

PERFSONAR
LAB SERIES

Book Version: 01-25-2021

Principal Investigator: Jorge Crichigno

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

	 	
	 	

Lab 10: Configuring pScheduler Limits
Lab 9: pSConfig Web Administrator
Lab 8: perfSONAR Monitoring and Debugging Dashboard
Lab 7: Configuring Regular Tests Using a pSConfig Template
Lab 6: Bandwidth-delay Product and TCP Buffer Size
Lab 5: Configuring Regular Tests Using pScheduler CLI Part II
Lab 4: Configuring Regular Tests Using pScheduler CLI Part I
Lab 3: Configuring Regular Tests Using perfSONAR GUI
Lab 2: PerfSONAR Metrics and Tools
Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

Contents

perfSONAR Lab Series

 PERFSONAR

Lab 1: Configuring Administrative Information
Using perfSONAR Toolkit GUI

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 2

Contents	

Overview .. 3
Objectives ... 3
Lab topology ... 3
Lab settings ... 4
Lab roadmap ... 4
1 Introduction .. 4
2 Configuring administrative information ... 5

2.1 Adding a web user ... 5
2.2 Accessing the administrative information interface .. 7
2.3 Filling up administrative information ... 7
2.4 Adding node metadata .. 11
2.5 Adding a community .. 13

References .. 16

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 3

Overview

This lab provides an introduction to perfSONAR Toolkit. It shows how to configure the
administrative information of a perfSONAR node using the Graphical User Interface (GUI).

Objectives

By the end of this lab, the user will:

1. Understand perfSONAR GUI.
2. Access to perfSONAR Toolkit GUI.
3. Configure the administrative information.
4. Visualize the administrative information of a perfSONAR node.

Lab topology

Figure 1 illustrates the topology used for this lab. The topology includes three perfSONAR
nodes labeled as perfSONAR1, perfSONAR2, perfSONAR3 and a Client host. The
perfSONAR nodes run a Linux CentOS 7, and the Client runs a lightweight Linux
distribution (Lubuntu). The Client host is used to access perfSONAR graphical user
interface.

Figure 1. Lab topology.

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 4

Lab settings

The information in Table 1 provides the credentials to access to perfSONAR nodes.

Table 1. Credentials to access perfSONAR1, perfSONAR2 and perfSONAR3.

Device

IP Address

Account

Password

perfSONAR1 192.168.1.10 admin admin

perfSONAR2 192.168.2.10 admin admin

perfSONAR3 192.168.3.10 admin admin

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Configuring Administrative Information.

1 Introduction

Networks are designed to support diverse mixtures of hardware and protocols, especially
in large collaborations. Interoperability takes precedence in most cases, along with local
control and policy being preserved. Reason that, actions taken by one organization can
affect the performance of users in another organization. A global monitoring framework
is required to reliably discover and mitigate these issues. Monitoring within a single
domain is a common and accepted practice but cross-domain performance monitoring is
difficult to do with traditional tools1.

perfSONAR is a tool which offers web services-based infrastructure from collecting and
diagnosing network performance. perfSONAR makes it possible to diagnose problems on
networks quickly and easily, providing a collection of tools for performing and sharing
end-to-end network measurements. perfSONAR is used to diagnose performance issues
such as latency, achievable bandwidth, packet loss, and many others2. While perfSONAR
is currently focused on reporting network metrics, it is designed to be flexible enough to
handle new metrics from technologies as middleware or monitoring3.

The perfSONAR project is currently deployed in over 1,700 locations around the world. Its
main feature relies on network troubleshooting. perfSONAR has been developed through
an international collaboration led by Internet2, ESnet, Indiana University, and GÉANT4.

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 5

The perfSONAR Toolkit Graphical User Interface (GUI) is a fully enclosed measurement
infrastructure packaged as a Linux distribution. perfSONAR Toolkit GUI belongs to the
visualization layer, as shown in the figure 2. In this lab, the user will configure the
administrative information using perfSONAR Toolkit GUI.

Figure 2. perfSONAR layers2.

2 Configuring administrative information

The perfSONAR Toolkit GUI allows the user to enter contact and location information
about a perfSONAR node. Once the perfSONAR Toolkit is installed and it is booted for the
first time, the first step consists on adding a user with the privileges to edit and manage
the administrative information.

2.1 Adding a web user

The perfSONAR Toolkit provides utilities for adding, deleting and modifying user’s
privileges to access the web interface. All of these tasks can be done through the
perfSONAR command-line interface (CLI).

Step 1. In the topology, click on perfSONAR1 and enter the username admin and
password admin. Note that the password will not be displayed while typing it.

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 6

Step 2. In order to create a new user, type the command displayed down below. If a
password is required, type admin as password.

sudo /usr/lib/perfsonar/scripts/nptoolkit-configure.py

Step 3. Select Manage Web Users typing 2 and then hit Enter to proceed.

Step 4. Select Add a new user typing 1 and then hit Enter to proceed

Step 5. Type admin as the username and admin as the password, the user will be required
twice to enter the password. Notice that the password will not be displayed while typing
it. In the future, the user can change the password running the same script and selecting
option 3.

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 7

2.2 Accessing the administrative information interface

Step 1. On the Client host, open web browser located on the desktop.

Step 2. On the address bar, type the IP address of perfSONAR1 Toolkit node which is
192.168.1.10. The user will see the perfSONAR Toolkit web interface.

2.3 Filling up administrative information

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 8

In this section the user will fill out a form with the corresponding administrative
information. Note that the information provided in this section is just for training
purposes, and it is valid only for this lab. The user may change this information depending
on the characteristics of the node.

Step 1. Click on edit.

Step 2. The user will be given an authentication screen. Type admin as the User Name
and admin as the Password then, click on OK.

Step 3. In this step the user will fill a form with the administrative information. This
information may change depending on the organization, administrator information, and
location of the node. Fill the form with the following information:

• Organization Name: The name of the organization to which this host belongs.

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 9

• Administrator Name: The full name of a person to contact about this host.
• Administrator email: The email address where correspondence regarding this host

may be sent. Since this e-mail address should be used only for communication
related to the operations of the specific node, it is highly recommended that a role
or group e-mail address is used instead of a personal one.

• City: The city where the host resides.
• Country: The country where the host resides.
• State/Province: The state, province or other country-specific region where the

host resides. May be the 2-letter abbreviation if applicable.
• ZIP/Postal Code: The postal code of the location where the host resides.
• Latitude: The latitude of the host as a decimal number between -90 and 90. Note

that if you are in the southern hemisphere, this value should be negative.
• Longitude: The longitude of the host as a decimal number between -180 and 180.

Note that if the node is in the western hemisphere, this value should be negative.

Step 4. Click on the check box in order to agree to the perfSONAR Policy.

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 10

Step 5. Click Save to apply the changes.

Step 6. After applying the changes, the user will see the administrative information on
the public dashboard. To see this information, click on View public dashboard.

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 11

Step 7. The user can verify the given information on the public dashboard of perfSONAR
Toolkit.

2.4 Adding node metadata

The perfSONAR project maintains a graphical interface to the services directory of all
perfSONAR nodes. The node metadata are tags that can be used to describe a host in the
global node directory page. There are two types of metadata tags:

• Node Role: It describes the node roles in the domain. It helps potential users of
this node to recognize the place of node installation in the domain of the owner.
The user can select multiple roles for a node.

• Node Access Policy: It is used to indicate the access policy for a node. These
policies could be: public access node, private with no access, R&E only, or with
limited access. The user can select only one Access Policy for a node.

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 12

Step 1. Click on Edit, if the user is required to authenticate, type admin as the username
and admin as password.

Step 2. In order to add a Node Role, under Metadata, click on the field Node Role. A drop-
down list shows with possible values. Click on Test Host value to select it. The user can
repeat this step to add more tags.

Step 3. In order to add a Node Access Policy, under Metadata, click in the field Node
Access Policy. A drop-down list shows with possible values. Click on a R&E Only.

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 13

Step 4. The user may also add a descriptive note in Access Policy Notes field which is a
human readable text that can optionally be added to help further describe the access
policy.

Step 5. Click Save to apply the changes.

2.5 Adding a community

Communities are self-defined tags that can be used as a means to search for a host on the
Global node directory page. There are two ways to select from existing communities,
either by selecting from the list of existing communities or by typing the known
community (note that communities are case-sensitive).

Step 1. Under Communities, click the field Select communities. A list will be shown with
existing communities. Select one, for example ESNet.

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 14

Step 2. The user can also create a community tag clicking on Add a Community. An entry
box will be displayed.

Step 3. Write the community name. For example, type UofSC and then click on Add.

Step 4. Click on the checkbox to agree with perfSONAR policy.

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 15

Step 5. Click con Save to apply the changes.

Step 6. Click on View public dashboard.

Step 7. The user can verify the given information on the public dashboard of perfSONAR
Toolkit.

Lab 1: Configuring Administrative Information Using perfSONAR Toolkit GUI

 Page 16

This concludes Lab 1.

References

1. NSRC, “What is perfSONAR?,” [Online]. Available:
https://learn.nsrc.org/perfsonar/what-is-perfsonar.

2. B. Tierney, J. Metzger, E. Boyd, A. Brown, R. Carlson, M. Zekau, J. Zurawski, M.
Swany and M. Grigoriev, “perfSONAR: instantiating a global network
measurement,” in SOSP workshop, Real overlays and distributed systems.

3. How to use the linux traffic control panagiotis vouzis,” [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/.

4. perfSONAR Project, “Creating and managing tasks,” [Online]. Available:
https://docs.perfsonar.net/pscheduler_client_tasks.html.

5. perfSONAR Project, “The pScheduler command-line interface,” [Online].
Available: https://www.perfsonar.net/media/medialibrary/2017/09/22/201709-
perfSONAR-11-pScheduler_CLI-v2.pdf.

6. M. Feit, “CLI user's guide,” [Online]. Available:
https://github.com/perfsonar/pscheduler/wiki/CLI-User%27s-Guide.

7. ESnet, “esmond: ESnet monitoring daemon”. Available:
https://software.ed.net/esmond/.

PERFSONAR

Lab 2: perfSONAR Metrics and Tools

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 2: perfSONAR Metrics and Tools

 Page 2

Contents	

Overview .. 3
Objectives ... 3
Lab topology ... 3
Lab settings ... 4
Lab roadmap ... 4
1 Introduction ... 4
2 Throughput measurement tools .. 5

2.1 iperf3 .. 5
2.2 Nuttcp .. 7

3 Latency measurement tools .. 9
3.1 Ping .. 9
3.2 Owping ... 10

4 Trace test ... 12
4.1 Traceroute .. 13
4.2 Tracepath ... 14
4.3 Paris traceroute ... 15

References .. 18

Lab 2: perfSONAR Metrics and Tools

 Page 3

Overview

This lab introduces the reader to network metrics using perfSONAR tools. It also explains
how to use perfSONAR tools to measure the parameters that can affect the performance
of networks.

Objectives

By the end of this lab, the user will:

1. Understand about network metrics.
2. Perform measurement test using perfSONAR tools.
3. Comprehend measurement results.

Lab topology

Figure 1 illustrates the topology used for this lab. The topology includes three perfSONAR
nodes labeled as perfSONAR1, perfSONAR2, perfSONAR3 and a Client host. The
perfSONAR nodes run a Linux CentOS 7, and the Client runs a lightweight Linux
distribution (Lubuntu). The Client host is used to access perfSONAR graphical user
interface.

Figure 1. Lab topology.

Lab 2: perfSONAR Metrics and Tools

 Page 4

Lab settings

The information in Table 1 provides the credentials to access to perfSONAR nodes.

Table 1. Credentials to access perfSONAR1, perfSONAR2 and perfSONAR3.

Device

IP Address

Account

Password

perfSONAR1 192.168.1.10 admin admin

perfSONAR2 192.168.2.10 admin admin

perfSONAR3 192.168.3.10 admin admin

Lab roadmap

1. Section 1: Introduction.
2. Section 2: Throughput Measurement Tools.
3. Section 3: Latency Measurement Tools.
4. Section 4: Trace Tools.

1 Introduction

The only effective way to qualify and quantify the usage and behavior of a network is
performing measurement tests. Knowing the network behavior is critical to diagnose
network problems and performance issues. Metrics are quantitative and qualitative way
to verify if a network achieves a desired behavior. Network managers are interested to
measure the performance or availability of services. Therefore, the most typical metrics
are connectivity, latency, packet loss rate, bandwidth and throughput. These metrics are
introduced as follows:

• Connectivity: It determines whether two hosts can establish a connection
between each other through the network.

• Latency: It is the time it takes for a packet to arrive form the source node to the
destination host. Latency is also referred as network delay and can be measured
in one-way or two-way latency. Two-way delay is also known as Round-Trip Time
(RTT).

• Packet loss rate: It is the rate at which packets are being lost in their transit from
the source to the destination host. Packets being lost means that the packet does
not arrive to the intended destination.

Lab 2: perfSONAR Metrics and Tools

 Page 5

• Bandwidth: Depending on the context, the term is used to describe either the
physical link capacity in terms of signaling or the maximum actual data rate of a
specific network link or a path can transfer.

• Throughput: It is a measure for amount of data being transferred across a link or
network at a certain time.

Figure 2. perfSONAR layers5.

perfSONAR tools provide the test to measure network metrics. These tools can be
combined to provide a picture of the capabilities of a network. This lab is aimed to provide
a brief description about the tools used by perfSONAR to run throughput, latency and
trace measurements. These tests are delivered by the Tools layer as shown in the figure
2. In the following sections the user will use the tools available in the Tool layer to run
throughput, latency and trace tests.

2 Throughput measurement tools

In this section the user will run measurement tests using iperf3 and nuttcp. By default,
perfSONAR uses iperf3. These tools are used by perfSONAR to measure the throughput.
First, the user will run throughput tests using iperf3 commands. Secondly, the user will
measure the throughput using nuttcp commands. Finally, there is a brief analysis about
the differences between the tools.

2.1 iperf3

iperf3 is a real-time network throughput measurement tool. It is an open source and
cross-platform client-server application that can be used to measure the throughput
between the two end devices. Typical iperf3 output contains a time-stamped report of
the amount of data transferred and the measured throughput.

Lab 2: perfSONAR Metrics and Tools

 Page 6

The user interacts with iperf3 using the iperf3 command. The basic iperf3 syntax used
on both the client and the server is as follows:

iperf3 [-s|-c] [options]

Step 1. Open perfSONAR1 and enter the username admin and password admin. Note that
the password will not be displayed while typing it.

Step 2. To launch iperf3 in server mode, run the command iperf3 -s in perfSONAR1
command line. The parameter -s in the command above indicates that the host is
configured as a server. Now, the server is listening on port 5201 waiting for incoming
connections.

Step 3. Open perfSONAR2 and enter the username admin and password admin. Note that
the password will not be displayed while typing it.

Step 4. Now to launch iperf3 in client mode, run the command iperf3 -c 192.168.1.10
in perfSONAR2 node. The parameter -c in command above indicates that the host is

Lab 2: perfSONAR Metrics and Tools

 Page 7

configured as an iperf3 client. The parameter 192.168.1.10 is the IP address of the server
in this case, perfSONAR1 node.

Once the test is completed, a summary report on both the client and the server is
displayed containing the following data:

• ID: identification number of the connection.
• Interval: time interval to periodically report throughput. By default, the time

interval is 1 second.
• Transfer: how much data was transferred in each time interval.
• Bitrate: the measured throughput in in each time interval.
• Retr: the number of TCP segments retransmitted in each time interval. This field

increases when TCP segments are lost in the network due to congestion or
corruption.

• Cwnd: indicates the congestion windows size in each time interval. TCP uses this
variable to limit the amount of data the TCP client can send before receiving the
acknowledgement of the sent data.

The summarized data, which starts after the last dashed line, shows the total amount of
transferred data 6.87 GBytes and the throughput 5.89 Gbps. Note that the results may
vary.

Step 5. In order to stop the server, go back to perfSONAR1 CLI and press Ctrl+c. The user
will see the throughput results in the server side too. The summarized data on the server
is similar to the client side and must be interpreted in the same way.

2.2 Nuttcp

nuttcp is a network performance measurement tool intended for use by network and
system managers. Its most basic usage is to determine the raw TCP/UDP network layer
throughput by transferring memory buffers from a source system across an
interconnecting network to a destination system, either transferring data for a specified

Lab 2: perfSONAR Metrics and Tools

 Page 8

time interval, or alternatively transferring a specified number of bytes. In addition to
reporting the achieved network throughput, nuttcp also provides additional useful
information related to the data transfer such as user, system, and wall-clock time,
transmitter and receiver CPU utilization, and loss percentage for UDP transfers.

The user interacts with nuttcp using the nuttcp command. The basic nuttcp syntax used
on both the client and the server is as follows:

nuttcp [options] dest_IP

Step 1. To launch nuttcp in server mode, run the command nuttcp -S in perfSONAR1 CLI
as shown in the figure below.

nuttcp -S

Step 2. To launch nuttcp in client mode, run the command shown below in perfSONAR2
CLI. The parameter -i1 indicates the time interval for the results will be every 1 second.
The parameter 192.168.1.10 is the IP address of the server perfSONAR1.

nuttcp -i1 192.168.1.10

Once the test is completed, a summary report just on the client. Each line contains the
following data:

• Transferred Data: how much data was transferred in each time interval.
• Time Interval: how long it takes between each transferred data.
• Bitrate: the measured throughput in in each time interval.
• Retransmissions: the number of TCP segments retransmitted in each time interval.

This field increases when TCP segments are lost in the network due to congestion
or corruption.

• Congestion Window: indicates the congestion windows size in each time interval.
TCP uses this variable to limit the amount of data the TCP client can send before
receiving the acknowledgement of the sent data.

Lab 2: perfSONAR Metrics and Tools

 Page 9

The summarized data indicate that 6485.4513 MBytes where transferred in 10.04
seconds. This is equivalent to 5416.6847 Mbps. The results also show the CPU usage
which in this case is 22% for either the transmitter (TX) and the receiver (RX). The number
of retransmissions is 1053, the mean size of congestion windows is 684 KBytes and the
Round-Trip Time (RTT) is 0.31ms.

Step 3. To stop the server, go back to perfSONAR1 CLI and type the command pkill
nuttcp.

The main differences between iperf3 and nuttcp are that nuttcp also measures the CPU
usage and Round-Trip Time (RTT). However, in nuttcp the user only sees the test report
in the client side.

3 Latency measurement tools

perfSONAR uses ping and owping to measure the latency. By default, perfSONAR uses
ping to measure the latency. In the following sections, the user will measure the latency
using ping command. Then, the user will use owping command. Finally, there is a brief
analysis about the differences between the tools.

3.1 Ping

The ping command sends Internet Control Message Protocol (ICMP) echo request
messages to the destination computer and waiting for a response. The number of
messages returned to the requester is a key factor to measure the round-trip time and
the packet loss. perfSONAR uses this tool to measure both. In addition, this command is
also useful to test the connectivity. The basic syntax of ping is as follows:

ping [options] dest_IP

Step 1. In order to run a ping test, in perfSONAR1 CLI, type the command shown
below. The parameter -c 10 indicates how many packets are going to be sent to the
destination host. The destination IP address is 192.168.2.10.

ping -c 10 192.168.2.10

Lab 2: perfSONAR Metrics and Tools

 Page 10

The result above indicates that all ten packets were received successfully by perfSONAR2
node (192.168.2.10) (0% packet loss) and that the minimum, mean, maximum, and
standard deviation of the Round-Trip Time (RTT) were 0.367, 0.393, 0.442 and 0.028
milliseconds respectively.

Step 2. In order to run a ping test, in perfSONAR1 CLI, type the command shown
below. The parameter -c 10 indicates how many packets are going to be sent to the
destination host. The destination IP address is 192.168.3.10.

ping -c 10 192.168.3.10

The result above indicates that all ten packets were received successfully by perfSONAR3
node (192.168.3.10) (0% packet loss) and that the minimum, mean, maximum, and
standard deviation of the round-trip time (RTT) were 0.458, 0.539, 0.632 and 0.055
milliseconds respectively.

