
A Survey on Network Simulators, Emulators,
and Testbeds used for Research and Education

Jose Gomeza, Elie F. Kfourya, Jorge Crichignoa, Gautam Srivastavab,c

aCollege of Engineering and Computing, University of South Carolina, Columbia, U.S.A
bDepartment of Mathematics and Computer Science, Brandon University, Canada

cDepartment of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

Abstract

Network operators and researchers constantly search for platforms to evaluate future deployments and test new research
ideas. When experimenting, they usually face challenges in deciding on an appropriate platform to validate the
advantages and limitations of their proposed system. These challenges include finding an experimentation environment
that balances traffic realism, scalability, and cost. An experimenter can evaluate systems, protocols, and security
implementations using simulators, emulators, or testbeds to validate the expected behavior of the proposed idea.
Simulators and emulators provide a controlled environment to conduct reproducible experiments but lack realism.
Testbeds provide realism and scale depending on the available resources. However, real equipment can be costly
and unavailable for many experimenters. The inability to test networking ideas in a realistic environment at a large
scale presents a barrier for companies, institutions, and network vendors to implement new features, thus, slowing
down innovation. In the past few decades, the networking community developed new platforms to test new ideas and
deployments at scale, with realism, and at lower costs. These platforms also enable the instruction of networking
concepts, cybersecurity, distributed computing, storage systems, and science applications. From the learner’s side,
practical hands-on experience is required to internalize concepts and improve troubleshooting skills. Learning these
concepts can be challenging due to the multidisciplinary nature of networking instruction, where a learner must have a
background in several computing areas (e.g., operating systems, programming languages, and computer architecture).
This paper presents experimentation platforms used to conduct research in computer networks and evaluates the
potential of these platforms for instructing networking courses. This paper examines the literature and presents a
taxonomy of network experimentation platforms. It also discusses challenges, analyzes the limitations, and suggests
future perspectives by providing an overview of the tools, a description of the underlying resources (i.e., hardware
and software), and a summary of the supported experiments. The paper aims to assist experimenters and educators
in deciding which platform is more suitable for their experimentation needs and discuss the challenges and future
directions related to the network experimentation platforms.

Keywords: Network Emulator, Network Simulator, Network Testbed, FABRIC, GENI, SDN, Programmable Data
Planes, P4.

1. Introduction

Testing network ideas requires a systematic method-
ology to reproduce experiments realistically. Evaluating
new network ideas involves a high degree of experimen-
tation before a protocol is adopted or a system is de-
ployed in a production environment. The experimenta-
tion process typically consists of testing a system at a
sufficient scale to convince operators that the idea reli-
ably addresses their needs or persuade vendors that the
protocol can add a competitive advantage to their prod-
ucts [1]. Therefore, using the appropriate platform to
validate research proposals is essential to run large-scale
experiments at a reduced cost. However, conducting re-
search in computer networks bares some limitations due
to the heterogeneous and distributed nature of the net-
work components. Depending on the complexity of the
experiment, researchers can find it challenging to access
the resources to run high-performance experiments, test

Email addresses: gomezgaj@email.sc.edu (Jose Gomez),
ekfoury@email.sc.edu (Elie F. Kfoury), jcrichigno@cec.sc.edu
(Jorge Crichigno), srivastavag@brandonu.ca (Gautam Srivastava)

distributed algorithms, and program the behavior of the
network components. The research community has been
developing network experimentation platforms to facili-
tate experimenters in fulfilling their research demands to
address these requirements.

Another critical aspect of network experimentation
consists of training experimenters in general and specific
areas to operate existing deployments and conduct re-
search efficiently. Learning computer networks requires
a balance between theoretical knowledge and hands-on
experience. Practical insights into networking concepts
are essential for conducting research and troubleshoot-
ing. Instructing computer network courses can be chal-
lenging due to abstractions that learners must under-
stand and the available tools to apply these theoretical
concepts. Unlike programming languages, operating sys-
tems, data structures, and other computer science top-
ics, computer network instruction is traditionally deliv-
ered with limited practical instruction. Therefore, the
learner can experience difficulties applying them in the
real world [2]. Topics such as network protocols, cyber-
security, virtualization, blockchain, and Software-Defined

Networks (SDN) require practical exercises to understand
how they work and how to build technical solutions with
them [3]. Understanding these concepts is important to
conduct innovative research and reduce network down-
times and misconfigurations due to human-induced er-
rors [4]. For instance, Internet reliability is a feature
that is taken for granted. However, outages, failures,
and security breaches are events that can impact the rev-
enue of companies [5–7]. Therefore, network operators
must be qualified to understand, troubleshoot, and pre-
vent network disruptions to ensure high availability and
reliability. Troubleshooting computer networks requires
understanding the configuration of network components
and the behavior of the protocols used by those com-
ponents. These requirements demand that the operator
have a deep understanding of networking concepts and
the practical expertise to apply those concepts proac-
tively. Hence, during the education process, hands-on
exercises can facilitate learners to have better preparation
to mitigate network flaws. On the other hand, practical
experiences allow instructors and institutions to evaluate
the learners’ practical skills. It is a challenge for educa-
tors to choose the most appropriate methods and tools
to produce qualified professionals with problem-solving
skills.

The most commonly used platforms to run exper-
iments in network research are simulators, emulators,
and virtual testbeds. Simulators are based on numerical
models to represent the behavior of network components.
They usually reproduce the evolution of the network
behavior as a function of discrete events, which can be
time or custom events. These events are consistently gen-
erated from the user space regardless of the specification
of the host. Such characteristics facilitate reproducing
results. However, simulations lack realism due to the
oversimplification of real-world events. Therefore, a
simulation result might differ from a similar system
configured in hardware. Network emulators leverage the
software primitives provided by the Operating System
(OS) to run switches, links, servers, and packets as if
they are in an actual network [8]. Events in network
emulators occur continuously and use the real protocol
stack available in the OS. Emulated networks run
with real code rather than discrete models. Therefore,
emulators are practical tools to test code that can be
easily ported to real deployments. However, network
emulators deviate from the expected behavior as the
network topology includes many components. This limit
varies depending on the hardware resources available in
the host device. Network simulators and emulators are
agile tools to investigate issues and measure performance
before fully deploying novel applications or protocols.
On the other hand, virtual testbeds provide the exper-
imenters with realism and high performance, although
deploying testing scenarios is slower. Virtual testbeds
leverage real hardware to ensure that results are pro-
duced with realism. Virtual testbeds focus on research
areas such as cybersecurity, routing, machine learning,
programmable data planes, and others. Moreover, some
testbeds grant access to academic institutions to teach
computing concepts [9–12]. These testbeds deliver access
to specialized hardware that experimenters can dedicate
to their experiments. These hardware resources are

isolated to avoid interaction with other experiments.
However, it can be hard to reproduce or even produce
experiments due to the topology restrictions or resource
availability in each testbed. Currently, there are efforts
to expand the features of the virtual testbeds to cover
topics such as network protocols, the Internet of Things
(IoT), SDN, cybersecurity, and other related issues.
Moreover, there are scientific instruments that can
be accessed via virtual testbeds [13]. Usually, these
resources are specialized hardware (i.e., microscopes,
telescopes, high-performance computers, and high-speed
storage) that produce a large amount of data that must
be transferred to a remote location.

1.1. Contributions

To the best of the authors’ knowledge, the literature
has been missing a survey on network platforms used for
research and education (R&E). This paper aims to pro-
vide the reader with an overview of the capabilities of
these tools to conduct research in different computing ar-
eas, such as routing, distributed network protocols, P4-
programmable data planes, SDN, distributed computing,
machine learning, big data, IoT, and others. This pa-
per also presents the potential use of the surveyed works
for education purposes by summarizing the learning out-
comes obtained with these tools in academic environ-
ments. Finally, it discusses the challenges and the limita-
tions of these platforms proposing future directions that
can serve as an improvement when testing new ideas. The
main contributions of this survey can be framed as fol-
lows:

• Surveying network simulators, emulators, and vir-
tual testbeds used for research and education.

• Providing a taxonomy that categorizes the platform
according to key features that can facilitate the de-
cision process of an experimenter.

• Summarizing the type of research conducted and
supported by the experimentation platforms.

• Discussing the challenges and limitations of the net-
work simulators, emulators, and testbeds.

• Proposing future directions to improve limitations
found in the network simulators, emulators, and
testbeds.

1.2. Survey Organization

Figure 1 illustrates the paper roadmap. Section 2
describes the related surveys. Section 3 provides back-
ground on network experimentation tools. Section 4 de-
scribes the employed methodology and the proposed tax-
onomy, section 5 surveys the simulation tools, section 6
describes the emulation tools, and section 7 covers the
network testbeds. Section 8 discusses the challenges and
future works, and section 9 concludes the paper.

2. Related Surveys

Huang et al. [14] presented a comprehensive survey
on SDN testbeds. The survey explains the design objec-
tives, key technologies, network deployment, and exper-
iments that employ large-scale SDN testbeds, including

2

• Reproducibility, scale, and
 realism
• Resource limitations in
 experimental research
• The role of experimentation
 tools in education
• Paper contributions

Section I:
Introduction

• Reproducibility, scale, and
 realism
• Resource limitations in
 experimental research
• The role of experimentation
 tools in education
• Paper contributions

Section I:
Introduction

• Comparison with related
 surveys
• Analysis of how this survey
 differs from the others
• Surveyed paper statistics

Section II:
Related Surveys

• Comparison with related
 surveys
• Analysis of how this survey
 differs from the others
• Surveyed paper statistics

Section II:
Related Surveys

Section III:
Background on Network
Experimentation Tools

• Network simulators
• Network emulators
• Network testbeds

Section III:
Background on Network
Experimentation Tools

• Network simulators
• Network emulators
• Network testbeds

Section IV:
Methodology and Taxonomy

• Description of the survey
 methodology
• Proposed taxonomy
• Distribution of the surveyed
 works

Section IV:
Methodology and Taxonomy

• Description of the survey
 methodology
• Proposed taxonomy
• Distribution of the surveyed
 works

• Integration
• Availability
• Ease of use
• Performance
• Reproducibility
• Scalability
• Realism

Section IX:
Challenges and
 Future Trends

• Integration
• Availability
• Ease of use
• Performance
• Reproducibility
• Scalability
• Realism

Section IX:
Challenges and
 Future Trends

A Survey on Network Simulators, Emulators,
and Testbeds used for Research and Education

Section V-VIII:
Surveyed Works

• Background
• Overview
• Architecture description
• Hardware
• Supported research
• Use in education

Section V-VIII:
Surveyed Works

• Background
• Overview
• Architecture description
• Hardware
• Supported research
• Use in education

Figure 1: Paper roadmap.

the research challenges. The authors provide a compar-
ison between traditional and SDN testbeds, highlighting
the flexibility of SDN technology. Additionally, the sur-
vey describes current SDN testbeds available for research
and education. The paper concludes with the challenges
and future works, including federation, network slicing,
tools and deployment, multi-domain, and compatibility
limitations.

Tsai et al. [15] surveyed the issues associated with
developing network emulation testbeds focusing on the
control framework. The survey focuses on state-of-the-
art architectures, the interoperability of orchestrating re-
sources, and how components are managed. The authors
define a general network testbed architecture consisting of
hardware infrastructure, control framework, and manage-
ment application. The main focus is on the control frame-
work, the middleware that manages the hardware infras-
tructure and updates the management application. The
survey highlights the advantages of employing testbeds
to conduct network experiments, such as having a secure
environment, availability of high-performance computing
resources, cost reduction, flexibility in testing new pro-
tocols, and network programming. The authors conclude
the survey by listing and discussing open issues, including
resource orchestration, collaboration, and testbed feder-
ation.

Chouliaras et al. [16] surveyed cyber range testbeds
used for research and education. A cyber range is a spe-
cialized testbed used by the military and law enforcement
to train cybersecurity personnel by reproducing a threat
environment (e.g., to respond to a distributed denial-of-
service DDoS, ransomware, and others). The authors
conduct a systematic review of cyber range systems and
their approaches (e.g., simulation, emulation, and hy-

brid). The paper presents the current state of the art
on testbeds and cyber ranges, the result of interviews
conducted with organizations that provide cyber range
testbeds, and the challenges and future directions.

Prvan and Ožegović [2] presented a survey of methods
and paradigms for teaching computer network courses.
In the article, the authors classify the teaching meth-
ods into four categories: methods based on visualization
(i.e., network simulators), methods based on multimedia
applications, methods based on virtualization, methods
based on active learning, and methods based on hands-
on experiences. Additionally, the authors provide a cross-
comparison of each method based on its advantages, dis-
advantages, and challenges from the perspective of stu-
dents and educators.

Nussbaum [17] surveyed computer science testbeds,
focusing on their capabilities to support reproducible
research. The testbeds included in this paper are
Chameleon, CloudLab, and Grid‘5000. The author
explores the impact of design choices, services, and
features to reproduce experiments in big data, cloud
computing, and High-Performance Computing (HPC).
The paper also identifies the weaknesses of the surveyed
testbeds and highlights possible areas for improvement.

Bakni et al. [18] developed an evaluation frame-
work to compare the capabilities of network simulators
based on standardized criteria. They implemented
their methodology by evaluating two simulators used
primarily for education purposes. Their findings show
the performance, advantages, and disadvantages based
on the qualitative (i.e., nature of the tool, supported
protocols, user-friendliness) and quantitative (i.e., CPU
utilization, memory usage, execution times of discrete
events) criteria to show their suitability for researchers
in network domains.

Khan et al. [19] conducted a comparative analysis
of open-source network simulators used in wireless net-
works. The authors focused on quantitative variables
such as CPU utilization, memory usage, computational
time, and scalability by simulating Mobile Ad Hoc Net-
works (MANETs) routing protocols. The final results
suggest the most suitable simulators based on the type of
research an experimenter aims to conduct.

Nussbaum and Richard [20] performed a comparative
study of network link emulators by providing an overview
of the main characteristics of Dummynet, NISTNet, and
Linux traffic control. The authors focus on the accuracy
of the emulators considering the bandwidth and latency
and how these metrics are affected by the hosting sys-
tem (e.g., CPU and memory). The authors discuss the
weaknesses of such tools and discuss possible solutions.

Lochin et al. [21] surveyed various network emulation
platforms to introduce new researchers to the appropriate
emulator to conduct experiments. The authors explain
and compare the simulation with emulation platforms
to highlight the shortcomings of simulation platforms.
Therefore, experimenters can observe how the network
emulator can reproduce realistic scenarios by using the
primitives provided by the operating system. The sur-
vey focuses on centralized approaches that enable low-
cost and manageable implementation in the context of
research labs or industrial developments.

Table 1 highlights the differences between the related

3

Table 1: Comparison with Related Surveys.

Ref.
Experimentation Platforms Scope of the Surveys Discussions

Simulators Emulators Testbeds Research Education Prototyping Interoperability Challenges
Future

directions

Focus
of the
survey

[14] d d t t dq t d dq dq SDN
testbeds

[15] d dq t dq dq dq d t dq Control
frameworks

[16] d dq t dq t dq dq dq dq Security
testbeds

[2] dq dq dq dq dq dq d t t Academic
platforms

[17] d d t t dq dq dq dq dq Large-scale
platforms

[18] t dq d dq dq dq dq t t Performance
analysis

[19] t d d t dq d d d d Wireless
platforms

[20] d t d dq dq dq dq t t Kernel-based
platforms

[21] d t dq t t dq dq dq d Platform
selection

[22] d dq t dq t t t t dq SDN
testbeds

This
survey

t t t t t t t t t Network
platformstCovered in this survey dNot covered in this survey dq Partially covered in this survey

surveys and this survey. Previous surveys mainly focus on
one experimentation platform and discuss various issues,
including performance, educational use, platform selec-
tion, and wireless platforms. This survey collects the lit-
erature related to network simulators, network emulators,
and network testbeds to provide the reader with a broad
perspective on the potential of these platforms for con-
ducting research and instructing academic courses. To
the best of the authors’ knowledge, this work is the first
to encompass diverse experimentation platforms and dis-
cuss the challenges and future works that can contribute
to improving such platforms. Specifically, this survey de-
scribes network simulators, network emulators, and net-
work testbeds following a taxonomy. The taxonomy clas-
sifies the work to compare and discuss the strengths and
weaknesses of the surveyed works. Each category con-
tains the foundational paper of each platform, the pub-
lished experiments conducted with each platform, and
the experiences in using such platforms in an academic
environment.

Martini et al. [22] discusses the experimentation of
SDN and Cloud Orchestration in virtualized testing fa-
cilities. The authors present performance results and
comparisons between these technologies. The study in-
volves conducting experiments within virtualized testing
environments that integrate SDN and cloud orchestration
techniques. The main focus is to assess the performance
of these technologies and understand how they interact
in a virtualized setting. The authors provide detailed in-
sights into the setup and methodology used for the exper-
iments. They measure various performance metrics such
as network throughput, latency, and resource utilization
to evaluate the effectiveness and efficiency of SDN and
cloud orchestration. The results and comparisons pre-
sented in the paper highlight the strengths and weak-
nesses of both SDN and cloud orchestration, especially
when deployed together in virtualized testing facilities.

3. Background

This section provides a background on simulators, em-
ulators, and testbeds used to conduct network experi-
ments. It defines, describes, and compares each plat-
form’s purpose, features, and limitations.

3.1. Network Simulators

Network simulators use a set of discrete models to
reproduce the behavior of real hardware [23–29]. Exper-
iments conducted in network simulators run in virtual
time due to the simulated event, which can occur simul-
taneously and be paused or executed at a faster pace.
The underlying simulator runs in user space and pro-
duces the same result each time, independently of the
machine’s specifications on which the experiment runs.
Consequently, simulation results are considered easy to
reproduce. However, results obtained from simulations
might not be realistic due to the simplified behavior de-
termined by the model. This simplification can lead to
discrepancies compared to the same experiment on real
hardware.

