance, at P4Campus, microbursts measurements, heavy hit-
ter detection, live traffic anonymization, and operating system
fingerprinting have been implemented [76].

B. Playground for buffer sizing and CCAs research

There is a noticeable gap between theory and practice in
the buffer sizing literature. The buffer sizing rules published
in the past 20 years have been primarily tested on simulators
such as NS-2 ([6, 13, 32, 33]). The design introduced in this
paper (i.e., the closed-control loop between a legacy router
and a P4 switch) can potentially be used by future buffer
sizing research to test algorithms against realistic traffic rather
than idealistically simulated ones. The authors believe that the
ability to devise custom algorithms, empowered by the high-
precision timers of the P4 hardware switch, can pave the way
to further innovation in buffer sizing research (optimal buffer
size choice, buffer size dimensioning, CCA design, etc.).

C. Challenges in testing with real traces

Out of all the surveyed work, only the Stanford rule was
deployed for a short time for testing in a production network
[4]. It is very difficult to convince operators to change their
router’s buffer size for experimentation (fear of violating SLA
hard limits and paying penalties, fear of network disruption,
etc.). To test P4BS against real traces, the authors adopted
heuristics to process and replay the PCAP files. While there
are some available hardware and software traffic generators
(see [77] for a comprehensive survey), they are far from
being convenient for buffer sizing research. The trace-driven
traffic generators are mostly outdated (e.g., Harpoon [78] relies
on NetFlow records and has not been updated since 2005),
incompatible (e.g., Swing [79] only works in conjunction with
an outdated network emulator), and open-loop (Harpoon does
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not consider the closed-loop of TCP). The authors believe that
there is an utmost need for a well-maintained, open-source,
and reliable traffic generator that can precisely replay traffic
from real traces while preserving their characteristics. This
would be useful for buffer sizing research and Active Queue
Management (AQMs), among others.

D. CCA-agnostic

The majority of buffer sizing research papers assume that
the flows are following the AIMD law of loss-based CCAs. A
recent paper studied buffer sizing for flows with heterogeneous
CCAs, and discovered that substantially different buffer sizes
are needed by various network scenarios (e.g., Reno requires
a buffer ≈ 1BDP while BBR requires a buffer ≈ 1

4BDP). In
P4BS, the goal is to minimize the measured losses and delays
while maintaining high link utilization, making the solution
agnostic to the CCAs being used by the flows (see Fig. 11
how P4BS improved the objective function for all the tested
CCAs).

E. Deployment

There are two main reasons why the system considers an
inline legacy router instead of a P4-programmable switch:
1) Networks today primarily rely on non-programmable

routers, which are prevalent in various network environ-
ments including campus, enterprise, and ISP networks.
The objective of the proposed system is to enhance the
performance of these networks by leveraging the computa-
tional power of a P4 switch. To ensure smooth integration
with the current infrastructure, the P4 switch is deployed
passively, allowing it to compute metrics alongside the non-
programmable routers.

2) The shared total buffer size in available P4 programmable
switches is small (e.g., Broadcom Tomahawk has 16MB
total buffer size; Intel’s Tofino has 22MB total buffer
size, it has 64 ports with 100Gbps bandwidth (3.52KB
per port) [80–82]. With such a small buffer size, these
switches are commonly used in access or distribution layers
where the traffic volume is relatively low, and the buffer
requirements may not be as demanding [81]. Even if P4BS
was implemented entirely on the P4 switch (i.e., without
the legacy router), the decision loop performance would
still be the same as the buffer size of the P4 switch can
only be modified from the control plane (i.e., not possible
to modify the buffer size from the P4 program).

F. Technology availability

P4BS was implemented using Intel’s Tofino. Recently, Intel
announced that it will stop the development of the next-
generation Intel® Tofino (Tofino 3). However, Intel will con-
tinue to sell and support existing Tofino products. It is worth
mentioning that P4BS is not limited to Intel’s Tofino and can
be implemented on any programmable data plane device that
supports custom packet processing and stateful memory. With
the networking industry transitioning towards programmable
SmartNICs, the authors envision a modified version of P4BS

where the SmartNIC performs real-time calculations of buffer
size-related metrics at line rate, while the server housing the
SmartNIC would maintain the statistics and dynamically adjust
the router’s buffer size. An example of such a SmartNIC is
Intel’s Infrastructure Processing Unit (IPU) (e.g., Intel® IPU
E2000), which uses an ASIC-based programmable pipeline,
similar to that of the Tofino-based switch [83].