3.2 Owping

The owping is a command line client application and a policy daemon used to determine
one-way latencies between hosts. With roundtrip-based measurements, it is hard to
isolate the direction in which congestion is experienced. One-way measurements solve
this problem and make the direction of congestion immediately apparent. Since traffic
can be asymmetric at many sites that are primarily producers or consumers of data, this

Lab 2: perfSONAR Metrics and Tools

 Page 11

allows for more informative measurements. One-way measurements allow the user to
better isolate the effects of specific parts of a network on the treatment of traffic1.

The basic syntax of owping is as follows:

owping [options] dest_IP

Step 1. In perfSONAR1 command line type the command shown below. The destination
IP address is 192.168.2.10. The results are going to be displayed after approximately 12.9
seconds.

owping 192.168.2.10

The figure above indicates results from perfSONAR1 (192.168.1.10) to perfSONAR2
(192.168.2.10). The source and destination ports number are 9278 and 9680 respectively.
All packets were received successfully by perfSONAR2 node (192.168.2.10) (0% packet
loss). The minimum, median and maximum one-way latency values were 0.129, 0.4 and
137 milliseconds respectively. The one-way jitter is 1.7 milliseconds, it takes 1 hop to
reach the destination consistently, which means there no other way get that destination.
Finally, there is not packet reordering.

The test result from perfSONAR2 (192.168.2.10) to perfSONAR1 (192.168.1.10) are similar
to the previous one. In this case, the source and destination ports are 9311 and 8997
respectively. All packets were received successfully by perfSONAR1 node (192.168.1.10)
(0% packet loss). The minimum, median and maximum one-way latency values were
0.0925, 0.3 and 167 milliseconds respectively. The one-way jitter is 0.1 milliseconds, it
takes 1 hop to reach out the destination and there is not packet reordering.

Lab 2: perfSONAR Metrics and Tools

 Page 12

Step 2. In perfSONAR1 command line type the command shown below. The destination
IP address is 192.168.3.10. The results are going to be displayed after approximately 12.9
seconds.

owping 192.168.3.10

The results shown above are similar to the previous one. In this case, test results are from
perfSONAR1 (192.168.1.10) to perfSONAR3 (192.168.3.10). The source and destination
ports number are 9930 and 9460 respectively. All packets were received successfully by
perfSONAR3 node (192.168.3.10) (0% packet loss). The minimum, median and maximum
one-way latency values were 0.19, 0.5, 41.3 milliseconds. The one-way jitter is 0.1
milliseconds, it takes 2 hops to reach out the destination and there is not packet
reordering.

By the other hand, test results from perfSONAR3 (192.168.3.10) to perfSONAR1
(192.168.1.10) are like the first one. In this case, the source and destination ports number
are 9943 and 8938 respectively. All packets were received successfully by perfSONAR1
node (192.168.1.10) (0% packet loss). The minimum, median and maximum one-way
latency values were 0.144., 0.4, 14.5 milliseconds respectively. The one-way jitter is 0.1
milliseconds, it takes 2 hops to reach out the destination and there is not packet
reordering.

4 Trace test

Trace tests are networking tools which allow to discover the path a data packet takes to
go from a source node to a destination node. The trace tools which perfSONAR uses are
traceroute, tracepath and paris-tracepath. In this section, the user will run trace tests
using these tools. By default, perfSONAR uses traceroute.

Lab 2: perfSONAR Metrics and Tools

 Page 13

4.1 Traceroute

Traceroute displays the path that a packet took as it traveled through the network. It also
displays times which are the response times that occurred at each stop along the route.
If there is a connection problem or latency connecting to a site, it will be perceived
analyzing these times. The user will be able to identify which of the hops along the route
may cause a problem3.

The basic syntax of traceroute is as follows:

traceroute[options] dest_IP

Step 1. In perfSONAR1 command line type the command shown below. The IP address of
the destination is 192.168.2.10.

traceroute 192.168.2.10

In the figure above, there are several rows divided into columns on the report. Each row
represents a hop along the route. In each hope, the packet gets its next set of directions.
Each row is divided into five columns. A sample row is shown below:

HOP NUMBER IP ADDRESS RTT 1 RTT 2 RTT 3
1
2

192.168.1.1
192.168.2.10

0.373 ms
0.439 ms

0.252 ms
0.407 ms

0.182 ms
0.302 ms

• HOP NUMBER: It represents the number of the hop along the route. In this case,

it takes two hops to reach out the destination.
• IP ADDRESS: The second column has the IP address of the destination; the

previous hope has the IP address of the router. If it is available, the domain name
will also be listed.

• RTT Columns: The next three columns display the round-trip time (RTT) for the
packet to reach that point and return to the source host. This measure is listed in
milliseconds. There are three columns because the traceroute sends three
separate signal packets. This is to display consistency, or a lack thereof, in the
route.

Step 2. In perfSONAR1 command line type the command shown below. The IP address of
the destination is 192.168.3.10.

traceroute 192.168.3.10

Lab 2: perfSONAR Metrics and Tools

 Page 14

In the figure above, there are several rows divided into columns on the report. Each row
represents a hop along the route. In each hope, the packet gets its next set of directions.
Each row is divided into five columns. A sample row is shown below:

HOP NUMBER IP ADDRESS RTT 1 RTT 2 RTT 3
1
2
3

192.168.1.1
192.168.2.2

192.168.3.10

0.383 ms
0.557 ms
0.677 ms

0.286 ms
0.551 ms
0.649 ms

0.228 ms
0.525 ms
0.631 ms

• HOP NUMBER: It represents the number of the hop along the route. In this case,

it takes three hops to reach out the destination.
• IP ADDRESS: The second column has the IP address of the destination; the

previous hope has the IP address of the router. If it is available, the domain name
will also be listed.

• RTT Columns: The next three columns display the round-trip time (RTT) for the
packet to reach that point and return to the source host. This measure is listed in
milliseconds. There are three columns because the traceroute sends three
separate signal packets. This is to display consistency, or a lack thereof, in the
route.

4.2 Tracepath

This tool traces a path from the source to destination discovering the Maximum
Transmission Unit (MTU) along this path. It uses UDP port or some random port. The
difference with traceroute is that this tool includes less options and it is not required to
be a superuser to run the tests.

The basic syntax of tracepath is as follows:

tracepath[options] dest_IP

Step 1. In perfSONAR1 command line type the command. The IP address of the
destination is 192.168.2.10.

tracepath 192.168.2.10

Lab 2: perfSONAR Metrics and Tools

 Page 15

The first column shows the hop number, the second column shows the IP address or
Domain name. The third column shows the Round-Trip Time (RTT) for the packet to reach
that point and return to the source host. At the end a resume is displayed, in this case the
user will see the Path MTU.

Step 2. In perfSONAR1 command line type the command. The IP address of the
destination is 192.168.3.10.

tracepath 192.168.3.10

Similarly, the first column shows the hop number, the second column shows the IP
address or Domain name. The third column shows the round-trip time (RTT) for the packet
to reach that point and return to the source host. At the end a resume is displayed, in this
case the user will see the Path MTU.

4.3 Paris traceroute

Paris traceroute is a new version of the traceroute network diagnosis tool. It addresses
problems caused by load balancers with the initial traceroute implementation. By
controlling the flow identifier of the probes, it is able to follow accurate paths in networks
with load balancers. It is also able to find all the load balanced paths to the destination.
Finally, it complements its output with information extracted from the received packets,
allowing a more precise analysis of the discovered paths. Paris traceroute, by controlling
packet header contents, obtains a more precise picture of the actual routes that packets
follow4.

To exemplify this idea, a topology is presented in the leftmost portion of figure 3, where
A is a router that balances load across two paths, via routers B or C. The middle figure
illustrates what the result might show with classic traceroute. The figure on the right is
the result using Paris traceroute.

Lab 2: perfSONAR Metrics and Tools

 Page 16

Figure 3. Paris traceroute behavior.

The basic syntax of traceroute is as follows:

paris-traceroute [options] dest_IP

Step 1. In perfSONAR1 command line type the command shown below. The IP address of
the destination is 192.168.2.10 The user may be required to authenticate, in that case
type admin as the password, notice that the password will not be displayed while typing
it.

sudo paris-traceroute 192.168.2.10

Notice that it is not possible to prove the concept of Paris traceroute in the current lab
topology.

The results of Paris-traceroute test are interpreted in the same way of traceroute test. In
the figure above, there are several rows divided into columns on the report. These results
are reordered in the table below. Each row represents a hop along the route. In each hope,
the packet gets its next set of directions. Each row is divided into five columns. A sample
row is shown below:

HOP NUMBER IP ADDRESS RTT 1 RTT 2 RTT 3
1
2

192.168.1.1
192.168.2.10

1.076 ms
0.319 ms

1.074 ms
0.306 ms

1.076 ms
0.301 ms

Lab 2: perfSONAR Metrics and Tools

 Page 17

• HOP NUMBER: It represents the number of the hop along the route. In this case,

it takes two hops to reach out the destination.
• IP ADDRESS: The second column has the IP address of the destination; the

previous hope has the IP address of the router. If it is available, the domain name
will also be listed.

• RTT Columns: The next three columns display the round-trip time (RTT) for the
packet to reach that point and return to the source host. This measure is listed in
milliseconds. There are three columns because the traceroute sends three
separate signal packets. This is to display consistency, or a lack thereof, in the
route.

Step 2. In perfSONAR1 command line type the command shown below. The IP address of
the destination is 192.168.3.10 The user may be required to authenticate, in that case
type admin as the password, notice that the password will not be displayed while typing
it.

sudo paris-traceroute 192.168.3.10

The results should be interpreted as the traceroute tool. In the figure above, there are
several rows divided into columns on the report. Each row represents a hop along the
route. In each hope, the packet gets its next set of directions. Each row is divided into
five columns. A sample row is shown below:

HOP NUMBER IP ADDRESS RTT 1 RTT 2 RTT 3
1
2
3

192.168.1.1
192.168.2.2

192.168.3.10

1.028 ms
0.357 ms
0.489 ms

1.023 ms
10.135 ms
0.470 ms

1.022 ms
10.136 ms
0.465 ms

• HOP NUMBER: It represents the number of the hop along the route. In this case,

it takes three hops to reach out the destination.
• IP ADDRESS: The second column has the IP address of the destination; the

previous hope has the IP address of the router. If it is available, the domain name
will also be listed.

• RTT Columns: The next three columns display the round-trip time (RTT) for the
packet to reach that point and return to the source host. This measure is listed in
milliseconds. There are three columns because the traceroute sends three
separate signal packets. This is to display consistency, or a lack thereof, in the
route.

This concludes Lab 2.

Lab 2: perfSONAR Metrics and Tools

 Page 18

References

1. Internet2, “One-Way Ping Documentation,” [Online]. Available:
https://software.internet2.edu/owamp/owampd.pfs.man.html.

2. Inmotion Hosting, “How to Read a Traceroute,” [Online]. Available:
https://www.inmotionhosting.com/support/website/how-to/read-traceroute

3. Paris Traceroute, “Paris Traceroute,” [Online]. Available: https://paris-
traceroute.net.

4. NSRC, “What Is Perfsonar?,” [Online]. Available:
https://learn.nsrc.org/perfsonar/what-is-perfsonar.

5. perfSONAR, “Test and Tool Reference,” [Online]. Available:
http://docs.perfsonar.net/pscheduler_ref_tests_tools.html

6. ManKier, “iPerf Man Page,” [Online]. Available:
https://www.mankier.com/1/iperf.

7. Ping-Linux Man Page, [Online]. Available: https://www.mankier.com/1/iperf.
8. Traceroute-Linux Man Page, [Online]. Available:

https://linux.die.net/man/8/traceroute.

PERFSONAR

Lab 3: Configuring Regular Tests Using
perfSONAR Graphical User Interface

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 2

Contents	 	 	

Overview .. 3
Objectives ... 3
Lab topology ... 3
Lab settings ... 4

Lab roadmap ... 4
1 Introduction .. 4
2 Configuring regular tests .. 5

2.1 Accessing the web user interface .. 5
2.2 Configuring throughput test .. 6
2.3 Configuring latency and packet loss tests .. 13

3 Configuring R1 and R2 to emulate a Wide Area Network (WAN)............................. 19
3.1 Adding delay to interface connecting to network 192.168.2.0/24 19
3.2 Adding packet loss to interface connecting to network 192.168.2.0/24 22

References .. 25

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 3

Overview

This lab introduces the reader to perfSONAR Toolkit. At the end of this lab, the user will
configure regular tests using perfSONAR Toolkit Graphical User Interface (GUI) in a Wide
Area Network (WAN).

Objectives

By the end of this lab, the user will:

1. Configure regular test using perfSONAR GUI.
2. Store measurement data.
3. Set the parameters of the tests.
4. Conduct regular tests and measure the performance on a WAN.
5. Visualize the measurement results.

Lab topology

Figure 1 illustrates the topology used for this lab. The topology includes three perfSONAR
nodes labeled perfSONAR1, perfSONAR2, perfSONAR3 and a Client host. The perfSONAR
nodes run a Linux CentOS 7, and the Client runs a lightweight Linux distribution (Lubuntu).
The Client host is used to access perfSONAR graphical user interface.

Figure 1. Lab topology.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 4

Lab settings

The information in Table 1 provides the credentials to access to perfSONAR nodes and
the Client host.

 Table 1. Credentials to access perfSONAR1, perfSONAR2 and perfSONAR3.

Device

IP Address

Account

Password

perfSONAR1 192.168.1.10 admin admin

perfSONAR2 192.168.2.10 admin admin

perfSONAR3 192.168.3.10 admin admin

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Configuring regular tests.
3. Section 3: Configuring R1 and R2 to emulate a Wide Area Network (WAN).

1 Introduction

perfSONAR toolkit brings a web user interface to configure, manage and display test
results as throughput, latency and packet loss. A core function of the perfSONAR Toolkit
is to run regularly scheduled network measurements. The user can define the tests
through the toolkit’s graphical user interface (GUI).

perfSONAR Toolkit GUI is component the visualization layer as shown in the figure 2.
perfSONAR includes many other utilities responsible for visualizing the measurement
results. The user can configure regular tests using perfSONAR Toolkit GUI. In general, the
user will not invoke any tools directly but, instead use the graphical user interface to
execute them. perfSONAR Toolkit GUI interacts with the archiving layer which at the same
time interacts with the scheduling layer that is responsible on deliver the requested test.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 5

Figure 2. perfSONAR layers2.

2 Configuring regular tests

perfSONAR Toolkit provides the tools to run regularly scheduled network measurements.
The user can define the tests which run through the toolkit’s web interface. In this section
the user will access the web user interface to run the measurement and storage of tests
such as throughput, one-way ping and loss.

2.1 Accessing the web user interface

Step 1. On the Client host, open web browser located on the desktop.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 6

Step 2. On the address bar, type 192.168.2.10. That is the IP address of perfSONAR2
toolkit node. The user will see the perfSONAR toolkit web interface.

2.2 Configuring throughput test

Step 1. In the section Test Results, click on Configure Test.

Step 2. In this step, the user could be required to authenticate. Type admin as the
username, and admin as the password.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 7

Step 3. Click on + Test to access to the test configuration form.

Step 4. A drop-down list shows to choose the test type. Select Throughput to proceed
with the configuration.

Step 5. A new window will appear prompting the user for the parameters of the test. Type
the Test name/description as Throughput Test.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 8

Step 6. Select the interface ens32, notice that the perfSONAR2 node IP address will be
displayed at the interface.

Step 7. Set Time between tests to 1, and Units to minutes. and the duration of each test
will be 20 seconds.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 9

In a production network, the time interval between tests is around 1 hour however, the
user will set the interval between tests to 1 minute in order to have the results
propagated.

Step 8. Scroll down until Test members section. In Hostname/IP type the IP address of
perfSONAR1 node 192.168.1.10. In the Host description type perfSONAR1.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 10

Step 9. Click on Add host to save the changes

Step 10. Similarly, in Hostname/IP type the IP address of perfSONAR3 node 192.168.3.10.
In the Host description type perfSONAR3.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 11

Step 11. Click on Add host to save the changes.

Step 12. In order to save the changes, click on OK.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 12

Step 13. To save the test click on Save.

Step 14. Click on View public dashboard to get back to main page and see the throughput
results.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 13

Step 15. After 3 minutes the data will be propagated thus, refresh the browser and scroll
down until the Test Result section.

The result above indicates the throughput is 4.72 Gbps, when the source is 192.168.2.10
and the destination is 192.168.3.10. Then, when the source is 192.168.2.10 and the
destination is 192.168.3.10, the throughput is 4.79 Gbps. Notice that the latency and loss
results are not available. Note that the results may vary.

2.3 Configuring latency and packet loss tests

Step 1. In the section Test Results, click on Configure Test. In this step, the user could be
required to login. If that the case, type admin as the username, and admin as the
password.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 14

Step 2. Click on +Test to access to the test configuration form.

Step 3. A drop-down list shows to choose the test type. Select One-way latency to proceed
with the configuration.

Step 5. A new window will appear prompting the user for the parameters of the test. Type
the Test name/description as Latency Test.

Step 6. Select the interface ens32, notice that the perfSONAR2 node IP address will be
displayed at the interface.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 15

Step 7. Scroll down until Test members section. In Hostname/IP type the IP address of
perfSONAR1 node 192.168.1.10. In the Host description type perfSONAR1.

Step 8. Click on Add host to save the changes

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 16

Step 10. Similarly, in Hostname/IP type the IP address of perfSONAR3 node 192.168.3.10.
In the Host description type perfSONAR3.

Step 11. Click on Add host to save the changes.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 17

Step 12. In order to save the changes, click on OK.

Step 13. To save the test click on Save.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 18

Step 14. Click on View public dashboard to get back to main page and see the throughput
results.

Step 15. After 3 minutes the data will be propagated thus, refresh the browser and scroll
down until the Test Result section.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 19

The result above indicates that the throughput, latency and loss are 3.08 Gbps, 1.96ms
and 0% respectively, when the source is 192.168.2.10 and the destination is 192.68.1.10.
When the source is 192.168.1.10 and the destination is 192.168.2.10, the throughput is
not available yet, the latency and loss are 2.69ms and 0% respectively. In the next row,
when the source is 192.168.2.10 and the destination is 192.68.3.10, the results of the
throughput, latency and loss are 2.45 Gbps, 13.8ms and 0% respectively. On the other
row, when the source is 192.168.3.10 and the destination is 192.168.2.10, the throughput,
latency and loss are 1.37 Gbps, -7.49ms and 0% respectively. Note that the results may
vary.

3 Configuring R1 and R2 to emulate a Wide Area Network (WAN)

In this section, the user will modify the routers R1 and R2 in order to emulate a WAN using
Network Emulator (NETEM) commands. The first modification consists in adding delay to
the routers interface and, the second one consists in adding packet loss. At the end the
user will visualize on the web interface how these changes affect the performance of the
network.

3.1 Adding delay to interface connecting to network 192.168.2.0/24

In this section, the user will add a 50ms delay to the router R1 and router R2 using NETEM
commands.

Step 1. On the topology, click on R1 and enter the username root and password as
password. Note that the password will not be displayed while typing it.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 20

Step 2. To identify the interface connected to the network 192.168.2.0/24, in R1
command line, type the command ifconfig. This command displays information related
to the network interfaces in the local device.

The output of the ifconfig command indicates that R1 has three interfaces. The
interface ens37 connects R1 to the network 192.168.2.0/24 and is configured with the IP
address 192.168.2.1. Thus, this interface must be used for emulation.

Step 3. In order to add a 50ms delay, in R1 CLI type the following command:

sudo tc qdisc add dev ens37 root netem delay 50ms

Step 4. On the topology, click on R2 and enter the username root and password as
password. Note that the password will not be displayed while typing it.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 21

Step 5. To identify the interface connected to the network 192.168.2.0/24, in R2
command line, type the command ifconfig. This command displays information related
to the network interfaces in the local device.