Network simulators are classified into time-based sim-
ulators and discrete-event simulators. Time-based simu-
lators produce an output as an incremental progression of
time slots. Events are executed during each time slot as
the simulation advances. Figure 2(a) shows the flowchart
of a time-based simulator. Examples of time-based simu-
lations include IoT applications, transport protocols (e.g.,
TCP, UDP), routing protocols (e.g., BGP, OSPF), and
congestion control algorithms (e.g., CUBIC, Reno, BBR).
On the other hand, discrete-event simulators are governed
by events different than a constant clock, which can be
the activation of a node, the variance of energy levels,
the expiration of a route in the routing table, and oth-
ers. The simulation time progresses after each scheduled
event is executed. Figure 2(b) shows the flowchart of a
time-based simulator. Experiments that can be modeled
using a discrete-event simulator typically include optical

4

Initialize

Update simulation
time: t=t+Δ

Events during
[t=t+Δ]

Events during
[t=t+Δ]

Process events
during [t=t+Δ]

t > tmaxt > tmax

Finish

Initialize

Pop out next event
from event list

Process next event

Update event list:
push new event into

event list

Event list size > 0Event list size > 0

Update simulation
time t

t > tmaxt > tmax

Finish

No

No

Yes

Yes

Yes

Yes

No

(a) (b)

Figure 2: Type of network simulators. (a) Time-based simulator.
(b) Event-based simulator [35].

networks [30, 31] and IoT protocols such as ZigBee [32], Z-
Wave [33], Near Field Communication (NFC) [34], among
others.

3.2. Network Emulators

Network emulators process events in continuous time
and run code rather than a discrete event model. Typi-
cally, emulators isolate system resources such as the ker-
nel data structures, the file system, and the network pro-
tocol stack to implement emulated hosts, switches, and
other network appliances. There are two main categories
of network emulators. The first category is known as Full-
System Emulation [36] consisting of independent VMs
coupled by virtual switches [37]. In this emulation en-
vironment, each VM represents a host, a switch, or a
network appliance such as a firewall. The second cate-
gory is known as Container-Based Emulator (CBE). It
isolates resources by performing a lighter way of virtual-
ization called process-level virtualization. This isolation
mechanism allows sharing of resources from the host VM.
A CBE achieves better scalability than the Full-System
Emulation by running only a group of user space pro-
cesses. The cost of adding a new host is the same as
adding a new process. The main advantage of network
emulators is that the code used for an experiment can be
ported to a real server and obtain similar results [1].

3.3. Network Testbeds

Network testbeds provide a collection of real and
virtualized hardware to conduct experiments in diverse
research areas. The research community [10, 14, 38]
provides openly available testbeds with high-performance
hardware. These testbeds can be shared across a com-
munity of users or be specific to one project. The main
advantage of real hardware testbeds is that they produce

repeatable results and provide resource isolation. This
feature prevents other users from affecting the perfor-
mance of each other. Another relevant aspect is that
testbeds produce realistic results. However, each testbed
have its own characteristic which carries limitations
such as topology restrictions, hardware compatibility,
and resource configuration. This survey defines network
testbeds as virtualized network facilities. These facilities
are essentially laboratories constructed upon a coordi-
nated federation of testbeds that incorporate various
types of hardware. Consequently, the terms network
testbed and virtual testbed are used interchangeably.

3.4. Comparison between Simulators, Emulators, and
Testbeds

Network simulators are flexible tools to run custom
and large-scale topologies at a low cost. They are based
on discrete models that enable the simulation of various
devices. However, network simulators lack realism when
comparing the behavior of simulation models against real
hardware.

Network emulators isolate kernel components into iso-
lated instances, making it possible to scale experiments
and run real code. This feature makes it possible to port
the configuration from an emulated experiment to real
hardware and obtain similar performance. However, em-
ulators can deviate from a realistic behavior if the allo-
cated hardware resources are insufficient to support all
the running processes.

Network testbeds provide more realistic testing sce-
narios than emulators and simulators. They play an es-
sential role in designing and validating network protocols
and distributed systems [39]. However, network testbeds
can lack scalability, and their results are hard to repro-
duce in other environments. Another limitation is re-
source availability, which constrains experimenters from
scaling up topologies to test new ideas. Once the topol-
ogy is defined, it is hard to perform changes. Thus limit-
ing the experiment’s flexibility. Besides the experimenta-
tion constraints, the configuration overhead is a barrier to
porting an experiment to another testbed or reproducing
it in the future.

4. Methodology and Taxonomy

Figure 3 depicts the proposed taxonomy. The tax-
onomy was designed to cover relevant works on the net-
work platforms used for research and education. This
paper categorizes the surveyed works based on various
high-level disciplines. A reader interested in a specific
topic can move to the corresponding section and find the
necessary background to understand the section’s con-
tent. Each high-level category is further divided into sub-
categories. For instance, works related to “Full Virtual-
ization” fall under the “Network Emulators” category.
Each section has a table that summarizes the relevant
characteristics of each work discussed in that section.
Following the literature review, each section introduces
the tools, describes the underlying architecture and hard-
ware, discusses the type of research that can be conducted
using each platform, and analyzes the potential use for
instructing network courses. At the end of each section,

5

the relevant outcomes are discussed, highlighting the sur-
veyed schemes’ strengths and weaknesses.

5. Network Simulators

With the increasing growth and complexity of net-
worked systems, there is a need for simulation technolo-
gies to conduct accurate and scalable tests. Simulators
are helpful tools for network research that enable repro-
ducibility, rapid prototyping, and education. Simulation-
based studies allow experimenters to visualize events in
scenarios involving large-scale models, custom applica-
tions, and dynamic environments. Typically, network
simulators leverage discrete-event models, where the sim-
ulation runs in discrete steps, and events are used to com-
municate between simulation entities to produce a state
transition [71]. These states change based on events that
trigger a transition and generate output results [72].

The development and testing of networking protocols
strongly depend on simulation support. Simulations are
an efficient way to run tests when scalability and cost
are constraints for experimentation. Another essential
advantage of simulations is that the environmental con-
ditions can be varied and repeated many times. These
characteristics enable running simulations that compare
the performance of different protocols in various scenar-
ios. In real-world tests, minor disturbances can change
the outcome of experiments. Thus, simulations can be
used to test new systems whose behavior is uncertain
when running on real hardware.

Another key motivation for using network simulators
is that they provide a controlled and repeatable environ-
ment for experimentation. By varying network conditions
and parameters, researchers can examine how protocols
perform under different scenarios and stress test their re-
silience to failure. This helps to identify weaknesses and
potential improvements that can be made to enhance the
overall performance of a system.

Network simulators are flexible tools that can be used
to teach computer network courses and other computer
science topics. Unlike programming courses that usu-
ally require a computer [2], teaching computer networks
demands additional resources such as networking equip-
ment which can both be costly and take up a lot of space
[73, 74]. Therefore, network simulators are practical tools
that can be used in education to introduce learners to
foundational and advanced concepts.

5.1. Protocol Evaluation

This category includes network simulators used in
general experimentation, such as protocol modeling,
network performance, routing, and wireless communica-
tions. Typically, these simulators aim at covering various
types of network experiments by allowing users to create
libraries to describe custom scenarios. These resources
add flexibility to the platforms at the expense of not
simulating model-specific behaviors.

Network simulators are powerful tools that can be
used to evaluate the performance and behavior of network
protocols in a controlled environment. These simulators
allow researchers, developers, and network engineers to
test new protocols, compare different design choices, and

identify potential issues before deployment in a real-world
network.

One of the main motivations for using network simu-
lators is that they can save time and resources compared
to testing protocols on a physical network. With a sim-
ulator, researchers can easily recreate complex network
topologies, traffic patterns, and various network condi-
tions that are difficult or impossible to replicate in a
physical network. This allows for more comprehensive
and accurate evaluations of protocols without the need
for expensive equipment, lengthy setup times, and po-
tential disruptions to real network traffic.

Furthermore, network simulators can also provide in-
sights into the scalability, interoperability, and security of
network protocols. Researchers can simulate large-scale
networks and evaluate the protocol’s ability to handle a
high volume of traffic and diverse devices. They can also
test the protocol’s compatibility with different operating
systems, hardware, and software configurations. Finally,
network simulators can be used to simulate various secu-
rity attacks and evaluate the protocol’s resilience to such
attacks.

Network simulators provide a powerful tool for eval-
uating network protocols. They offer a controlled, re-
peatable, and cost-effective environment for researchers,
developers, and network engineers to test new protocols,
compare different design choices, and identify potential
issues before deployment in a real-world network.

5.1.1. OMNeT++

The Objective Modular Network Testbed in C++
(OMNeT++) [40, 41] is an object-oriented discrete
event simulation environment to test communication
protocols, multicore applications, and other distributed
systems. OMNeT++ implements a framework approach
that supports the basic machinery and tools to write
simulations rather than directly providing simulation
components for computer networks, queueing theory,
and other domains. With OMNeT++, experimenters
can create their own models that target a specific type of
experimentation (e.g., simulating the behavior of Active
Queueing Management (AQM) algorithms, congestion
control algorithms, and other protocols that involve
traffic dynamics). OMNeT++ supports large-scale simu-
lations and visualization tools that facilitate interpreting
results and debugging.

OMNeT++ leverages modules that communicate us-
ing message passing to create simple and compound mod-
els. Simple modules are active elements written in C++
using a simulation class library. A group of simple mod-
ules creates a compound module. Figure 4 represents a
network of simple and compound modules. Messages can
be exchanged between simple and compound modules.
Experimenters can define complex modules consisting of
a collection of simple and compound modules known as
module types. When a module type is invoked in a sim-
ulation, there is no distinction if it is a simple or com-
pound module, allowing experimenters to split a module
into several simple modules in a compound module.

Modules are components that allow the incremental
deployment of new functionalities without interfering
with the existing ones. Modules can communicate
using messages which contain timestamps and arbitrary

6

On-demand Testbeds

Network Simulators

A Survey on Network Simulators, Emulators, and Testbeds used for Research and Education

Protocol Evaluation

Network Emulators Network Testbeds

Mobile Networks

Container-based
Emulation

Virtualization-based
Emulation

Network Link
Emulation

General Purpose
Testbeds

Specific Purpose
Testbeds

Production Networks
as a Testbed

Education

Cloud-based
Emulation

[26, 40–42]

[43–45]

[27, 46]

[47–49]

[50–53]

[54–56]

[57–60]

[11, 12, 61–63]

[9, 10, 64]

[65–67]

[68–70]

Figure 3: Taxonomy of network simulators, emulators, and testbed used for research and education.

data. Typically, messages are exchanged via gates,
which are the input and output interfaces. Linked gates
create connections that can only be used within the
same hierarchy, meaning that the modules comprising a
compound module cannot communicate with a simple
external model.

5.1.2. ns-3

The Network Simulator 3 (ns-3) [26] is an open-source
network simulation environment that aims at improving
realism compared to its predecessor, the Network Sim-
ulator 2 (ns-2) [72]. The ns-3 simulator was developed
from scratch addressing the shortcomings of ns-2, which
included scalability, outdated code design, and difficul-
ties in using the simulator [75]. Ns-3 includes useful re-
sources such as scalability tools, cross-layer features, and
real-world integration features. This last feature allows
researchers to read and parse packet capture (pcap) files
provided by tools such as Wireshark [76] and tcpdump
[77]. The ns-3 simulator associates each event with its
execution time governed by temporal increments. This

Module 1 Module 2 Module 3

Network

Compound Module
Simple Module

Input Gate Output Gate Message

Figure 4: Model architecture in OMNeT++ [40].

process involves associating every event to a point in sim-
ulation time where events are initiated and triggered con-
secutively, simulating discrete increments from one event
to another.

Experimental research with ns-3 shows that the sim-
ulator can reproduce realistic network models in wired
and wireless systems. Mezzavilla et al. [78] created a
lightweight model in ns-3 to provide an accurate link
performance metric at a low computational cost. The
model relies on the knowledge of the Signal to Interfer-
ence + Noise Ratio (SINR) and of the modulation and
coding scheme in LTE communications. The authors in-
tegrated the model into the official distribution of the
ns-3 simulator. Other authors [79–83] also evaluated and
integrated wireless communication models in ns-3. Al-
berro et al. [84] used ns-3 to reproduce a data center
environment for testing routing protocols. The authors
integrated the Free Range Routing (FRR) protocol suite,
which supports multiple routing protocols. The authors
conducted comprehensive control plane experiments over
fat-tree topologies, obtaining scalability when running
the simulation on a single host environment. The pro-
posed solution demonstrated that the customized ns-3
simulator could be effectively used for experimenting in
data center environments.

The ns-3 simulator provides models for network
elements such as network nodes (i.e., end hosts, routers,
switches, and hubs), Ethernet and wireless links, and
communication protocols (e.g., IPv4, IPv6, TCP, UDP),
including their corresponding headers. An experimenter
describes a network topology using C++ or Python.

7

Then, the program is compiled and linked with the
library of network models.

5.1.3. OPNET

Optimized Network Engineering Tool (OPNET) [42]
is a comprehensive development environment for specify-
ing, simulating, and evaluating the performance of com-
munication networks. It has a vast set of functionalities
combined with an intuitive and straightforward user in-
terface to model wired and wireless communication net-
works. The platform comprises a discrete-event simu-
lator for modeling the behavior of network components
following a hierarchical structure. Each level of the hier-
archy defines the aspects of the model being simulated.
Specialized libraries support existing protocols and allow
experimenters to modify them and create customizable
libraries. OPNET models are compiled into executable
code, which can be debugged or executed, producing out-
put data. The library packages include tools to allow
experimenters to specify detailed models, identify the el-
ements of interest in the model, run the simulation, and
analyze the generated results.

Li et al. [85] proposed a Zigbee-compliant simulation
model using the OPNET simulator. This new proposal
improved the existing AODV routing algorithm to sup-
port node mobility, which is compatible with Zigbee pro-
tocols. The authors conducted a performance evaluation
considering the proposed model and the Zigbee model in
OPNET standard libraries. Results show that the pro-
posed simulation model performs better than the origi-
nal one. Rukmani and Ganesan [86] evaluated five types
of scheduling algorithms (i.e., First-In-First-Out (FIFO),
priority queueing, Weighted Fair Queuing (WFQ), Class-
Based Weighted Fair Queuing (CBWFQ), and Low La-
tency Queuing (LLQ) Algorithm) using OPNET. Simu-
lation results show that low LLQ improves the overall
performance of the real-time applications more than all
the other algorithms.

5.1.4. Comparison, Discussion, and Limitations

OMNeT++ is a widely used network simulator pri-
marily used for discrete event simulations. It is widely
used in academic and reserch environments due to its
extensibility and modularity. One of its key strengths
is the ability to model complex networks with various
protocols effectively. OMNeT++ supports multiple pro-
gramming languages, such as C++, allowing researchers
to implement custom models easily. Additionally, it offers
a graphical user interface (IDE) that simplifies the simu-
lation setup process for users. OMNeT++ stands out for
its strong community support, well-documented libraries,
and regular updates. Its visual representation of simula-
tions through the IDE aids in understanding and debug-
ging network behaviors. However, OMNeT++ may be
challenging for beginners due to its steep learning curve,
especially for those not familiar with C++. The graph-
ical IDE can also become less efficient with large-scale
simulations, potentially impacting performance. Xian et
al. [87] conducted a comparative analysis of OMNeT++
with other simulators to evaluate WSN systems. The au-
thors implemented directed diffusion protocols to com-
pare execution times between ns-2 and OMNeT++. Re-
sults showed that the simulation scenario in OMNeT++

is more scalable than in ns-2.
ns-3 is another widely used network simulator that

focuses on realism and scalability. It provides a detailed
and precise modeling approach, making it suitable for
research and industry applications. As a primarily C++-
based simulator, it offers good performance and allows
users to create complex simulations. ns-3 emphasizes re-
alism, aiming to accurately represent real-world network
scenarios. This feature makes it suitable for evaluating
new protocols and technologies realistically. However, the
increased focus on realism might result in longer simu-
lation times compared to other simulators. The learn-
ing curve for ns-3 can also be challenging for newcomers,
especially those without prior programming experience.
Zugno et al. [88] discussed the limitations of ns-3 to re-
producing cellular networks involving LTE and mmWave
deployments. The authors also provided future direc-
tions to fill the gaps for the main issues influencing the
system’s behavior. The recommendations focus on im-
proving the channel model, antennas, applications, ob-
stacles, and mobility models in ns-3. The authors antici-
pate that new cellular technology will rely on communi-
cation at high-frequency bands where the communication
is strongly dependent on the spatial characteristic of the
surrounding environment. Current models implemented
in ns-3 do not consider these characteristics, especially
when modeling multi-antenna systems.

OPNET differentiates from OMNet++ and ns-3 due
to its simulation speed and graphical capabilities. It is
widely used in industry settings for network planning and
optimization. OPNET’s strength lies in its ease of use
and a visually intuitive graphical interface, which sim-
plifies the creation and visualization of network scenar-
ios. A major limitation of OPNET is its cost, as it is a
commercial tool and may not be affordable for individ-
ual researchers or small academic institutions. Addition-
ally, OPNET’s closed-source nature restricts users from
modifying the underlying simulation engine, limiting cus-
tomizability. Hammoodi et al. [89] evaluated OPNET
based on availability, reliability, response time, and other
QoS parameters. The authors used the ZigBee protocol
in three common topologies (i.e., star, mesh, and tree).
The results suggested improvements related to modeling
security protocols, predicting the behavior of unicast and
multicast traffic, and estimating energy consumption.

5.2. Mobile Networks

Network simulators are increasingly being used for the
evaluation of mobile networks, which include cellular net-
works such as 3G, 4G, and 5G, as well as other wireless
networks like Wi-Fi, Bluetooth, and Zigbee. Mobile net-
works are complex systems that involve multiple layers
of protocols, dynamic network topologies, and a diverse
range of mobile devices. Network simulators provide an
effective way to evaluate the performance, behavior, and
scalability of mobile networks in a controlled and repeat-
able environment.

One of the main motivations for using network simu-
lators in mobile networks is to reduce the time and cost of
evaluating new technologies, protocols, and applications.
Mobile network simulators can easily replicate complex
network topologies, including radio access networks, core
networks, and backhaul networks, allowing researchers

8

Transport Layer: TCP, UDP, RTP

Application Traffic Generator

IP, Mobile IP

Wireless Network Layer: VC Support

Wireless Network Layer: Routing

Data Link

MAC

Radio Model

Propagation Model/Mobility Model

Figure 5: GloMoSim Architecture [43].

and developers to test their new technologies and proto-
cols in a controlled environment. This can significantly
reduce the time required for testing and evaluation and
enable faster development and deployment of new tech-
nologies.

