
P4CCI: P4-based Online TCP Congestion Control

Algorithm Identification for Traffic Separation

Elie Kfoury

College of Engineering and Computing

University of South Carolina, USA

Jorge Crichigno

College of Engineering and Computing

University of South Carolina, USA

Elias Bou-Harb

Cyber Center For Security and Analytics

University of Texas at San Antonio, USA

Abstract—Congestion Control Algorithms (CCAs) regulate the
sending rates of hosts to avoid congestion in the network. Studies
have shown that when flows belonging to different CCAs co-
exist on the same link, their shares on that link are significantly
different. If the CCAs of active flows can be determined on live
traffic, then flows belonging to the same CCA can be allocated
into a dedicated queue. Unfortunately, identifying the CCA at
line rate is not straightforward since the CCA is not advertised
in the header fields of a packet. Moreover, with Gigabits per
second (Gbps) traffic crossing a network, analyzing each packet
to infer the CCA is not possible, especially with general-purpose
CPUs. This paper proposes P4CCI, a system that detects the CCA
of a flow at line rate by leveraging Programmable Data Planes
(PDP). The PDP computes and extracts the flow’s bytes-in-flight
and sends them to a Deep Learning model for classification. Once
classified, the flows are allocated into dedicated queues based on
their CCA type. The system was implemented and tested on
real hardware that uses Intel’s Tofino ASIC. The experiments
were executed on traffic provided by CAIDA. Results show that
P4CCI can detect the CCAs with high accuracy. Furthermore,
the performance of the network is greatly improved when the
flows are separated by their CCAs.

Index Terms—Programmable data plane, P4, TCP, congestion
control algorithm, Deep Learning.

I. INTRODUCTION

TCP Congestion Control Algorithms (CCAs) attempt to

determine the available capacity in the network in order to reg-

ulate the sending rates of hosts and avoid congestion. Research

in congestion control has significantly evolved throughout

the years; early versions of TCP use the Additive Increase

Multiplicative Decrease (AIMD) control law. In AIMD, the

congestion window is increased by approximately one Maxi-

mum Segment Size (MSS) every Round-trip Time (RTT) when

the data is acknowledged, and halved for every window of

data containing a packet drop. This CCA variant is known as

“Reno”, and is considered loss-based since it uses the packet

loss as a signal of congestion. Since then, many enhancements

have been proposed [1], [2]. The most common CCA is

“CUBIC”, which uses a cubic function for the window growth.

CUBIC is currently the default CCA used in Linux Operating

Systems (OS).

In 2016, Google released the first version of the Bottleneck

Bandwidth and Round-trip Time (BBR) algorithm [3]. The

design of BBR diverged from the existing CCAs in that it

This work was supported by the U.S. National Science Foundation under
grant number 2118311.

does not adhere to the AIMD rule. Instead, it measures the

bottleneck bandwidth and the RTT, and uses packet pacing to

set the sending rate.

Recent studies have shown that CUBIC is currently the

dominant TCP variant on the Internet, followed by BBR [4].

Unfortunately, when flows using these two variants co-exist

on a link, the fairness (i.e., how fair is the capacity of the link

being divided among the competing flows) is significantly low

[5], [6]. On the other hand, when flows belonging to the same

CCA share a bottleneck link, the fairness is typically high.

A potential solution to mitigate the fairness issue is to

separate flows into different queues on the router based on

their CCAs. Unfortunately, the CCA used by a flow is not

advertised, and it is not straightforward to identify it in real

time, especially with high traffic rates. Existing works on CCA

identification perform offline analysis on packet captures to

extract unique features manifested by a specific CCA. Such

works aim to discover the distribution of CCAs on the Internet

rather than separating the traffic into different queues.

A. Contributions

This paper presents P4CCI, a system that leverages P4

Programmable Data Planes (PDPs) to identify CCAs at line

rate. After identification, the flows are assigned to separate

queues based on the CCAs they are using. The system does

not require deploying PDPs inline, and thus, it is compatible

with non-programmable data planes found in most networks

nowadays. The contributions of this paper are:

• Devising a scheme that relies on passive PDPs for CCA

identification at line rate. The PDP measures the average

queueing and computes the bytes-in-flight (BIF) values for

the flows during congestion.

• Implementing a Deep Learning model to identify the CCA.

The model classifies the CCA using the flow’s BIF values.