The output of the ifconfig command indicates that R2 has two interfaces. The interface
ens37 connects R2 to the network 192.168.2.0/24. Thus, this interface must be used for
emulation.

Step 6. In order to add a 50ms delay, in R2 command line type the command:

sudo tc qdisc add dev ens37 root netem delay 50ms

Step 7. After 3 minutes the data will be propagated thus, refresh the browser and scroll
down until the Test Result section.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 22

The results of the throughput, latency and loss are 1.63 Gbps, 31.3ms and 0% respectively,
when the source is 192.168.2.10 and the destination is 192.68.3.10. On the other hand,
when the source is 192.168.3.10 and the destination is 192.168.2.10, the throughput,
latency and loss are 1.48 Gbps, 20.3ms and 0% respectively. Note that the results may
vary.

3.2 Adding packet loss to interface connecting to network 192.168.2.0/24

In this section, the user will add a 40% packet loss to the routers R1 and R2 using Network
Emulator (NETEM) command line.

Notice that 40% of loss is unrealistic for real WANs. This value is used in order to have
the data propagated during this lab.

Step 1. Open R2 and enter the username root and password as password. Note that the
password will not be displayed while typing it.

Step 2. To identify the interface connected to the network 192.168.2.0/24, in R1
command line, type the command ifconfig. This command displays information related
to the network interfaces in the local device.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 23

The output of the ifconfig command indicates that R1 has also three interfaces with
the same names. The interface ens37 connects R1 to the network 192.168.2.0/24. Thus,
this interface must be used for emulation.

Step 3. In order to add 40% packet loss, in R1 command line type:

sudo tc qdisc change dev ens37 root netem delay 50ms loss 40%

Step 4. Open R2 and enter the username root and password as password. Note that the
password will not be displayed while typing it.

Step 5. To identify the interface connected to the network 192.168.2.0/24, in R2
command line, type the command ifconfig. This command displays information related
to the network interfaces in the local device.

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 24

Notice that the interface ens37 is connected to the network 192.168.2.0/24.

Step 6. In order to add a 40% packet loss, type in R2 command line, type:

sudo tc qdisc change dev ens37 root netem delay 50ms loss 40%

Step 7. Go back to the Client host to see how these changes affect the performance.

The results of the throughput, latency and loss are 1.23 Gbps, 72.4ms and 61.667%
respectively, when the source is 192.168.2.10 and the destination is 192.68.3.10. On the

Lab 3: Configuring Regular Tests Using perfSONAR Graphical User Interface

 Page 25

other hand, when the source is 192.168.3.10 and the destination is 192.168.2.10, the
throughput, latency and loss are 1.26 Gbps, -24.9ms and 42.389% respectively.

This concludes Lab 3.

References

1. NSRC, “What is perfSONAR?,” [Online]. Available:
https://learn.nsrc.org/perfsonar/what-is-perfsonar.

2. B. Tierney, J. Metzger, E. Boyd, A. Brown, R. Carlson, M. Zekau, J. Zurawski, M.
Swany and M. Grigoriev, “perfSONAR: instantiating a global network
measurement,” in SOSP workshop, Real overlays and distributed systems.

3. How to use the linux traffic control panagiotis vouzis,” [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/.

4. perfSONAR Project, “Creating and managing tasks,” [Online]. Available:
https://docs.perfsonar.net/pscheduler_client_tasks.html.

5. perfSONAR Project, “The pScheduler command-line interface,” [Online].
Available: https://www.perfsonar.net/media/medialibrary/2017/09/22/201709-
perfSONAR-11-pScheduler_CLI-v2.pdf.

6. M. Feit, “CLI user's guide,” [Online]. Available:
https://github.com/perfsonar/pscheduler/wiki/CLI-User%27s-Guide.

7. ESnet, “esmond: ESnet monitoring daemon”. Available:
https://software.ed.net/esmond/.

PERFSONAR

Lab 4: Configuring Regular Tests Using
pScheduler CLI Part I

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 2

Contents	

Overview .. 3
Objectives ... 3
Lab topology ... 3
Lab settings ... 4

Lab roadmap .. 4
1 Introduction ... 4

1.1 The pScheduler command ... 6
2 Latency tests .. 6

2.1 One-way ping ... 7
2.2 Two-way ping ... 10
2.3 Round-Trip Time (RTT) ... 13

3 Throughput tests ... 14
3.1 iPerf3 .. 14
3.2 Nuttcp .. 15

4 Trace tests ... 16
4.1 Traceroute .. 17
4.2 Tracepath ... 18
4.3 Paris traceroute ... 18

References .. 20

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 3

Overview

This lab introduces the reader to pScheduler commands, and how to use the default and
specific tools to run latency, throughput and trace tests. It demonstrates how to invoke
the pScheduler command to properly run a measurement test using the available tools.

Objectives

By the end of this lab, the user will:

1. Understand pScheduler commands.
2. Measure latency using owamp, twamp and ping tools.
3. Run throughput tests using iperf3 and nuttcp tools.
4. Use traceroute, tracepath and paris-tracecoute tools to identify the hops from a

source to a destination.

Lab topology

Figure 1 illustrates the topology used for this lab. The topology includes three perfSONAR
nodes labeled perfSONAR1, perfSONAR2, perfSONAR3 and a Client host. The perfSONAR
nodes run a Linux CentOS 7, and the Client runs a lightweight Linux distribution (Lubuntu).
The Client host is used to access perfSONAR graphical user interface.

Figure 1. Lab topology.

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 4

Lab settings

The information in Table 1 provides the credentials to access to perfSONAR nodes.

Table 1. Credentials to access perfSONAR1, perfSONAR2 and perfSONAR3.

Device

IP Address

Account

Password

perfSONAR1 192.168.1.10 admin admin

perfSONAR2 192.168.2.10 admin admin

perfSONAR3 192.168.3.10 admin admin

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Latency tests.
3. Section 3: Throughput tests.
4. Section 4: Trace Tests.

1 Introduction

pScheduler is responsible for managing the execution of network measurements, or more
generally tasks, in perfSONAR. When the user wants to run a network measurement on
perfSONAR, it is performed through pScheduler command-line. pScheduler is part of the
scheduling layer, as it is shown in the figure 2. The scheduling layer is responsible for:

• Finding time-slots to run the tools while avoiding scheduling conflicts that would
negatively impact results.

• Executing the tools and gathering results.
• Sending to the results to the archiving layer (if needed).

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 5

Figure 2. perfSONAR layers3.

pScheduler handles the coordination, execution and optionally storage of the task
requested. Many of the tools pScheduler executes could be run independently of
pScheduler. However, pScheduler provides additional features that the tool by itself does
not provide. These features are listed below:

• Measurement Integrity: pScheduler maintains a schedule of all measurements to
be run and will not allow any measurements to run simultaneously if doing so
would adversely affect the result in a significant way. For instance, it will not run
two throughput tests at the same time as the competition for resources could
affect the results of each. In contrast, it will run latency tests in the background as
the low resource consumption does not significantly affect results of parallel tests.

• Simplified Coordination: In addition to simplifying coordination during task
execution, pScheduler will contact each end device and handle bringing up any
daemons as required. It also has a plug-in architecture that allows for sending the
result elsewhere, such as a long-term storage system, as well the measurement
completes.

• Access Control: pScheduler has a limits system that allows the definition of rules
about who can run what type of measurements and other rules such as how long
a test can run, and which tests are allowed to run in a specific node.

• Diagnostics: pScheduler provides the tools to visualize the schedule. It specifies
when a task ran, is running or will run. Additionally, it keeps for some amount of
time information about the outcome, including whether the result was a failure
or not, which can be useful for diagnosing issues within a network.

In addition to these foundational features, pScheduler allows plug-ins for new tests,
tools and archivers to be written. This means that pScheduler allows extensions to

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 6

perform new type of measurements or other functions, as well as the ability to have
their results sent to new types of storage and/or analysis tools.

In this lab, the user will run latency, throughput and trace tests using pScheduler
command-line interface (CLI). These tests include, latency, throughput and traceroute
measurements.

1.1 The pScheduler command

The user interacts with perfSONAR using pscheduler command. The pScheduler
command is the primary way for the command-line to create new pScheduler tasks4. The
basic syntax is as follows:

pscheduler command [args] (1)

pscheduler: command used to interact with perfSONAR.
command: describes the type of test that will be performed. These commands could be
task commands or administrative and diagnosis commands, and each command has its
own lists of arguments args. The task commands are listed as follows:

• task: give pScheduler a task that consists of making one or more measurements.
• result: fetch and display the results of a single, previously-concluded run by its

URL.
• watch: attach to a task identified by URL and show run results as they become

available.
• cancel: stop any future runs of a task.

The following commands are for diagnosis and administrative:

• ping: determine if pScheduler is running on a host.
• clock: check and compare the clocks on pScheduler hosts.
• debug: Enable debugging on the internal part of pScheduler.
• diags: Produce a diagnostic dump for the perfSONAR team to use in resolving

problems.

For more information about pScheduler tasks, diagnosis, and administrative commands,
the user can get access to the help by typing on the perfSONAR command-line:

pscheduler -help

To get more details about a specific command, using the format of the command (1) type:

pscheduler [command] --help

2 Latency tests

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 7

In this section, the user will run latency measurement tests using pScheduler tools.
pScheduler uses One-Way Ping (OWPING), Two-Way Ping (TWPING) and Round-Trip Time
(RTT) to measure the latency as shown in the tools layer in figure 2. First, the user will run
a latency test using the default configuration then, the user will specify a tool to run a
latency test.

2.1 One-way ping

In this part, the user will run a latency test between perfSONAR1 (192.168.1.10) and
perfSONAR2 (192.168.2.10). The default tool used to perform this measurement is one-
way ping (owping), as shown in figure 2. The user interacts with pScheduler using
command-line interface (CLI).

Step 1. On the topology, click on perfSONAR1 then, enter the username admin and
password admin. Note that the password will not be displayed while typing it. Proceed
similarly with perfSONAR2 and perfSONAR3.

Step 2. In perfSONAR1 command line, follow command format (1) and type:

pscheduler task latency --source 192.168.1.10 --dest 192.168.2.10

• pscheduler: command to interact with perfSONAR.
• task: pScheduler command to specify a measurement test.
• latency: test type.
• --source: specify where the test should originate, in this case it is perfSONAR1

node (192.168.1.10).
• --dest: destination node, in this case it is the perfSONAR2 node (192.168.2.10).

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 8

The default tool used by pScheduler to run the default test is one-way ping (owping) tool.
The task is scheduled, and the results are shown below. There are three sections in the
report:

• Packet Statistics: It shows a summary of the number of sent and received packets,
as well as the number packet lost, duplicated and reordered. The Packet Statistics
of the last test is shown in the table 2.

• One-way Latency Statistics: It summarizes the One-way Latency Statistics as
shown in the table 3 and a Histogram of the delay values.

• TTL Statistics: It shows the time-to-live statistics. The results are shown in the table
4, where the values do not vary.

In order to navigate through the result summary, press Shift+Page Up to scroll up
Shift+Page Down to scroll down.

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 9

Table 2. Packet Statistics.
Packet Sent 100 packets
Packet Received 100 packets
Packet Lost 0 packets
Packet Duplicated 0 packets
Packet Reordered 0 packets

Table 3. One-way Latency Statistics.

Delay Median 1.33ms
Delay Minimum 1.26ms
Delay Maximum 2.03ms
Delay Mean 1.34ms

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 10

Delay Mode 1.36ms
Delay 25th Percentile 1.30ms
Delay 75th Percentile 1.36ms
Delay 95th Percentile 1.43ms
Max Clock Error 6.75ms

Figure 3. One-way Latency Statistics Histogram.

Table 4. TTL Statistics.

TTL Median 254
TTL Minimum 254
TTL Maximum 254

TTL Mean 254
TTL Mode 254

TTL 25th Percentile 254
TTL 75th Percentile 254
TTL 95th Percentile 254

2.2 Two-way ping

In the following steps, the user will specify a tool to run a two-way ping (twping) test
between perfSONAR1 (192.168.1.10) and perfSONAR2 (192.168.2.10) using pscheduler
command-line.

Step 1. In perfSONAR1 command line, follow command format (1) and type:

pscheduler task –-tool twping latency --source 192.168.1.10 --dest 192.168.2.10

• pscheduler: command to interact with perfSONAR.
• task: pScheduler command to specify a measurement test.
• --tool: command to specify the tool.
• twping: tool for two-way ping measurement.
• latency: test type.
• --source: specify where the test should originate, in this case it is perfSONAR1

node (192.168.1.10).

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 11

• --dest: the destination node, in this case it is the perfSONAR2 node
(192.168.2.10).

In this case, the user specifies two-way ping (twping) as the tool to run the measurement
test. The task is scheduled, and the results are shown below. The report format is like the
latency report.

In order to navigate through the result summary, press Shift+Page Up to scroll up
Shift+Page Down to scroll down.

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 12

Table 5. Packet Statistics.
Packet Sent 100 packets
Packet Received 100 packets
Packet Lost 0 packets
Packet Duplicated 0 packets
Packet Reordered 0 packets

Table 6. One-way Latency Statistics.

Delay Median 1.99ms
Delay Minimum 1.92ms
Delay Maximum 2.21ms
Delay Mean 2.00ms
Delay Mode 1.99ms

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 13

Delay 25th Percentile 1.97ms
Delay 75th Percentile 2.01ms
Delay 95th Percentile 2.07ms
Max Clock Error 8.67ms

Figure 4. One-way Latency Statistics Histogram.

Table 7. TTL Statistics.

TTL Median 254
TTL Minimum 254
TTL Maximum 254

TTL Mean 254
TTL Mode 254

TTL 25th Percentile 254
TTL 75th Percentile 254
TTL 95th Percentile 254

2.3 Round-Trip Time (RTT)

In this part, the user will run a Round-Trip Time (RTT) test is between perfSONAR1
(192.168.1.10) and perfSONAR2 (192.168.2.10) of the given topology, see figure 1. First,
the user is going to type a pScheduler command to run a test in perfSONAR1 command-
line, then the user will repeat the same test in perfSONAR3 (192.168.3.10) command-line.

Step 1. In perfSONAR1 command line, follow command format (1) and type:

pscheduler task rtt --source 192.168.1.10 --dest 192.168.2.10

• pscheduler: command to interact with perfSONAR.
• task: pScheduler command to specify a measurement test.
• rtt: test type.
• --source: it specifies where the test should originate, in this case it is perfSONAR1

node (192.168.1.10).
• --dest: destination node, in this case it is the perfSONAR2 node (192.168.2.10).

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 14

The result above indicates that all five packets were received successfully by perfSONAR2
node (192.168.2.10) (0% packet loss) and that the minimum, mean, maximum, and
standard deviation of the Round-Trip Time (RTT) were 0.290, 0.347, 0.376 and 0.032
milliseconds respectively.

3 Throughput tests

In this section, the user will run throughput measurement tests using pScheduler tools.
These tools are iperf, iperf3 and nuttcp as shown in the tools layer in the figure 2. First,
the user will run a throughput test using the default configuration then, the user will
specify a tool to run a latency test.

3.1 iPerf3

The following throughput test is between perfSONAR1 node (192.168.1.10) and
perfSONAR2 node (192.168.2.10). The tool used to run the default test is iperf3.

Step 1. In perfSONAR1 command line, follow the command format (1) and type:

pscheduler task throughput --source 192.168.1.10 --dest 192.168.2.10

• pscheduler: command to interact with perfSONAR.
• task: pScheduler command.
• throughput: test type.
• --source: specify where the test should originate, in this case it is perfSONAR1

node (192.168.1.10).
• --dest: destination node, in this case it is the perfSONAR2 node (192.168.2.10).

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 15

Shortly after starting the test submission, the user will see that the tool used to run the
test is iperf3. The results above list the throughput every second (Interval), the number
of retransmissions (Retransmits) and current windows size. At the end, it is summarized
the time interval when the test took place, in this case form 0 seconds to 10 seconds, the
throughput is 8.20 Gbps and the number of retransmissions is 2070.

3.2 Nuttcp

The following throughput test is between perfSONAR1 node (192.168.1.10) and
perfSONAR2 node (192.168.2.10). The tool used to this test is nuttcp.

Step 1. In perfSONAR1 command line, follow the command format (1) and type:

pscheduler task –-tool nuttcp throughput --source 192.168.1.10 --dest
192.168.2.10 -i1

• pscheduler: command to interact with perfSONAR.
• task: pScheduler command.
• --tool: command to specify the tool.
• nuttcp: tool used to run the test.
• throughput: test type.
• --source: specify where the test should originate, in this case it is perfSONAR1

node (192.168.1.10).
• --dest: destination node, in this case it is the perfSONAR2 node (192.168.2.10).
• i1: indicates the interval is 1 second.

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 16

The results above indicate that the test did not failed. After that it is shown the nuttcp
command used to run the task from local host or perfSONAR1 node (192.168.1.10). The
summarized data indicates that 8133.3174 MB were transferred in 10.03 seconds. This is
equivalent to 6800.8015 Mbps. The results also show the CPU usage, which in this case is
20% for the transmitter (TX) and 24% for the receiver (RX). The number of retransmissions
is 1052, the congestion windows size is 951 KB, and the Round-Trip Time (RTT) is 0.31ms.
In addition, it is shown the nuttcp command used to run the server in perfSONAR2 node
(192.168.2.10). Finally, there is a report indicating that there is not any error from
perfSONAR2 node.

In order to navigate through the result summary, press Shift+Page Up to scroll up
Shift+Page Down to scroll down.

4 Trace tests

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 17

In this section, the user will run trace measurement tests using pScheduler tools. These
tools are traceroute, tracepath and paris-traceroute as shown in the tools layer in the
figure 2. First, the user will run a trace test using the default configuration then, then the
user will specify a tool to run a latency test.

4.1 Traceroute

Traceroute measures the path that a packet took as it traveled around the Internet to the
website. It also displays the response times that occurred at each stop along the route. If
there is a connection problem or latency connecting to a site, it will show up in these
response times. The user will be able to identify which of the hops along the route may
cause a problem3.

Step 1. In perfSONAR1 command line, follow the command format (1) and type:

pscheduler task trace --source 192.168.1.10 --dest 192.168.3.10

Shortly after submitting the test, the default tool used to run the test is traceroute. In the
figure above, there are several rows divided into columns on the report. Each row
represents a hop along the route. In each hop, the packet gets its next set of directions.
Each row is divided into five columns. A sample row is shown below:

HOP NUMBER IP ADDRESS RTT
1
2
3

192.168.1.1
192.168.2.2

192.168.3.10

0.2 ms
0.9 ms
0.9 ms

• HOP NUMBER: It represents the number of the hop along the route. In this case,

it takes two hops to reach the destination.
• IP ADDRESS: The second column has the IP address of the destination; the

previous hop has the IP address of the router. If it is available, the domain name
will also be listed.

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 18

• RTT: The next column displays the Round-Trip Time (RTT) for the packet to reach
that point and return to the source host. This measure is listed in milliseconds.

4.2 Tracepath

Tracepath traces a path from the source to destination, discovering the Maximum
Transmission Unit (MTU) along this path. It uses UDP port or some random port. The
difference from traceroute is that this tool includes less options and the user is not
required to be a superuser to run the tests. pScheduler allows the selection of the tool
tracepath using the --tool command.

Step 1. In perfSONAR1 command line, follow the command format (1) and type:

pscheduler task –-tool tracepath trace --source 192.168.1.10 --dest
192.168.3.10

The first column shows the hop number, the second column shows the IP address or
Domain name. The third column shows the Round-Trip Time (RTT) for the packet to reach
that point and return to the source host. The last column shows the Maximum
Transmission Unit (MTU) size.