Another key motivation for using network simulators
in mobile networks is to evaluate the network’s perfor-
mance under various network conditions, such as different
traffic loads, mobility patterns, and environmental con-
ditions. Network simulators can simulate a wide range of
network conditions, allowing researchers to study the im-
pact of these conditions on network performance, such as
data rates, latency, and network capacity. This can help
in the design of efficient and reliable network protocols
that are adaptable to different network conditions.

Additionally, network simulators can be used to evalu-
ate the impact of network failures and disruptions on the
network’s performance. Researchers can simulate various
network faults, such as node failures, link failures, and
network congestion, to evaluate the resilience and fault
tolerance of the network. This can help in the design of
robust network protocols that can recover from network
failures and ensure uninterrupted communication.

Finally, network simulators can also be used to eval-
uate the security of mobile networks. Researchers can
simulate various security threats, such as attacks on user
data, identity theft, and network intrusion, to evaluate
the security of the network and identify potential vulner-
abilities. This can help in the design of secure network
protocols and in the development of security measures
that can protect the network from potential attacks.

This category includes the network simulators special-
ized for modeling mobile networks, which include Wire-
less Sensor Networks (WSN) and mobile networks. These
simulators provide insights into the efficiency of a proto-
col, the energy consumption of wireless devices, and the
methods that can optimize existing protocols. Exper-
imenters can also simulate physical events such as the

Command
Line

Interface

Graphical User Interface

Architect
Design
Mode

Visualize
Mode

Analyser
Packet
Tracer

File
Editor

Model Libraries

Simulation Kernel

External
Interfaces

HLA
DIS

Sockets
AGI STK

Figure 6: QualNet Architecture [92].

permeability of the environment, the dynamics of a mov-
ing sender/receiver, and the interferences produced by
different sources.

5.2.1. GloMoSim

The Global Mobile Information System Simulator
(GloMoSim) [43] is a simulator for wireless networks
based on sequential and parallel models. The simula-
tor comprises library modules that simulate wireless
communication in the protocol stack. The libraries in
GloMoSim rely on the Parallel Simulation Environ-
ment for Complex Systems (PARSEC) [90], a parallel
simulation language based on C. PARSEC uses a
message-based approach to implement discrete-event
simulation, where physical processes are modeled by
simulation objects called entities. Events are repre-
sented by the transmission of time-stamped messages
among corresponding entities. Experimenters can also
create and include custom libraries to test with new
protocols due to the composability and extensibility of
GloMoSim’s design. Simulations in GloMoSim can be
implemented on both shared memory and distributed
memory computers. GloMoSim can execute experiments
with several synchronization protocols, such as the null
message [91] and conditional event algorithms.

Figure 5 shows the architecture of GloMoSim for
ad hoc networks which consist of a networking stack
decomposed into several layers. Each layer implements a
set of models which executes the actions corresponding
to their protocol stack. For instance, the data link layer
can implement several protocols, such as Carrier Sense
Multiple Access (CSMA), Multiple Access Collision
Avoidance (MACA), Floor Acquisition Multiple Access
(FAMA), and other protocols that have been modeled in
the GloMoSim library. The network layer implemented
flooding protocol and flat distance vector routing pro-
tocol (DSDV) [43]. Moreover, GloMoSim’s library also
contains models for the physical layer (i.e., propagation
model/mobility model) that includes a free space model
that calculates signal strength based only on the distance
between every source and receiver pair, an analytical
model for computing signal attenuation using a loga-
rithmic normal distribution, a fading channel model
that reproduces the effect of multipath, shadowing, and
fading to calculate the signal strength. The simulator
also incorporates as built-in libraries the Free BSD
implementation of the Transmission Control Protocol
(TCP), User Datagram Protocol (UDP), and Real Time
Protocol (RTP). GloMoSim provides a standardized API
set to exchange messages between adjacent layers.

9

Ahvar and Fathy [93] used GloMoSim to evaluate the
energy consumption of routing protocols in high-density
ad hoc networks. The authors performed their analysis
as a function of different network loads, mobility, and
size. The paper concludes by reporting a detailed cri-
tique of the three protocols, focusing on the differences
in their dynamic behaviors that can lead to performance
differences. A similar study was conducted by Kumari et
al., which compared the performance of MANET rout-
ing protocols such as AODV, Location Aided Routing 1
(LAR1), and Wireless Routing Protocol (WRP).

5.2.2. QualNet

QualNet [44] is a commercial network simulation
tool used for modeling and analyzing communication
networks. The QualNet simulator has a modular
architecture, which allows the user to customize the
simulator by selecting different modules and config-
uring their parameters. QualNet is a discrete-event
simulator for heterogeneous networks and distributed
applications. It enables users to test custom protocols,
develop prototypes, and run large-scale networks by
providing a simulation suite. The company supporting
the simulator [94] also provides an emulation tool for
running cybersecurity tests. QualNet is based initially on
GloMoSim and supports operationally accurate contexts.
It provides a suite of tools for configuring, tracing, and
analyzing traffic events. Figure 6 shows QualNet’s ar-
chitecture. QualNet comprises the components to build
comprehensive network models and generate statistics
that reflect actual or projected performance. It includes
high-fidelity models for a wide variety of network devices
and from all protocol stack layers. Moreover, QualNet
allows experimenters to include dynamic interactions
that involve the Human-in-the-Loop (HITL) interface,
which allows manipulating modules and modifying traffic
through the HITL environment.

The QualNet simulator architecture consists of four
major components. First, a scenario modeler specifies
network topologies, node properties, and traffic patterns.
The user can also import external data sources, such as
terrain maps and traffic traces, to create more realistic
scenarios. Second, a network emulator provides a virtual
environment where the network scenario is executed. The
network emulator is responsible for managing the net-
work traffic, simulating the behavior of network devices,
and enforcing the network protocol standards. Third, the
performance evaluator collects performance metrics dur-
ing the simulation, such as throughput, delay, and packet
loss. The user can customize the performance metrics to
be collected based on their research needs. Fourth, the
analyzer provides tools to analyze the simulation results
and visualize the network behavior. The user can create
custom reports and graphs to present the simulation re-
sults in a meaningful way. The modular architecture of
the QualNet simulator enables flexibility in creating and
analyzing network scenarios, making it a powerful tool
for network researchers and engineers.

Shuaib [95] conducted a performance evaluation of the
IEEE 802.16e WiMAX [96] standard using QualNet. The
study focused on mobile WiMAX to deliver broadband
wireless access to mobile users. The experiment consid-
ered various scenarios with different levels of interference

modeled with the QualNet simulator. Results showed
the impact of factors such as load and mobility. The au-
thors showed how these factors affect the performance
of WiMAX in a single-cell environment where the per-
formance measurements (i.e., throughput) are affected
by the end-to-end delay and jitter. Goyal et al. [97]
used QualNet to analyze the performance of routing pro-
tocols in wireless sensor networks. They considered ad
hoc protocols such as Ad-hoc On-Demand Distance Vec-
tor (AODV), Dynamic MANET on-demand Routing Pro-
tocol (DYMO), Optimized Link State Routing Protocol
(OLSR), and IERP and measured performance metrics
such as the average jitter, throughput, end-to-end delay,
error rate, and queue length. Results show that with the
random waypoint mobility model, the Interzone Routing
Protocol (IERP) protocol gives the highest throughput
compared to DYMO, AODV, and OLSR. Latkoski et al.
[98] extended the QualNet simulator environment by in-
troducing a novel simulation technique using the Specifi-
cation Description Language (SDL). This solution over-
comes the difficulties of re-coding QualNet’s components.
The proposed methodology based its approach on devel-
oping the wireless heterogeneous network standard IEEE
802.21 [99]. The authors present some use cases, which
include data acquisition techniques, dynamic network pa-
rameters recalculation, and buffer management methods.

5.2.3. COOJA

COOJA [45] is a sensor network simulator that runs
on the Contiki OS, a portable operating system designed
to model resource-limited devices. This event-driven
simulator supports pre-emptive multithreading on a
per-process basis. The platform also supports a full
TCP/IP stack implementation that can be extended
using interfaces representing a sensor node property
such as the position, a button, or a radio transmitter.
New interfaces can be easily created and added to the
simulation environment, such as custom radio mediums
to forward network data and underlying hardware
platforms that reproduce heterogeneous networks. A
Java interface connecting with the underlying OS allows
real application code to run on COOJA models without
requiring modifications. The platform also provides a
GUI that facilitates defining topologies and configuring
the parameters of the simulated devices.

Finne et al. [100] proposed a multi-level data trace
generator that enables data logging at different levels
while maintaining a global time. This system aims
to test intrusion detection systems (IDS) in wireless
multi-hop networks with no entity that can overhear all
packets. Results show that the system generates traces
fast enough to serve as input to user-defined algorithms
used in IDS. The authors also highlight that the pro-
posed approach is a valuable contribution to the research
community as it generates time-synchronized logs at
different levels. Jabba and Acevedo [101] designed and
implemented an application that allows the creation of
other energy estimation models. The system runs on top
of COOJA and shows the real-time behavior and heat
map of energy consumption traces. The authors sustain
that their approach can help researchers to monitor
real-time topology deployments, node disconnections,
and battery depletion. Zenalabdin et al. [102] employed

10

the COOJA simulator to evaluate IoT protocols over
dense and sparse network topology, including application
layer protocols, namely, Message Queueing Telemetry
Transport (MQTT), Constrained Application Protocol
(CoAP), and transport layer protocols such as UDP
and TCP. The authors evaluated performance metrics,
including power intake, radio responsibility cycle, and
average inter-packet arrival time.

5.2.4. ns-3 LENA

ns-3 LENA [103] is an advanced tool designed for
modeling and evaluating next-generation networks.
Their architecture and design principles encompass
a robust framework, employing various modeling
techniques to simulate complex networking scenarios
accurately. This tool offers a wide range of features and
functionalities, including support for multiple frequency
bands, diverse network elements like base stations and
user equipment, and integration with 5G technologies.
The protocol stack covers standard protocols, mobility
management, and Quality of Service (QoS) mechanisms,
enabling researchers to assess their simulation accuracy.
Researchers have utilized ns-3 LENA for performance
evaluation, studying metrics like throughput, latency,
and energy efficiency in various network settings.
Bojović et al. [104] designed and implemented a beam-
forming technique using a Sounding Reference Signal
(SRS)-based channel estimate in the ns-3 5G-LENA
module. The study focuses on enhancing the accuracy of
beamforming simulations in next-generation networks.
The researchers proposed a novel approach that utilizes
SRS-based channel estimates to improve the realism
of beamforming models in the ns-3 5G-LENA module.
By incorporating real-world channel characteristics,
the simulation outcomes better reflect actual network
behavior.

5.2.5. WiGig module

The WiGig module [105] in the ns-3 network simu-
lator is a tool designed to model and simulate 60 GHz
wireless networks (WiGig). WiGig is a high-speed wire-
less communication technology operating in the 60 GHz
frequency band, capable of delivering multi-gigabit data
rates over short distances. The WiGig module in ns-3
provides support for various WiGig functionalities, in-
cluding beamforming, spatial reuse, and channel bond-
ing. Researchers can use this module to investigate the
performance of WiGig networks under different scenar-
ios and evaluate the impact of various parameters on
network performance. The module supports both single-
node and multi-node simulations, enabling the analysis of
WiGig networks with multiple devices. Additionally, it
incorporates realistic channel models, ensuring accurate
representations of real-world wireless propagation envi-
ronments. Assasa et al. [106] employ the WiGig mod-
ule to evaluate the implementation of the IEEE 802.11ay
standard. The authors focus on the specifics of IEEE
802.11ay operations such as the 802.11ay frame struc-
ture, channel bonding, new beamforming training proce-
dures, quasi-deterministic MIMO channel support, and
single-user MIMO and multi-user MIMO beamforming
training.

5.2.6. Comparison, Discussion, and Limitations

GloMoSim is a scalable network simulator designed
for large wireless networks. It aims to simulate mobil-
ity scenarios accurately and supports various communi-
cation protocols. Its strengths lie in modeling wireless
networks with a large number of mobile nodes effectively.
GloMoSim focuses on simulating large-scale wireless net-
works, making it suitable for research in mobile communi-
cation systems. However, GloMoSim’s development has
been discontinued, and it may lack some features and
updates available in more recent simulators. Khan et al.
[107] discussed the limitations of GloMoSim to recreate
large-scale WSN experiments compared to other simula-
tors. The authors conducted a comparative analysis that
included accessibility, user support, availability of mod-
ules, extensibility, and scalability. Although GloMoSim
scales well and has a wide range of modules implemented,
the tool is outdated and only simulates wireless networks.

QualNet is a commercial network simulator known
for its extensive library of pre-built models and a user-
friendly graphical interface. It provides a wide range of
communication and network models, making it suitable
for various scenarios. QualNet provides a large collection
of pre-built models, which simplifies simulation setup for
users. The main limitation of QualNet is its cost, as it
is a commercial tool and may not be affordable for all
users, especially individual researchers or small institu-
tions. Tan et al. [108] compared and analyzed experi-
mental results between QualNet and ns-2. The authors
found discrepancies in modeling the physical layer and
antenna diversity. Results indicate that QualNet has an
optimistic channel, whereas ns-2 presents more conserva-
tive settings. They proposed compensation procedures to
mitigate the discrepancies between both simulators.

COOJA is a network simulator specifically designed
for WSNs. It is an integral part of the Contiki OS devel-
opment environment and allows researchers to evaluate
and test WSN protocols effectively. COOJA’s strength
lies in its focus on Wireless Sensor Networks, providing
an environment tailored to WSN simulations. However,
COOJA may lack some advanced features available in
more general-purpose network simulators. Sundani et al.
[109] analyzed the limitation of the COOJA simulator by
conducting a comparative study. The authors found that
COOJA presents relatively low efficiency while simulat-
ing many nodes with several interfaces. In this scenario,
the tool incurs many calculations, especially when plug-
ins are started and registered as observers to interfaces.
Moreover, their findings show that COOJA only supports
a limited number of simultaneous node types resulting in
a system restart when the number of nodes is exceeded.

ns-3 LENA is an extension of the ns-3 simulator, fo-
cusing on modeling Local and Enterprise area Networks
(LANs and EANs). It aims to provide a detailed repre-
sentation of these networks, allowing researchers to eval-
uate LAN/EAN-specific scenarios and protocols. ns-3
LENA’s strength lies in its specialization for LAN and
EAN simulations, which is beneficial for research in these
areas. The limitation of ns3-LENA is its narrow scope,
as it may not be suitable for simulating other types of
networks.

The WiGig module is an extension for the ns-3
simulator that specifically models Wireless Gigabit

11

communication technology. WiGig operates in the 60
GHz frequency band and provides high-speed wireless
data transfer. The WiGig module’s strength lies in
its ability to accurately model WiGig communication
and evaluate high-speed data transfer scenarios. The
limitation of the WiGig module is its focus solely on
WiGig technology, making it less suitable for simulating
other types of networks or protocols.

5.3. Education

This category comprises the simulators used to deliver
training and hands-on materials to guide learners on net-
work configuration and troubleshooting. These simula-
tors are mostly used in an academic environment. The
key feature of these simulators is their usability, which
reduces the learning curve on how to use the tool and im-
merses the learner in the simulation environment. These
simulators typically comprise a user-friendly GUI to per-
mit a high level of customization.

5.3.1. Cisco Packet Tracer

Cisco Packet Tracer [46] is a discrete-event simula-
tor used for educational and training purposes. Packet
Tracer is a Cisco product that supports teaching in net-
working courses and training certification tracks. Packet
Tracer comprises network simulation, visualization, and
collaboration capabilities to help the learner understand
computer network principles and improve the learner’s
practical skills. Its simulation environment provides a
wide variety of features and functions to enable students
and educators to create and test complex networking sce-
narios. Packet Tracer has a graphical user interface that
allows users to drag and drop networking devices (e.g.,
routers, switches, PCs, servers, IoT devices, and others),
connect devices via networking cables (e.g., coaxial, cop-
per straight-through, serial DTE/DCE), and support a
command line interface for configuring the network de-
vices. Hence, this simulator has commonly been used as
the preferred tool in educational initiatives to instruct
computer network concepts and troubleshooting proce-
dures.

Noor et al. [110] evaluated the effectiveness of the
Cisco Packet Tracer as a learning tool. The authors fo-
cused on three aspects: the student’s perception of the
simulator’s capabilities to learn networking concepts, the
ease of use the tool provides, and the degree of confidence
the student acquires in learning routing concepts. Results
reported that Cisco Packet Tracer facilitated students in
learning routing protocols. Moreover, the simulator also
helped the students to compare the behavior and perfor-
mance of different routing protocols. Gwangwava et al.
[111] used Cisco Packet Tracer to simulate IoT systems
which include smart things—home, smart city, industrial
control, and power grids. The authors focused on de-
signing a generic IoT-based control system to monitor
chemical variables such as carbon and sulfur emissions.
The system also integrated the models of human-machine
interfaces that facilitate operators to verify the measur-
able parameters. Allison [112] discussed the impact of
Cisco Packet Tracer on undergraduate education, identi-
fying the benefits and challenges of the tool. The paper
reports practical implementations of the tools in the lit-
erature and provides practical recommendations to help

educators and curriculum designers to create more effec-
tive and interactive networking sessions.

5.3.2. GNS-3

The Graphical Network Simulator 3 (GNS3) [27] is a
network experimentation framework that supports multi-
vendor models. The platform also supports the emu-
lation of physical devices and the simulation of models
available in GNS3’s marketplace. GNS3 supports differ-
ent network operating systems developed to run on hard-
ware appliances. The platform also provides a hardware-
independent interface for the operating systems, allowing
virtual machines on the local host. Moreover, the tool
allows experimenters to install custom images into a com-
ponent to virtualize its operations. GNS3 has a built-in
GUI and can easily inter-operate with other network ap-
plications such as Wireshark [76], and Oracle VirtualBox
[113]. The main purpose of GNS3 is to train learners for
certification exams and reduce exam preparation costs.