• Separating the flows belonging to the same CCA into

dedicated queues. This separation improves the fairness of

TCP flows sharing the bottleneck and minimizing the Flow

Completion Times (FCTs) of short flows.

The rest of the paper is organized as follows. Section

II describes the existing CCA identification solutions and

motivates the need for P4CCI. Section III provides an overview

of P4CCI. Section IV describes the experimentation setup

and discusses the results obtained with real hardware. Finally,

Section V concludes the paper and highlights potential future

work.

II. BACKGROUND AND RELATED WORK

A. Programmable Data Planes Primer

PDPs allows the programmer to customize the packet pro-

cessing pipeline. PDPs include a programmable parser, pro-

grammable match-action pipeline, and programmable deparser.

The programmable parser permits the programmer to define

the headers according to custom or standard protocols, and

to parse them. The match-action pipeline executes operations

over the packet headers and intermediate results. The deparser

assembles the packet headers back and serializes them for

transmission. PDPs provide high-precision timers (nanosecond

granularity [7]), and stateful memories (e.g., registers, coun-

ters, meters) that can be accessed at line rate. PDPs have been

extensively used for improving the performance of networks

[8], [9].

B. Active Identification

Active approaches instantiate connections to a host, re-

quest data, manipulate the communication (e.g., force packet

drops, introduce latency), and observe the behavior of TCP.

TBIT [10] traces the congestion window; CAAI [11] ex-

tracts the multiplicative-decrease parameter and the window

growth function, then uses ML for the classification; Gordon

[4] estimates the congestion window; Inspector Gadget (IG)

enhances CAAI and considers more complex network envi-

ronments with changing RTTs. P4Air [12] uses P4 switches

and tracks the queue buildup to identify CCAs. Unlike the

other approaches, P4Air does not instantiate new connections

to the host, but forces packet drops and introduces latency

to the existing traffic. Furthermore, P4Air requires deploying

the PDPs inline, and thus, cannot be used with contemporary

non-programmable devices.

C. Passive Identification

Passive approaches do not interact with the destination host,

but rely on previously collected packet traces. Oshio et al. [13]

used cluster analysis considering the congestion window and

the RTT. Kato et al. [14] approximate the sequence number

(SEQ) to time function and use derivatives to differentiate

between the CCAs. DeePCCI [15] uses the packet arrival time

for classifying the CCA.

The proposed approach (P4CCI) identifies the CCA pas-

sively, but instead of using packet captures for analysis, it

operates on live traffic. P4CCI computes BIF samples at line

rate, and feeds those samples to a Deep Learning model for

classification. Another distinction between the existing work

and P4CCI is that the goal of P4CCI is to separate traffic by

their CCAs rather than studying the distribution of CCAs on

public nodes in the wide area network.

Fig. 1. P4CCI architecture.

III. PROPOSED SYSTEM

A. Overview

Consider Fig. 1 which demonstrates the architecture of

P4CCI. The steps to identify the CCA and separate the traffic

are as follows:

1) The system continuously and passively monitors the traffic

traversing a legacy router. Passive Tap devices are installed

on the links of the router, and the traffic is forwarded to a

customized packet processing pipeline in the PDP switch

that operates at line rate.

2) Since the CCAs only exhibit different behaviors during

congestion (i.e., the router’s queue is being utilized), the

data plane of the PDP switch continuously measures the

average queueing delay.

3) Upon detecting congestion, the BIF samples for each flow

are computed. The BIF samples are then pushed to the

control plane of the PDP switch.

4) The control plane organizes the per-flow BIF samples into

a time series, and feeds them into a Deep Learning model

to classify the flow’s CCA.

5) Once classified, a rule is created and pushed to the control

plane of the legacy router. The rule consists of the 5-

tuple of the flow, and the CCA it belongs to. The rule is

configured as an Access Control List (ACL) entry matching

on the 5-tuple of the flow.

6) The scheduler of the legacy router assigns the packets to

a corresponding queue based on the flow’s predicted CCA

(i.e., Loss for loss-based CCA such as CUBIC or Reno;

Model for model-based CCA such as BBR). The short

flows queue is the default queue used by all flows.

B. Queueing Delay Calculation

Consider Fig. 2 which shows the queueing delay calculation

process. (1) Upon receiving a packet from Tap1, the PDP

hashes the packet’s 5-tuple fields (i.e., the flow identifier)

along with the packet’s SEQ. The resulting hash value is used

as an index to a register array where the switch’s current

D
a

ta
 p

la
n

e

(P
D

P
 s

w
it

ch
)H(FID, SEQ)

Index
 Tt-1 =100

Value

...