HOP NUMBER IP ADDRESS RTT MTU
1
2
3

192.168.1.1
192.168.2.2

192.168.3.10

0.148 ms
0.389 ms

1.4 ms

1500 bytes
1500 bytes
1500 bytes

4.3 Paris traceroute

Paris traceroute is a new version of the traceroute network diagnosis tool. It addresses
problems caused by load balancers with the initial traceroute implementation. By
controlling the flow identifier of the probes, it can follow accurate paths in networks with
load balancers. It is also able to find all the load balanced paths to the destination. Finally,
it complements its output with information extracted from the received packets, allowing

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 19

a more precise analysis of the discovered paths. Paris traceroute, by controlling packet
header contents, obtains a more precise picture of the actual routes that packets follow4.
The user can select paris-traceroute tool using pScheduler –-tool command.

Step 1. In perfSONAR1 command line, follow the command format (1) and type:

pscheduler task –-tool paris-traceroute trace --source 192.168.1.10 --dest
192.168.3.10

Notice that it is not possible to prove the idea of Paris traceroute in the current lab
topology.

After the task is submitted, the user can see that the tool selected is paris-traceroute. The
results of Paris-traceroute test are interpreted in the same way of traceroute test. In the
figure above, there are several rows divided into columns on the report. These results are
reordered in the table below. Each row represents a hop along the route. In each hop, the
packet gets its next set of directions. Each row is divided into five columns. A sample row
is shown below:

HOP NUMBER IP ADDRESS RTT
1
2
3

192.168.1.1
192.168.2.2

192.168.3.10

0.241 ms
0.343 ms
4.515 ms

• HOP NUMBER: It represents the number of the hop along the route. In this case,

it takes two hops to reach out the destination.
• IP ADDRESS: The second column has the IP address of the destination; the

previous hop has the IP address of the router. If it is available, the domain name
will also be listed.

• RTT Columns: The next three columns display the Round-Trip Time (RTT) for the
packet to reach that point and return to the source host. This measure is listed in
milliseconds. There are three columns, because the traceroute sends three
separate signal packets. This is to display consistency, or a lack thereof, in the
route.

Lab 4: Configuring Regular Tests Using pScheduler CLI Part I

 Page 20

This concludes Lab 4.

References

1. NSRC, “What is perfSONAR?,” [Online]. Available:

https://learn.nsrc.org/perfsonar/what-is-perfsonar.
2. B. Tierney, J. Metzger, E. Boyd, A. Brown, R. Carlson, M. Zekau, J. Zurawski, M.

Swany and M. Grigoriev, “perfSONAR: instantiating a global network
measurement,” in SOSP workshop, Real overlays and distributed systems.

3. How to use the linux traffic control panagiotis vouzis,” [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/.

4. perfSONAR Project, “Creating and managing tasks,” [Online]. Available:
https://docs.perfsonar.net/pscheduler_client_tasks.html.

5. perfSONAR Project, “The pScheduler command-line interface,” [Online].
Available: https://www.perfsonar.net/media/medialibrary/2017/09/22/201709-
perfSONAR-11-pScheduler_CLI-v2.pdf.

6. M. Feit, “CLI user's guide,” [Online]. Available:
https://github.com/perfsonar/pscheduler/wiki/CLI-User%27s-Guide.

7. ESnet, “esmond: ESnet monitoring daemon”. Available:
https://software.ed.net/esmond/.

PERFSONAR

Lab 5: Configuring Regular Tests Using
pScheduler CLI Part II

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 2

Contents	

Overview .. 3
Objectives ... 3
Lab topology ... 3
Lab settings ... 4
Lab roadmap ... 4
1 Introduction ... 4

1.1 The pScheduler command ... 6
2 Running tasks from other perfSONAR nodes .. 6
3 Repeating tasks .. 8
4 Exporting and importing tasks to JSON ... 9
5 Viewing the schedule ... 11

5.1 pScheduler monitor ... 11
5.2 pScheduler schedule .. 12

6 Canceling tasks .. 13
References .. 16

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 3

Overview

This lab continues the description of pScheduler commands, and how to use it to run
measurement tests between perfSONAR nodes. This lab is focused on running a
pScheduler task from other nodes, repeating, exporting and importing tasks. In addition,
the tools to visualize the schedule are presented. Finally, the user will learn about the
procedure to cancel a task.

Objectives

By the end of this lab, the user will:

1. Understand pScheduler commands.
2. Run tasks from other perfSONAR nodes.
3. Repeat a specific task.
4. Export and import pScheduler tasks.
5. Use the visualization tools.
6. Cancel a specific task.

Lab topology

Figure 1 illustrates the topology used for this lab. The topology includes three perfSONAR
nodes labeled perfSONAR1, perfSONAR2, perfSONAR3 and a Client host. The perfSONAR
nodes run a Linux CentOS 7, and the Client runs a lightweight Linux distribution (Lubuntu).
The Client host is used to access perfSONAR graphical user interface.

Figure 1. Lab topology.

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 4

Lab settings

The information in Table 1 provides the credentials to access to perfSONAR nodes.

Table 1. Credentials to access perfSONAR1, perfSONAR2 and perfSONAR3.

Device

IP Address

Account

Password

perfSONAR1 192.168.1.10 admin admin

perfSONAR2 192.168.2.10 admin admin

perfSONAR3 192.168.3.10 admin admin

Lab roadmap

The lab includes the following tasks:

1. Section 1: Introduction.
2. Section 2: Running tasks from other perfSONAR nodes.
3. Section 3: Repeating tasks.
4. Section 4: Exporting and importing tasks.
5. Section 5: Viewing the schedule.
6. Section 6: Cancelling tasks.

1 Introduction

pScheduler is responsible for managing the execution of network measurements, or more
generally tasks, in perfSONAR. When the user wants to run a network measurement on
perfSONAR, it is performed through pScheduler command-line. pScheduler is part of the
scheduling layer, as it is shown in the figure 2. The scheduling layer is responsible for:

• Finding timeslots to run the tools while avoiding scheduling conflicts that would
negatively impact results.

• Executing the tools and gathering results.
• Sending to the results to the archiving layer (if needed).

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 5

Figure 2. perfSONAR layers3.

pScheduler handles the coordination, execution and optionally storage of the task
requested. Many of the tools pScheduler executes could be run independently of
pScheduler. However, pScheduler provides additional features that the tools by itself
does not provide. These features are listed below:

• Measurement Integrity: pScheduler maintains a schedule of all measurements to
be run and will not allow any measurements to run simultaneously, if doing so, it
would adversely affect the result in a significant way. For instance, it will not run
two throughput tests at the same time as the competition for resources could
affect the results of each. In contrast, it will run latency tests in the background as
the low resource consumption does not significantly affect results of parallel tests.

• Simplified Coordination: In addition to simplify coordination during task execution,
pScheduler will contact each end device and handle bringing up any daemons as
required. It also has a plug-in architecture that allows to send the result elsewhere,
such as a long-term storage system, as well the measurement completes.

• Access Control: pScheduler has a limits system that allows the definition of rules
about who can run what type of measurements and other rules as how long a test
can run, and which tests can run in a specific node.

• Diagnostics: pScheduler provides the tools to visualize the schedule. It specifies
when a task ran, runs or will run. Additionally, it keeps for some amount of time
information about the outcome, including whether the result was a failure or not,
which can be useful for diagnosing issues with in a network.

In addition to these foundational features, pScheduler allows plug-ins for new tests,
tools and archivers to be written. This means that pScheduler allows extensions to
perform new type of measurements or other functions as well as to have their results
sent to new types of storage and/or analysis tools.

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 6

1.1 The pScheduler command

The user interacts with perfSONAR using pscheduler command. The pScheduler
command is the primary way from the command-line to create new pScheduler tasks4.
The basic syntax is as follows:

pscheduler command [args] (1)

pscheduler: command used to interact with perfSONAR.
command: it describes the type of test that will be performed, these commands could be
task commands or administrative and diagnosis commands, each command has its lists of
arguments args. The task commands are listed as follows:

• task: give pScheduler a task that consists of making one or more measurements.
• result: fetch and display the results of a single, previously-concluded run by its

URL.
• watch: attach to a task identified by URL and show run results as they become

available.
• cancel: stop any future runs of a task.
•

The following commands are for diagnosis and administrative:

• ping: determine if pScheduler is running on a host.
• clock: checks and compare the clocks on pScheduler hosts.
• debug: Enable debugging on the internal part of pScheduler.
• diags: Produce a diagnostic dump for the perfSONAR team to use in resolving

problems.

For more information about pScheduler tasks, diagnosis and administrative commands,
the user get access to the help typing on the perfSONAR command-line:

pscheduler --help

To get more details about a specific command, using the format of the command (1) type:

pscheduler [command] –-help

2 Running tasks from other perfSONAR nodes

pScheduler determines where to submits a task based on the test parameters. Where a
task needs to be submitted is called the lead participant. For many tests run by perfSONAR,
a --source switch which specifies where the test should originate and is also the lead
participant. In this section the user will run a throughput test using pScheduler commands.

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 7

This test will be submitted by perfSONAR1 node (192.168.1.10), however, the tests will
run between perfSONAR2 (192.168.2.10) and perfSONAR3 (192.168.3.10) nodes.

Step 1. On the topology, click on perfSONAR1 then, enter the username admin and
password admin. Note that the password will not be displayed while typing it. Proceed
similarly with perfSONAR2 and perfSONAR3 nodes.

Step 2. In perfSONAR1 command line, follow command format (1) and type:

pscheduler task throughput --source 192.168.2.10 --dest 192.168.3.10

• pscheduler: is the command to interact with perfSONAR.
• task: is a pScheduler command to specify a measurement test.
• throughput: specifies the test.
• --source: is to specify where the test should originate, in this case it is

perfSONAR1 node (192.168.1.10)
• --dest: is the destination node, in this case is the perfSONAR3 node

(192.168.3.10).

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 8

Shortly after starting the test submission, the user will see that the tool used to run the
test is iperf3. The results above, lists the throughput every second (Interval), the number
of retransmissions (Retransmits) and current windows size. At the end, it is summarized
the time interval when the test took place, in this case form 0 seconds to 10 seconds, the
throughput is 6.66 Gbps and the number of retransmissions is 1535.

In this example, the command above is run on perfSONAR1 node (192.168.1.10), then the
node will submit the task to pefSONAR2 node (192.168.2.10) and the test will be run
between perfSOANR2(192.168.2.10) and perfSONAR3 (192.168.3.10).

3 Repeating tasks

A task can be configured to run periodically. In this section, it is shown step by step how
to repeat throughput and RTT tasks using pScheduler command. First the user will
configure pScheduler to run a throughput task every 30 seconds. Then, the user will run
an RTT task every 45 seconds. Any pScheduler task can be configured to run repeatedly
by adding options to the task command:

• --start TIMESTAMP: it runs the first iteration of the task at TIMESTAMP.
• --repeat DURATION: Repeat runs at intervals of DURATION.
• --max-runs N: Allow the task to run up to N times.
• --until TIMESTAMP: Repeat runs of the task until TIMESTAMP.
• --slip DURATION: Allow the start of each run to be as much as DURATION later

than their ideal scheduled time. If the environment variable PSCHEDULER_SLIP is

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 9

present, its value will be used as a default. Failing that, the default will be PT5M.
Notice that the slip value also applies to non-repeating tasks.

• --sliprand: Randomly choose a timeslot within the allowed slip instead of
choosing earliest available.

Step 1. In perfSONAR1 command line, follow the command format (1) and type:

pscheduler task --repeat PT20M --max-runs 10 rtt --dest 192.168.2.10

• pscheduler: is the command to interact with perfSONAR.
• --repeat PT20M: is a pScheduler command that configure the task to be

repeated every 20 minutes.
• task: is a pScheduler command to specify a measurement test.
• throughput: is the test type.
• --dest is the destination node, in this case it is perfSONAR2 node (192.168.2.10).

Notice that the source node is not explicit, this means that the source node is
perfSONAR1 (192.168.1.10).

The figure above shows the first measurement of the round-trip time. Notice that the task
is going to be repeated 10 times in 20 minutes.

Step 2. To return to the CLI, press Ctrl+C. Notice that the task will keep running.

4 Exporting and importing tasks to JSON

The user can export a pScheduler task to a Java Script Object Notation (JSON) file. The
JSON version of a task specification can be sent to the standard output without scheduling
using the --export command.

Step 1. In perfSONAR1 command line, follow the command format (1) and type:

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 10

pscheduler task --repeat PT3M –-export throughput -–source 192.168.1.10 --dest
192.168.2.10 > my_test_1

• pscheduler: is the command to interact with perfSONAR.
• task: is a pScheduler command to specify a measurement test.
• --repeat PT3M: is a pScheduler command that configure the task to be repeated

every 3 minutes.
• --export: is to indicate that the task will not be executed but stored.
• throughput: is the test type.
• --source: is to specify where the test should originate, in this case it is

perfSONAR1 node (192.168.1.10).
• --dest is the destination node, in this case it is perfSONAR2 node (192.168.2.10).
• > my_task_1: is to create a file where the task is going to be stored.

Step 2. In order to visualize the file, type cat my_test_1. A JSON file will be displayed.
This file contents a pScheduler task, however this task is not running. Notice also that the
task might be invalid because tasks are not validated until they are submitted for
scheduling.

Step 3. A JSON file that was previously exported or generated elsewhere can be imported
using the --import command. In perfSONAR1 command line, follow the command
format (1) and type:

pscheduler task –-import my_test_1

• pscheduler: is the command to interact with perfSONAR.
• task: is a pScheduler command to specify a measurement test.
• my_test_1: is the file that contains the task.

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 11

Step 4. To return to the CLI, press Ctrl+C. Notice that the task will keep running.

5 Viewing the schedule

In this section, it is presented two visualization tools, pScheduler monitor and
pScheduler schedule. The tests scheduled in the last section still running. The user will
use pScheduler commands to visualize the schedule.

5.1 pScheduler monitor

The pscheduler monitor command provides top-like output of what the schedule is
doing in near real time. It takes the following form:

Step 1. In perfSONAR1 command line, follow the command format (1) and type:

pscheduler monitor

The user will see the scheduled tests. These tests have a status depending on whether
they have already run or are still waiting to do so. Possible status values are:

• Pending: This run is scheduled to execute at some point in the future.

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 12

• On Deck: This run is scheduled to execute and will begin execution very soon.
• Running: This run is in the middle of execution.
• Cleanup: This run completed execution and is doing some final operations.
• Finished: The run has already executed and finished successfully.
• Overdue: The run was scheduled to execute at a certain time in the past but did

not. It may get executed soon if it is not beyond a certain threshold.
• Missed: The run was scheduled but did not execute at its given time. This can

happen if the scheduler was not running at the allotted time or the task was
paused.

• Failed: The run failed to complete for some reason.
• Non-Starter: The run could not be scheduled because there were no timeslots

that could accommodate the constraints.
• Canceled: The task was cancelled before the run was executed.

Step 2. To exit from pScheduler monitor, press Ctrl+C.

5.2 pScheduler schedule

The pscheduler schedule command asks pScheduler to fetch scheduled task runs
from the past, present or future and display them as text.

Step 1. In perfSONAR1 command line, follow the command format (1) and type:

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 13

pscheduler schedule

Step 2. To exit from pScheduler schedule, press Ctrl+C.

6 Canceling tasks

So far there are two pscheduler tasks running. In this section, the user will cancel the
scheduled Round-Trip Time (RTT) and throughput tasks which are running.

Step 1. In perfSONAR1 command line, follow the command format (1) and type:

pscheduler schedule –-filter-test rtt

The user will see the scheduled task for Round-Trip Time (RTT) measurement.

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 14

Step 2. In perfSONAR1 command line, follow the command format (1) and type:

pscheduler cancel https://localhost/pscheduler/tasks/[url]

Replace [url] with the first three characters of the last task URL. In this example, the
first three characters of the task is 631, these characters may vary then, press Tab key
to autocomplete the following characters. Press Enter to cancel the task.

Step 3. In perfSONAR1 command line, type the command pscheduler monitor to
visualize the schedule.

The user will notice that all the Round-Trip Time (RTT) tasks are finished and there are not
more tasks like this scheduled.

Step 4. In perfSONAR1 command line, follow the command format (1) and type:

pscheduler schedule –-filter-test throughput

The user will see the scheduled task for round-trip time (RTT) tests.

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 15

Step 5. In perfSONAR1 command line, follow the command format (1) and type:

pscheduler cancel https://localhost/pscheduler/tasks/[url]

Replace [url] with the first three characters of the last task URL. In this example, the
first three characters of the task is f44, these characters may vary then, press Tab key
to autocomplete the following characters. Press Enter to cancel the task.

Step 6. In perfSONAR1 command line, type the command pscheduler monitor to
visualize the schedule.

Lab 5: Configuring Regular Tests Using pScheduler CLI Part 2

 Page 16

The user will notice that all the tasks are finished and there are not more tasks scheduled.

This concludes lab 5.

References

1. NSRC, “What is perfSONAR?,” [Online]. Available:
https://learn.nsrc.org/perfsonar/what-is-perfsonar.

2. B. Tierney, J. Metzger, E. Boyd, A. Brown, R. Carlson, M. Zekau, J. Zurawski, M.
Swany and M. Grigoriev, “perfSONAR: instantiating a global network
measurement,” in SOSP workshop, Real overlays and distributed systems.

3. How to use the linux traffic control panagiotis vouzis,” [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/.

4. perfSONAR Project, “Creating and managing tasks,” [Online]. Available:
https://docs.perfsonar.net/pscheduler_client_tasks.html.

5. perfSONAR Project, “The pScheduler command-line interface,” [Online].
Available: https://www.perfsonar.net/media/medialibrary/2017/09/22/201709-
perfSONAR-11-pScheduler_CLI-v2.pdf.

6. M. Feit, “CLI user's guide,” [Online]. Available:
https://github.com/perfsonar/pscheduler/wiki/CLI-User%27s-Guide.

7. ESnet, “esmond: ESnet monitoring daemon”. Available:
https://software.ed.net/esmond/.

PERFSONAR

Lab 6: Bandwidth-delay Product and TCP Buffer
Size

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 2

Contents	 	

Overview .. 3
Objectives ... 3
Lab topology ... 3
Lab settings ... 4
Lab roadmap ... 4
1 Introduction ... 4

1.1 TCP buffers ... 4
1.2 Bandwidth-delay product .. 5
1.3 Practical observations on setting TCP buffer size .. 6
1.4 TCP window size calculated value .. 6
1.5 Zero window .. 7

2 Emulating 2 Gbps high-latency WAN ... 7
3 BDP and buffer size experiments .. 11

3.1 Window size in sysctl ... 12
4 Modifying buffer size and throughput test ... 13
References .. 15

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 3

Overview

This lab explains the Bandwidth-Delay Product (BDP) in Wide Area Networks (WAN) and
how to perform TCP Tuning in a perfSONAR node to modify the buffer size. Throughput
measurements are also conducted in this lab to verify the buffer size configuration using
pScheduler commands.

Objectives

By the end of this lab, the user will:

1. Understand Bandwidth-Delay Product (BDP).
2. Define TCP window size.
3. TCP window size calculation.
4. Change buffer size with sysctl.
5. Emulate WAN using NETEM commands.
6. Visualize the results on pScheduler report.

Lab topology

Figure 1 illustrates the topology used for this lab. The topology includes three perfSONAR
nodes labeled perfSONAR1, perfSONAR2, perfSONAR3 and a Client host. The perfSONAR
nodes run a Linux CentOS 7, and the Client runs a lightweight Linux distribution (Lubuntu).
The Client host is used to access perfSONAR graphical user interface.

Figure 1. Lab topology.

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 4

Lab settings

The information in Table 1 provides the credentials to access to perfSONAR nodes.

Table 1. Credentials to access perfSONAR1, perfSONAR2 and perfSONAR3.

Device

IP Address

Account

Password

perfSONAR1 192.168.1.10 admin admin

perfSONAR2 192.168.2.10 admin admin

perfSONAR3 192.168.3.10 admin admin

Lab roadmap

The lab includes the following tasks:

1. Section 1: Introduction.
2. Section 2: Emulating 2 Gbps high-latency WAN.
3. Section 3: BDP and buffer size experiments.
4. Section 4: Modifying the buffer size and throughput test.