GNS3 is also a tool used by experimenters to vali-
date their proposed systems. Velieva et al. [114] devel-
oped a mathematical model to validate the Random Early
Detection (RED) Active Queue Management (AQM) in
GNS3. They used a Cisco router image and a traffic gen-
erator to observe the interaction of network traffic with
the proposed RED AQM implementation. Gil et al. [115]
evaluated the performance of GNS3 for conducting net-
work experiments in a classroom. The authors developed
a set of hands-on sessions that included basic configura-
tion, routing, and data transfer experiments. The feed-
back shows that students understood the basic topics as
if they were in a real computer laboratory. Emiliano and
Antunes [116] proposed an extension for GNS3 to gener-
ate valid configuration files for network devices automati-
cally. Their implementation could automatically produce
an initial IP and routing configuration of all the Cisco
virtual equipment using the GNS3 specification files. Mi-
haila et al. [117] employed GNS3 as a testbed to detect
misconfigurations in network devices. Castillo et al. [118]
simulated a portion of the GEANT backbone in GNS3 to
offer consulting services to ISP companies.

5.3.3. Comparison, Discussion, and Limitations

Cisco Packet Tracer is a network simulator developed
by Cisco Systems. It is primarily designed for educational
purposes, providing a user-friendly interface to simulate
network configurations and troubleshoot issues. It is of-
ten used in networking courses and certifications. Cisco
Packet Tracer is a time-based simulator that is primarily
used for education. Although some used Packet Tracer to
conduct research, the platform is mostly used as an entry-
level training resource for teaching classrooms, preparing
for certification exams, and developing troubleshooting
skills. Packet Tracer is simple and easy to use, making
it ideal for beginners and educational settings. It offers a
large library of Cisco devices and provides a visual rep-
resentation of network configurations. However, Packet
Tracer has some limitations in terms of scalability and
support for non-Cisco devices and protocols. It may not
fully represent complex network scenarios and might not
be suitable for advanced research or professional network
simulations.

GNS3 is an open-source network simulator that offers

12

Table 2: Simulators comparison.

Ref. Simulator Description Interface License Parallelism
WSN

Support
GUI

Custom
Modeling

[40] OMNeT++

OMNeT++ is an object-oriented
discrete event simulation
environment to test communication
protocols, multicore applications,
and other distributed or parallel
systems.

C++/Python Open source No Yes Limited Supported

[26] ns-3

ns-3 is an open-source environment
based on discrete-event simulation.
It allows importing and creating
complex simulation models using
object-oriented programming
languages such as Python and C++.

C++/OTcl Open source No Yes Yes Supported

[42] OPNET

OPNET is a discrete-event simulator
leveraged by object-oriented
and hierarchical modeling,
debugging, and analysis.
It supports hybrid simulation,
analytical simulation, and
parallel simulation, among
other features.

Proto-C Proprietary Yes Yes Yes Supported

[43] GloMoSim

GloMoSim is a simulator that
leverages parallel processes to
reduce the execution time of
detailed high-fidelity models
of large-scale wireless networks.

PARSEC Open source Yes Yes No Supported

[44] QualNet

QualNet is used to model large
heterogeneous networks and
distributed applications. It
enables the parallel execution
of simulated models and
facilitates the analysis of
post-simulation and statistical
variables via its GUI.

C++/NED Proprietary MPI/PVM No Yes Supported

[45] COOJA

COOJA is a WSN event-driven simulator
designed to model resource-limited
devices. The simulator supports
pre-emptive multithreading on a
per-process basis.

Contiki OS Open source Yes Yes Yes Supported

[103] ns3-LENA

ns3-LENA integrates various modeling
techniques to simulate 5G environments.
The tool integrates a simulated channel
and physical layer model with a full
stack implementation.

C++/OTcl Open source Yes Yes No Supported

[105]
WiGig
module

The WiGig module is an ns-3 wireless
interface controller based on the WLAN
IEEE 802.11ad/ay standards.

C++/OTcl Open source Yes Yes No Supported

[46]
Cisco Packet
Tracer

Cisco Packet Tracer is a simulator
for wired and wireless networks
primarily used for education.
It facilitates building complex
topologies and reproduces inter-
protocol scenarios. Its user-
friendly GUI helps the user to
visualize the experimentation
scenario.

Cisco IOS Academic No Yes Yes Not Supported

[27] GNS-3

GNS3 is a network experimentation
framework that supports multi-vendor
models. The platform also supports
the emulation of physical devices
and the simulation of models.

Dynamips Open source No Yes Yes Not Supported

more advanced capabilities compared to Packet Tracer.
It allows users to create complex network topologies and
supports a wider range of devices and operating systems,
including Cisco devices. Its integration with VMs enables
users to create custom images and test more specific sys-
tems. Cisco Packet Tracer is a network simulator that
is mainly used to design, configure and test networks for
training purposes. GNS3, on the other hand, is used to
design and simulate complex networks at the professional
level. Cisco Packet Tracer is a user-friendly tool that is
easy to use and does not require any prior knowledge
of programming or command-line interface (CLI). GNS3,
on the other hand, presents more complexity by requir-
ing some knowledge of CLI and programming. Cisco
Packet Tracer has a limited range of network devices that
can be simulated, such as routers, switches, and hubs.
GNS3, on the other hand, can simulate a wide range
of network devices, including virtual machines, routers,

switches, and firewalls. Cisco Packet Tracer is free for
networking academy students and instructors, but there
are limitations to its functionality. GNS3 is a completely
open-source software that is free for everyone to use with-
out any limitations. However, GNS3’s complexity may
be challenging for beginners, and it requires a good un-
derstanding of networking concepts and configurations.
Setting up GNS3 correctly may also be more involved
compared to the straightforward setup of Packet Tracer.

5.4. Summary and Lessons Learned

Network simulators are essential tools to evaluate
the feasibility and effectiveness of novel designs, archi-
tectures, and algorithms for network systems. They
allow experimenters to monitor the overall system’s
performance in a controlled environment, with different
scenarios and parameter settings, before implementing

13

Table 3: Most common research conducted using the surveyed simulators.

Research
Topic

OMNeT++ ns-3 OPNET GloMoSim QualNet COOJA ns3-LENA
WiGig
module

Cisco
Packet
Tracer

GNS3

Routing
Protocols
Transport
Protocols
Link Layer
Protocols

IoT
Protocols

× ×

5G × ×
WSN × ×

Network
Attacks

× ×

SDN × × × × × ×
ML-based

Applications
× × × × ×

them in real hardware. Table 2 provides a summary of
the main characteristics of the surveyed simulators.

Each simulator serves a specific purpose and caters to
different research areas. For example, OMNeT++ and
ns-3 are versatile and widely used for general network
simulations, while COOJA focuses on Wireless Sensor
Networks. Understanding the specialization and flexi-
bility of each simulator helps researchers select the most
suitable tool for their research needs. OMNeT++ and ns-
3 stand out as open-source simulators, offering accessibil-
ity, customization, and a strong user community. These
simulators are particularly valuable for researchers with
limited budgets and those seeking to contribute to open-
source projects. OPNET and QualNet are commercial
simulators with comprehensive features and user-friendly
interfaces. They may require licensing costs but pro-
vide extensive support and pre-built libraries, making
them ideal for industrial and educational applications.
GloMoSim, COOJA, ns3-LENA, and the WiGig mod-
ule are specialized in wireless communication and mo-
bility scenarios. Researchers focusing on wireless tech-
nologies should consider these simulators for their eval-
uations. Researchers should be aware of each simula-
tor’s limitations, such as limited device support, scalabil-
ity constraints, or specialized focuses that may not cover
all research requirements.

Table 3 shows the most common research topics that
used the surveyed simulators. These topics are derived
from papers that validated their proposed systems, proto-
cols, and applications. The table shows that OMNeT++,
ns-3, and GNS3 support all the research topics listed in
the table. Some works use OMNeT++ to research a wide
range of topics. This simulator is preferably used for
discrete-event simulations that include mobile networks,
5G, Wireless Sensor Networks (WSN), and other dis-
tributed applications. ns-3 is a simulator employed for
modeling scenarios that involve most of the surveyed re-
search topics. Papers collected from 2005 to 2022 show
that the most popular network simulator in wireless net-
works is ns-3.

On the other hand, GNS3 capabilities enable running
experiments in all the surveyed research topics. However,
there are not too many papers that used GNS3 to vali-
date their proposed systems. This is due to the purpose of
GNS3, which is education, troubleshooting, and prepar-
ing students to obtain certifications. However, the ease
of use, the wide range of emulated hardware available in

its marketplace, and the integration of VMs with simu-
lated models make GNS3 an excellent tool for conducting
applied research. Although some research projects used
Cisco Packet Tracer [111, 119–121], the tool is mainly
used for teaching classrooms [112, 122, 123]. The user-
friendly interface, available training material, and sup-
port of the major network vendor make Cisco Packet
Tracer a suitable tool for students that want to learn
networking concepts.

6. Network Emulators

Network emulation is widely used for rapid prototyp-
ing and testing the behavior of applications under various
network conditions. It is an alternative approach to net-
work simulation and a cost-effective option compared to
real hardware. Emulation allows interaction with real
network traffic and modifies it based on software imple-
mentations. Network emulators facilitate the creation
of network experimentation scenarios that involve band-
width limitation, packet delay, jitter, loss, duplication,
and reordering. Emulators must reproduce the desired
network conditions accurately to prevent unreliable ex-
periments with misleading results. Figure 7 shows the
layers that comprise the most typical network emulation
architectures. These architectures are full virtualization,
which consists of VMs running on guest OS or in a bare-
metal hypervisor. The other type of virtualization imple-
ments containers to isolate OS resources into independent
instances that are part of the OS. This architecture con-
sumes fewer resources than full virtualization, scaling up
the instances running in a single OS.

6.1. Container-based Emulation

Container-based emulation has become an increas-
ingly popular approach for emulating network topologies
and testing network protocols and applications. The use
of container-based emulation is primarily driven by the
need for more efficient and scalable emulation solutions
that can support the development and testing of complex
networking scenarios. One key advantage of container-
based emulation is its ability to provide lightweight and
isolated network environments that can be easily repli-
cated and scaled up or down as needed. This makes it
easier to test network protocols and applications under
a variety of conditions and scenarios, including complex
multi-domain networks and distributed systems. Another

14

Hardware Hardware

Operating system Operating system

Operating system

Virtual machine

Libaries

Applications

Libraries

Container

Applications

Libraries

Container

Applications

(a) (b)

Figure 7: Network emulation architectures. (a) Virtualization-
based emulation. (b) Container-based emulation.

advantage of container-based emulation is its flexibility
and ease of use.

Containers can be quickly and easily deployed on any
host system, making it easy to set up and tear down em-
ulation environments as needed. This makes it ideal for
developers who need to quickly iterate on their network
designs and test their applications in different network
environments. Container-based emulation also provides
greater control over the network environment, allowing
developers to isolate and modify specific components
of the network stack. This enables them to test the
impact of different network configurations and protocols
on the performance and behavior of their applications.
With this approach, researchers can significantly reduce
the cost and complexity of setting up and managing
large-scale network testbeds. By using containerization
technology, developers can create virtual networks that
are more scalable, efficient, and easier to manage than
traditional physical testbeds. The motivation for using
container-based emulation is driven by the need for
more efficient, scalable, and flexible network emulation
solutions that can support the development and testing
of complex network scenarios. With its lightweight,
scalable, and flexible nature, container-based emulation
has become an increasingly popular approach for net-
work developers and researchers. This category includes
schemes that use container-based emulation to reproduce
the behavior of network components. Schemes using
this abstraction instantiate fewer resources than the
ones using a single VM to build network topologies. OS
resources used to implement container-based emulators
can be Linux Containers (LXC) [124], Docker containers
[125], and other types of OS-level virtualization tools.

6.1.1. Mininet

Lantz et al. [47] introduced Mininet, a network emula-
tor for prototyping large networks using process-level vir-
tualization, a lighter form of virtualization in which OS-
level system resources are shared. Initially, Mininet was
developed for rapidly prototyping large networks (i.e.,
up to 1000 end hosts) on devices with constrained re-
sources. The use of network namespaces allows scaling up
to a large number of end hosts, switches, and controllers.
Network topologies in Mininet are deployed in seconds
and can be defined using programming languages such
as Python. This feature also facilitates sharing topolo-
gies with other experimenters who can modify them ac-
cording to their research needs. Additionally, the code
used in Mininet is the same as in production networks.

Mininet shares system resources such as page tables, ker-
nel data structures, and the file system. Mininet achieves
better scalability than VM-based systems, permitting a
more significant number of small virtual hosts on a single
system. Moreover, Mininet provides an environment for
quickly implementing and testing a network feature on
a large topology using application traffic. This feature
is enabled by combining lightweight virtualization with
an extensible CLI and APIs. Figure 8(a) shows an ex-
ample of a topology created in Mininet with two hosts,
an OpenFlow switch, and a controller. In Figure 8(b),
it is observed that the topology instantiates two network
namespaces to represent the hosts, where a virtual Eth-
ernet pair (Veth) emulates a wire connecting two virtual
interfaces (e.g., h1-eth0 and s1-eth0). Packets are sent
from one interface to another, and the hosts can see these
interfaces as fully functional Ethernet ports. The virtual
Ethernet pairs are bridged to an OpenFlow switch. How-
ever, they can also be bridged to other software switches
or interfaces supporting hardware NICs. Hosts h1 and
h2 are network namespaces that act as containers for
network states. These instances support kernel-level pro-
cesses with exclusive ownership of interfaces, ports, and
routing tables (e.g., ARP and IP tables).

Network namespaces isolate resources, meaning that
Mininet hosts can emulate two servers listening to private
interfaces on the same transport protocol port, such as
port 80. From the user perspective, a Mininet host is a
simple shell instance that shares the host OS file system.
The OpenFlow switch emulates the forwarding logic as
it will occur in a hardware switch. Finally, Mininet can
support a wide variety of controllers as long as they can
support IP-level connectivity. For example, the controller
can run locally in the host VM, on another server, or in
the cloud.

Network topologies in Mininet can be defined using
the CLI, a Python script, or MiniEdit, a GUI that fa-
cilitates interconnecting components in a drag-and-drop
manner. After running a topology, an experimenter can
control and orchestrate tests using a script that instan-
tiates the network components. In the script, the ex-
perimenter can invoke commands used in servers run-
ning on a production network and reproduce network
conditions using the traffic control (tc) commands avail-
able in Linux distributions [126]. The traffic control in
Linux offers a rich set of functions, including queueing
disciplines (qdiscs) such as Token Bucket Filter (TBF),
Network Emulator (NetEm), Active Queue Management
(AQM) algorithms, packet filters, and others. These tools
allow the implementation of the network conditions ob-
served in production networks. Additionally, the exper-
imenter can collect network measurements from a con-
troller or the OS. Lastly, the most relevant limitation
of Mininet is the lack of performance fidelity with high
loads. This limitation is directly related to the number of
CPUs and memory available in the host running Mininet.
Typically, the Linux scheduler multiplexes CPU resources
over time which does not ensure that packets will be for-
warded at the same rate by all switches. Mininet uses
software switches whose forwarding rate is less determin-
istic than hardware switches when managing high traffic
loads. For example, when installing new routes, soft-
ware switches implementations perform linear lookups

15

Controller

OpenFlow protocol

OpenFlow datapath

s1-eth1 s1-eth2

eth0

Raw
socket

Raw
socket

Unix socket
 /tmp/s1

TCP/SSL
connection

/bin/bash h2-eth0h1-eht0

Host h1 namespace Host h2 namespace

/bin/bash

mn

Veth
pair

Veth
pair

Root namespace

Veth
pair

Veth
pair

Controller

s1-eth1 s1-eth2

h1-eth0 h2-eth0

eth0

TCP/SSL
connection

(a) (b)
Host h1 Host h2

Switch s1

Figure 8: Mininet components and connections of a topology with two hosts, an OpenFlow switch, and a controller. (a) Logical topology.
(b) Namespaces representation and virtual Ethernet pairs (Veth).

(i.e., O(n)), whereas hardware switches usually rely on
Ternary Content Addressable Memories (TCAMs) to im-
plement a constant lookup (i.e., O(1)).

In order to mitigate the performance discrepancies
observed in Mininet, Heller [1] presented Mininet-HiFi
to enable a wide variety of network experiments that
are realistic, verifiable, low-cost, and reproducible. The
proposed system combines the 2010 version of Mininet
with a fidelity monitor that tracks the network invari-
ants, which are performance metrics that evaluates the
realism of a topology running on Mininet. Mininet en-
ables processes to have an isolated view of the system’s
resources (i.e., process ID, user names, file systems, and
network interfaces while running on the same kernel) by
employing Linux network namespaces. When the user
creates a topology in Mininet, a network namespace is
associated with a container that has a virtual network
interface, a file system with its associated data that in-
cludes ARP caches and routing tables. A network in-
variant is referred to a timing property that is consistent
in any network that comprises wired links and output-
queued switches. Network invariants should be inde-
pendent of the topology, traffic patterns, application be-
havior, and transport protocol. Mininet-HiFi aims to
provide an emulation tool that replicates the behavior
of real hardware. The fidelity monitor keeps track of
the network invariants to measure the faithfulness of the
network measurements. Results show that Mininet-HiFi
can quantitatively reproduce hardware results of previ-

ously published papers [127]. The experiments include
queueing disciplines, transport protocols, routing pro-
tocols, and performance evaluation using simple (e.g.,
two-way, fork out single-SW, and dumbell) and complex
topologies [128, 129]. The author highlights research pa-
pers should include the experimentation platform (i.e.,
the VM with Mininet and the scripts to run the experi-
ments) to facilitate result validation, enhance collabora-
tion, and enable future works on current experiments.

6.1.2. Containernet

Peuster et al. [48] presented Containernet, an open
source Network Function Virtualization (NFV) prototyp-
ing platform that supports the creation and local execu-
tion of complex Service Function Chains (SFCs). Con-
tainernet is a Mininet fork that integrates Docker contain-
ers. With Containernet, experimenters can create proto-
types that explicitly support hybrid SFCs composed of
container-based and VM-based VNFs combined in a sin-
gle chain. The emulator fully integrates VMs with the
existing Mininet and Containernet APIs, which allows a
user to add a fully-featured VM to an emulation topology
with a single Python command that expects the path to
the VM image to be used as an additional parameter.