(1)

Insert

(2)

Match, erase

(3)

Queue delay sample

(Dt = Tt – Tt-1 = 5)

EWMA LPF

AVG

Legacy

router

Tt-1 = 100 Tt = 105

(4)

Packett

FID (5-tuple)
SEQ = 1001

Packett+1

FID (5-tuple)
SEQ = 1001

Tap1 Tap2

Fig. 2. Queue delay calculation in the data plane.

timestamp is stored. (2) When a packet arrives from Tap2,

the data plane computes its hash (i.e., Hash (5-tuple, SEQ))

to retrieve the previous timestamp stored in the array. This

timestamp is then removed from the array. (3) The data plane

computes a queueing delay sample as Dt = Tt−Tt−1, where

Tt is the switch’s current timestamp and Tt−1 is the extracted

timestamp. (4) The queueing delay sample is then fed to an

Exponentially Weighted Moving Average (EWMA) Low Pass

Filter (LPF) to compute the average.

C. Bytes-in-flight Calculation

BIF is the amount of data that has been sent but not yet

acknowledged. This field is always less than or equal to the

recipient’s receive window. The calculation of BIF is shown

in Fig. 3. The PDP stores the last Acknowledgement number

(ACK) for a given TCP flow in a register array. The flow’s

current BIF (in bytes) is calculated as BIFi = SEQi−ACK,

where SEQi is the sequence number of a data packet belong-

ing to the flow, and ACK is the flow’s last ACK. The BIF

value is then pushed to the control plane of the PDP switch

where a time series is constructed. Note that the BIFs values

are only pushed during congestion (i.e., when the queue is

being utilized). This condition is essential to avoid saturating

the control/data plane channel, and to ensure that the CCAs

will exhibit different behaviors.

Since calculating BIF requires examining all packets cross-

ing the device, it is not possible to estimate BIFs on a general

purpose CPU, especially when the traffic rates are high (in the

order of Gbps or Tbps).

D. Time Series Preparation

Two steps are applied to prepare the time series to be used

for classification: 1) outliers rejection and 2) normalization.

Outliers Rejection. The robust Z-score method [16], which

uses the MAD (Median Absolute Deviation), is used to reject

the outliers from the time series. MAD is calculated as:

MAD = med{|xi − x̂|}, (1)

ReceiverSender PDP

ACK1

BIF1...N = SEQ1...N - ACK1

ACK2

Fig. 3. Bytes-in-flight (BIF) calculation.

where xi is a sample point and x̂ is the median of the samples.

Then the z-score is calculated as:

Mi =
0.6745(xi − x̂)

MAD
(2)

If the score of a point is above 3.5 (the rule-of-thumb cut-

off value), the point is considered as an outlier and is removed

from the series.

Normalization The time series is preprocessed using z-

normalization, where the input vector is transformed into an

output vector whose mean is approximately 0 and its standard

deviation is in a range close to 1. The transformation is as

follows: x′

i =
xi−µ

σ
, where xi is a sample point in the time

series, µ is the mean of all the values, σ is the standard

deviation, and x′

i is the standardized sample point.

E. Deep Learning

Early approaches to Time Series Classification (TSC) con-

sist of using a nearest neighbor (NN) classifier coupled with a

distance function such as the Dynamic Time Warping (DTW).

More recent approaches use Deep Learning for TSC. Recent

studies have shown that Deep Learning outperforms the early

NN classifiers [17].

P4CCI uses the Fully Convolutional Neural Networks

(FCNs) [18] to classify the univariate time series. FCNs do

not use local pooling layers, which makes the length of

the time series unchanged throughout the convolutions. The

convolution blocks consist of a batch normalization layer and

a ReLU activation. Three 1-D kernels with sizes {8, 5, 3} are

used without striding, and the filter sizes for the convolution

blocks are {128, 256, 128}. In addition, instead of using a

fully connected layer after the convolution blocks, FCN uses

a global average pooling layer. The output label is produced

by a softmax layer.