1 Introduction

1.1 TCP buffers

Consider Figure 1, which shows a data transfer between a sender and a receiver. At the
sender side, TCP receives data from the application layer and places it in the TCP buffer.
Typically, TCP fragments the data in the buffer into Maximum Segment Size (MSS) units
and passes the newly formed segments (application-layer data plus TCP header) to the
network layer. In this example, the MSS is 100 bytes. A segment stored in the TCP send
buffer will only be removed from the buffer when a corresponding acknowledgement is
received. If the send buffer is full, TCP blocks the application from sending new data. Each
segment carries a sequence number, which is the byte-stream number of the first byte in
the segment. The corresponding acknowledgement (Ack) carries the number of the next
expected byte (e.g., Ack-101 acknowledges bytes 1-100, carried by the first segment).

At the receiver side, TCP receives data from the network layer and places it into the TCP
receive buffer. TCP delivers the data in order to the application layer. The implication here
is that bytes contained in a segment, say segment 2 (bytes 101-200), cannot be delivered
to the application layer before the bytes contained in segment 1 (bytes 1-100) are

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 5

delivered to the application layer. At any given time, the TCP receiver indicates to the TCP
sender how many bytes the latter can send. This reflects how much free buffer space is
available at the receiver.

Figure 1. TCP send and receive buffers.

1.2 Bandwidth-delay product

In many Wide Area Networks (WANs) connecting geographically separated locations, the
Round-Trip Time (RTT), which is the time it takes for a small packet to travel from sender
to receiver and then back to the sender, is dominated by the propagation delay. Long
RTTs along with TCP buffer size can have important implications for the efficiency of the
bandwidth utilization and throughput. As an example, consider a 10 Gbps WAN with a 50-
millisecond RTT. Assume that the TCP send and receive buffer sizes are set to 1 Mbyte (1
Mbyte = 10242 bytes = 1,048,576 bytes = 1,048,576 ⋅ 8 bits = 8,388,608 bits). At 10 Gbps,
this number of bits is approximately transmitted in:

T!" =	
#	bits

transmission	rate =
8,388,608
10 ⋅ 10# = 0.84	milliseconds.

I.e., if at t = 0 the TCP sender starts transmitting, at t = 0.84 milliseconds the content in
TCP send buffer has been completely sent. At this point, TCP must wait for the
corresponding acknowledgements, which will only start arriving at t = 50 milliseconds.
This means that the sender only uses 0.84/50 or 1.68% of the available bandwidth.

The solution to that above problem lies in allowing the sender to continuously transmit
segments until the corresponding acknowledgments arrive back. Note that the first
acknowledgement arrives after RTT = 50 milliseconds. The number of bits that can be
transmitted in this time period is given by bandwidth of the channel in bits per second
multiplied by the RTT. This quantity is referred to as the Bandwidth-Delay Product (BDP).
For the above example, the buffer size must be greater than or equal to the BDP:

TCP	buffer	size ≥ BDP = (10 ⋅ 10!)(50 ⋅ 10"#) = 500,000,000	bits = 62,500,000	bytes.

The first factor (10 ⋅	109) is the bandwidth; the second factor (50 ⋅	10-3) is the RTT. For
practical purposes/configuration, the TCP buffer can be also expressed in Mbytes (1

...
1-100

...

From Application

To Network

TCP send buffer

To Application
(in-order delivery)

From Network

101-200201-300

801-900 701-800

301-400

TCP receive buffer

201-300 101-200 1-100

401-500501-600...

Ack-101 Ack-201 ...

Seq. number
(first byte in segment)

Ack number (next expected byte)

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 6

Mbyte = 10242 bytes) or Gbytes (1 Gbyte = 10243 bytes). The above expression, in Mbytes,
is:

TCP	buffer	size ≥ 62,500,000	bytes = 59.6	Mbytes	 ≈ 60	Mbytes.

1.3 Practical observations on setting TCP buffer size

Linux systems configuration. When configuring the buffer size in Linux systems, it is
important to note that Linux assumes that half of the send/receive TCP buffers are used
for internal kernel structures. Thus, only half of the buffer size is used to store segments.
This implies that if a TCP connection requires certain buffer size, then the administrator
must configure the buffer size equals to twice the bandwidth-delay product. For the
previous example, the TCP buffer size must be:

TCP	buffer	size ≥ 2 ⋅ 𝐵𝐷𝑃 = 2 ⋅ 60	Mbytes = 120	Mbytes.	

Packet loss scenarios. TCP provides a reliable, in-order delivery service. In this context,
reliability means that bytes successfully received must be acknowledged. The sender will
only release (free the memory) a segment stored in its TCP send buffer after it receives
the corresponding acknowledgement. In-order delivery means that the receiver only
delivers bytes to the application layer in sequential order. This has some performance
implications, as illustrated next. Consider Figure 2, which shows a TCP receive buffer.
Assume that the segment carrying bytes 101-200 was lost in transit. Although the receiver
has successfully received bytes 301-900, they cannot be delivered to the application layer
until bytes 101-200 are received. Note that the receive buffer may become full, thus
preventing the reception of additional bytes beyond byte 900. Thus, the sender will be
blocked, and the bandwidth will be underutilized (eventually, the sender will retransmit
the segment 101-200).

Figure 2. TCP receive buffer. Although bytes 301-900, they cannot be delivered to the application
layer until the segment carrying bytes 101-200 are received.

To fully utilize the available bandwidth, the TCP send and receive buffer must be large
enough to prevent such situation.

1.4 TCP window size calculated value

To Application
(in-order delivery)

From Network

301-400

TCP receive buffer

201-300 1-100
401-500

601-700

501-600

701-800801-900

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 7

The receiver must constantly communicate with the sender to indicate how much free
buffer space is available in the TCP receive buffer. This information is carried in a TCP
header field called window size. The window size has a maximum value of 65,535 bytes,
as the header value allocated for the window size is two bytes long (16 bits; 216-1 = 65,535).
However, this value is not large enough for high-bandwidth high-latency networks.
Therefore, TCP window scale option was standardized in RFC 1323. By using this option,
the calculated window size may be increased up to a maximum value of 1,073,725,440
bytes.

When advertising its window, a device also advertises the scale factor (multiplier) that
will be used throughout the session. The TCP window size is calculated as follows:

Scaled	TCP$%& =	TCP$%& ⋅ Scaling	Factor

Consider the following example. For an advertised TCP window of 2,049 and a scale factor
of 512, then the final window size is 1,049,088 bytes. Figure 3 displays a packet inspected
in Wireshark protocol analyzer for this numerical example.

Figure 3. Window Scaling in Wireshark.

1.5 Zero window

When the TCP buffer is full, a window size of zero is advertised to inform the other end
that it cannot receive any more data. When a client sends a TCP Window of zero, the
server will pause its data transmission, and waits for the client to recover. Once the client
is recovered, it digests data and informs the server to resume the transmission by setting
again the TCP Window.

2 Emulating 2 Gbps high-latency WAN

In this section, the user will emulate a high-latency WAN by introducing a 100ms delay to
the network. Specifically, the user will set 50ms delay to the router R1 and 50ms delay to
router R2 using Network Emulator (NETEM) commands. Additionally, the bandwidth
between perfSONAR1 and perfSONAR3 nodes will be set to 2 Gbps using Token Bucket
Filter (TBF). In order to verify, the user will run a throughput test using pScheduler
commands.

Step 1. On the topology, click on router R1 and enter the username root and password
as password. Note that the password will not be displayed while typing it.

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 8

Step 2. To identify the interface connected to the network 192.168.2.0/24, in router R1
command line, type the command ifconfig. This command displays information related
to the network interfaces in the local device.

The output of the ifconfig indicates that router R1 has three interfaces. The interface
ens37 connects router R1 to the network 192.168.2.0/24. Thus, this interface must be
used for emulation.

Step 3. In order to add a 50ms delay, in router R1 CLI type the following command:

sudo tc qdisc add dev ens37 root handle 1: netem delay 50ms

Step 4. In order to set the bandwidth, type the command shown below. This command
sets the bandwidth to 2 Gbps on router R1 ens37 interface. The tbf parameters are the
following:

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 9

• rate: 2gbit
• burst: 500,000
• limit: 50,000,000

sudo tc qdisc add dev ens37 parent 1: handle 2: tbf rate 2gbit burst 500000
limit 50000000

Step 5. On the topology, click on R2 and enter the username root and password as
password. Note that the password will not be displayed while typing it.

Step 6. To identify the interface connected to the network 192.168.2.0/24, in R2
command line, type the command ifconfig. This command displays information related
to the network interfaces in the local device.

The output of the ifconfig command indicates that R2 has two interfaces. The interface
ens37 connects R2 to the network 192.168.2.0/24. Thus, this interface must be used for
emulation.

Step 7. In order to add a 50ms delay, in R2 command line type the command:

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 10

sudo tc qdisc add dev ens37 root netem delay 50ms

Step 8. To verify if the parameters where applied, on the topology, click on perfSONAR1
node and login entering the username admin and password admin. Note that the
password will not be displayed while typing it.

Step 9. In perfSONAR1 command line, type the following command to verify if the delay
was applied:

pscheduler task rtt –-source 192.168.1.10 --dest 192.168.3.10

• pscheduler is the command to interact with perfSONAR.
• task is a pScheduler command.
• rtt is the test type.
• --source is to specify where the test should originate, in this case it is

perfSONAR1 node (192.168.1.10).
• --dest is the destination node, in this case it is perfSONAR3 (192.168.3.10).

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 11

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 100.53, 100.59, 100.761 and 0.217 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 100ms.

Step 10. To verify the throughput, in perfSONAR1 command line, type the following
command:

pscheduler task throughput -–source 192.168.1.10 --dest 192.168.3.10

• pscheduler is the command to interact with perfSONAR.
• task is a pScheduler command.
• throughput is the test type.
• --source is to specify where the test should originate, in this case it is

perfSONAR1 node (192.168.1.10).
• --dest is the destination node, in this case it is perfSONAR3 (192.168.3.10).

Notice the measured throughput now is around 950 Mbps, which is different than the
value assigned in the tbf rule. In the following section, the user will modify the send and
receive TCP buffer size in order to achieve 2 Gbps bandwidth.

3 BDP and buffer size experiments

In a connection-oriented protocol such as TCP, BDP plays an important role as it
represents the amount of buffering required on both senders and receivers (transmitting

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 12

end-hosts). In connections that have a small BDP (either because the link has a low
bandwidth or because the latency is small), buffers are usually small. However, in high-
bandwidth high-latency networks, where the BDP is large, a larger buffer is required to
achieve the maximum theoretical bandwidth.

3.1 Window size in sysctl

In this section, the user will set different values the corresponding sysctl keys, which is
used for dynamically changing parameters in the Linux operating system. It allows users
to modify kernel parameters dynamically without rebuilding the Linux kernel.

The sysctl key for the receive window size is net.ipv4.tcp_rmem and the send window
size is net.ipv4.tcp_wmem.

Step 1. To read the current receiver window size value of perfSONAR1 node, type the
following command:

sysctl net.ipv4.tcp_rmem

Step 2. To read the current send window size value of perfSONAR1 node, type the
following command:

sysctl net.ipv4.tcp_wmem

The returned values of both keys (net.ipv4.tcp_rmem and net.ipv4.tcp_wmem) are
measured in bytes. The first number represents the minimum buffer size used by each
TCP socket. The middle one is the default buffer which is allocated when applications
create a TCP socket. The last one is the maximum receive buffer that can be allocated for
a TCP socket. Note that similar results are displayed in perfSONAR2 and perfSONAR3. For
simplicity, in this section is just shown the values on perfSONAR1 node.

The default values used by in perfSONAR nodes are:

• Minimum: 4,096
• Default: 65,536
• Maximum: 33,554,432

Note that the maximum value is 32 Mbytes. However, to achieve the maximum
throughput, it is necessary to set the send and receive TCP buffer size to at least twice

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 13

Bandwidth-Delay Product (2 ⋅ 𝐵𝐷𝑃). In the previous test (2 Gbps, 100ms delay), the buffer
size was not modified on end-hosts namely, perfSONAR1 and perfSONAR3 nodes.

The BDP for the above test is:

BDP = (2 ⋅ 10!) ⋅ (100 ⋅ 10"#) = 	200,000,000	bits	 = 25,000,000	bytes	 ≈ 25	Mbytes.

Note that twice BDP is around 50 Mbytes thus, this value is significantly greater than the
maximum buffer size (32 Mbytes), and therefore, the pipe is not getting filled, which leads
to network resources underutilization (see section 1.3).

4 Modifying buffer size and throughput test

This section repeats the throughput test after modifying the buffer size on perfSONAR1
and perfSONAR3 nodes according to the formula described above. This test assumes the
same network parameters introduced in the previous test therefore, the bandwidth is
limited to 2 Gbps and the RTT (delay or latency) is 100ms. The send and receive buffer
sizes should be set to at least 2 · BDP. Use 25 Mbytes value for the BDP instead of
25,000,000 bytes (1 Mbyte = 10242 bytes).

BDP = 	25	Mbytes = 25 · 1024'	bytes = 	26,214,400	bytes

TCP	buffer	size = 2	 · 	BDP = 	2 · 26,214,400	bytes = 52,428,800	bytes

Step 1. To change the TCP receive-window size value, type the following command on
perfSONAR1 CLI. If a password is required, type admin as the password. Note that the
password will not be displayed while typing it. The values set are: 4,096 (minimum),
65,536 (default) and 52,428,800 (maximum, calculated by doubling the BDP).

sudo sysctl -w net.ipv4.tcp_rmem=’4096 65536 52428800’

The returned values are measured in bytes. 4,096 represents the minimum buffer size
that is used by each TCP socket. 65,536 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value, type the following command on
perfSONAR1 CLI. The values set are: 4,096 (minimum), 65,536 (default) and 52,428,800
(maximum, calculated by doubling the BDP).

sudo sysctl -w net.ipv4.tcp_wmem=’4096 65536 52428800’

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 14

Step 3. To verify if the parameters were applied, on the topology, click on perfSONAR3
node and login entering the username admin and password admin. Note that the
password will not be displayed while typing it.

Step 4. To change the TCP receive-window size value, type the following command on
perfSONAR1 CLI, if a password is required, type admin as password. Note that the
password will not be displayed while typing it. The values set are: 4,096 (minimum),
65,536 (default) and 52,428,800 (maximum, calculated by doubling the BDP).

sudo sysctl -w net.ipv4.tcp_rmem=’4096 65536 52428800’

The returned values are measured in bytes. 4,096 represents the minimum buffer size
that is used by each TCP socket. 65,536 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 5. To change the current send-window size value, type the following command on
perfSONAR1 CLI. The values set are: 4,096 (minimum), 65,536 (default) and 52,428,800
(maximum, calculated by doubling the BDP).

sudo sysctl -w net.ipv4.tcp_wmem=’4096 65536 52428800’

Step 6. To verify the if after the configuration the throughput is achieved, go back to
perfSONAR1 CLI and type the following command:

pscheduler task throughput –-source 192.168.1.10 --dest 192.168.3.10

• pscheduler is the command to interact with perfSONAR.
• task is a pScheduler command.

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 15

• throughput is the test type.
• --source is to specify where the test should originate, in this case it is

perfSONAR1 node (192.168.1.10).
• --dest is the destination node, in this case it is perfSONAR3 (192.168.3.10).

Note that the measured throughput now is approximately 2 Gbps, which is similar to the
value assigned in the tbf rule (2 Gbps).

This concludes Lab 6.

References

1. NSRC, “What is perfSONAR?,” [Online]. Available:
https://learn.nsrc.org/perfsonar/what-is-perfsonar.

2. B. Tierney, J. Metzger, E. Boyd, A. Brown, R. Carlson, M. Zekau, J. Zurawski, M.
Swany and M. Grigoriev, “perfSONAR: instantiating a global network
measurement,” in SOSP workshop, Real overlays and distributed systems.

3. How to use the linux traffic control panagiotis vouzis,” [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/.

4. perfSONAR Project, “Creating and managing tasks,” [Online]. Available:
https://docs.perfsonar.net/pscheduler_client_tasks.html.

5. perfSONAR Project, “The pScheduler command-line interface,” [Online].
Available: https://www.perfsonar.net/media/medialibrary/2017/09/22/201709-
perfSONAR-11-pScheduler_CLI-v2.pdf.

Lab 6: Bandwidth-delay Product and TCP Buffer Size

 Page 16

6. M. Feit, “CLI user's guide,” [Online]. Available:
https://github.com/perfsonar/pscheduler/wiki/CLI-User%27s-Guide.

7. ESnet, “esmond: ESnet monitoring daemon”. Available:
https://software.ed.net/esmond/.

PERFSONAR

Lab 7: Configuring Regular Tests Using a
pSConfig Template

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 7: Configuring Tasks using pSConfig Template

 Page 2

Contents	

Overview .. 3
Objectives ... 3
Lab topology ... 3
Lab settings ... 3
Lab roadmap ... 4
1 Introduction ... 4
2 The pSConfig file structure .. 5

2.1 Addresses ... 6
2.2 Groups .. 7
2.2.1 Mesh .. 7
2.2.2 Disjoint ... 8
2.2.3 List .. 9
2.3 Tests ... 10
2.4 Schedule ... 10
2.5 Archives .. 11
2.6 Tasks .. 11

3 Publishing a pSConfig template ... 13
4 Running the pSConfig pScheduler Agent ... 14
5 Viewing Scheduled Tasks ... 15
References .. 17

Lab 7: Configuring Tasks using pSConfig Template

 Page 3

Overview

This lab presents a template framework for describing and configuring pScheduler tasks
known as pSConfig. The lab describes the steps to create and interpret the parts of a
pSConfig template. The user will use this template to run regular test in a perfSONAR node.

Objectives

By the end of this lab, the user will:

1. Understand the structure of pSConfig template.
2. Create a pSConfig configuration file.
3. Publish a pSConfig configuration file.
4. Verify tasks using pScheduler monitor.

Lab topology

Figure 1 illustrates the topology used for this lab. The topology includes three perfSONAR
nodes labeled perfSONAR1, perfSONAR2, perfSONAR3 and a Client host. The perfSONAR
nodes run a Linux CentOS 7, and the Client runs a lightweight Linux distribution (Lubuntu).
The Client host is used to access perfSONAR graphical user interface.

Figure 1. Lab topology.

Lab settings

Lab 7: Configuring Tasks using pSConfig Template

 Page 4

The information in Table 1 provides the credentials to access to perfSONAR nodes.

Table 1. Credentials to access perfSONAR1, perfSONAR2 and perfSONAR3.

Device

IP Address

Account

Password

perfSONAR1 192.168.1.10 admin admin

perfSONAR2 192.168.2.10 admin admin

perfSONAR3 192.168.3.10 admin admin

Lab roadmap

The lab includes the following tasks:

1. Section 1: Introduction.
2. Section 2: The pSConfig file structure.
3. Section 3: Publishing a pSConfig template.
4. Section 4: Running the pSConfig pScheduler Agent.
5. Section 5: Viewing Scheduled Tasks.

1 Introduction

The perfSONAR Configuration (pSConfig) is a template-based setup for describing and
configuring a topology of tasks. A task is defined as a measurement test to be performed
using pScheduler. The topology defines how multiple tasks are interrelated. Overall, the
goal of pSConfig is to simplify the scheduling of such tasks as well as maintenance of
visualization components when managing more than one perfSONAR node.

The basic pSConfig workflow is shown in Figure 2 and consists of three key steps:

1. A template file is defined using the machine-readable JavaScript Object Notation
(JSON) file format to describe the task topology of the perfSONAR hosts.

2. This file is then published to the web where it is read by an agent to perform
specific operations.

3. Agents read the pSConfig template. An agent is a software that reads one or more
pSConfig templates and uses the information to perform a specific function. The
pScheduler agent which reads template files and submits related measurement
tests to pScheduler and, the MaDDash agent, which reads template files to
generate dashboard in order display the measurement results. Overall this lab
focuses on the first step of building a sample JSON template file.