Crichigno et al. [57] employed Containernet to de-
liver virtual hands-on training in topics such as SDN,
P4-programmable data planes, Border Gateway Proto-
col (BGP), Open Shortest Path First (OSPF), Multi-
Protocol Label Switching (MPLS), and others. The au-
thors used Containernet on top of VMs hosted by an

16

Network Interfaces

Host OS

JVM
tuntap lib rawsock lib netfilter lib

JNI

tuntap
interface

rawsock
interface

netfilter
interface

Connectors

Clock and
Scheduler

Link, DataLink,
NetInterface

Address, Packet, Node,
RoutingFunction

Core elements
Socket API

Built-in protocols
(Ethernet, IPv4,IPv6, ARP)

NEMO
java.net

API

Built-in nodes
(e.g., routers)

Additional
Protocols

(DHCP, SIP, RTP) Tunnel Hub
Network
Functions

Applications Legacy Applications

Figure 9: NEMO architecture [49].

academic cloud. The users remarked on the high qual-
ity of the lab manuals and the consistency of the steps
with the results observed in the VM. Moreover, instruc-
tors that used the virtual labs indicated that they would
likely adopt the training material in their institutions.
Sen et al. [130] used Containernet to create a testbed to
test cyberattacks on smart grids. The platform facilitates
scenarios to test defensive and offensive use mechanisms,
where an attacker can perform network scans, find vul-
nerabilities, exploit them, gain administrative privileges,
and execute malicious commands. The authors present a
built-in Intrusion Detection System (IDS) from these sce-
narios that analyze generated network traffic using ML-
based anomaly detection approaches.

6.1.3. NEMO

Veltri et al. [49] developed NEMO, a Java-based net-
work emulator used to experiment with a single link, a
portion of a network, or an entire network. NEMO can
work in real and virtual environments depending on the
experiment requirements and goals. It can run as a single
instance in a VM or multiple VMs. This feature allows
scaling up experiments and supporting resource-intensive
distributed applications. NEMO can also virtualize the
execution of third-party Java applications on top of vir-
tual nodes. These nodes can be attached to an emulated
or external network. This network emulator addresses the
limitations of similar platforms that are too specific for
supporting experiments or hard to modify. NEMO aims
to maximize simplicity, usability, and flexibility by pro-
viding a complete fresh re-implementation of the IP stack.
Therefore, this platform supports general-purpose exper-
iments that involve IP-based networks and standardized
protocols. Figure 9 shows NEMO’s architecture, which
is designed as a highly structured network emulator com-
prising modules to facilitate the change or creation of new
components. The emulator’s core includes basic network
components such as packets, network addresses, network
interfaces, nodes, links, and routing functions. The plat-
form also provides many built-in protocols, such as IPv4,
IPv6, ARP, ICMP, UDP, TCP, and others.

Amoretti et al. [131] used NEMO to validate a pub-
lish/subscribe framework for industrial IoT. The authors

proposed a communication framework based on Message
Queuing Telemetry Transport (MQTT) broker bridging,
enabling dynamic interoperability across different assem-
bly lines or industrial sites in an Industrial IoT scenario.
The system aims at ensuring a higher degree of isolation
and control over the information flows, thereby increasing
the overall security of the communication among nodes.
The proposed solution also provides security features to
support dynamic authentication and authorization. This
feature is implemented and evaluated in a small-scale in-
dustrial IoT testbed containing PLCs, IoT gateways, and
MQTT brokers. Results show a linear time complexity
for all the broker implementations and bridging modes.
The access token encapsulation techniques used in the
prototype demonstrate a minimal overhead compared to
standard MQTT brokers.

6.1.4. OAI

The OpenAirInterface (OAI) [132, 133] initiative
encompasses several projects aimed at developing open-
source solutions for wireless communication networks.
These projects focus on various aspects of wireless
technology, enabling researchers and developers to create
and experiment with advanced wireless systems. Some
of the key projects included in the OAI Initiative are
the OAI 5G Radio Access Network (5G RAN), the
OAI 5G Core Network (5G CN), and the MOSAIC5G
(M5G). The 5G RAN centers on the implementation of
5G radio access network functionalities, including base
stations and user equipment models. The 5G CN focuses
on developing open-source core network components,
such as the Evolved Packet Core (EPC) for 4G and
Next-Generation Core (NGC) for 5G. The M5G project
group aims to transform radio access (RAN) and core
networks (CN) into agile and open network-service
delivery platforms.

OAI utilizes a software radio frontend architecture
hosted on a personal computer. It provides a comprehen-
sive and open-source implementation of LTE and LTE-
Advanced features, fully compliant with 3GPP standards.
OAI covers both essential components of the LTE system
architecture: the Evolved Universal Terrestrial Radio Ac-
cess Network (E-UTRAN) and the Evolved Packet Core
(EPC). The platform spans the entire protocol stack,
from the physical to the networking layer, and offers real-
istic emulation modes. This enables diverse applications,
including indoor/outdoor field experimentation and con-
trolled/scalable evaluations with emulated wireless links.
Leveraging the success of the OpenAirInterface initiative,
which boasts more than 3000 members, the OAI platform
also serves as an open-source facility for remote experi-
mentation with LTE technology.

6.1.5. srsRAN

The srsRAN project [134] is an open-source initiative
that focuses on creating a software-defined radio (SDR)
solution for Radio Access Networks (RAN). The project
aims to develop a flexible and customizable RAN
software stack that is compatible with various wireless
communication standards. srsRAN provides a complete
and standards-compliant implementation of various
RAN technologies, including 4G LTE, and 5G. It allows
researchers, developers, and operators to experiment

17

with and deploy RAN solutions using off-the-shelf hard-
ware and software-defined radio platforms. The project
emphasizes performance optimization and scalability,
making it suitable for diverse deployment scenarios,
ranging from small-scale private networks to large-scale
public networks.

6.1.6. openLEON

OpenLEON [135, 136] is an open-source software
project that focuses on developing an emulation frame-
work for wireless networks, particularly targeting 4G
LTE and 5G technologies. The project aims to provide
researchers, developers, and practitioners with a flexible
and extensible platform to study and evaluate the perfor-
mance of wireless communication systems. OpenLEON
offers a comprehensive emulation environment that
encompasses various network components, including
base stations, user equipment, and core network ele-
ments. It allows users to customize network parameters,
mobility models, and network topologies, enabling them
to conduct detailed and realistic emulations. openLEON
combines the capabilities of current emulators designed
for data centers and mobile networks, such as Container-
net and srsLTE. By doing so, it enables the assessment
and verification of research concepts concerning all the
elements of a complete mobile edge architecture in an
integrated manner.

6.1.7. Comparison, Discussion, and Limitations

Mininet is an open-source network emulator that cre-
ates virtual networks on a single machine. It is widely
used for testing and developing SDN (Software-Defined
Networking) applications. Mininet allows users to em-
ulate networks with multiple hosts, switches, and con-
trollers. Mininet’s strength lies in its simplicity and abil-
ity to create lightweight network topologies for SDN ex-
perimentation. However, Mininet is limited to emulating
networks on a single machine, which may restrict scal-
ability and performance for larger simulations. Heller
[1] studied Mininet’s limitations and proposed Mininet-
HiFi to address them. This approach tracks the sys-
tem’s invariants, namely, network invariants and host in-
variants. Network invariant consists of queueing delay,
transmission delay, propagation delay, forwarding delay,
and transmission gap, whereas host invariants comprise
preempt-to-schedule latency and CPU capacity. Mininet-
HiFi tracks these invariants and compensates them for
providing a realistic environment.

Containernet is an extension of Mininet that adds sup-
port for Docker containers in network emulation. More-
over, Containernet supports adding or removing Docker
containers from the emulated network at runtime [137].
This feature is not available in Mininet and allows the
reproduction of a cloud infrastructure where the admin-
istrator can start or stop instances at any time. It allows
users to integrate virtualized applications within network
topologies and simulate more realistic SDN environments.
Containernet improves upon Mininet by enabling the in-
corporation of Docker containers, offering a more com-
prehensive emulation environment for SDN experiments.
Similar to Mininet, Containernet may also face limita-
tions in terms of scalability and performance when deal-
ing with larger, more complex simulations.

NEMO is a Java-based network simulator focused on
mobility scenarios. It allows researchers to simulate and
evaluate mobile networks, including scenarios involving
moving nodes and handovers between different network
access points. Thank you for pointing that out. NEMO
stands out for its specialization in mobility simulations,
making it suitable for research in the field of mobile com-
munication. However, NEMO’s capabilities might be lim-
ited when compared to more versatile network simulators
that cover a wider range of scenarios.

OAI is an open-source network simulator designed for
4G and 5G wireless communication systems. It provides
a flexible platform for testing and developing radio ac-
cess network protocols and technologies. OAI focuses on
4G and 5G wireless communication, providing researchers
with a specialized tool for these networks. As a special-
ized simulator, OAI may not be suitable for simulating
other types of networks or technologies.

srsRAN is an open-source software suite that emu-
lates radio access networks for 4G and 5G systems. It
focuses on radio aspects and is commonly used for test-
ing and research in radio communications. srsRAN offers
researchers the ability to evaluate radio-specific scenarios
and technologies. Similar to other specialized simulators,
srsRAN may have limitations when it comes to simulat-
ing other network aspects beyond radio communications.

openLEON primarily focuses on satellite communi-
cation networks. It provides a platform for evaluating
satellite communication protocols and scenarios. As a
specialized simulator, openLEON may not be suitable for
simulating other types of networks unrelated to satellite
communication.

6.2. Virtualization-based Emulation

This section describes the platforms that integrate
different virtualization technologies to build a test
environment where the user can run experiments. These
platforms aim to provide a consistent and reproducible
environment that enables hands-on learning of com-
puter network concepts, cybersecurity principles, and
troubleshooting procedures. The approaches described
in this section rely on VMs to implement a testing
scenario. One key advantage of using VMs to create
network testbeds is their ability to provide a high degree
of isolation and security. VMs are completely isolated
from the host operating system and from other VMs,
providing a secure environment for testing and evaluating
network protocols and applications. This makes it easier
to test the impact of different network configurations
and protocols on the performance and behavior of
applications without compromising the security of the
host system. VMs also provide greater control over the
network environment, allowing developers to modify and
customize any aspect of the network stack, including
hardware, operating systems, and network protocols.
This enables them to test the impact of different network
configurations and protocols on the performance and
behavior of their applications.

6.2.1. CORE

Ahrenholz et al. [50] presented the Common Open
Research Emulator (CORE), a real-time network emula-
tor focused on the rapid instantiation of hybrid topolo-

18

ng_wlan
Netgraph

system

NIC

Tcl/Tk GUI
core_span

core_wlan

Tunnels

CORE
API

FreeBSD
kernel

Userspace

Virtual images (vimages)

Figure 10: CORE architecture [50].

gies. CORE facilitates integrating virtualized instances
with real hardware using the FreeBSD network stack to
extend physical networks for planning, testing, and devel-
opment. The platform aims to reduce the need for expen-
sive hardware to run network experiments. The authors
highlight the scalability of CORE in instantiating over a
hundred virtual emulated nodes. These nodes can run
on a regular server achieving a performance that involves
sending and receiving over 300,000 packets per second
(i.e., ∼4Gbps). Live-running emulations with CORE can
be connected to physical networks and routers in real-
time. Figure 10 shows CORE’s architecture. CORE re-
lies on the Integrated Multi-protocol Network Emulator/
Simulator (IMUNES), open-source software that allows
multiple lightweight virtual instances to inter-operate.
These virtual instances are via FreeBSD’s Netgraph ker-
nel subsystems. The user can interact with the emulator
via a Tcl/Tk-based GUI that allows the rapid develop-
ment of X11 user interfaces. In recent years, CORE in-
cluded Python APIs as they are in Mininet. These APIs
facilitate complete control over all aspects of the emula-
tions, thus creating a rich programming environment.

Joy et al. [138] validated a network coding scheme
in a scenario where the network connectivity fluctuates
intermittently. They implemented their scheme using the
CORE emulator and measured the file delivery ratio, la-
tency, and network overhead. The authors found that
although Transmission Control Protocol (TCP) provides
reliable block transfer, it cannot compete with the broad-
cast capability obtained using User Datagram Protocol
(UDP). Lunardi et al. [139] implemented an appendable-
block blockchain framework to support different consen-
sus algorithms through modular design. The authors
used CORE to evaluate the performance and study the
impact of modifying the number of devices and transac-
tions as a function of the consensus algorithm. Results
indicated that the latency to append a new block is less
than 161 milliseconds under heavy load, whereas the de-
lay for processing a new transaction is less than seven
milliseconds. Their findings suggest that their approach
is an efficient and scalable solution for IoT devices. Tom-
sett and Bent [140] used the CORE emulator to demon-
strate how Vector Symbolic Architectures (VSA) can be
employed for distributed semantic discovery and orches-
tration of remote devices. The authors tested the system
with different workflows and considered that the partic-
ipating nodes did not know the IP location of the adja-
cent devices. Results show that the system performs well
without a central control point with multiple coordinated

sub-workflows.

6.2.2. Cisco CML

Cisco Modeling Labs (CML) [51], previously known as
Cisco Virtual Internet Routing Lab (VIRL), is an emula-
tion platform that enables operators, engineers, network
designers, and architects to design Cisco-based networks
using virtual versions of Cisco operating systems. CML
includes a server and a client, providing a sandbox envi-
ronment that quickly and efficiently facilitates the design,
configuration, visualization, and simulation of network
topologies rapidly and efficiently. The platform repro-
duces testing scenarios by orchestrating VMs, represent-
ing the devices as nodes and the connection between them
as links [141]. These instances are translated into com-
mands that instantiate the network VMs and the links
transparently, providing the experimenter with a model-
ing framework to design and build network experiments.
The main components of CML are the server, the client,
and the virtual images. The CML server is a shared re-
source containing mechanisms to instantiate topologies
using virtual images. On the other hand, the CML client
provides a GUI that simplifies topology creation and ini-
tial device configuration in the CML server. The CML
server is a Linux distribution that runs on VMware Open
Virtual Appliance (OVA) files. This shared resource run
backend functions such as router bootstrap configuration,
spinning up routers to operate with designated operat-
ing systems, and modifying and testing configuration.
The CML server framework comprises three main compo-
nents: OpenStack [142], AutoNetkit [143], and a services
topology director. OpenStack is a cloud computing con-
figuration manager used to coordinate the operations of
a large set of VMs. AutoNetkit is a tool to generate the
configuration files used to link the VMs in a CML-based
topology. The services topology director produces Open-
Stack calls for the generation of VMs and links based on
the XML topology defined in the CML client.

Zorello et al. [144] employed CML to design and im-
plement a Hybrid SDN-based network application to pro-
vide dynamic services that combine centralized and dis-
tributed control with traditional Virtual Private Network
(VPN) protocols. The system performs a flexible policy-
based routing by selecting the access technology accord-
ing to the QoS requirements and network conditions. Re-
sults show that the proposed approach enables the ser-
vices to be efficiently supplied without over-provisioning
the resources. Al-Musawi et al. [145] described the oper-
ations of a Border Gateway Protocol (BGP) time stamp
replay tool that enables operators and researchers to im-
prove security issues. The tool performs functions by re-
playing past BGP events into a controlled testbed. BGP
is the most used inter-domain routing protocol used on
the Internet. It manages network reachability informa-
tion between Autonomous Systems (ASes) with guaran-
tees of avoiding routing loops. The authors evaluated
the system’s functionalities with CML to emulate the be-
havior of Cisco routers. They conducted experiments by
injecting a stream of BGP updates into the network. This
generated data set represents a series of announcements
and withdrawals of IPv4 and IPv6 prefixes for 100 sec-
onds. Results show that the tool facilitates understand-
ing BGP behavior at the BGP speaker level, classifying

19

BGP updates, and debugging BGP behavior in different
routers’ images.

6.2.3. IMUNES

Puljiz and Mikuc [52] presented the Integrated Multi-
protocol Network Emulator/Simulator (IMUNES), a dis-
tributed network emulator based on lightweight virtual-
ization. IMUNEs works on a modified FreeBSD [146]
kernel distribution to enable emulated nodes using UNIX
applications. IMUNES provides scalability, realistic per-
formance, and high fidelity. The tool achieves high scal-
ability by using a lightweight VMs model that does not
drain the resources of the hosting machine. Scalability
occurs by handling packets from one VM to another by
passing packet pointers. IMUNES keeps all VMs resid-
ing in the kernel to provide high fidelity. This feature is
based on real system calls processed in only one context
switching, which creates a user process for the kernel.
IMUNES provides a management utility responsible for
mapping GUI-level objects to kernel-level objects. The
kernel-level objects used for emulation are VMs and net-
graph nodes. IMUNES provides a GUI to create network
topologies consisting of two basic units: nodes and links.
Nodes can exist independently, whereas links always con-
nect two different nodes.

Kuman et al. [147] used IMMUNES to create an In-
dustrial Control System (ICS) testbed. The authors cre-
ated a honeynet consisting of honeypots that emulate a
network of devices instead of a single device. Results
show that emulated topologies give owners of ICSs more
options for securing their systems. Along with potentially
improving the security of an ICS, the author highlights
that the tool could serve as a template to build other
kinds of honeynets. Salopek et al. [148] conducted a com-
parative analysis of emulation testbeds with IMUNES.
The authors measured key performance metrics to deter-
mine the efficiency of the surveyed tools. The scenarios
considered for the evaluation included IPsec peers and
IPv6 to IPv4 translation. Their evaluation showed that
IMUNES offers excellent flexibility for adapting to the
precise requirements of various test scenarios beyond its
limitations.