F. Rule Management

After identifying the CCA for a given flow, the control plane

of the PDP switch constructs an ACL entry that matches on the

5-tuple of the flow. This rule is pushed to the control plane

Fig. 4. Topology used for training and testing.

of the legacy router. The rule specifies which queue should

be used for the flow. There are three queues: 1) short flows

queue: this is the default queue for all flows. Short flows will

remain in this queue, while long flows will be allocated in

different queues; 2) Loss queue: this queue is used by loss-

based CCAs (e.g., CUBIC, Reno); and 3) Model queue: this

queue is used by model-based CCAs (e.g., BBR). Note that

P4CCI only considers loss-based and model-based CCAs since

they represent the majority of the CCAs on the Internet [4].

IV. EXPERIMENTAL SETUP AND EVALUATION

Fig. 4 shows the topology used to train the model and

evaluate P4CCI. There are 100 senders (h1, h2, ..., h100)

each sending traffic to a corresponding receiver (h101, h102,

..., h200). Mininet was used to emulate the hosts running in

network namespaces in Linux. The senders are connected to a

virtual switch (Open vSwitch), which is bridged to the physical

interface on the server. The server’s interface is connected to

a Juniper router (MX-204) (R1), and the link’s bandwidth is

configured depending on the test. The programmable switch

uses the Intel’s Tofino programmable ASIC that operates at

3.2 Tbps. The end hosts were carefully tuned (e.g., TCP

send/receive buffers are set to a large value (200MB)). iPerf3 is

the tool used to generate traffic and measure the performance.

When evaluating the system, two scenarios are considered:

1) all flows are mixed in a single queue (i.e., the default

behavior of the router), referred to as “w/o separation”; and

2) flows belonging to the same CCA are assigned to the same

queue (P4CCI), referred to as “w/ separation”.

A. Training

Training the model with realistic traffic is challenging. First,

there is a lack of a labeled dataset for CCA identification; the

existing works (e.g., P4Air, DeePCCI) generated synthetic data

for training and testing. Second, replaying packet traces (e.g.,

from CAIDA) verbatim will not be useful as the closed-loop

dynamics of TCP will not be captured. The P4CCI’s model is

trained on a real dataset by utilizing the following heuristics:

1) The PCAP file of a CAIDA dataset [19] which contains

packet headers derived from 10Gbps traces on Equinix

TABLE I
TRAINING PARAMETERS FOR THE SYNTHETICALLY GENERATED DATASET.

Flows 1, 2, 5, 10, 15, 20, 50, 100

Bandwidth [bps] 500M, 1G, 2G, 3G, 4G, 5G, 10G

CCAs Loss (CUBIC, Reno), Model (BBR)

Packet loss rates [%] 0, 0.1, 0.25, 0.5

Propagation delays [ms] 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Buffer sizes [ms] 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

NYC monitor was analyzed. Two PCAP files are consid-

ered, each lasting for a minute.

2) The inter-departure times of the long flows and their sizes

(the total amount of bytes transferred by the flow) are

extracted. A flow is considered long if its size > 10MB.

3) The distribution of the sizes of short flows and their

departure times are analyzed.

4) The propagation delay for a flow is configured based on

the minimum RTT observed in its lifetime.

5) The long flows are replayed based on their sizes and their

starting times; the short flows are reproduced based on the

flow size and starting time distributions observed in the

traces.

6) The CCAs were assigned to the flows based on the distribu-

tion derived from [4]. Another round of training distributed

the CCAs evenly (50% CUBIC/Reno, 50% BBR).

In addition to the CAIDA dataset, the model was trained

with synthetically generated traffic. The training considered

various bottleneck link bandwidths, propagation delays, packet

loss rates, router’s buffer size, and number of flows. The ranges

of these variables are summarized in Table I.

The model was trained with the Adam optimizer, with a

learning rate of 0.005. The learning rate was reduced when

the optimizer reached a plateau. The loss function is the

categorical cross-entropy.

B. Testing

The model was tested against 10 minutes worth of traffic

from the remaining CAIDA dataset. The bottleneck bandwidth

was configured to 1Gbps, 1.5Gbps, 2Gbps, and 2.5Gbps. The

goal is to verify that the model generalizes well, regardless of

the bottleneck bandwidth. The model was also tested by gen-

erating traffic using a random combination of the parameters

used in Table 1. The generated tests contain parameter settings

not included in the training (e.g., a bandwidth of 750Mbps,

TABLE II
CLASSIFICATION RESULTS.