VIII. CONCLUSION

This paper presented P4BS, a scheme that dynamically
modifies a router’s buffer size to adapt to the network con-
ditions. P4BS uses measurements collected and processed by
P4 programmable switches and calculates metrics that are
vital for deciding on the buffer size. Such metrics are the
number of long flows, the RTTs, the queueing delays, and the
packet loss rates. After collecting and calculating the metrics,
P4BS uses Bayesian Optimization to optimize a blackbox
function that combines the packet losses and the queueing
delays. P4BS was implemented on a Tofino hardware switch,
and the experiments were executed over a Juniper router
with configurable buffer size. The tests were executed on a
wide range of network scenarios (different numbers of flows,
bottleneck link capacities, CCAs, and traffic types), and the
results show improvements regardless of the test parameters.
The authors plan to explore dynamic BO in the future to avoid
restarting the search whenever the conditions significantly
change.
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APPENDIX

A. Relationship between buffer and loss/delay

There is an intrinsic relationship between the buffer size
and the packet loss and queueing delay. Large buffers reduce
packet losses but increase queue delays. On the other hand,
small buffers increase the losses but decrease the queueing
delays. The reduction/increase rates depend on various factors.
Consider Fig. 17 where 100 long-lived flows with a smoothed
RTT (SRTT) ≈ 20ms and different CCAs are sharing a 1Gbps
bottleneck link. The increase/decrease rates of the packet loss
and the RTT (which is largely dominated by the queueing
delays) depend on the CCA being used. In fact, there are
many other factors that affect those rates; for instance, Morris
showed that the loss rate increases almost with the square
of the number of competing flows (N ) [30]. Other factors
that affect the loss/queueing rates include the heterogeneity
of the flows’ RTTs (e.g., flows with long RTTs require larger
buffers, increasing the queueing delays for flows with short
RTTs) [84], the output/input capacity ratio at a network link
(e.g., with a ratio greater than one, no queue will be occupied
and no packets are dropped) [12], the traffic type (e.g., bursty
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Fig. 17. Impact of buffer size on the packet loss rate (a) and on the RTT (b).
The loss decreases and the RTT increases as the buffer size increases. Test
parameters: N = 100; C = 1Gbps; SRTT = 20ms.
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Fig. 18. Four performance functions from different times in the CAIDA trace.
These functions were evaluated over a range of buffer sizes, starting from
small to large, as part of the sampling process. The functions are multimodal.

real-time traffic can interact with well-behaved TCP traffic,
increasing packet losses) [85], etc.

B. Multimodal performance function

Given the black-box nature of the performance function,
where there is limited analytical understanding of its be-
havior, providing formal proof of its multimodality becomes
challenging [86]. Consequently, a sampling-based approach
is employed [87]. By sampling the performance function at
various points, it becomes possible to learn its true values and
observe its behavior. Through this sampling process, it can be
determined whether the function possesses multiple maxima
or not.

Fig. 18 illustrates four performance functions obtained from
different times in the CAIDA trace. These functions were
evaluated over a range of buffer sizes, starting from small to
large, as part of the sampling process. It is evident from the
figure that these functions have multiple maxima.

C. Metrics estimation scalability

P4BS declares 4 registers arrays (d = 4), each has 217 =
131072 cells (w = 131072). The CMS is reset every 10
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Fig. 19. Number of packets per 10 seconds for various parts of the CAIDA
trace. The number of packets is up to ≈ 7 million. Using the CMS, the
probability of overestimating the counts by 140 packets is less than 5%.

seconds (i.e., all cells will have 0).
Consider a real traffic trace from CAIDA: CAIDA’s Equinix

10G dataset [69]. The router has a 10Gbps bottleneck link
capacity. Fig. 19 shows the number of packets per 10 seconds
for various parts of the CAIDA trace. The number of packets
is up to ≈ 7 million.

With d = 4, δ = 1
ed−1 ≈ 5%; with w = 217, ϵ = e

w−1 ≈
0.00002. Every 10 seconds, after counting ≈ 7 million packets
in total, the probability for any estimate to be off by more than
0.00002 ∗ 7, 000, 000 ≈ 140 packets is less than 5%. This
number is much smaller than the threshold used to identify
a flow as being long. Thus, even with multiple bottlenecked
routers, the proposed system can still reliably estimate the
packet counts.
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