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TCP Traditional Congestion Control

« The principles of window-based CC were described in the 1980s’
 Traditional CC algorithms follow the additive-increase multiplicative-decrease (AIMD)
form of congestion control
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TCP Traditional Congestion Control

« The principles of window-based CC were described in the 1980s’
 Traditional CC algorithms follow the additive-increase multiplicative-decrease (AIMD)

form of congestion control
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BBR: Model-based CC

- TCP Bottleneck Bandwidth and RTT (BBR) is a rate-based congestion-control
algorithm’
* BBR represented a disruption to the traditional CC algorithms:

» is not governed by AIMD control law
» does not the use packet loss as a signal of congestion

« At any time, a TCP connection has one slowest link bottleneck bandwidth (btlbow)
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Fairness

« Fairness: how fair is the capacity of the link being divided among the competing flows
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Fairness

 Fairness: how fair is the capacity of the link being divided among the competing flows
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Fairness

« The fairness between flows belonging to different CCAs is often low
- E.g., the fairness among Cubic and BBR flows
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P4 Programmable Data Planes

« P47 Programmable Data Planes (PDPs) permit a programmer to program the data
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P4 Programmable Data Planes

« P47 Programmable Data Planes (PDP) permit a programmer to program the data
plane
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Measure events occurring in the data plane with
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Offload applications to the data plane

If the P4 program compiles, it runs on the
chip at line rate
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Reproduced from N. McKeown. Creating an End-to-End Programming Model for Packet Forwarding.
Available: https://lwww.youtube.com/watch?v=fiBuao6YZI0&t=4216s
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Proposed System

- Passive PDPs for congestion
control algorithm (CCA)
identification at line rate

- The PDP measures the average
gueueing

 During congestion, the PDP
computes the flow’s bytes-in-flight
(BIF)

* Deep learning model classifies the
CCA using the flow’s BIF values

* Flows belonging to the same CCA
are assigned to dedicated queues.
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Proposed System
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Queue Delay Calculation

* The queueing delay is calculated by leveraging the precise timestamp of the hardware
switch (nanosecond resolution)

 The queueing delay sample is fed to an Exponentially Weighted Moving Average

(EWMA)
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Bytes-in-flight Calculation

« Bytes-in-flight (BIF) is the amount of data sent but not yet acknowledged
« BIF is correlated to the TCP congestion window
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Time Series Preparation and Deep Learning

BIF values are pushed to the control plane of the PDP switch during congestion
A time series is constructed

Two pre-processing steps:

» Outliers Rejection: z-score method, which uses the MAD (Median Absolute Deviation), is used

» Normalization: The time series is preprocessed using z-normalization

Fully Convolutional Neural Networks (FCNs) used to classify the univariate time series
(deep learning)
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Experimental Topology

Mininet was used to emulate the hosts running in network namespaces in Linux
The senders are connected to a virtual switch (Open vSwitch)

The server’s interface is connected to a Juniper router (MX-204)

The PDP device is Intel's Tofino programmable ASIC that operates at 3.2 Tbps
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Model Training

« The model is trained on CAIDA's dataset
- The model is also trained with synthetically generated traffic

TRAINING PARAMETERS FOR THE SYNTHETICALLY GENERATED DATASET

Flows 1, 2,5, 10, 15, 20, 50, 100
Bandwidth [bps] 500M, 1G, 2G, 3G, 4G, 5G, 10G
CCAs Loss (CUBIC, Reno), Model (BBR)

Packet loss rates [%]

0, 0.1, 0.25, 0.5

Propagation delays [ms]

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Buffer sizes [ms]

10, 20, 30, 40, 50, 60, 70, 80, 90, 100
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Model Testing

* The model was tested against 10 minutes of traffic from the remaining CAIDA dataset
« The bottleneck bandwidth was configured to 1Gbps, 1.5Gbps, 2Gbps, and 2.5Gbps
» Results outperformed the state-of-the-art CCA identification systems

CLASSIFICATION RESULTS.

Dataset Classes | Precision | Recall | Fl-score | Accuracy
CAIDA Loss 96.2% 93.5% 94.8% 96.1%
1Gbps Model 96.0% 97.7% 96.8% '
CAIDA Loss 95.2% 92.0% 93.1% 05%
1.5Gbps Model 95.6% 97.6% 96.6%
CAIDA Loss 92.0% 92.5% 92.3% 95.49%
2Gbps Model 96.9% 96.4 96.8% '
CAIDA Loss 91.5% 91.0% 91.2% 95 6%
2.5Gbps Model 97.0% 97.1% 97.0% '

. Loss 99.2% 99.5% 99.4%
Synthetic g qeT | 095% | 992% | 994% | %
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Fairness Evaluation

« 10 long flows (persistent over time) started within a few milliseconds of each other,
with alternating CCAs

» Flow1 uses CUBIC, Flow2 uses BBR, Flow3 uses CUBIC, etc.
 Various propagation delays and various router buffer sizes are used

Without separation With separation

Fairness [%]
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Propagation Delay [ms]

10 20 40 60 80 100 200 10 20 40 60 80 100 200
Buffer size [ms] Buffer size [ms]
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Fairness Evaluation
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Flow Completion Time (Short Flows)

* 100 long flows (50% Cubic, 50% BBR) are generated over a bottleneck link of 3Gbps

« The queue size for the “w/o separation” scenario is 200ms

* 10,000 short flows, whose inter-connection times are generated from an exponential
distribution with a mean of one second, are initiated
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Flow Completion Time (Long Flows)

* 10 long flows started within few milliseconds of each other, with alternating CCAs
» Flow1 uses CUBIC, Flow2 uses BBR, Flow3 uses CUBIC, etc.

 Each flow transfers a 500MB file

 In a fair network with a bottleneck of 2Gbps and 10 active flows:

» Each flow is transferring at 200Mbps
» FCT =500MB / 200Mbps = 20s
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Conclusion and Future Work

« This paper presented a system that uses passive PDPs to identify CCAs at line rate

 After identifying the CCA, the flow is enqueued into a dedicated queue based on the
CCA variant

« The experiments were conducted on real hardware, and real datasets were used for
testing

* One limitation is that the system assumes that the flows are uniformly distributed
based on their CCA

« The authors plan to solve this queue assignment imbalance problem for future work
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