Lab 7: Configuring Tasks using pSConfig Template

 Page 5

In this lab, the user will understand how the file is created. Secondly, the user will
publish the template in order to be accessible by any node in the topology. Then, the
template will be read by an agent. Finally, the user will verify the tasks using
pScheduler monitor.

Figure 2. pSConfig workflow1.

2 The pSConfig file structure

Basically, a pSConfig file has six components: addresses, groups, tests, archives, schedules
and tasks. These components are put all together to perform measurement tests. In this
section all these components are explained. For that purpose, there is available a pSConfig
template in perfSONAR2 node. The user will not modify this file during the lab. This file
will be useful to explain the structure of pSConfig template. In addition, this template will
be used by an agent to run measurement test in the current lab topology.

Step 1. In order to visualize the pSConfig template, open perfSONAR2 and enter the
username admin and password admin. Note that the password will not be displayed while
typing it.

Lab 7: Configuring Tasks using pSConfig Template

 Page 6

Step 2. After login, type the command shown below, a pSConfig template will be
displayed. Use the arrows to scroll up/down into the file.

nano /home/template.json

Step 3. Press Ctrl+X to close the window. The user could repeat the previous steps
anytime along this lab.

2.1 Addresses

Lab 7: Configuring Tasks using pSConfig Template

 Page 7

The address is the most basic unit of a template. An address is a collection of properties
that act as the unit of input to a task. This address is not necessarily connected to an
interface or host. It is simply an object with properties. The figure 3 illustrates the idea.

Figure 3: Representation of three addresses2.

Each shape has certain properties such as the form and the color. In pSConfig these
properties can be used when constructing a task.

Step 1. In perfSONAR2 type nano /home/template.json, a pSConfig template will be
displayed.

Step 2. Go to the line 17. To see the actual line number press Ctrl+C.

In this configuration file these addresses are specified with the names and IP addresses
of perfSONAR1, perfSONAR2 and perfSONAR3.

2.2 Groups

A group describes the way to combine addresses when building the list of tasks. All groups
have a type that provides the base for how addresses are combined. Currently, pSConfig
support three group types.

2.2.1 Mesh

The first group type is mesh. A group of type mesh pairs every address against every other
address in the group. A mesh group is shown in the figure 4. Notice that the three
addresses are paired in six groups.

Lab 7: Configuring Tasks using pSConfig Template

 Page 8

Figure 4: Mesh group2.

The user could visualize the group configuration following the next steps:

Step 1. In perfSONAR2 type nano /home/template.json, a pSConfig template will be
displayed.

Step 2. Go to the line 22. To see the actual line number press Ctrl+C.

The user will see there are two groups, loss_group and throughput_group. The group type
for both is mesh and the nodes involved in these groups are perfSONAR1, perfSONAR2
and perfSONAR3.

2.2.2 Disjoint

The second group type is disjoint. A group of type disjoint pairs every address in one group
(Group A) with every address in another group (Group B). Both groups can have one or

Lab 7: Configuring Tasks using pSConfig Template

 Page 9

more addresses. A mesh group is shown in the figure 5. Notice that the three addresses
are paired in four groups.

Figure 5: Disjoint group2.

The pSconfig template of this lab does not provide an example for this type of group.
However, a JSON object for this type of group is described below.

{

"type": "disjoint",
 "a-addresses": [
 {"name": "circle1"}
],
 "b-addresses": [
 {"name": "circle2"},
 {"name": "circle3"}
]

}

2.2.3 List

The final group type is called list. A group of type list returns each address independently.
It is the only current type that does not pair addresses. Instead, it just generates a one-
dimensional list of addresses. The figure 5 illustrate a list group type.

Figure 6: List group2.

The pSconfig template of this lab does not provide an example for this type of group.
However, a JSON object for this type of group is described below.

{
 "type": "list",

Lab 7: Configuring Tasks using pSConfig Template

 Page 10

 "addresses": [
 {"name": "perfSONAR1"},
 {"name": "perfSOANR2"},
 {"name": "perfSONAR3"}
]
}

2.3 Tests

Test objects define the parameters of the job to be carried out by the task. These
parameters are interpreted by the agent and then it is delivered to pScheduler to run the
task.

Step 1. In perfSONAR2 type nano /home/template.json, a pSConfig template will be
displayed.

Step 2. Go to the line 41. To see the actual line number press Ctrl+C.

The user will see there are two tests, throughput_test and loss_test. The specification for
the throughput_test is given by the source and destination addresses. The value of these
keys are address[0] and address[1] respectively. These values represent the addresses in
the group pairs. Finally, the duration of the test is specified with the key duration, in this
case the value is PT10S which means the test duration will last 10 seconds. The loss_test
uses the toll rtt to measure the packet loss ratio. The specification indicates that the
source and destination addressed will be taken also from each group pair.

2.4 Schedule

Schedule objects tell the agent how often a task will be scheduled and how long the test
is going to inactive after each run. Schedule objects are borrowed directly from
pScheduler.

Step 1. In perfSONAR2 type nano /home/template.json, a pSConfig template will be
displayed.

Lab 7: Configuring Tasks using pSConfig Template

 Page 11

Step 2. Go to the line 61. To see the actual line number press Ctrl+C.

In the pSConfig template is defined one schedule named schedule_PT2M which will tell a
task using it to run on a random interval between every 2-4 minutes. The repeat property
is an ISO8601 duration telling a task that uses it to repeat at least every two minutes. The
slip says that it can run up to 2 minutes later than that (i.e. 4 minutes). Finally, sliprand
tells it to randomly choose an interval between those two values for each run. This is
commonly done to prevent tests from bunching together at the beginning of a time
interval.

2.5 Archives

Archive objects are optional components of the template that tell agents where the
results of the described tasks are to be stored. Archive objects at a minimum have an
archiver field that indicates the type of archive and a data field containing archive-specific
parameters. Archive objects in pSConfig are taken directly from pScheduler.

Step 1. In perfSONAR2 type nano /home/template.json, a pSConfig template will be
displayed.

Step 2. Go to the line 6. To see the actual line number press Ctrl+C.

The archiver tag esmond_archive_1 that can be referenced in other areas of the template.
The archiver type is ESnet Monitoring Daemon (esmond). This definition also uses the
template variable {% scheduled_by_address %} which is replaced with an address
property associated with the address object representing the agent that will schedule the
task. The url key specify the location to store the measurement data. In this case, the data
will be stored in perfSONAR2 node.

2.6 Tasks

A task is a job to do consisting of a test to be carried out, scheduling information and other
options. A task in pSConfig means the same thing as a task in pScheduler. Template

Lab 7: Configuring Tasks using pSConfig Template

 Page 12

variables allow pSConfig to access properties of the task components listed in the
previous sections to connect the various pieces of the task together. Figure 7 shows
representation of a task definition.

Figure 7. Task definition2.

The squares represent the two addresses (source and destination) defined in a test. In
this figure, those addresses are represented by colors. After the test definition, it is
scheduled according to the parameters in the schedule object. Finally, the results are
stored into an archiver, this feature is optional.

Step 1. In perfSONAR2 type nano /home/template.json, a pSConfig template will be
displayed.

Step 2. Go to the line 69. To see the actual line number press Ctrl+C.

In this object, there are two tasks, one for throughput measurements tagged as
throughput_task and another for packet loss measurements tagged as loss_task. The
group attribute is referred to throughput_group and loss_group specified before in the
group object. The schedule and archiver have the same key values for both tasks. Finally,
a metadata key is specified with the name of each task, those values are identifier. At this
point, the template describes the task topology and can be published to be accessed by
all perfSONAR node in the topology.

Lab 7: Configuring Tasks using pSConfig Template

 Page 13

Step 3. Press Ctrl+X to close the window. The user could repeat the previous steps
anytime along this lab

3 Publishing a pSConfig template

In this section, the user will verify the pSConfig file and the it will be published. It is
necessary to publish this template to make it accessible to all perfSONAR nodes in the
topology.

Step 1. To check the syntax, in perfSONAR2 command line type the command shown
below. If the JSON file syntax is correct, the user will see the script on the screen.

jq . /home/template.json

Step 2. To publish the file, type the following command:

sudo psconfig publish /home/template.json

Type admin as the password, notice that the password will not be displayed while typing
it.

Lab 7: Configuring Tasks using pSConfig Template

 Page 14

Now the template is published in https://192.168.2.10/psconfig/template.json,
and can be accessed by perfSONAR1, perfSONAR2 and perfSONAR3 nodes.

At this point, the user has configured MaDDash server. In this section, perfSONAR1 and
perfSONAR3 nodes, are going to run the pSConfig agent published on
https://192.168.2.10/psconfig/template.json.

4 Running the pSConfig pScheduler Agent

The role of the pSConfig pScheduler Agent is to read pSConfig templates and generate a
set of pScheduler tasks. The figure 8 describes this role5.

Figure 8. Workflow of the pScheduler Agent5.

The process depicted in the figure 8 includes the following steps:

• Read the configured templates.
• Determine the pScheduler tasks to schedule.
• Communicate with the appropriate pScheduler servers to ensure the tasks are

created.

These steps are completed whenever one of the following events occur:

Lab 7: Configuring Tasks using pSConfig Template

 Page 15

• The agent starts.
• The default local configuration file remains unchanged within a certain time

period. By default, this value is 1 minute.
• If no changes, on a configurable interval after the start of the last run. By default,

these steps are run every 1 hour.

Step 1. On the topology click on perfSONAR1 node and login typing admin as the
username and admin as the password.

Step 2. To run the pSConfig Agent in perfSONAR1 node, type the following command:

sudo psconfig remote add “https://192.168.2.10/psconfig/template.json”

If required, type admin as the password.

At this point the pSconfig template is run by a pScheduler agent. Notice that the pSConfig
template is published in perfSONAR2 node and the task are running in perfSONAR1.

5 Viewing Scheduled Tasks

Step 1. In order to visualize the tasks defined in the pSConfig template, on perfSONAR1
command line type pscheduler monitor to visualize the ongoing tests.

The user will see a screen with the schedule of tests. These tests have a status
depending on whether they have already run or are still waiting to do so. Possible status
values are:

Lab 7: Configuring Tasks using pSConfig Template

 Page 16

• Pending: This run is scheduled to execute at some point in the future.
• On Deck: This run is scheduled to execute and will begin execution very soon.
• Running: This run is in the middle of execution.
• Cleanup: This run completed execution and is doing some final operations.
• Finished: The run has already executed and finished successfully,
• Overdue: The run was scheduled to execute at a certain time in the past but did

not. It may get executed soon if it is not beyond a certain threshold.
• Missed: The run was scheduled but did not execute at its given time. This can

happen if the scheduler was not running at the allotted time or the task was
paused.

• Failed: The run failed to complete for some reason.
• Non-Starter: The run could not be scheduled because there were no timeslots

that could accommodate the constraints.
• Canceled: The task was cancelled before the run was executed.

The results above indicate that several round-trip time test rtt and throughput tests are
running approximately each 2 minutes. The user will see the status, the source and the
destination IP addresses. In addition, the duration of the rtt test is shown besides it.

Step 2. To exit from pScheduler monitor, press Ctrl+c.

This concludes Lab 7.

Lab 7: Configuring Tasks using pSConfig Template

 Page 17

References

1. NSRC, “What is perfSONAR?,” [Online]. Available:
https://learn.nsrc.org/perfsonar/what-is-perfsonar.

2. B. Tierney, J. Metzger, E. Boyd, A. Brown, R. Carlson, M. Zekau, J. Zurawski, M.
Swany and M. Grigoriev, “perfSONAR: instantiating a global network
measurement,” in SOSP workshop, Real overlays and distributed systems.

3. How to use the linux traffic control panagiotis vouzis,” [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/.

4. perfSONAR Project, “Creating and managing tasks,” [Online]. Available:
https://docs.perfsonar.net/pscheduler_client_tasks.html.

5. perfSONAR Project, “The pScheduler command-line interface,” [Online].
Available: https://www.perfsonar.net/media/medialibrary/2017/09/22/201709-
perfSONAR-11-pScheduler_CLI-v2.pdf.

6. M. Feit, “CLI user's guide,” [Online]. Available:
https://github.com/perfsonar/pscheduler/wiki/CLI-User%27s-Guide.

7. ESnet, “esmond: ESnet monitoring daemon”. Available:
https://software.ed.net/esmond/.

PERFSONAR

Lab 8: perfSONAR Monitoring and Debugging
Dashboard

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 2

Contents	

Overview .. 3
Objectives ... 3
Lab topology ... 3
Lab settings ... 3
Lab roadmap ... 4
1 Introduction .. 4
2 Configuring MaDDash server .. 5

2.1 Allow http and https traffic to MaDDash server .. 5
2.2 Publishing pSConfig agent .. 6
2.3 Configuring central measurement archive .. 7
2.4 Running pSConfig MaDDash agent .. 10

3 Configuring perfSONAR nodes .. 11
4 Checking the grids .. 12
5 Visualizing the dashboard ... 15
6 Adding packet loss to interface connecting to network 192.168.2.0/24 17
References .. 22

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 3

Overview

This lab presents the perfSONAR Monitoring and Debugging Dashboard (MaDDash). This
tool is aimed to collect large amounts of measurement data and display them in a two-
dimensional grid referred to as a dashboard.

Objectives

By the end of this lab, the user will:

1 Configure MaDDash in order to visualize regular tests.
2 Run pSConfig agents on perfSONAR nodes.
3 Configure a central measurement archive.
4 Check the grids using MaDDash administrator web interface.
5 Visualize the measurement data on the dashboard.

Lab topology

Figure 1 illustrates the topology used for this lab. The topology includes three perfSONAR
nodes labeled perfSONAR1, perfSONAR2, perfSONAR3 and a Client host. The perfSONAR
nodes run a Linux CentOS 7, and the Client runs a lightweight Linux distribution (Lubuntu).
The Client host is used to access perfSONAR graphical user interface.

Figure 1. Lab topology.

Lab settings

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 4

The information in Table 1 provides the credentials to access to perfSONAR nodes and
the Client host.

Table 1. Credentials to access perfSONAR1, perfSONAR2, perfSONAR3 and Client.

Device

IP Address

Account

Password

perfSONAR1 192.168.1.10 admin admin

perfSONAR2 192.168.2.10 admin admin

perfSONAR3 192.168.3.10 admin admin

Lab roadmap

This lab includes the following tasks:

1. Section 1: Introduction.
2. Section 2: Configuring MaDDash server.
3. Section 3: Configuring perfSONAR nodes.
4. Section 4: Checking the grids.
5. Section 5: Visualizing the dashboard.
6. Section 6: Adding packet loss to interface connecting to network

192.168.2.0/24.

1 Introduction

In scientific collaboration environments, computational and instrumentational resources
are often physically distributed over the Wide Area Networks (WAN). Collaborators work
remotely in different centers and require access to instruments. As large number of data
flows move between centers, data visualization becomes an important tool in facilitating
network monitoring.

The Monitoring and Debugging Dashboard (MaDDash) is a software package for
perfSONAR. It collects and presents two-dimensional monitoring data as a set of grids
referred to as a dashboard. Many monitoring systems emphasize one-dimensional graphs,
however network managers can face difficulties presenting the measurement data as
complexity increases. Therefore, MaDDash provides the tools to create, configure and
synchronize tests which are running on multiple hosts. These results can then be accessed
using a REST API which provides the building blocks for components such as the included
web interface that presents the data as a set of grids1.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 5

MaDDash is a part of the visualization layer, as shown in the figure 2. It can run a pSConfig
template and can retrieve the measurement data of other perfSONAR nodes through the
ESnet Monitoring Daemon (Esmond), which is a system for collecting, storing, visualizing
and analyzing large sets of timeseries data.

Figure 2. perfSONAR layers2.

2 Configuring MaDDash server

In this section the user will configure a MaDDash server in order run and collect
measurement data. First, the user will open firewall to allow http/https traffic. Second,
the user will publish a pSConfig template to run the measurement tests in the server and
the other nodes. Then, it is shown how to configure the central measurement archive.
Finally, the user will run a pSConfig MaDDash agent.

2.1 Allow http and https traffic to MaDDash server

In order to provide access the server, it is necessary to open the firewall to allow
http/https traffic.

Step 1. Login to perfSONAR2 typing the username admin and password admin. Note that
the password will not be displayed while typing it.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 6

Step 2. To allow traffic through the http port (80) type the command shown below. The
user will be required to enter the password as admin. Notice that the password will not
be displayed while typing it.

sudo firewall-cmd -–permanent -–add-port=80/tcp

Step 3. Similarly, to allow traffic through the http port (443) type the command shown
below.

sudo firewall-cmd -–permanent -–add-port=443/tcp

Step 4. To apply the changes, type the following command:

sudo firewall-cmd --reload

2.2 Publishing pSConfig agent

In this lab, the user is provided a template. This template is a pSConfig archive which runs
pScheduler tasks. It is necessary to publish this template to make it accessible to all
perfSONAR nodes.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 7

Step 1. In the directory /home/, the user will find the pSConfig agent template.json, which
runs pScheduler tasks. To check for errors, type the command shown below. If the JSON
file syntax is correct, the user will see the script echoed on the screen.

jq . /home/template.json

Step 2. To publish the template, type the command shown below. The script will be
available at https://192.168.2.10/psconfig/template.json.

sudo psconfig publish /home/template.json

Now, the pSConfig template is published and can be accessed by perfSONAR1 and
perfSONAR3 nodes.

2.3 Configuring central measurement archive

Each host will collect measurement data specified in the pSConfig template. This
measurement data will be stored into a centralized database, the ESnet Monitoring
Daemon (esmond). Esmond is a system for collecting, storing, visualizing and analyzing

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 8

large sets of timeseries data. In order to store measurement data, each host needs to
authenticate to the Central Measurement Archive esmond.

To allow each node to store its measurement data, the user will use the following
command format:

sudo /usr/sbin/esmond_manage add_user_ip_address admin <IP_ADDRESS>

• sudo: enables the execution of the command with higher security privileges.
• /usr/sbin/esmond_manage: is the route to the script to register a perfSONAR

node.
• add_user_ip_address: is a script which allows a perfSONAR node to have

access to the central measurement archive and store its measurement data.
• admin: is the administrator password.
• <IP_ADDRESS>: is the IP address of the perfSONAR node to be registered.

Step 1. To allow perfSONAR1 node to store its measurement data, in perfSONAR2 CLI type
the command shown below. The user will be required to enter the password as admin.
Notice that the password will not be displayed while typing it.

sudo /usr/sbin/esmond_manage add_user_ip_address admin 192.168.1.10

Step 2. To allow perfSONAR2 node to store its measurement data, in perfSONAR2 CLI type
the following command:

sudo /usr/sbin/esmond_manage add_user_ip_address admin 192.168.2.10

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 9

Step 3. To allow perfSONAR3 node to store its measurement data, in perfSONAR2 CLI type
the following command:

sudo /usr/sbin/esmond_manage add_user_ip_address admin 192.168.3.10

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 10

2.4 Running pSConfig MaDDash agent

The role of the pSConfig MaDDash agent is to read pSConfig templates and generate a
set of grids to be displayed by MaDDash.

Step 1. In perfSONAR2 command line type the command shown below to publish the
MaDDash agent at the given URL.

sudo psconfig remote add “https://192.168.2.10/psconfig/template.json”

Step 2. Now, perfSONAR2 node is collecting measurement data specified in the pSConfig
template. To proceed, the user will restart Apache Cassandra database typing the
command shown below:

sudo systemctl restart cassandra

Step 3. In order to restart MaDDash server, type the following command:

sudo systemctl restart maddash-server

Step 4. To restart MaDDash agent, type the following command:

sudo systemctl restart psconfig-maddash-agent

Step 5. At this point MaDDash web interface is set up and running. To check it, go to the
topology and login to the Client host and open the web browser.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 11

Step 7. In order to access to the dashboard, type the following URL
https://192.168.2.10/maddash-webui/. If the web server is running, the user will see the
MaDDash web user interface.

3 Configuring perfSONAR nodes

At this point, the MaDDash server has been configured. In this section, the user will
configure perfSONAR1 and perfSONAR3 nodes in order to run the pSConfig agent
published on https://192.168.2.10/psconfig/template.json.

