Using FABRIC for Cybertraining on

P4 Programmable Data Planes

Elie Kfoury, Jorge Crichigno

Integrated Information Technology Department, College of Engineering and Computing

University of South Carolina, Columbia, South Carolina

Abstract

Recently, data plane programmability has attracted significant attention from both the
research community and the industry, permitting programmers to run customized packet

Step 3.6: Adding two interfaces to the switch

The code below adds two Metwork Interface Cards (MICs) to the switch.

SITE] SITE2

processing functions in the data plane.
The Cyberinfrastructure Lab (ClLab) at the University of South Carolina (USC) has developed

step-by-step hands-on lab experiments on data plane programming using the P4 language. —

The labs use the Behavioral Model version 2 (BMv2) as the software switch.

Topics include fundamentals of P4, P4 building blocks, parser implementation in the data
plane, populating match-action tables, and others.

switch_ifacel = switch.add_component{model="NIC Basic', name="netl nic').get_interfaces()[@]
switch_iface2 = switch.add_component{model="NIC Basic', name="net2_nic').get_interfaces()[@]

Step 3.7: Connecting sitel and site2

The learner will acquire expertise to create, test, and deploy P4 applications on custom
topologies in FABRIC. —

Create a site-to-site network between site1 and site2 connecting server1 and the P4 switch

More advanced laboratories are being developed, covering topics such as advanced P4
constructs, advanced parsing, stateful processing, data plane/control plane communication E
protocols, fine-grained measurements, cybersecurity applications, etc. server1

The labs are available to the community through FABRIC's examples repository.

netl = slice.add_l2network(name="netl’, interfaces=[serverl_iface, switch_ifacel])

P4 Lab Library

The lab series is developed by the Cyberinfrastructure Lab (ClLab) at the University of South Carolina (USC).

SITE1 SITE2 SITE3

- "]
o i"b‘

Z

serverl switch

Labs:

Lab 1 - Creating a Slice with a P4 Switch: This lab describes how to create a slice with a P4 switch. It also shows how to deploy the high-
performance BMv2 switch to achieve up to ~1Gbps throughput.

Lab 2 - P4 Program Building Blocks: This lab describes the building blocks and the general structure of a P4 program. It maps the
program'’s components to the Protocol-Independent Switching Architecture (PISA).

Lab 3 - Parser Implementation: This lab describes how to define custom headers in a P4 program. It then explains how to implement a
simple parser that parses the defined headers.

Lab 4 - Introduction to Match-action Tables: This lab describes match-action tables and how to define them in a P4 program. It then
explains the different types of matching that can be performed on keys.

Lab 5 - Populating and Managing Match-action Tables at Runtime: This lab describes how to populate and manage match-action tables
at runtime. It then explains a tool (simple_switch_CLI) that is used with the software switch (BMv2) to manage the tables.

Lab 6 - Checksum Recalculation and Packet Deparsing: This lab describes how to recompute the checksum of a header. Recomputing
the checksum is necessary if the packet header was modified by the P4 program. The lab also describes how a P4 program performs

deparsing to emit headers.

Sample Lab: Parser Implementation

Getting Started

Add the parse_ipv4 state inside the parser by inserting the following

state parse ipvd {
packet.extract(hdr.ipvd);
transition accept;

/*add the parse ethernet state below*/
state parse _ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse ipvd;
default: accept;
}
¥

/*add the parse ipv4a state below®/

state parse 1pv4 {
packet.extract(hdr.ipv4);
transition accept;

code. * The labs are integrated with FABRIC's
examples

* start_here.ipynb -> Complex Recipes -»
P4 Labs (BMv2)

* Feedback and contributions to additional
labs are welcome.

Acknowledgements

This work is in part funded by NSF grant
#2118311 and ONR grant #NOOO14-23-1-

Switch

GPN
®

Kansas City / l

stdout,

Princeton

StarLighbH_ : Rutgers TJMas(
Vich SIS -
‘\~\\~‘ o

@ >
p
e @

Z
r L

Sender Receiver

NCSA ® Receiver .New York
® U,
L IK

UKY Washington

o MAX
Collector RENC|
Galech
® - @cClemson

Atlanta

Sender

stderr = sender.execute('iperf3 -c 192.168.2.18

Connecting to host 192.168.2.18, port 5281
[5] local 192.168.1.10 port 34154 connected to 192.16¢
[ID] Interval Transter Bitrate Re

[5]
5]
5]
5]

8.00-1.066 sec 17.8 MBytes 142 Mbits/sec
1.80-2.006 sec 13.8 MBytes 115 Mbits/sec
2.80-3.80 sec 13.8 MBytes 115 Mbits/sec
3.00-4.080 sec 13.8 MBytes 115 Mbits/sec

Queue Occupancy 384.21 us

100%

280.21 us
305,49 us
280,70 us
283,24 us
286.61 us
275,84 us

5375.27 us
62615.75 us
132152.93 us

Collector Q

Step 7.1: Defining a custom header

Click on headers.p4 to open the file in the editor.

Define the following custom header by adding the code shown below.

header queue t {
bit<48> queue;

}

/* Define the custom header below */
header queue t {

bit<48> queue; e

	Slide 1