6.2.4. SEED Labs

The SEcurity EDucation (SEED) labs [53] is a collec-
tion of more than 30 hands-on exercises covering various
cybersecurity topics. These exercises are distributed as
prebuilt VMs images that learners download and run on
their computers, facilitating the adoption and distribu-
tion of the content. The lab environment leverage full
virtualization to run Ubuntu Linux and Minix [149] op-
erating systems. Most labs use Ubuntu Linux, and a
smaller set uses Minix to perform kernel-level coding.
The SEED labs do not require a dedicated computer lab-
oratory. Instead, learners can run them using their lap-
tops or renting computing resources in the cloud. Learn-
ers can download the VM images related to software se-
curity, network security, web security, system security,
cryptography, blockchain, and mobile security. The labs
also provide instructor material that academic institu-
tions can adopt to instruct cybersecurity courses.

6.2.5. Comparison, Discussion, and Limitations

CORE is an open-source network emulator that al-
lows users to create complex network topologies for test-
ing and research. It provides a user-friendly interface
and supports a variety of network devices and protocols.
CORE is praised for its ease of use and versatility, making
it suitable for a wide range of network emulation scenar-
ios. However, CORE may have limitations in terms of
scalability for very large network simulations and may
not offer as extensive device support as some commercial
emulators. Ahrenholz [150] evaluated the performance
of the CORE emulator in various scenarios. The author
reported that the emulator fairly utilizes the host’s re-
sources compared to the Netgraph and Linux Ethernet
bridging.

Cisco CML is a commercial network emulator that
provides a robust environment for simulating Cisco
network devices and complex network topologies. It is
suitable for professional network testing and certification
preparation. Cisco CML’s strength lies in its extensive
support for Cisco devices and its accuracy in representing
real-world network behaviors. Tyler and Viana [151]
used Cisco CML to create a framework for assisting
healthcare organizations in transitioning to a zero-trust
network architecture. The authors found a zero-trust
architecture could secure medical devices by placing fire-
walls directly in front of them. Although the approach
increases latency, it blocks all unnecessary traffic on the
rest of the network resulting in a performance boost. On
the other hand, the authors reported that Cisco CML
does not support Multi-Factor Authentication (MFA),
which is an essential feature for reproducing a zero-trust
architecture.

IMUNES is an open-source network emulator
designed for testing and evaluating communication
networks. It offers a visual interface and supports
various network protocols. IMUNES’ strength lies in
the ease of visually representing network topologies,
which aids in understanding and debugging complex
configurations. However, IMUNES may not have as
large a user community or extensive documentation
compared to other well-established emulators. Zec and
Mikuc [152] analyzed the performance of the IMUNES
emulator in several scenarios. The authors found that
the achievable throughput in IMUNES depends on the
number of emulated hops packets traverse. Additionally,
they observed another scaling issue related to the size
of the network topology that IMUNES can support on
a physical node. This size depends on the number of
entries in the routing table and the user space application
running on each node.

SEED Labs is an educational platform that provides a
series of hands-on labs for learning about computer secu-
rity and networking. While not a dedicated emulator, it
offers network simulation exercises to enhance practical
understanding. SEED Labs’ strength lies in its educa-
tional focus, providing learners with interactive, hands-
on experiences in network-related concepts. The limita-
tion of SEED Labs is that it is primarily intended for
educational purposes and may not offer the same level
of features and complexity as other dedicated network
emulators.

20

Network Interface

Queueing
Discipline

Applications

TCP

IP

TCP

IP

User-space

Kernel

Figure 11: Linux queueing discipline. NetEm is implemented in
Linux distributions as a queueing discipline [54].

6.3. Network Link Emulation

This section explains network link emulators, the sim-
pler tools to add delay, packet drops, and other distur-
bances into a network link. Network link emulators op-
erate in the network interface to alter the behavior of
incoming and outgoing packets.

6.3.1. NetEm

Hemminger [54] developed Network Emulator
(NetEm), one of the most widely adopted link emulators
used for testing the performance of applications over
virtual networks. NetEm can reproduce long-distance
WANs in environments that include VMs, Docker con-
tainers, and bare-metal servers. Scenarios created with
NetEm facilitate testing and evaluating protocols and
devices from the application layer to the data-link layer
under various conditions. NetEm enables modifying
parameters such as delay, jitter, packet loss, duplication,
and re-ordering of packets. It consists of two portions: a
kernel module that implements queuing disciplines and
a command line utility to enable interaction with the
experimenter. Figure 11 shows the basic architecture of
NetEm. NetEm is implemented as a Linux traffic control
queueing discipline. The Linux traffic control subsystem
provides the methods to control the transmission of
packets in the Linux kernel. The queuing disciplines
reside between the IP protocol output and the network
device. A queuing discipline is a simple object composed
of two interfaces. One interface queues outgoing packets,
and the other interface releases incoming packets. The
default queuing discipline is the FIFO queue which can
be modified using the Linux traffic control commands.
The queuing discipline implements policies that decide
which packets to send, delay, and drop.

Kfoury et al. [153] conducted an emulation based
on the Bottleneck Bandwidth and Round-trip Time ver-
sion 2 (BBRv2) congestion control. A main component
of TCP is its congestion control mechanism, which dic-
tates how a sender will inject packets into the network
and react when congestion is experienced. To reproduce
wired broadband scenarios, the authors employed NetEm
to emulate latency and packet loss over emulated links.
Results show that BBRv2 has better coexistence when
interacting with CUBIC than its predecessor, BBRv1.
Gomez et al. [154] evaluated the performance of the
BBRv2 congestion control. The authors used NetEm to
create Round-Trip Time (RTT) unfairness between com-
peting flows, explore the accumulative effects of BBRv2

Delay

BW

Queue

Input packets Output packets

Figure 12: The structure of a Dummynet pipe. The bandwidth,
delay, and queue size are configurable parameters [156].

flows joining a current flow, and analyze the behavior of
BBRv2 under changing network conditions. The authors
report that BBRv2 presents less disruptive behavior than
BBRv1 when interacting with CUBIC flows. Lübke et al.
[155] evaluated the accuracy and performance of NetEm
in scenarios including hardware and software solutions.
Experiments conducted using different packet sizes re-
ported that NetEm is the network emulator that presents
smaller deviations from the preset configuration in terms
of bandwidth, delay, and packet losses.

6.3.2. Dummynet

Dummynet [55] is a link emulator developed to run
experiments in user-configurable network environments.
It supports emulating moderately complex network se-
tups on unmodified operating systems to provide reli-
able and reproducible results. The main factors con-
tributing to the popularity of Dummynet in the research
community are availability, learning curve, and feature
set [156]. Most operating systems support Dummynet.
Hence, researchers could find it readily available to run
their experiments. Moreover, there are bootable disk im-
ages to create Dummynet-enabled bridges using existing
PC hardware without disrupting existing software instal-
lations. The user interface of Dummynet is based on
a set command that facilitates the creation of network
topologies in a few lines. Since its first version, Dum-
mynet has been significantly improved to support flexi-
ble packet classifiers, queue management schemes (FIFO,
RED, GRED), and the ability to create per-flow emulated
links. Dummynet can emulate complex topologies and re-
produce multipath effects. The authors also added sup-
port for dynamically loadable packet schedulers, includ-
ing Deficit Round-Robin (DRR), Weighted Fair Queueing
Plus (WF2Q+), and other queueing disciplines. The em-
ulator also supports third-party extensions to introduce
programmable or trace-driven packet dropping or alter-
ations.

Dummynet comprises several components: pipes,
packet classifiers, multipath and multihop networks,
packet dropping policies, queue management algorithms,
packet scheduling agents, and media access control
(MAC) intermediate layer effects. Figure 12 shows
the basic structure of a pipe in Dummynet. This
element combines a finite-size queue, a fixed bandwidth
communication link, and a programmable propagation
delay. A numeric identifier defines each pipe and is
constrained by available memory. The user interacts
with pipes via a CLI to manage the sending rate, delay,
and available bandwidth. A packet traversing a pipe is
enqueued into a buffer. This buffer is then drained at a
rate corresponding to the link’s bandwidth configured
by the user.

Szilágyi and Bordán [157] employed Dummynet to
test the performance of a Generic Routing Encapsulation

21

(GRE) tunnel over a Wide Area Network (WAN). Mea-
surement results showed that the solution could efficiently
aggregate the performance of physical connections in an
emulated WAN environment. The authors evaluated the
effects of different network parameters, such as packet
delay, jitter, and loss rate, on data transfers and CPU
utilization. The emulation confirmed that the worst per-
formance is experienced with a 1% of packet losses. Noda
and Ito [158] employed Dummyet to reproduce scenarios
for testing the behavior of Multi-Path TCP (MPTCP).
The authors employed the emulator to create various en-
vironments for testing the Quality of Service (QoS) for
a web service that uses MPTCP. They also proposed an
improvement to the scheduler to improve the trade-off
between the QoS fluctuation and the throughput. Re-
sults show that the proposed scheduler suppresses the
variance of RTT manifested by the default scheduler in
all testing scenarios. Al-Saadi and Armitage [159] pre-
sented an experimentation framework that used Dum-
mynet to evaluate Active Queue Management (AQM) al-
gorithms. The authors implemented in Dummynet run-
ning on a FreeBSD [146] distribution the AQMs Con-
trolled Delay (CoDel), Proportional Integral controller
Enhanced (PIE), and Fair-Queueing CoDel (FQ-CoDel).
The authors experimentally compared their implementa-
tion against the ones implemented in other Linux dis-
tributions. Results show that their implementation be-
haves similarly to equivalent Linux kernel implementa-
tion. They also demonstrated that their proposed vari-
ation of PIE (i.e., FQ-PIE) is a promising alternative to
FQ-CoDel.

6.3.3. Mahimahi

Mahimahi [56] is a network emulation tool that en-
ables researchers and developers to recreate different net-
work conditions in order to test and evaluate the per-
formance of their systems and applications. Mahimahi
is designed to be highly flexible, user-friendly, and effec-
tive, with a wide range of features that can accommo-
date the needs of a diverse set of users. Mahimahi works
by leveraging the Linux traffic control (tc) subsystem to
simulate various network conditions, such as latency (De-
layShell), packet loss (LossShell), and bandwidth restric-
tions (LinkShell). It supports a wide range of network
topologies, including single-link, star, and tree topolo-
gies, and can be configured to simulate different types
of networks, such as wired or wireless networks, 3G or
4G mobile networks, and satellite or long-haul networks.
The tool provides users with a command-line interface
that is easy to understand and offers a wide range of op-
tions for customizing network conditions and topologies.
Users can specify the amount of latency, packet loss, or
bandwidth to introduce, as well as the number of network
devices and links to include in their simulations. They
can also configure different types of traffic shaping and
control techniques, such as token bucket filtering, RED
(Random Early Detection), and traffic scheduling.

In addition to its network emulation capabilities,
Mahimahi also includes advanced features for traffic
capture and replay, automated configuration of network
conditions based on user input, and integration with
other tools like Wireshark and Chrome DevTools for
network analysis and debugging. This makes it a

powerful and versatile tool for evaluating the behavior
of networked systems and applications under different
network conditions. Mahimahi is a highly effective and
flexible network emulation tool that is widely used in
research and development to evaluate the performance
of networked systems and applications. Its ease of use,
configurability, and support for a wide range of network
topologies and conditions make it a popular choice for
researchers and developers who need to simulate different
network scenarios and evaluate the behavior of their
systems or applications under these conditions.

Netravali [160] presented a comprehensive study of
web page loading times on modern networks, focusing on
the impact of different factors such as network character-
istics, web page design, and user behavior. The author
performed experiments using real-world networks, includ-
ing home and mobile networks, and analyze the perfor-
mance of a large set of web pages from popular websites.
The findings show that the performance of web page load-
ing is highly variable, with significant differences in load-
ing times between different web pages and between dif-
ferent networks. The study identified several factors that
contribute to this variability, including the size and com-
plexity of the web page, the number of requests and con-
nections required, and the latency and bandwidth of the
network. Additionally, the author found that user be-
havior, such as scrolling and clicking on links, can affect
the perceived loading time of the web page. To improve
web page loading times, the author proposed several op-
timizations that can be applied to web page design and
network protocols. The first recommendation is mini-
mizing the number of requests and connections required,
reducing the size of web pages, and optimizing the use
of caching and compression. The study also suggested
improvements to network protocols such as TCP and
HTTP that can reduce latency and improve bandwidth
utilization. The author validated their proposed opti-
mizations through experiments and simulations, demon-
strating that they can significantly improve web page
loading times on real-world networks. The study con-
cluded that a combination of optimizations to web page
design and network protocols is necessary to improve web
page loading times and provide a better user experience.

Zhang et al. [161] used the Mahimahi emulator to
evaluate the performance of low-latency HTTP-based
streaming players, focusing on the impact of different
design choices on latency and player stability. The au-
thors analyzed the behavior of several popular streaming
players, including the Apple HTTPS Live Streaming
(HLS), Adobe HTTP Dynamic Streaming (HDS), and
Moving Picture Experts Group Dynamic Adaptive
Streaming over HTTP (MPEG-DASH) protocols, and
study the performance of these players under different
network conditions. The authors found that low-latency
streaming players can achieve latencies as low as a few
seconds, but the latency is highly dependent on the de-
sign choices made by the player. They identified several
design choices that can affect the latency, including the
size of the video chunks, the number of chunks preloaded
by the player, and the way the player handles rebuffering
events. The authors also investigated the stability of
low-latency streaming players under adverse network
conditions, such as network congestion and packet loss.

22

They found that low-latency players are more prone
to stability issues than traditional players due to their
reliance on small video chunks and frequent requests for
new content. To improve the performance and stability
of low-latency streaming players, the authors proposed
several optimizations that can be applied to player design
and network protocols. They suggested increasing the
size of video chunks to reduce the number of requests re-
quired, optimizing the use of caching and preloading, and
improving error handling and recovery mechanisms. The
authors validated their proposed optimizations through
experiments and simulations, demonstrating that they
can significantly improve the performance and stability
of low-latency streaming players on real-world networks.
They concluded that a combination of optimizations
to player design and network protocols is necessary to
achieve low-latency streaming while maintaining player
stability and providing a high-quality user experience.

6.3.4. Comparison, Discussion, and Limitations

NetEm is a network emulator built into the Linux
kernel. It allows users to introduce delay, loss, and other
network conditions to emulate real-world network scenar-
ios. NetEm is commonly used for testing and evaluating
network applications under different network conditions.
NetEm’s strength lies in its integration with the Linux
kernel, providing a straightforward way to introduce net-
work impairments for testing purposes. However, NetEm
may have limitations in terms of fine-grained control over
complex network conditions, and its configuration can be
less intuitive for users without Linux expertise. Moe [162]
addressed a limitation of NetEm, which is its inability
to emulate network bandwidth. NetEm does not have
a built-in bandwidth emulator. Thus, it relies on other
Linux traffic control queueing disciplines, such as TBF,
to limit the bandwidth. The author observed that config-
uring NetEm with other Linux traffic control can present
non-deterministic results. Therefore, the proposed sys-
tem extended NetEm capabilities to emulate rate and
delay with high accuracy.

Dummynet is a network emulator primarily used on
FreeBSD and other BSD-based systems. It is designed to
control and limit the bandwidth of network connections,
enabling researchers to simulate bandwidth-constrained
environments. Dummynet’s strength lies in its ability to
accurately limit bandwidth, making it suitable for testing
applications under constrained network conditions. How-
ever, Dummynet may have limitations when it comes to
emulating other network impairments like delay and loss,
which are important factors in many real-world network
scenarios. Lübke et al. [155] compared the performance
of Dummynet against other Link emulators, including
NetEm. The author found that NetEm experience packet
reordering at high rates, whereas Dummynet presents in-
accurate bandwidth and delay values in the same sce-
nario.

Mahimahi is a network emulator developed by
Stanford University. It focuses on emulating network
conditions with fine-grained control over delay, loss, and
bandwidth. Mahimahi is commonly used for research
in networking and particularly in web applications.
Mahimahi stands out for its precise control over network
impairments, providing researchers with a flexible tool

for studying the effects of various network conditions.
One limitation of Mahimahi is its specialized focus on
network conditions and may not have the same level of
device support or versatility as other general-purpose
emulators.

6.4. Cloud-based Emulation

A cloud-based emulator is a virtual environment
hosted in the cloud that allows users to emulate and
test various network conditions, such as network latency,
bandwidth limitations, and packet loss, in a controlled
and scalable manner. Cloud-based emulators typically
use virtual machines or containers to create these
environments and provide users with the ability to
configure and control various network parameters, as
well as capture and analyze network traffic.

Cloud-based emulation provides several key advan-
tages for testing and developing networked systems.
One key motivation is the flexibility and scalability
that cloud-based emulators offer. With cloud-based
emulation, users can easily spin up and tear down
virtual environments as needed, without the need for
expensive hardware or complex infrastructure. Cloud-
based emulation also provides a cost-effective solution
for testing and developing networked systems. With
cloud-based emulators, users can pay for the resources
they need on a pay-as-you-go basis, without the need
for expensive hardware or complex infrastructure. This
allows experimenters to save on costs while still providing
a reliable and scalable testing environment. Cloud-based
emulation can enable collaboration and sharing among
geographically dispersed teams. With cloud-based
emulators, users can easily share testing environments
and collaborate on development projects, regardless of
their physical location, leading to more efficient and
effective development processes.

6.4.1. Netlab Academic Cloud

The Netlab academic cloud is a distributed plat-
form that provides computing resources to support
virtual laboratories. These computing resources are
distributed across four data centers in the United
States. The platform dynamically provides the resources
that maximize the learner’s experience in running a
virtual laboratory. The University of South Carolina,
in cooperation with the Stanly Community College and
the Network Development Group (NDG) [163], deployed
the academic cloud platform in January 2020. As of
January 2022, it has served over 100,000 learners [57].
Figure 13 illustrates the academic cloud architecture.
Servers are provisioned with a large number of resources:
CPUs (32 to 40 cores per server), RAM (∼1TB per
server), and storage (∼3.5TB per server). On average,
each data center has approximately ten servers used to
host virtual pods. A pod is a collection of resources
such as VMs, virtual switches, virtual links, physical
Tofino-based switches, and others) orchestrated by the
academic cloud platform to deliver virtual laboratory
experiments. Some virtual laboratories require more
than one VMs to set up an experiment. As Netlab+,
the academic cloud is implemented with the server
virtualization software VMware vSphere [164]. The
vSphere components include a collection of bare-metal

23

Orchestration system + front-end (portal system or LMS (Canvas, Blackboard))

P4 BMv2

P4 Tofino
Internet

Host 1

SDN

vLabs libraries

Pod 3

...