Step 1. On the topology click on perfSONAR1 node and login typing admin as the
username and admin as the password.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 12

Step 2. To add a remote pSConfig template on perfSONAR1, type the command shown
below. The user will be required to enter the password as admin. Notice that the
password will not be displayed while typing it.

sudo psconfig remote add -–configure-archives
“https://192.168.2.10/psconfig/template.json”

Step 3. On the topology, click on perfSONAR3 node and login with typing admin as the
username and admin as the password.

Step 4. To add a remote pSConfig template on perfSONAR3 type the command shown
below. The user will be required to enter the password as admin. Notice that the
password will not be displayed while typing it.

sudo psconfig remote add -–configure-archives
“https://192.168.2.10/psconfig/template.json”

4 Checking the grids

At this point, the MaDDash server is running and collecting data. It takes time to have the
measurement data propagated and displayed on the grid. To avoid waiting, the user will
access the MaDDash Administrator Web Interface. The administrator web interface
allows privileged users to perform special operations on the dashboard. The allowed
operations are:

• Re-scheduling a check to run at a certain time.
• Scheduling an event, such as a maintenance window, that may impact check

results.
• Viewing and canceling existing events.

The steps that follow describe how to reschedule a check event. This check event will
propagate measurement data on the dashboard immediately.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 13

Step 1. On the Client host, click con Dashboards > perfSONAR Lab. The user will see the
dashboard, but in this case the measurement data is not displayed because by default it
needs time to be propagated and visualized on the dashboard.

Step 2. To display the measurement data on the dashboard immediately, the user will
modify the Server Settings to schedule a Check. To proceed, click on Settings > Server
Settings.

Step 3. The user will be required to authenticate. To proceed type username admin and
password admin.

Step 4. The user will see the Administrator Web Interface. Click on Reschedule Check. This
will force the dashboard to show the measurement data as sooner than it would
otherwise.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 14

Step 5. Select the grid name as perfSONAR Lab – Throughput.

Step 6. To apply the configuration, click on Schedule.

Step 7. Select the grid name as perfSONAR Lab – Loss Test.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 15

Step 8. To apply the configuration, click on Schedule.

5 Visualizing the dashboard

Step 1. In order to access the dashboard, type the following URL
https://192.168.2.10/maddash-webui/. If the web server is running, the user will see
MaDDash web user interface.

Step 2. In the Web User Interface select Dashboard > perfSONAR Lab

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 16

Step 3. The user will see the Throughput and Loss Dashboards which are from
perfSONAR1, perfSONAR2 and perfSONAR3 nodes. To visualize the results in a timing
graph, the user can click on any green square and the browser will open a new tab. On
the Throughput dashboard, click on square located on first row and third column to
visualize de results of the throughput test between perfSONAR1 and perfSONAR3 nodes.

Step 4. In this graph the results collected since the pScheduler agents started are shown,
and the user can visualize the throughput when the source is 192.168.1.10 and the
destination is 192.168.3.10. To adjust the time range, select an appropriate value on
Report range to see the results with more detail. The throughput graph shows
bidirectional throughput, failures and retransmissions on the same plot. Below, the timing
graph of the packet loss and latency are displayed.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 17

6 Adding packet loss to interface connecting to network 192.168.2.0/24

In this section, the user will add a 10% packet loss to the router R1 and router R2 using
Network Emulator (NETEM) commands. This change will affect the performance of the
network. The user will see the effects on the dashboard.

Step 1. Open router R2 and enter the username root and password password. Note that
the password will not be displayed while typing it.

Step 2. Identify the interfaces which are connected to the network 192.168.2.0/24 on
router R2. In router R2 command line, type the command ifconfig. This command
displays information related to the network interfaces in the local device.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 18

Notice that the interface ens37 is connected to the network 192.168.2.0/24.

Step 3. In order to add a 10% packet loss, sudo in router R2 command line, type the
following command:

sudo tc qdisc add dev ens37 root netem loss 10%

Step 4. Wait for at least 2 minutes to get the data propagated to the dashboard, then go
to the administrator web interface. In order to access the dashboard, type the following
URL https://192.168.2.10/maddash-webui/.

Step 5. In the Web User Interface select Settings > Server Settings.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 19

Step 6. The user may be required to authenticate. To proceed type username admin and
password admin.

Step 7. The user will see the Administrator Web Interface. Click on Reschedule Check. This
will force the dashboard to show the measurement data as sooner than it would
otherwise.

Step 8. Select the grid name as perfSONAR Lab – Loss Test.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 20

Step 9. To apply the configuration, click on Schedule and wait 1 minute to enter again to
MaDDash web interface http://192.168.2.10/maddash-webui.

Step 10. In order to access the dashboard, type the following URL
https://192.168.2.10/maddash-webui/. If the web server is running, the user will see
MaDDash web user interface.

Step 11. In the Web User Interface select Dashboard > perfSONAR Lab

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 21

Step 12. The user will see the Throughput and Loss Dashboards which are from
perfSONAR1, perfSONAR2 and perfSONAR3 nodes. Now the user will see that the loss
rate between perfSONAR3 and the other nodes are affected.

Step 13. To visualize the results in a timing graph, the user can click on any green square
and the browser will open a new tab. On the Loss dashboard, click on the square located
on third row and first column to visualize the results of the throughput test between
perfSONAR3 and perfSONAR1 nodes.

Lab 8: perfSONAR Monitoring and Debugging Dashboard

 Page 22

This graph shows the results collected since the pScheduler agents started, the user can
visualize the throughput when the source is 192.168.3.10 and the destination is
192.168.1.10. To adjust the time range, select an appropriate value on Report range to
see the results with more detail. Bidirectional throughput, failures and retransmissions
are shown on the same plot.

This concludes Lab 8.

References

1. NSRC, “What is perfSONAR?,” [Online]. Available:
https://learn.nsrc.org/perfsonar/what-is-perfsonar.

2. B. Tierney, J. Metzger, E. Boyd, A. Brown, R. Carlson, M. Zekau, J. Zurawski, M.
Swany and M. Grigoriev, “perfSONAR: instantiating a global network
measurement,” in SOSP workshop, Real overlays and distributed systems.

3. How to use the linux traffic control panagiotis vouzis,” [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/.

4. perfSONAR Project, “Creating and managing tasks,” [Online]. Available:
https://docs.perfsonar.net/pscheduler_client_tasks.html.

5. perfSONAR Project, “The pScheduler command-line interface,” [Online].
Available: https://www.perfsonar.net/media/medialibrary/2017/09/22/201709-
perfSONAR-11-pScheduler_CLI-v2.pdf.

6. M. Feit, “CLI user's guide,” [Online]. Available:
https://github.com/perfsonar/pscheduler/wiki/CLI-User%27s-Guide.

7. ESnet, “esmond: ESnet monitoring daemon”. Available:
https://software.ed.net/esmond/.

PERFSONAR

Lab 9: pSConfig Web Administrator

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 9: pSConfig Web Administrator

 Page 2

Contents	

Overview .. 3
Objectives .. 3
Lab topology .. 3
Lab settings .. 4
Lab roadmap .. 4
1 Introduction ... 4

1.1 PWA overview ... 5
2 Configuring hosts ... 6

2.1 Accessing the web user interface .. 6
2.2 Adding hosts to the directory .. 7

3 Configuring host groups .. 11
3.1 Configuring Throughput Group ... 11
3.2 Configuring latency group ... 14

4 Setting test specifications .. 16
4.1 Configuring throughput test specification ... 17
4.2 Configuring latency test specification ... 19

5 Creating pSConfig output ... 22
5.1 Adding throughput test ... 24
5.2 Adding latency test .. 27

6 Visualizing the measurement data using pScheduler monitor 30
References ... 31

Lab 9: pSConfig Web Administrator

 Page 3

Overview

This lab presents how to create and publish pSConfig templates using pSConfig Web
Administrator (PWA). This tool is a web-based user interface for perfSONAR administrators
to define and publish pSConfig templates, which automates tests executed by test nodes,
and provides topology information to various services, such as MadDash.

Objectives

By the end of this lab, the user will:

1. Understand PWA architecture.
2. Create host groups.
3. Define tests specifications.
4. Configure test parameters.
5. Publish pSConfig archive.
6. Run pSCofing pScheduler Agent.

Lab topology

Figure 1 illustrates the topology used for this lab. The topology includes three perfSONAR
nodes labeled perfSONAR1, perfSONAR2, perfSONAR3 and a Client host. The perfSONAR
nodes run a Linux CentOS 7, and the Client runs a lightweight Linux distribution (Lubuntu).
The Client host is used to access perfSONAR graphical user interface.

Figure 1. Lab topology.

Lab 9: pSConfig Web Administrator

 Page 4

Lab settings

The information in Table 1 provides the credentials to access to perfSONAR nodes and the
Client host.

Table 1. Credentials to access perfSONAR1, perfSONAR2, perfSONAR3 and Client.

Device

IP Address

Account

Password

perfSONAR1 192.168.1.10 admin admin

perfSONAR2 192.168.2.10 admin admin

perfSONAR3 192.168.3.10 admin admin

Lab roadmap

This lab includes the following tasks:

1. Section 1: Introduction.
2. Section 2: Configuring hosts.
3. Section 3: Configuring host groups.
4. Section 4: Setting test specifications.
5. Section 5: Configuring pSConfig output.
6. Section 6: Visualizing the measurement data using pScheduler monitor.

1 Introduction

pSConfig Web Administrator (PWA) is a web-based user interface for perfSONAR
administrators to define and publish pSConfig configuration files. The output automates
tests executed by test nodes, and provides topology information to various services, such
as MaDDash.

In addition to providing a user-friendly interface for creating pSConfig file, PWA allows
multiple users to collaborate on the configuration of tests specifications, host groups, and
configs. Users can be designated super-admins or normal users, depending on how much
access they need. It is also possible to allow users to edit some configuration files, but not
others.

Lab 9: pSConfig Web Administrator

 Page 5

The architecture shown in the figure 2, assumes the names of the instances as pwa-admin1,
pwa-pub1, nginx mongodb, sca-auth and postfix. The user can modify and add more
publishers (pwa-pub), to improve publisher performance, if needed.

Figure 2. PWA architecture1.

PWA is deployed using a series of docker containers some are PWA-specific and provided
by the perfSONAR project. In this lab the user will use PWA interface to create a pSConfig
file. This file groups perfSONAR nodes to run pScheduler tasks specified by the user. The
output is published in order to accessible by all the nodes.

Table 2. Description the containers.
Container Description
pwa-admin PWA UI and API
pwa-pub It is used for publishing Configs defined in PWA
sca-auth Authentication module used by the GUI
nginx Web server, used as a proxy to access the PWA and SCA components
mongodb MongoDB, used by pwa-admin and pwa-pub
postfix It is used to run a mail server in another docker container

1.1 PWA overview

Lab 9: pSConfig Web Administrator

 Page 6

The pSConfig Web Admin (PWA) is provides the tools for managing pSConfig configuration
files. In order to generate and publish a pSConfig file, the user goes through three parts:

• Host Group: A group of hosts that are user-selected that all can perform a certain
type of test.

• Test spec: Test configuration for a test to run; this can include tool and test
parameters, scheduling configuration, etc.

• Config: In the context of PWA, a Config is an actual test configuration that brings
together Host Groups and Testspecs to generate a pSConfig output. The user can
use this to configure meshes or other topologies.

2 Configuring hosts

In this section, the user will configure the host information. The Hosts form displays a list
of all perfSONAR nodes and services loaded from configured Lookup Service (sLS) data
sources or defined manually (ad-hoc hosts). In this lab, the user will configure ad-hoc hosts.
These hosts are perfSONAR1, perfSONAR2 and perfSONAR3. In order to proceed, the user
must login the Web User Interface.

2.1 Accessing the web user interface

Step 1. On the Client host and open web browser.

Step 2. On the address bar, type the URL https://192.168.1.10:8443.

Lab 9: pSConfig Web Administrator

 Page 7

Step 3. The user will be given an authentication screen. Type admin as the Username and
admin as the Password. Click on Login.

2.2 Adding hosts to the directory

Step 1. On the left part of the web interface, click on Hosts.

Step 2. A form will be displayed. On left side, it is displayed the list with all the public
perfSONAR nodes. On the right side, it is shown all the information about the selected
node. In this lab, the user will define the configuration of each host. To proceed, click on
New host.

Lab 9: pSConfig Web Administrator

 Page 8

Step 3. A form will be shown up on the right side. The fields must be completed with the
following information:

• Hostname: This label is used to identify the host on the Global Lookup Service
(GLS). For this lab, complete this field with the IP addresses of perfSONAR1
(192.168.1.10), perfSONAR2 (192.168.2.10) and perfSONAR3 (192.168.3.10)

• Site Name: The name of the site, typically this comes from the GLS. Complete this
information typing perfSONAR Lab.

• Host Description: This information will be displayed in MaDDash as the
row/column labels. Add a brief description about the host.

• toolkit_url: This is the URL that links back to the toolkit instance on MaDDash
matrix view. Complete this entry with the IP addresses of perfSONAR1,
perfSONAR2 and perfSONAR3 respectively.

In the figure below, it is given the configuration of perfSONAR1 node (192.168.1.10).
Complete the form with the information shown below, then click on Create to save the
configuration.

Lab 9: pSConfig Web Administrator

 Page 9

Step 4. Scroll down to add information about the measurement archive (MA). In this lab,
perfSONAR2 node is configured to store the measurement data collected by each node.
Check the box Use local MA and complete the field Local MA URL with the IP address of
perfSONAR2 (192.168.2.10), then click on Update to save the configuration.

Step 5. Click again on New host to add information about perfSONAR2 node (192.168.2.10).
Complete the form with the information shown below and click on Create to save the
configuration.

Lab 9: pSConfig Web Administrator

 Page 10

Step 6. Scroll down to add information about the measurement archive (MA). In this lab,
perfSONAR2 node is configured to store the measurement data collected by each node.
Check the box Use local MA, then complete the field Local MA URL with the IP address of
perfSONAR2 (192.168.2.10), then click on Update to save the configuration.

Step 7. Click again on New host to add information about perfSONAR3 node (192.168.3.10).
Complete the form with the information shown below and click on Create to save the
configuration.

Lab 9: pSConfig Web Administrator

 Page 11

Step 8. Scroll down to add information about the measurement archive (MA). In this lab,
perfSONAR2 node is configured to store the measurement data collected by each node.
Check the box Use local MA, then complete the field Local MA URL with the IP address of
perfSONAR2 (192.168.2.10), then click on Update to save the configuration.

3 Configuring host groups

A host group is a logical grouping of perfSONAR nodes. The user may reuse a single host
group for multiple configuration files. In this section the user will configure two groups of
perfSONAR nodes. Both groups include perfSONAR1, perfSONAR2 and perfSONAR3. The
first group is for throughput tests, and the second group is for latency measurements.

3.1 Configuring Throughput Group

Step 1. On the left part of the web interface, click on Host Groups.

Lab 9: pSConfig Web Administrator

 Page 12

Step 2. Click on New hostgroup.

Step 3. Write group1 as the name. This name will be a tag to identify the host group
during the test configuration.

Lab 9: pSConfig Web Administrator

 Page 13

Step 4. Click on Service Type. A list will be displayed, select Throughput.

Step 5. On Hosts field, type the IP address of perfSONAR1 node (192.168.1.10) to search
for the host configured on the last section. A list will be displayed, select 192.168.1.10 to
add the node to the group.

Lab 9: pSConfig Web Administrator

 Page 14

Step 6. Repeat the previous step but now, complete the form with perfSONAR2
(192.168.2.10) and perfSONAR3 (192.168.3.10) IP addresses. Then, click on Create to save
the configuration.

3.2 Configuring latency group

Step 1. In order to create a new group, click again on New hostgroup.

Lab 9: pSConfig Web Administrator

 Page 15

Step 2. Write group2 as the name. This will be a tag to identify the host group during the
test configuration

Step 3. Click on Service Type. A list will be displayed, select Latency.

Lab 9: pSConfig Web Administrator

 Page 16

Step 4 As in the previous section, on the Hosts field, type the IP address of perfSONAR1
node (192.168.1.10) to search for the host configured on the last section. A list will be
displayed, select 192.168.1.10 to add the node to the group. In addition, add perfSONAR2
(192.168.2.10) and perfSONAR3 (192.168.3.10) IP addresses. Then, click on Create to save
the configuration.

4 Setting test specifications

The test specification is a set of parameters used by a particular test service. Instead of
defining such parameters for each test, the user can define and use them in one or more
configuration definitions. In this section the user will configure the tests specification for
the host groups created on the last section. The first test specification is for throughput
test which corresponds to the group1. The second test specification is for the latency test
which corresponds to the group2.

Lab 9: pSConfig Web Administrator

 Page 17

4.1 Configuring throughput test specification

Step1. On the left part of the web browser, click on Testspec.

Step 2. Click on New testspec.

Step 3. Type Throughput_Test in the Name field.

Lab 9: pSConfig Web Administrator

 Page 18

Step 4. Click on Service Type, a list will be displayed. Select Throughput in order to
configure a throughput test.

Step 5. A parameter box will be displayed after selecting the Service Type. The user will
see different set of test parameters. Below each parameter is shown the description of
each field. In this lab, the user will use the default configuration. Click on Create to save
the configuration.

Lab 9: pSConfig Web Administrator

 Page 19

4.2 Configuring latency test specification

Step 1. Click on New Testspec.

Step 2. Type Latency_Test in the Name field.

Lab 9: pSConfig Web Administrator

 Page 20

Step 3. Click on Service Type, a list will be displayed. Select Latency in order to configure
a Latency test.

Step 4. A parameter box will be displayed after selecting the Service Type. The user will
see different set of test parameters. Below each parameter is shown the description of
each field. Select twamp as the Tool.

Lab 9: pSConfig Web Administrator

 Page 21

Step 5. On the Schedule Type, select the second option as shown in the figure below.

Step 6. Click on Create to save the Configuration.

Lab 9: pSConfig Web Administrator

 Page 22

5 Creating pSConfig output

Once the Host Groups and Test Specs are defined, it is possible now to create pSConfig file
by combining those entities. Under the Config section, the user will see a list of Configs
defined and their basic information. The links displayed next to the Config name is the
actual Config URLs that users can download and subscribe on various perfSONAR services.
To edit, or see more detail for each Config, click on the Config name in the Configs column.

Step 1. In order to define a configuration file, click on New config.

Step 2. The Config URL shows the url where the configuration file will be published once
the configuration is finished. Complete the entry box typing config1.

Lab 9: pSConfig Web Administrator

 Page 23

Step 3. Type Configuration_1 as the Name.

Step 6. In the description box, add a brief description about the configuration file. This
field is optional.

Lab 9: pSConfig Web Administrator

 Page 24

Step 7. The perfSONAR2 node is configured as the Measurement Archive (MA). This node
collects the measurement data of all perfSONAR node. Type the IP address of perfSONAR2
in order to configure it as the MA.

5.1 Adding throughput test

Step 1. To proceed, click on Add New Test. A configuration box will be displayed below.

Lab 9: pSConfig Web Administrator

 Page 25

Step 2. Type Throughput Test as the Test Name.

Step 3. Click on Service Type, a list will be displayed, select Throughput.

Lab 9: pSConfig Web Administrator

 Page 26

Step 4. Scroll down and click Host Group A, a list will be displayed, select group1. The
user will see the IP addresses of the three nodes involved in the test.

Step 5. Click on Testspec, a list will be displayed, select Throughput_Test.

Lab 9: pSConfig Web Administrator

 Page 27

Step 6. Click on Create to save the changes.

5.2 Adding latency test

Step 1. To configure the latency test, click again on Add New Test.

Step 2. Type Latency Test as the Test Name.

Lab 9: pSConfig Web Administrator

 Page 28

Step 3. Click of Service Type, select Latency from the list.

Step 4. Scroll down and click Host Group A, a list will be displayed, select group2. The
user will see the IP addresses of the three nodes involved in the test.