Dataset Classes Precision Recall F1-score Accuracy

CAIDA
1Gbps

Loss 96.2% 93.5% 94.8%
96.1%

Model 96.0% 97.7% 96.8%

CAIDA
1.5Gbps

Loss 95.2% 92.0% 93.1%
95%

Model 95.6% 97.6% 96.6%

CAIDA
2Gbps

Loss 92.0% 92.5% 92.3%
95.4%

Model 96.9% 96.4 96.8%

CAIDA
2.5Gbps

Loss 91.5% 91.0% 91.2%
95.6%

Model 97.0% 97.1% 97.0%

Synthetic
Loss 99.2% 99.5% 99.4%

99.4%
Model 99.5% 99.2% 99.4%

0

1000

2000 CUBIC CUBICBBR BBR

0 10 20 30 40 50 60

 [M
bp

s]
Th

ro
ug

hp
ut

0 10 20 30 40 50 60
Time [s]

0.0

0.5

1.0

Fa
irn

es
s

In
de

x

Fairness (w/o) = 0.68, = 0.24

0 10 20 30 40 50 60
Time [s]

Time [s]

Fairness (w/) = 0.99 = 0.003,

1000

500

0

Th
ro

ug
hp

ut
 [M

bp
s]

Fig. 5. Per-flow throughput (top: w/o separation; middle: w/ separation) and
the fairness index (bottom).

or a loss rate of 0.35). The total number of synthetic tests is

1282, where the CCAs are evenly distributed.

Table II shows the precision, recall, F1-score, and accuracy

for each dataset. The model was able to generalize well as the

scores are above 95% in the real datasets, and above 99% in

the synthetic dataset. Note that the previous works were only

evaluated on synthetic datasets. Thus, it is only fair to compare

them with P4CCI on synthetic datasets. In such case, P4CCI

outperformed all the existing approaches.

C. Fairness Evaluation

The goal of this test is to measure how fair is the link being

shared among flows. Jain’s fairness index, described in RFC

5166, is used to quantify fairness. It is computed as follows:

F =

(n
∑

i=1

Ti

)2

n ·
n
∑

i=1

(Ti)2
, (3)

where Ti is the throughput of an active flow i among n flows.

Experiment 1. In this experiment, four long flows are gen-

erated, 15 seconds apart: flow 1: CUBIC; flow 2: BBR; flow

3: CUBIC; and flow 4: BBR. The bottleneck bandwidth is

2Gbps; in the “w/ separation” scenario, 1Gbps is used for the

loss-based CCA queue, and another 1Gbps is used for the

model-based CCA queue.

Consider Fig. 5 which shows the per-flow throughput and

the fairness index for this experiment. In the “w/o separation”

scenario (Fig. 5, top), as soon as the first BBR flow joins (at

second 15), the throughput of the active CUBIC flow collapsed

(from ≈ 2Gbps to ≈ 100Mbps), resulting in a decrease in the

fairness index to ≈ 60% (Fig. 5, bottom). Note how at second

30, the BBR flow collapsed, but later claimed most of the

bandwidth (at second 40). The mean fairness index (µ) is 68%
and the standard deviation (σ) is 24%. In the “w/ separation”

10 20 40 60 80 100 200
Buffer size [ms]

89 82 78 83 79 78 71

87 86 80 84 79 80 76

86 84 85 80 85 79 75

86 86 83 82 76 82 74

88 83 86 82 77 85 66

80 85 87 77 83 76 69

83 85 84 79 76 74 72
30

40

50

60

70

80

90

10 20 40 60 80 100 200
Buffer size [ms]

10

20

30

40

50

60

80

P
ro

p
a

g
a

ti
o

n
 D

e
la

y
 [m

s]

44 50 46 44 49 53 53

46 43 48 34 40 53 51

42 41 42 44 45 45 55

40 42 41 42 45 42 53

45 37 41 36 37 40 41

43 42 38 42 39 39 50

40 41 40 38 38 41 52

(a) (b)

10

20

30

40

50

60

80

P
ro

p
a

g
a

ti
o

n
 D

e
la

y
 [m

s]

Fig. 6. Fairness index considering various propagation delays and various
buffer sizes. (a) w/o separation; (b) w/ separation.

scenario (Fig. 5, middle), the throughput was fairly divided

among the active flows, resulting in an average fairness index

close 100%, with a small σ.

Experiment 2. In this experiment, 10 long flows started at the

same time, with alternating CCAs (i.e., Flow1 uses CUBIC,

Flow2 uses BBR, Flow3 uses CUBIC, etc.). Various propa-

gation delays [10, 20, 30, 40, 50, 60, 80] (ms) are introduced,

and various buffer sizes [10, 20, 40, 60, 80, 100, 200] (ms) are

configured on the router R1. In the “w/ separation” scenario,

the buffer size is configured on both queues (loss-based and

model-based). The experiment lasted 60 seconds.