Pod 3

Pod 2

...

Pod 2

Pod 1 Pod 1

Hardware

U
n

d
er

ly
in

g
h

ar
d

w
ar

e

Tofino-based switch

OvS

...

...

...

Host 2

Pod 3

...

Pod 3

Pod 2

...

Pod 2

Pod 1 Pod 1 ...

...

...

Host n

Pod 3

...

Pod 3

Pod 2

...

Pod 2

Pod 1 Pod 1 ...

...

...

Management

vCenter

V
ir

tu
al

en

vi
ro

n
m

e
n

t

CPU

RAM

Storage

NETLAB+

BGP

Figure 13: The academic cloud architecture [165].

hypervisors (ESXi), a management server (vCenter),
and a VM running NETLAB, a customized management
application developed by NDG. The academic cloud
functions include aggregating resources from the four
data centers, implementing a calendar interface for
scheduled access to equipment pods, and routing pod
reservations to the nearest data center containing the
requested pod type.

6.4.2. AWS

Amazon Web Services (AWS) [58] provides a com-
prehensive set of cloud-based services that can be lever-
aged as a network testbed. These features are scalabil-
ity, cost-effectiveness, flexibility, security, and accessibil-
ity. AWS offers virtually unlimited scalability, allowing
users to simulate a wide range of network scenarios with-
out the need for expensive hardware investments. This
makes it an ideal platform for testing large-scale network
deployments. AWS is a pay-per-use service where users
only pay for the resources they consume, making it an
economical option for network testing. Additionally, the
ability to spin up and tear down resources on demand fur-
ther reduces costs. Moreover, AWS offers a wide range
of services and tools that can be used for network test-
ing, including Virtual Private Cloud (VPC), Elastic Load
Balancing (ELB), and Amazon Elastic Compute Cloud
(EC2). This flexibility provides a wide range of exper-
iments. AWS is a secure cloud platform that complies
with various industry standards and regulations. This
allows users to test network security in a safe and con-
trolled environment. Finally, since AWS is a cloud-based
service, it can be accessed from anywhere with an internet
connection, making it an ideal platform for collaborative
network testing.

Gomez-Sanches et al [166] used AWS Elastic Com-
pute Cloud (EC2) as a testbed infrastructure for High-
Performance Computing (HPC) applications. The au-
thors conducted experiments on AWS EC2 instances to
test different I/O configurations for HPC applications,
specifically focusing on the impact of buffer sizes and
network bandwidth on application performance. The re-
sults showed that AWS EC2 can be used as a reliable
and cost-effective testbed for HPC application I/O sys-
tem configuration, with the ability to simulate a range
of different network bandwidths and buffer sizes. The
paper provides insights into the use of cloud-based in-

frastructure for HPC testing and highlights the potential
benefits of using AWS EC2 as a testbed for I/O system
configuration testing. Ruth and Cevik [167] presented an
experimental study on the use of AWS Direct Connect
(DX) with Chameleon, ExoGENI, and Internet2 Cloud
Connect. The authors evaluated the performance of AWS
DX for data transfer and communication with different
cloud and research infrastructures. They found that us-
ing AWS DX with Chameleon and ExoGENI resulted in
improved network performance and reduced data trans-
fer time, compared to using the public internet. Addi-
tionally, the study showed that using Internet2 Cloud
Connect with AWS DX can provide even better perfor-
mance for specific use cases, such as transferring large
amounts of data. The authors highlight the potential
benefits of using AWS DX in combination with other
cloud and research infrastructures and provide insights
into how AWS DX can be used to optimize network per-
formance for data-intensive applications. Jackson et al.
[168] conducted a study on the performance of HPC ap-
plications on the AWS cloud. The authors evaluated the
performance of different HPC applications on AWS EC2
instances and compared the results with those obtained
from traditional HPC clusters. They found that AWS
EC2 instances can provide comparable performance to
traditional HPC clusters for certain applications, but may
be less efficient for others due to differences in hardware
and network architectures. The study also highlighted
the importance of optimizing application parameters and
selecting appropriate instance types to achieve optimal
performance on AWS EC2. The authors provided insights
into the performance characteristics of HPC applications
on AWS EC2 and the factors that can affect performance,
which can be useful for researchers and practitioners con-
sidering cloud-based HPC solutions.

6.4.3. GCE

Google Compute Engine (GCE) [59] is a cloud-based
infrastructure that provides virtual machines on demand
for a wide range of computing workloads. GCE can be
an attractive option for researchers and practitioners as
a testbed infrastructure for several reasons. GCE of-
fers a highly flexible and customizable environment that
can be configured to meet specific testing requirements.
GCE provides access to a large number of virtual ma-
chine types, ranging from small to very large, with a
variety of processing, memory, and storage capabilities.
GCE provides a robust and reliable infrastructure with
high availability and scalability, which can be crucial for
large-scale testing scenarios. GCE offers a pay-per-use
pricing model, allowing users to optimize their testing
costs based on the specific needs of their experiments.
Finally, GCE integrates well with other Google Cloud
Platform services, such as storage, networking, and data
analysis tools, which can provide a comprehensive test-
ing environment. GCE can be an attractive option as
a testbed infrastructure for researchers and practitioners
looking for a flexible, scalable, and cost-effective platform
to conduct experiments and test their applications.

Ruan et al. [169] used GCE to conduct a study on
the performance of containers in a cloud computing en-
vironment. The authors compare the performance of
containers to that of traditional virtual machines (VMs)

24

in terms of resource utilization, overhead, and scalabil-
ity. The study was conducted using the Docker container
platform and a popular VM platform, KVM, on a cloud
infrastructure based on OpenStack. The authors found
that containers have lower overhead and better resource
utilization compared to traditional VMs. Specifically, the
study showed that containers have lower CPU overhead,
memory overhead, and disk space overhead compared to
VMs. Additionally, the study found that containers are
more scalable and have faster startup times compared to
VMs. However, the study also highlighted some limita-
tions of containers, such as the lack of isolation between
containers running on the same host, and the potential
security risks associated with shared kernel environments.
The paper provides insights into the performance charac-
teristics of containers in a cloud computing environment
and highlights the potential benefits and limitations of
using containers for cloud-based applications. Kratzke
and Quint [170] investigated the impact of microservice
architecture on network performance using GCE. The au-
thors sustain that microservice architecture has become
increasingly popular for designing cloud-based applica-
tions, but the impact of this architecture on network per-
formance is not well understood. The study was con-
ducted by implementing a microservice-based system us-
ing Docker containers and measuring the network perfor-
mance of the system. The authors compared the network
performance of the microservice-based system to that of a
monolithic system with similar functionality. The study
found that the microservice-based system had higher net-
work latency and lower network throughput compared to
the monolithic system. The authors attribute this to the
overhead of inter-service communication in the microser-
vice architecture, as well as the additional network hops
required for service discovery and load balancing. How-
ever, the study also found that the microservice-based
system had better fault tolerance and scalability com-
pared to the monolithic system. Overall, the paper pro-
vides insights into the trade-offs between network per-
formance and other aspects of system design when using
microservice architecture, and highlights the importance
of carefully considering the impact of architecture choices
on network performance.

6.4.4. Microsoft Azure

Microsoft Azure [60] is a cloud computing platform
that offers a wide range of services and tools for build-
ing, deploying, and managing applications and services
in the cloud. It provides a flexible and scalable environ-
ment for organizations to meet their computing needs,
from small-scale applications to large-scale enterprise so-
lutions. Azure offers a variety of services for computing,
storage, analytics, and networking, all of which can be
accessed and managed through a centralized dashboard.
Its compute services include VMs, container instances,
and serverless computing options like Azure Functions
and Azure Logic Apps. Azure’s storage options include
block, file, and object storage, as well as backup and dis-
aster recovery solutions. Azure also offers a variety of
data and analytics services, including SQL databases,
NoSQL databases, and Big Data processing solutions.
Additionally, it provides networking services such as load
balancing, virtual private networks (VPNs), and domain

name system (DNS) hosting. One of the key benefits of
Azure is its support for a wide range of programming lan-
guages and frameworks, including .NET, Java, Python,
and Node.js, among others. This allows developers to
build and deploy applications using the tools and lan-
guages they are most comfortable with. Another benefit
of Azure is its support for hybrid cloud scenarios, allowing
users to integrate their on-premises resources with their
Azure resources. This makes it possible to build and de-
ploy applications across multiple environments, while still
maintaining a centralized management system. Azure
is known for its reliability, scalability, and security fea-
tures. It provides a 99.95% uptime Service Level Agree-
ment (SLA) for its compute services and offers various
options for disaster recovery and backup. Additionally,
Azure’s security features include network security groups,
firewalls, and identity and access management solutions.
Azure’s pricing model is based on a pay-as-you-go model,
which allows users to only pay for the resources they use.
Azure also provides various support options, including
self-service support, developer support, and enterprise
support. Microsoft Azure is a comprehensive and flexible
cloud computing platform that provides a wide range of
services and tools for building, deploying, and managing
applications and services in the cloud. It is known for its
reliability, scalability, and security features, and is used
by a wide range of organizations, from small startups to
large enterprises.

Persico et al. [171] investigated the variability of net-
work throughput in the Microsoft Azure cloud environ-
ment. The authors conducted experiments using a va-
riety of network measurement tools and different Azure
regions and analyze the resulting data to understand the
sources and patterns of network throughput variability.
The study found that network throughput in Azure ex-
hibits significant variability, both over time and across
different Azure regions. The authors attribute this vari-
ability to a number of factors, including network conges-
tion, server load, and inter-VM interference. They also
found that the source and pattern of variability depended
on the measurement tool used and the specific Azure re-
gion being tested. The study concluded that network
throughput variability is an important consideration for
users of Azure, particularly those who require consistent
and predictable network performance. The authors sug-
gest that users should carefully monitor and manage their
network resources in order to mitigate the effects of vari-
ability and that Microsoft should continue to improve its
network management and monitoring tools in order to
provide better visibility and control over network perfor-
mance. Hassan et al. [172] explored the performance
of HPC applications on the Microsoft Azure cloud plat-
form. The authors conducted experiments to evaluate
the scalability and communication performance of HPC
applications on Azure, using a variety of benchmark ap-
plications and metrics. The study found that Azure can
support HPC applications with good scalability and com-
munication performance, particularly for embarrassingly
parallel workloads. The authors attribute this to Azure’s
use of InfiniBand networking technology, which provides
low-latency and high-bandwidth communication between
compute nodes. However, the study also found that the
performance of HPC applications on Azure is highly de-

25

Table 4: Emulators comparison.

Ref. Enulator Description Nodes Purpose
Resource

consumption
Programmable
data planes

Integrates w/
hardware

Cost

[47] Mininet

Mininet is a container-based emulator
used to run a wide variety of experiments.
It provides realism and scalability
needed to test protocol, systems, and
reproduce attack-defense scenarios.

< 1000 General Medium Supported Yes Free

[48] Containernet

Containernet is a Mininet fork that
allows the integration with Docker
containers. This characteristic
expands the type of experiments
supported by the emulator.

< 1000 General High Supported Yes Free

[49] NEMO

NEMO is an OS-independent network
emulator used for large-scale testing.
The platform facilitates capturing
traffic traces using standard tools.

> 1000 Research High Not supported No Free

[132] OAI

OAI aims at developing open-source
solutions for wireless communication
networks. It focuses on various
aspects of advanced wireless systems.

> 1000 Research Medium Not supported No Free

[134] srs-RAN

srsRAN provides SDN-based wireless
solutions to experiment with
different wireless communication
standards such as 4G LTE and 5G.

> 1000 Research Medium Not supported No Free

[135] openLEON
OpenLEON emulates integrated
wireless networks targeting
4G LTE and 5G technologies.

> 1000 Research Medium Not supported No Free

[50] CORE

CORE is a real-time network emulator
focused on the rapid instantiation of
hybrid topologies. It also integrates
with real hardware.

< 1000 Research Medium Not supported Yes Free

[51] Cisco CML

CML is a proprietary emulator to run
experiments with Cisco virtualized
devices. The platform orchestrates
VMs to reproduce scenarios
rapidly and efficiently.

< 100 General High Not supported No
Free
in the
cloud

[52] IMUNES

IMUNES is a lightweight emulator that
focuses on TCP/IP-based testing.
The tool provides a GUI that facilitates
creating topology and instructing
networking classes.

< 100 General High Not supported No Free

[53] SEED Labs

The SEED Labs is a collection of
more than 30 hands-on exercises
covering various cybersecurity topics.
These exercises are distributed
as prebuilt VMs images that
learners download and run on
their computers.

< 1000 Education Medium Not supported No Free

[54] NetEm

NetEm is a Linux-based emulator
used to alter the properties of
virtual links to reproduce various
network conditions.

> 1000 General Low Not supported Yes Free

[55] DummyNet

DummyNet is a link emulator to reproduce
mid-scale networks across multiple OSes.
The tool integrates with real hardware
to support complex experiments.

< 1000 Research Medium Not supported Yes Free

[56] Mahimahi

Mahimahi simulates latency, packet loss,
and bandwidth restrictions. It supports a
wide range of network topologies, including
single-link, star, and tree topologies,
and can be configured to simulate
different types of networks, such as
wired or wireless networks, 3G or 4G
mobile networks, and satellite or
long-haul networks

< 1000 Research Medium Not supported No Free

[70]
Netlab
Academic
Cloud

Netlab Academic Cloud is a distributed
system that provides computing resources
to support virtual labs on networking,
cybersecurity, virtualization, and
other topics. The platform dynamically
allocates the resources to enable
learners to perform hands-on experiences.

< 100 Education High Supported Yes Paid

[58] AWS

AWS is a cloud computing platform
that offers a wide range of cloud-based
computing services, including computing
power, storage, and databases, among others.

> 1000 Research Flexible No Yes Paid

[59] GCE

GCE provides virtual machines running
on a global infrastructure. GCE
allows users to easily deploy and manage
virtual machines and associated resources,
such as storage and networking, and
provides a range of cloud-based services,
including machine learning, data analytics,
and Internet of Things (IoT) services.

> 1000 Research Flexible No Yes Paid

[60]
Microsoft
Azure

Azure provides a range of management
and monitoring tools, including automated
scaling and load balancing, as well as
security and compliance features. The
platform also supports a wide range of
operating systems and programming
languages.

> 1000 Research Flexible No Yes Paid

26

pendent on the specific configuration and deployment of
the application. The authors identified a number of best
practices for configuring and deploying HPC applications
on Azure, including the use of specialized Azure virtual
machine types, the optimization of communication li-
braries and protocols, and the use of tools for monitoring
and managing network performance. The study demon-
strated that Azure can be an effective platform for run-
ning HPC applications, particularly for embarrassingly
parallel workloads. However, the authors caution that
users should carefully consider their specific application
requirements and deploy their applications in a manner
that maximizes performance and scalability.

6.4.5. Comparison, Discussion, and Limitations

Netlab is a flexible tool for supporting IT education
and running repeatable and scalable experiments. The
main limitation is that it is a proprietary solution
that incurs upfront costs. Although the academic
cloud subscription-based model can facilitate access to
more users, using it as a research environment requires
complete control of the management software. On the
other hand, the SEED labs are open to anyone who
wants to gain more insights into cybersecurity topics.
It relies on full virtualization, where the VMs used for
delivering the labs do not demand many resources from
the host machine. However, the SEED labs only cover
cybersecurity topics more suitable for computer science
courses rather than training IT professionals. These
two platforms enable educators to provide interactive
hands-on experiences, guiding students through essen-
tial cybersecurity domains like ransomware detection
[173], phishing prevention, data breach mitigation,
cryptography, and various others.

On the other hand, AWS, GCE, and Microsoft Azure
are three of the most popular cloud computing platforms
in the market. While they offer similar services and fea-
tures, there are some differences that set them apart. For
instance, AWS, GCE, and Azure offer different pricing
models and rates. AWS is generally considered to have
the most complex pricing structure, with many different
pricing options and discounts available. Azure is often
considered to have the most straightforward pricing, with
a focus on pay-as-you-go and predictable costs. GCE
falls somewhere in between, with a range of pricing op-
tions and discounts available. Regarding services, AWS,
GCE, and Azure all offer a similar range of cloud services,
including computing, storage, networking, and security.
However, there are some differences in the specific ser-
vices and features offered by each platform. For example,
AWS has a broader range of computing options, includ-
ing specialized instances for machine learning and GPU
computing. Azure has a strong focus on hybrid cloud
solutions, with tools for integrating on-premises infras-
tructure with Azure services. GCE has a strong focus on
containerization and Kubernetes orchestration. All three
platforms offer web-based interfaces for managing cloud
resources, as well as APIs and command-line tools for au-
tomation. However, there are some differences in the ease
of use of these interfaces. AWS is often considered to have
a steep learning curve, due to its complex interface and
extensive documentation. Azure is often considered to
be the most user-friendly, with an intuitive interface and

strong integration with other Microsoft products. GCE
falls somewhere in between, with a relatively simple in-
terface but some complexity in managing containerized
workloads. AWS is the largest cloud computing plat-
form in terms of market share, with over 30% of the mar-
ket. Azure is the second largest, with around 20% of the
market. GCE is a smaller player, with around 10% of
the market. In summary, AWS, GCE, and Azure are all
strong cloud computing platforms that offer similar ser-
vices and features but differ in pricing, services, ease of
use, and market share. Users should consider their spe-
cific requirements and preferences when choosing a cloud
platform.

6.5. Summary and Lessons Learned

Network emulators are essential tools for simulating
and testing network scenarios, protocols, and technolo-
gies. Each network emulator serves a specific purpose
and target audience. For example, Mininet and Con-
tainernet are tailored for SDN experiments, while Dum-
mynet focuses on bandwidth constraints. Researchers
should choose an emulator that aligns with their sim-
ulation needs and research focus. Emulators such as
IMUNES and Mahimahi offer advanced features and fine-
grained control for experienced researchers seeking more
precise network emulation. On the other hand, OAI and
srsRAN specialize in wireless communication scenarios.
openLEON caters to researchers studying satellite com-
munication networks, demonstrating the value of spe-
cialized emulators for specific research areas. Mahimahi
and NetEm stand out for their fine-grained control over
network impairments, while AWS, GCE, and Microsoft
Azure offer cloud-based environments with advanced ca-
pabilities for scalable and distributed network simula-
tions.