Lab 9: pSConfig Web Administrator

 Page 29

Step 5. Click of Testspec, a list will be displayed, select Latency_Test.

Step 6. Click on Create to save the configuration.

Lab 9: pSConfig Web Administrator

 Page 30

6 Visualizing the measurement data using pScheduler monitor

At this point, the user has created and published a pSConfig file. This file is accessible from
the perfSONAR nodes on the topology. In this section the user will run the pSConfig archive
using a pScheduler agent. First, the user will login to perfSONAR2 node and add the
configuration file. Secondly, the user will see the test schedule using pScheduler monitor.

Step 1. On the topology, click on perfSONAR2 and enter the username admin and
password admin. Note that the password will not be displayed while typing it.

Step 2. To run the pSConfig template type the following command:

sudo psconfig remote add -–configure-archives
“https://192.168.1.10:8443/pub/config/config1?format=psconfig”

The user will be required to enter the password as admin.

Lab 9: pSConfig Web Administrator

 Page 31

Step 3. After a minute, type the command pscheduler monitor. The user will see the
scheduled tasks through pScheduler monitor. Notice that the latency task is running
twice each hour, and the throughput test once every four hours.

Step 4. To exit from pScheduler monitor, press Ctrl+c.

This concludes Lab 9.

References

1. NSRC, “What is perfSONAR?,” [Online]. Available:
https://learn.nsrc.org/perfsonar/what-is-perfsonar.

2. B. Tierney, J. Metzger, E. Boyd, A. Brown, R. Carlson, M. Zekau, J. Zurawski, M.
Swany and M. Grigoriev, “perfSONAR: instantiating a global network
measurement,” in SOSP workshop, Real overlays and distributed systems.

3. How to use the linux traffic control panagiotis vouzis,” [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/.

4. perfSONAR Project, “Creating and managing tasks,” [Online]. Available:
https://docs.perfsonar.net/pscheduler_client_tasks.html.

5. perfSONAR Project, “The pScheduler command-line interface,” [Online].
Available: https://www.perfsonar.net/media/medialibrary/2017/09/22/201709-
perfSONAR-11-pScheduler_CLI-v2.pdf.

Lab 9: pSConfig Web Administrator

 Page 32

6. M. Feit, “CLI user's guide,” [Online]. Available:
https://github.com/perfsonar/pscheduler/wiki/CLI-User%27s-Guide.

7. ESnet, “esmond: ESnet monitoring daemon,” [Online]. Available:
https://software.ed.net/esmond/.

PERFSONAR

Lab 10: Configuring pScheduler Limits

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 10: Configuring pScheduler Limits

 Page 2

Contents	 	

Overview .. 3
Objectives ... 3
Lab topology ... 3
Lab settings ... 3
Lab roadmap ... 4
1 Introduction ... 4

1.1 Overview of perfSONAR limits Files ... 4
1.2 Identifiers ... 5
1.3 Classifiers ... 5
1.4 Rewrite ... 6
1.5 Limits .. 6
1.6 Applications ... 6

2 Sample limits files .. 6
3 Applying perfSONAR limits files ... 9

3.1 Testing the first limits configuration file (limits-1.conf) 9
3.2 Testing second limits configuration file (limits-2.confg) 12
3.3 Testing third limits configuration file (limits-3.conf) .. 14

References .. 17

Lab 10: Configuring pScheduler Limits

 Page 3

Overview

This lab introduces the reader to pScheduler limits configuration file. The lab describes
the components and the syntax of the configuration file how to configure it in order to
apply rules to the tests between perfSONAR nodes in the topology.

Objectives

By the end of this lab, the user will:

1. Understand the concept of pScheduler limits.
2. Modify the pScheduler limits configuration file.
3. Verify the impact on pScheduler test after modifying the limits configuration file.

Lab topology

Figure 1 illustrates the topology used for this lab. The topology includes three perfSONAR
nodes labeled perfSONAR1, perfSONAR2, perfSONAR3 and a Client host. The perfSONAR
nodes run a Linux CentOS 7, and the Client runs a lightweight Linux distribution (Lubuntu).
The Client host is used to access perfSONAR graphical user interface.

Figure 1. Lab topology.

Lab settings

The information in Table 1 provides the credentials to access to perfSONAR nodes.

Lab 10: Configuring pScheduler Limits

 Page 4

Table 1. Credentials to access perfSONAR1, perfSONAR2 and perfSONAR3.

Device

IP Address

Account

Password

perfSONAR1 192.168.1.10 admin admin

perfSONAR2 192.168.2.10 admin admin

perfSONAR3 192.168.3.10 admin admin

Lab roadmap

This lab includes the following tasks:

1. Section 1: Introduction.
2. Section 2: Sample limits files.
3. Section 3: Applying perfSONAR limits files.

1 Introduction

The perfSONAR toolkit provides a detailed framework for network performance
measurement across single and multiple network domains1. An integral component of
this solution is the pScheduler tool which is responsible for executing desired network
performance tests, also termed as tasks. In particular, pScheduler runs on a server and
can either be called using a graphical user interface (GUI), command line input (CLI), or
through an application programmer interface (API).

Now perfSONAR users can request a wide range of end-to-end monitoring tests through
pScheduler, e.g., such as latency, throughput, loss, etc. However, in general, system and
network administrators will want to control various aspects of such user-initiated tests,
i.e., as per policy, resource limitations, timing constraints, etc. To accommodate such
needs, the perfSONAR framework also provides the ability to control who can run tasks,
the types of tasks allowed, and their associated parameter ranges2. Specifically, this
control is implemented through a limits configuration file. Hence this lab focuses on the
contents of this file and how to modify it to achieve desired perfSONAR operation. Note
that the default limits configuration file in the perfSONAR installation is also available in
the toolkit sources3.

1.1 Overview of perfSONAR limits Files

Lab 10: Configuring pScheduler Limits

 Page 5

The perfSONAR limits configuration file uses JavaScript Object Notation (JSON) notation
and is named limits.conf. This file is located in the /etc/pscheduler directory and is read
by pScheduler to determine the validity of user task requests. Namely, the pScheduler
server checks and applies the latest instance of this file for any new requests and also
regularly checks for updates every 15 seconds. Any changes to the limits.conf file are also
tracked in a log file, generally located in the /var/log/pscheduler.log file.

The pScheduler limits file plays a very important role in verifying user requests. Otherwise
the pScheduler system will simply accept all requests in case of missing and/or improper
limits.conf files. As a result, it is important to make sure that the limits file is properly
checked for validity before being installed for use by pScheduler. This particular step can
also be done through the pScheduler validate-limits command, as applied subsequently.
Overall, the limits configuration file contains a single JSON object with several attribute-
value pairs given by:

{
 "#": "Skeletal pScheduler limit configuration",

 "identifiers": [...],
 "classifiers": [...],
 "rewrite": [...],
 "limits": [...],
 "applications": [...]
}

1.2 Identifiers

The first part of the verification process is to identify who is actually requesting the
performance measurement task. Hence the identifiers component of the limits file
contains identifier objects with several attribute fields including name (string containing
a unique identifier name), description (string describing identifier), type (string indicating
what method to determine if requester should be identified in a category), data (JSON
object containing type object specific data), and invert (optional boolean value to invert
identification after evaluation). In particular, the type and its associated data field can
support a range of identification strategies, e.g., using hints about the requester, pre-
specified classless inter-domain routing (CIDR) IPv4 or IPv6 address lists, downloaded
CIDR IP address lists from a website, list of non-bogon IP addresses (to prevent malicious
dark web activities), reverse IP address resolution, using jq scripts, or local identifiers.

1.3 Classifiers

The second part of the verification process groups the identifiers into broader categories.
Hence the classifiers component of the limits files contains classifier objects with several
attribute fields including name (string containing a unique identifier name), description
(string describing identifier), and identifiers (string array listing identifiers to be part of
classifier). In many cases requesters are classified as friendlies or hostiles.

Lab 10: Configuring pScheduler Limits

 Page 6

1.4 Rewrite

The third part of the verification process allows the pScheduler system to make changes
to requested tasks. These changes are specified in rewrite attribute pair and done using
jq scripts. In particular, these scripts call a set functions after initial validation but before
limit enforcement (Section 2.4). Overall, the rewrite attribute can be used to implement
a variety of actions/modifications, e.g., enforce tests from specific interfaces, throttle
bandwidth rates, enforce minimum durations, etc.

1.5 Limits

The fourth part of the verification process determines whether or not the requested test
parameters fall within acceptable ranges. Hence the limits component of the limits file
contains limits objects with several attribute fields including name (string containing a
unique identifier name), description (string describing identifier), clone (string naming
other limit to be used as a starting point), type (type of limit to be checked), data (JSON
object containing type-specific data), and invert (optional boolean value to invert
identification after evaluation). Note that these attributes are very similar to the
identifier’s attributes (detailed in Section 2.1). Overall, each limit is individually evaluated
and passed or failed. Namely, the type field of a limits object can be passed or failed using
various strategies, i.e., explicit pass or fail, use of jq scripts to evaluate test parameters,
checking of run times or ranges, comparing parameters versus a template of acceptable
values, and comparing against a list of acceptable test types.

1.6 Applications

The fifth part of the verification process determines if the test parameters make it
permissible, and this check is done by using a set of limit applications. Namely, each
classifier is tied to a set of conditions which must be passed. Hence the applications
component of the limits files contains limit application objects with several attribute fields
including description (string describing identifier), classifier (string naming classifier to
which application should be applied), apply (array of limit requirements), invert (boolean
value to invert application result after evaluation), and stop-on-failure (boolean value
indicating if failure to pass application should prompt further application list evaluations).
These application limits are evaluated sequentially, and a task is only run it if passes all of
them (or if it passes subsequent application list checks if stop-on-failure is false).

2 Sample limits files

Overall, the limits configuration file lets pScheduler exercise a very broad range of control
over user task requests. However, providing an exhaustive set of examples to detail every
possible verification option is clearly not feasible here. Instead, three sample limit files
are used to highlight different components of the pScheduler limits framework. In

Lab 10: Configuring pScheduler Limits

 Page 7

particular, these files are located in the /home/admin directory and named as limits-
1.conf, limits-2.conf, and limits-3.conf. These files are now discussed further.

Step 1. Open perfSONAR2 and enter the username admin and password admin. Note that
the password will not be displayed while typing it.

Step 2. On the perfSONAR2 host go to the directory containing the sample limits files by
directly typing the command:

cd /home/admin

Step 3. To ensure the correct directory, enter the ls command to verify that the three
sample limits files are listed:

Step 4. Now open the first limits file, limits-1.conf, in order to inspect its contents. Type
the following command:

nano limits-1.conf

This JSON file contains an identifiers component (object array) with a several objects, one
of which is an object with the name attribute defined as certain-group. This particular
object is subsequently used to identify the subnet which cannot run tasks on perfSONAR2.

Lab 10: Configuring pScheduler Limits

 Page 8

Additionally, the limits-1.conf file also contains a classifiers component (object array) with
an object whose name attribute is defined as hostiles. This particular object also has an
identifiers attribute defined as (the above-defined) “certain-group”, i.e., to prevent
identifiers in this group from running tasks on perfSONAR2.

Step 5. To close the current file type Ctrl+x. Next, open the second limits file, limits-
2.conf, by typing the following command:

nano limits-2.conf

This file contains an identifiers component (object array) with two objects with their name
attributes set to perfSONAR1 and perfSONAR2, respectively. Specifically, both of these
objects define their type attributes as ip-cidr-list and related data attributes as a cidrs
object array (containing two IP addresses, i.e., 192.168.1.10 and 192.168.3.10).

Using the above, the limits-2.conf file also includes a classifier component (object array)
with two objects with their name attributes set to friendlies and hostiles, respectively.
Specifically, the first object contains an identifiers attribute listing IP address(es) that can
send requests to perfSONAR2 (in this case only perfSONAR3 is allowed). Meanwhile, the
second object contains an identifiers attribute listing IP address(es) who cannot send
requests to perfSONAR2 (in this case only perfSONAR1 is not allowed).

Lab 10: Configuring pScheduler Limits

 Page 9

Step 6. Finally, exit the nano editor as before by typing Ctrl+x. Then open the third limits
file, limits-3.conf, by typing the following command:

nano limits-3.conf

This file contains a limits component (object array) with a single object with the name
attribute set to throughput-default-time. Furthermore, the data attribute here defines
another object with a limit attribute (object) specifying the upper and lower run time
durations for throughput tasks, i.e., 5 seconds and 15 seconds, respectively.

Step 7. Exit the nano editor as before by typing Ctrl+x.

3 Applying perfSONAR limits files

The three sample limits files detailed in Section 3 are now used to test and verify the
capabilities of pScheduler limits framework.

3.1 Testing the first limits configuration file (limits-1.conf)

Step 1. In perfSONAR2, go to the local file directory containing the three sample limit
configuration files typing the following command:

Lab 10: Configuring pScheduler Limits

 Page 10

cd /home/admin

Step 2. Type the command ls to ensure that all three template files are listed in the
directory.

Step 3. The pScheduler limits file is located in the local directory /etc/pscheduler and
called limits.conf, i.e., /etc/pscheduler/limits.conf. Now pScheduler can only recognize a
limits file with this particular name. Hence in order to test the first limit configuration file,
limits-1.conf must be copied from /home/admin and renamed into the /etc/pscheduler
directory. To do this, type the command in the /home/admin directory, i.e., to create a
renamed copy:

cp limits-1.conf limits.conf

Step 4. To verify that the copy succeeded, type ls.

Step 5. Next, move the copied limits.conf file to the pScheduler directory /etc/pscheduler.
To do this, type the command shown below and enter the password admin.

sudo mv limits.conf /etc/pscheduler

Step 6. To ensure the file was properly moved, type ls to make sure that the limits.conf
is no longer in the current /home/admin directory:

Step 7. Now return to the main directory by entering the following command:

cd ~

Lab 10: Configuring pScheduler Limits

 Page 11

Step 8. Since the pScheduler limits.conf file has just been changed, it is important to verify
that that it is still valid by using the pScheduler validate-limits command. To verify this,
type the command shown below and note the output. If the configuration is valid, the
output should display Limit configuration is valid.

pscheduler validate-limits

Step 9. As detailed in Section 3, the limits-1.conf file is designed to block perfSONAR1 and
perfSONAR3 from running tasks on perfSONAR2. However, these limits should not
prevent perfSONAR1 from running a task on perfSONAR3 or vice versa. In order to test
these restrictions, try to schedule a throughput task to perfSONAR2 by typing command
shown below. This task will fail.

pscheduler task throughput --source 192.168.1.10 --dest 192.168.2.10

Step 10. Next, verify that the rule also applies to perfSONAR3 by typing the command
shown below. This task request will also fail.

pscheduler task throughput --source 192.168.3.10 --dest 192.168.2.10

Lab 10: Configuring pScheduler Limits

 Page 12

Step 11. Finally, verify that perfSONAR1 and perfSONAR3 can still schedule tasks between
themselves. To verify this, type the command shown below. This task request should
succeed and display throughput results.

pscheduler task throughput --source 192.168.3.10 --dest 192.168.1.10

3.2 Testing second limits configuration file (limits-2.conf)

Step 1. In perfSONAR2, go to the local file directory containing the 3 sample limit
configuration files. Namely, type the command shown below.

cd /home/admin

Lab 10: Configuring pScheduler Limits

 Page 13

Step 2. Copy the contents of limits-2.conf into a file titled limits.conf by entering the
following command:

cp limits-2.conf limits.conf

Step 3. Move this new limit file into the /etc/pscheduler directory by entering the
command. Enter the password admin when prompted.

sudo mv limits.conf /etc/pscheduler

Step 4. Now return to the main directory again by entering the following command:

cd ~

Step 5. Check the validity of the limits file once again by using the command shown below.
The output should read limit configuration is valid.

pscheduler validate-limits

Step 6. As detailed in Section 3 the limits-2.conf file is designed to block any requests from
perfSONAR1 but allow requests from perfSONAR3. In order to test these restrictions, try
to schedule a throughput task to perfSONAR2 by typing the command shown below. This
task request should fail based upon the specified limits.

pscheduler task throughput --source 192.168.1.10 --dest 192.168.2.10

Lab 10: Configuring pScheduler Limits

 Page 14

Step 7. Next, verify that perfSONAR3 is still able to run tasks to perfSONAR2. Specifically,
type the command shown below. This task request should succeed and display
throughput results.

pscheduler task throughput --source 192.168.3.10 --dest 192.168.2.10

3.3 Testing third limits configuration file (limits-3.conf)

Step 1. In perfSONAR2, go to the local file directory containing the 3 sample limit
configuration files. Type the following command.

cd /home/admin

Lab 10: Configuring pScheduler Limits

 Page 15

Step 2. Copy the contents of limits-3.conf into a file named limits.conf by entering the
following command.

cp limits-3.conf limits.conf

Step 3. Move this new limit file into the /etc/pscheduler directory by entering the
command shown below. Enter the password admin when prompted.

sudo mv limits.conf /etc/pscheduler

Step 4. Now return to the main directory again by entering the following command:

cd ~

Step 5. Check the validity of the limits file once again by using the command shown below.
The output should read Limit configuration is valid.

pscheduler validate-limits

Step 6. As detailed in Section 3, the limits-3.conf file is designed to restrict the maximum
duration of throughput tasks to 15 seconds. Hence any request to schedule such a task
for 20 seconds should fail. In order to test this restriction, try to schedule a 20 second
throughput task to perfSONAR2 by typing in the command shown below. This task request
should fail based upon the specified duration limit. In perfSONAR1, type the following
command:

pscheduler task throughput --source 192.168.1.10 --dest 192.168.2.10 -t 20

Lab 10: Configuring pScheduler Limits

 Page 16

Step 7. Meanwhile, a request to schedule throughput tasks with durations of 15 seconds
or less should be successful. In order to test this bound, try to schedule a 15 second
throughput task to perfSONAR2 by typing in the command shown below. This task request
should succeed and display throughput results.

pscheduler task throughput --source 192.168.1.10 --dest 192.168.2.10 -t 15

This concludes Lab 10.

Lab 10: Configuring pScheduler Limits

 Page 17

References

1. NSRC, “What is perfSONAR?,” [Online]. Available:
https://learn.nsrc.org/perfsonar/what-is-perfsonar.

2. B. Tierney, J. Metzger, E. Boyd, A. Brown, R. Carlson, M. Zekau, J. Zurawski, M.
Swany and M. Grigoriev, “perfSONAR: instantiating a global network
measurement,” in SOSP workshop, Real overlays and distributed systems.

3. How to use the linux traffic control panagiotis vouzis,” [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/.

4. perfSONAR Project, “Creating and managing tasks,” [Online]. Available:
https://docs.perfsonar.net/pscheduler_client_tasks.html.

5. perfSONAR Project, “The pScheduler command-line interface,” [Online].
Available:https://www.perfsonar.net/media/medialibrary/2017/09/22/201709p
erfSONAR-11-pScheduler_CLI-v2.pdf.

6. M. Feit, “CLI user's guide,” [Online]. Available:
https://github.com/perfsonar/pscheduler/wiki/CLI-User%27s-Guide.

7. ESnet, “esmond: ESnet monitoring daemon”. Available:
https://software.ed.net/esmond/.

	Cover
	Contents
	Lab 1 - Configuring Administrative Information Using perfSONAR Toolkit GUI
	Lab 2 - PerfSONAR Metrics and Tools
	Lab 3 - Configuring Regular Tests Using perfSONAR Graphical User Interface
	Lab 4 - Configuring Regular Tests Using pScheduler CLI Part I
	Lab 5 - Configuring Regular Tests Using pScheduler CLI Part II
	Lab 6 - Bandwidth-delay Product and TCP Buffer Size
	Lab 7 - Configuring Regular Tests Using a pSConfig Template
	Lab 8 - perfSONAR Monitoring and Debugging Dashboard
	Lab 9 - pSConfig Web Administrator
	Lab 10- Configuring pScheduler Limits