Consider Fig. 6 which shows the fairness index for each

test in this experiment. In the “w/o separation” scenario (Fig.

6 (a)), the fairness index is low, regardless of the buffer size or

the propagation delay. On the other hand, the fairness index is

approximately two times higher in the “w/ separation” scenario

(Fig. 6 (b)).

D. Flow Completion Time Evaluation

Flow Completion Time (FCT) is defined as the amount of

time that elapses from when the first packet is sent until the last

packet reaches its destination. This test evaluates the impact

of separating flows by their CCAs on the FCT of short and

long flows.

Short flows. This test measures the FCTs and the RTTs of

short flows sharing the bottleneck link with long flows. In this

experiment, 100 long flows are generated over a bottleneck

link of 3Gbps (1Gbps for each queue for the “w/ separation

scenario”). The queue size for the “w/o separation” scenario is

200ms, a size recommended by major vendors [20]. The long

flows are 50% CUBIC, and 50% BBR. In addition, 10, 000
short flows, whose inter-connection times are generated from

an exponential distribution with a mean of one second, are

initiated. Fig. 7 shows the Cumulative Distribution Functions

(CDFs) of the FCT and the RTT of short flows. Without

traffic separation, the FCTs significantly increase; it took more

than 0.5s for the majority of the flows to finish. The FCTs

increase due to the large RTTs resulting from sharing the

oversubscribed queue (Fig. 7 (b)). With traffic separation, the

RTTs of the short flows remain small, leading to small FCTs;

all flows were completed in less than 0.2s, with a µ = 0.05
and a σ = 0.03.

0.0 0.5 1.0 1.5
Flow Completion Time [s]

0.00
0.25
0.50
0.75
1.00

CD
F

w/o sep.
= 0.56
= 0.29

w/ sep.
= 0.05
= 0.03

0 100 200 300
Round-trip Time [ms]

0.00
0.25
0.50
0.75
1.00

CD
F

w/o sep.
= 145
= 49

w/ sep.
= 12
= 6

(a) (b)

Fig. 7. Flow completion time (a) and round-trip time (b) for short flows. The
shaded area demonstrates the CDF of the minimum RTT and the maximum
RTT of each connection.

Long flows. This test evaluates the impact of traffic separation

on the FCT of long flows. The experiment uses the same

settings as those described in Experiment 2 (Section IV.C), but

instead of running the test for 60 seconds, each flow transfers

a 500MB file1. Fig. 8 shows the CDF of the FCTs (a) and the

throughput samples (b) of all the tests. In the “w/ separation”

scenario, the majority of the flows concluded within [15-

25s]. On the other hand, while some flows terminated faster

in the “w/o separation scenario”, approximately 30% of the

flows took more than 30s to complete. This unfairness is also

reflected in the throughput samples observed throughout all

tests (Fig. 8 (b)).

V. CONCLUSION

This paper presented a system that uses passive measure-

ments to identify CCAs at line rate. After identifying the CCA,

the flow is enqueued into a dedicated queue based on the CCA

variant. The experiments were conducted on real hardware,

and real datasets were used for testing. The results show that

1) P4CCI is able to identify the CCA with high accuracy;

2) the fairness of the long flows is significantly improved; 3)

the FCT of the short flows is also improved when compared

to the default enqueueing model used in today’s networks.

A limitation of P4CCI is that it assumes that the flows are

uniformly distributed based on their CCA. The authors plan

to solve this queue assignment imbalance problem for future

work. The authors also plan to separate the flows based on

their RTTs to mitigate the RTT unfairness problem of TCP.

REFERENCES

[1] Sally Floyd, Tom Henderson, and Andrei Gurtov. The NewReno
modification to TCP’s fast recovery algorithm. Technical report, RFC,
2004.

[2] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS Operating Systems Review,
42(5):64–74, 2008.

[3] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. BBR: Congestion-based congestion con-
trol: Measuring bottleneck bandwidth and round-trip propagation time.
Queue, 14(5):20–53, 2016.

[4] Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi,
and Ben Leong. The great internet TCP congestion control census.
Proceedings of the ACM on Measurement and Analysis of Computing

Systems, 3(3):1–24, 2019.

1In a fair network with a bottleneck of 2Gbps and 10 active flows, each

flow is transferring at 200Mbps, resulting in an FCT = 500MB
200Mbps

= 20s.

(a) (b)

10 20 30 40
Flow Completion Time [s]

0.00
0.25
0.50
0.75
1.00

CD
F

w/o sep.
= 21
= 10

w/ sep.
= 19
= 3

200 400 600 800
Throughput Samples [Mbps]

0.00
0.25
0.50
0.75
1.00

CD
F

w/o sep.
= 276
= 136

w/ sep.
= 232
= 42

Fig. 8. FCTs (a) and throughput samples (b) of long flows. FCTs/throughput
are close to 20s/200Mbps, the ideal values in a fair network.

[5] Elie F Kfoury, Jose Gomez, Jorge Crichigno, and Elias Bou-Harb. An
emulation-based evaluation of TCP BBRv2 alpha for wired broadband.
Computer Communications, 161:212–224, 2020.

[6] Jose Gomez, Elie Kfoury, Jorge Crichigno, Elias Bou-Harb, and Gautam
Srivastava. A performance evaluation of TCP BBRv2 alpha. In
2020 43rd International Conference on Telecommunications and Signal

Processing (TSP), pages 309–312. IEEE, 2020.
[7] Elie F Kfoury, Jorge Crichigno, and Elias Bou-Harb. An exhaustive

survey on P4 programmable data plane switches: taxonomy, applications,
challenges, and future trends. IEEE Access, 9:87094–87155, 2021.

[8] Elie F Kfoury, Jorge Crichigno, Elias Bou-Harb, David Khoury, and
Gautam Srivastava. Enabling TCP pacing using programmable data
plane switches. In 2019 42nd International Conference on Telecom-

munications and Signal Processing (TSP), pages 273–277. IEEE, 2019.
[9] Jose Gomez, Elie F Kfoury, Jorge Crichigno, and Gautam Srivastava.

A survey on TCP enhancements using P4-programmable devices. Com-

puter Networks, 212:109030, 2022.
[10] Jitendra Pahdye and Sally Floyd. On inferring TCP behavior. ACM

SIGCOMM Computer Communication Review, 31(4):287–298, 2001.
[11] Peng Yang, Juan Shao, Wen Luo, Lisong Xu, Jitender Deogun, and Ying

Lu. TCP congestion avoidance algorithm identification. IEEE/ACM

Transactions On Networking, 22(4):1311–1324, 2013.
[12] Belma Turkovic and Fernando Kuipers. P4air: Increasing fairness

among competing congestion control algorithms. In 2020 IEEE 28th

International Conference on Network Protocols (ICNP), pages 1–12.
IEEE, 2020.

[13] Junpei Oshio, Shingo Ata, and Ikuo Oka. Identification of different
TCP versions based on cluster analysis. In 2009 Proceedings of 18th

International Conference on Computer Communications and Networks,
pages 1–6. IEEE, 2009.

[14] Toshihiko Kato, Xiaofan Yan, Ryo Yamamoto, and Satoshi Ohzahata.
Identification of TCP congestion control algorithms from unidirectional
packet traces. In Proceedings of the 2nd International Conference

on Telecommunications and Communication Engineering, pages 22–27,
2018.

[15] Constantin Sander, Jan Rüth, Oliver Hohlfeld, and Klaus Wehrle. Deep-
cci: Deep learning-based passive congestion control identification. In
Proceedings of the 2019 Workshop on Network Meets AI & ML, pages
37–43, 2019.

[16] Boris Iglewicz and David Hoaglin. How to detect and handle outliers.
The ASQC basic references in quality control: Statistical Techniques,
16, 1993.

[17] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane
Idoumghar, and Pierre-Alain Muller. Deep learning for time series clas-
sification: a review. Data mining and knowledge discovery, 33(4):917–
963, 2019.

[18] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classifi-
cation from scratch with deep neural networks: A strong baseline. In
2017 International Joint Conference on Neural Networks (IJCNN), pages
1578–1585. IEEE, 2017.

[19] Anonymized Internet Traces 2019. https://catalog.caida.org/details/
dataset/passive 2019 pcap. Accessed: 2022-5-13.

[20] Nick McKeown, Guido Appenzeller, and Isaac Keslassy. Sizing router
buffers (redux). ACM SIGCOMM Computer Communication Review,
49(5):69–74, 2019.