Network emulation systems are available for both
open-source and commercial routing platforms. While
such network emulation platforms offer limited data-
plane forwarding performance or ASIC-level fidelity of
production network hardware, they provide realistic
control plane and management-plane behavior. Network
VMs are not intended to emulate the hardware charac-
teristics of physical network equipment or to validate
aspects such as convergence time, as timings can differ.
Moreover, network emulators are a flexible solution to
deliver educational content and orchestrate reproducible
experiments. Platforms such as Mininet, Containernet,
and VMs used in the SEED labs, can integrate with
Netlab to scale up and create a hybrid experimentation
environment. Finally, the P4 virtual labs available in
the academic cloud can fulfill the increasing interest in
P4-programmable data planes. Considering that creating
an appropriate environment to run a P4 software switch
is a complex process, learners can use these virtual labs
to reduce such overhead when learning P4 [165]. These
virtual labs cover the fundamentals of P4-programmable
data planes in an incremental approach.

Network emulators play a crucial role in various re-
search and educational settings, catering to a wide range
of network simulation needs. Researchers should consider
factors such as specialization, user-friendliness, advanced
control, scalability, cost, and the focus of the emulator
when selecting the most appropriate tool for their specific

27

The user provides
experiment description

Emulab’s software
reserve resources

The virtual topology is
recreated

Figure 14: Emulab’s experiment lifecycle. Steps for recreating a
virtual network topology within an Emulab-based testbed [174].

research requirements. The choice of network emulator
should align with the research objectives, expertise level,
and available resources, enabling effective experimenta-
tion and evaluation of network protocols and technolo-
gies.

7. Network Testbeds

This section describes the network testbeds currently
used to run large-scale experiments in several areas, such
as cloud computing, cybersecurity, programmable net-
works, distributed computing, and other fields. First,
this section covers the general-purpose testbeds avail-
able to conduct research and instruct networking courses.
Second, it explains the specific purpose of testbeds that
explore areas such as cybersecurity, source routing, and
cloud-based application. Then, this section analyzes the
testbeds that use real traffic from production networks
to validate new systems. Lastly, the section provides the
comparison, discussion, and limitations found in the sur-
veyed works, followed by the lessons learned.

7.1. General-Purpose Testbeds

The testbeds in this category support a diverse set
of experiments, including networking, machine learning,
cybersecurity applications, IoT, blockchain, and others.
The hardware that experimenters can use ranges from
GPUs, NetFPGAs to specific instruments such as tele-
scopes, microscopes, and other appliances available only
at specific locations. Moreover, many of these testbeds
facilitate users to attach their devices to extend the ca-
pabilities of existing research testbeds.

7.1.1. Emulab

Emulab [11] is a network testbed used to recre-
ate a wide range of experimentation environments in
which users can develop, debug, and evaluate complex
networked systems. With Emulab, experimenters can
interact with a cluster of resources, including physical
machines, virtual machines, containers, and storage
clusters. The platform supports large-scale experiments
allowing users to control several nodes. Emulab’s
management allocates resources according to the exper-
iment’s demands. For instance, if the experiment aims
to achieve fidelity, the testbed will consist of bare-metal
hardware. On the other hand, if the resources are used
for research that does not demand high fidelity (e.g.,
during software development, education, or reliability
studies), the hardware constraints can be reduced and
moved to a hybrid or a completely emulated environ-
ment. For this purpose, Emulab leverages virtualization
as the main tool to efficiently allocate these resources.

Siaterlis et al. [174] conducted a rigorous review of
the Emulab platform focusing on experiment fidelity, re-
peatability, measurement accuracy, and interference. As
a result, they produced a tutorial to help experimenters to

...

Boss Ops

PC1 PC2 PCN

Experiment Switch

Control Switch To the Internet

Control VLAN

Figure 15: Emulab hardware [177].

decide whether Emulab is a suitable platform to conduct
their experiments. This tutorial could serve as a com-
plement to the user guide available on Emulab’s website
[175]. In the tutorial, the authors described the experi-
ment lifecycle in Emulab, summarized in Figure 14. First,
the experimenter provides the experiment script, which
consists of a description of the topology with a script
[176]. The experiment script contains the components
(e.g., switches and routers) and instances (e.g., virtual
machines and monitoring interfaces) needed for the ex-
periment. The script is also useful to port and shares the
topology with other experimenters. Second, the Emulab
software instantiates the components and allocates the
required resources on bare-metal servers. This process
is known as swap-in, which establishes the beginning of
the experiment, as opposed to swap-out, which indicates
the end of an experiment. Emulab comprises a pool of
resources that are commonly available to experimenters.
Therefore, if the requested resources are unavailable, the
experimenter must redefine the topology. Third, the Em-
ulab software isolates the links described in the topology
by configuring them in different VLANs. Finally, the
monitoring tools are activated to let the experimenter
run regular tests.

Currently, the Emulab cluster at the University of
Utah hosts approximately 500 experimentation nodes
connected by thirteen Ethernet switches. The cluster
has added new nodes in large homogeneous batches

Table 5: Emulab Hardware.
Node Hardware Description

CPU Intel E5-2630v3 8-Core at 2.4 GHz (Haswell)
Memory 64GB DDR4 ECC at 2133MT/s
Storage 1 200 GB 6G SATA SSD

d430 Storage 2 1 TB 7.2K RPM 6G SATA HDDs
NIC 1 Intel I350 1GbE NICs
NIC 2 Intel X710 10GbE NICs
CPU Intel E5-4620 8-Core at 2.2 GHz (Sandy Bridge)
Memory 128GB DDR3 at 1333MHz

d820 Storage 1 250 GB 7.2K RPM 3G SATA HDD
Storage 2 600 GB 10K RPM 3G SAS HDDs
NIC Intel X520 10GbE NICs
CPU Intel Xeon E5530 4-Core at 2.4 GHz (Nehalem)
Memory 12GB DDR2 ECC at 1066MHz

d710 Storage 1 500 GB 7.2K RPM SATA HDD
Storage 2 250 GB 7.2K RPM SATA HDD
NIC Broadcom BCM5709 1GbE
CPU Intel Xeon single-core at 3.0 GHz (Nocona)
Memory 2GB DDR2 ECC at 400MHz

pc3000 Storage 146 GB 10K RPM SCSI HDD
NIC 1 Intel 1GbE
NIC 2 Intel 10/100

28

and kept the old ones. Maintaining a large number
of homogeneous node groups achieves a high degree of
flexibility and ensures reproducibility. Old and new
nodes are compatible to enable more freedom in resource
assignment. The rationale for keeping old nodes is
based on the assumption that network researchers are
interested primarily in the network. Therefore, some
experiments can run on older, low-powered hosts.

Emulab’s physical topology consists of a control
switch and an experiment switch attached to the ex-
periment PCs (i.e., nodes), as shown in Figure 15.
Additionally, the hardware setup includes control nodes
(i.e., Boss and Ops) responsible for user access control,
fileservers, and other management tasks. Table 5 sum-
marizes the characteristics of the servers in the Emulab
cluster at the University of Utah. This cluster contains
around 500 servers which include four types of CPU
generations. There are 160 d430 nodes, 16 d820 nodes,
160 d710 nodes, and 160 pc3000 nodes. All the nodes
are connected to a control network and an experiment
network. The control network is connected to the
Internet for remote access and experiment management.
The experiment network connects the nodes and layer
two Cisco, Arista, and Dell (Force 10) switches. Each
host has at least four interfaces on this network.

7.1.2. GENI

The Global Environment for Networking Innova-
tion (GENI) is a distributed virtual laboratory to run
experiments in network science, services, and security
[12]. GENI started in 2004 as a global experimental
playground and testbed for research and education. The
main goal of GENI is to address the inherent problems
of Internet ossification, where the rigid nature of In-
ternet protocols limits innovation. GENI provides the
resources for network experimentation in real hardware
at small, medium, and large scales. These resources
are geographically distributed, allowing researchers to
reproduce WAN conditions. This capability enables
researchers to start with small experiments that can be
scaled to test them in more realistic scenarios. GENI
allows users to experiment with bare-metal servers and
interconnected VMs, which can reproduce distributed
network scenarios and run various software. A particular
organization does not own the GENI testbed. Instead,
its resources are independently provided, owned, and
controlled by individual contributing organizations.

Figure 16 shows the GENI network architecture
consisting of a control plane and a data plane. The con-
trol plane is used to reserve, discover, access, program,
and manage the testbed compute and communication
resources. The data plane provides the resources for
individual experiments. These resources define the
experimental topology, compute resources connected to
the network, link bandwidth, programmable switches,
and controllers used to implement custom packet-
forwarding algorithms. Networks supported by GENI
are isolated using Ethernet Virtual Local Area Networks
(VLANs). These isolated units are known as slices, and
they guarantee traffic and performance isolation among
experimenters.

Moreover, the data plane in GENI implements deep
programmability, allowing programmers to process and

perform actions on custom headers using OpenFlow-
capable software switches. GENI is integrated with
the Internet2 network [179], which provides national
data plane connectivity and allows experimenters to
program the software switches available in their network.
This capability enables the testing of custom network
protocols and controllers that operate in large-scale
scenarios.

GENI relies on virtualization and programmable layer
two networks to reserve and isolate computing resources.
Virtualization technology provides the illusion of exclu-
sive ownership of shared resources, whereas layer two pro-
grammable OpenFlow switches slice the network into iso-
lated segments. Moreover, GENI implements deep pro-
grammability by allowing the experimenter to customize
the behavior of the OpenFlow switches. With this capa-
bility, part of the computing, storage, routing, and for-
warding are performed in the network. Figure 17 shows
three types of racks projects available in GENI. Figure
17(a) depicts the ExoGENI rack that provides flexible
virtual networking topologies solutions, including Open-
Flow. This type of rack is typically deployed in campus
networks supporting multi-site cloud applications. Fig-
ure 17(b) shows the InstaGENI rack components. The
InstaGENI rack can be deployed in campus networks at
a large scale to deliver Internet cloud application sup-
port using OpenFlow switches to slice the network. In-
staGENI racks are deployed outside the organization’s
firewall. Figure 17(c) depicts the OpenGENI rack archi-
tecture. This rack supports GENI-compliant equipment
in a Dell rack, where the data plane switch is a production
OpenFlow [186].

GENI provides isolated and dedicated resources
called slices. Experimenters can design and customize
network typologies within a slice without interfering
with other projects. However, reserving resources for an
experiment is subject to their availability. Therefore,
an experimenter follows the process depicted in Figure
18, which shows the lifecycle of an experiment in
GENI. The stages in the figure suggest that there is no
satisfactory network setup for an experimenter. GENI
addresses this issue by providing an open application
programmer interface (API) to facilitate the develop-
ment of multiple experimenter tools. The testbed aims
to build a community of interoperating experimenter
tools with this approach. These tools are user interface
software (i.e., Graphical User Interfaces (GUIs) and
Command-Line Interfaces (CLI)) that facilitate reserving
resources in the testbed. If the required resources are
unavailable, the user redesigns the experiment to use
the available resources. The experimenter uses the
experiment management tools to automate and maintain
the configuration process in the execution stage. Then,
the topology is ready to run experiments and produce
results. Before finalizing the experiment execution, the
experimenter can reserve more resources to run the
experiment at a larger scale.

GENI users can access resources from other testbeds
using their accounts. In this way, they can add more re-
sources to their GENI slice to run experiments that span
multiple testbeds worldwide. These testbeds are Cloud-
Lab [187], Chameleon Cloud [69], Emulab [11], ORBIT
[188], WITest [189], w-iLab.t [190], and PlanetLab [191].

29

Researcher 1

Researcher 2

Researcher 3 Researcher 4

Campus Network

gg

Regional Network

Regional
Facility

Research
Backbones
Research

Backbones

InternetInternet

WAN and Internet

ISP

MetroMetro

GENI-enabled Nodes Control Plane Links Data Plane Links

Figure 16: GENI architecture [178].

Table 6: GENI Rack resources specification.
Rack Type Device Model Description

VPN Appliance Juniper SSG5 [180] Backup management access
Management
Switch

IBM BNT G8052R [181] 1G client/10G uplink ports

• CPU: Intel Xeon 5650 2.66GHz
• Memory: 48 GB

ExoGENI Worker Node IBM x3650 M3 [182] • Storage: 2x146 GB 10K SAS
• CPU: Intel Xeon 5650 2.66GHz
• Network: Dual 1G/10G adapter

Management
Node

IBM x3650 M3 [182] • Memory: 12 GB

• Storage: 2x146 GB 10K SAS
Management
Switch

HP Procurve 2620 [183] 24 10/100/100 Mbps ports, 2 1 Gbps ports

• CPU: Intel Xeon 5650 2.66GHz

InstaGENI
Experiment
Node

HP ProLiant DL360 G7 [184] • Memory: 48 GB

• Storage: 1 TB
• Network: Dual 1G/10G adapter

Control Node HP ProLiant DL360 G7 [184] • Memory: 12 GB
• Storage: 4 TB RAID

Management
Switch

HP Procurve 2620 [183] 48 1 GbE ports, 4 10 GB ports

• CPU: Intel Xeon E5-2600 v2 3 GHz
OpenGENI Compute Node PowerEdge R620 XL [185] • Memory: 32 GB

• Storage: 300 GB
• Network: Dual 1G/10G adapter

Control Node Dell PowerEdge R620 XL [185] • Memory: 32 GB
• Storage: 300 GB

Initiatives such as EdGENI [192] facilitate using
GENI resources by providing a user-friendly GUI and
customized VM images. In this way, EdGENI offloads
the configuration overhead by introducing a desktop en-
vironment where the user can save, duplicate, and share
VMs with other users. The authors sustain that EdGENI
built-in features improve the user experience and extend
the user base of the GENI testbed, introducing new
users to network education and experimentation. With
EdGENI, an instructor can create a lab environment and
share it with students. Then, the students work directly
on the experiment in a shared environment skipping
the initial configuration, which can be error-prone and
time-consuming. Finally, the authors made available
the repository [193] that contains the scripts, tools,
and laboratories used to learn cybersecurity topics and
blockchain principles. The laboratories in cybersecurity
cover topics such as symmetric encryption and hash,
public key encryption, denial of service (DoS), port

scanning, and ARP poisoning. The blockchain laborato-
ries cover wallet setup, smart contract deployment, and
interaction, Solidity [194], Remix IDE [195], and others.

Figure 19 explains the usage scenario of EdGENI.
With EdGENI, the instructor prepares and distributes
lab exercises to students by defining the Rspec and lab
instruction files. The Rspec file is a snapshot of the lab
environment that offload student to perform manual con-
figuration. The Rspec file defines the resources utilized
in the GENI slice dedicated to the students. Addition-
ally, the instructor provides the lab instructions with the
activity requirements and steps to complete the lab exer-
cises. The instructors can deploy the lab environment as
a function of the availability of the resources.

7.1.3. StarBED

StarBED [61] is a large-scale general-purpose network
testbed based on local nodes. With StarBED, exper-
imenters can conduct research that includes layer two

30

Management
Switch

OF-enabled
Switch

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Management
Node

Storage

VPN
Appliance

Internet
(Layer 3)

Backup
Access

GENI
Backbone
(Layer 2)

Campus
(OpenFlow
Network)

Management
Switch

Experiment Node

Experiment Node

Experiment Node

Experiment Node

Experiment Node

Control Node

OF-enabled
Switch

GENI
Backbone
(Layer 2)

Internet
(Layer 3)

Management
Switch

Experiment Node

Experiment Node

Experiment Node

Experiment Node

Experiment Node

Control Node

OF-enabled
Switch

GENI
Backbone
(Layer 2)

Internet
(Layer 3)

Management
Switch

Compute Node

Compute Node

Compute Node

OF-enabled
Switch

Management
Switch

Compute Node

Compute Node

Compute Node

OF-enabled
Switch

Management
Switch

Compute Node

Compute Node

Compute Node

OF-enabled
Switch

Internet
(Layer 3)

GENI
Backbone
(Layer 2)

Management
Switch

Compute Node

Compute Node

Compute Node

OF-enabled
Switch

Internet
(Layer 3)

GENI
Backbone
(Layer 2)

Control Plane LinksControl Plane Links

Data Plane LinksData Plane Links

(a) (b) (c)(a) (b) (c)

Worker Node

Figure 17: GENI rack hardware. (a) ExoGENI. (b) InstaGENI. (c)
OpenGENI. [178].

switch benchmarks with multicast traffic, observation of
TCP behavior, performance analysis, wireless network
emulation, mobile network experimentation, overlay net-
works, and experiments with real traffic. StarBED com-
prises more than 512 nodes to build large-scale experi-
ment topologies. The design of StarBED aims to allo-
cate the experiment resources at one site to provide more
flexibility when building complex topologies. Nodes in
StarBED are classified into five groups according to their
functionalities, such as the number of network interfaces.

StarBED offers the tools for developing a research idea
from the early stages. The steps concerning the develop-
ment process are summarized in Figure 20. The develop-
ment begins with a new design proposal, then evaluated
using a simulator. Once the simulation results meet the
expected behavior, the system migrates to a laboratory-
scale testbed already hosted in StarBED. If the nature
of the topology requires testing in a large-scale testbed,
the experimenter can allocate the necessary StarBED re-
sources to conduct the experimentation. When the large-
scale experiment meets the expected goal, it is ready to
implement in a production environment. Figure 21 shows
StarBED architecture, which consists of an experiment
network, a management network, a service network, and
a user network. The experiment network comprises high-
performance switches connected to experiment nodes and

Establish
Management
Environment

Obtain
Resources

Configure and
Initialize
Services

Execute
Experiments

Design
Experiment

Analyze and
Save

Experiments

Teardown
Experiment

Achieve
Experiment

Design Execute

Finish

Figure 18: Experiment lifecycle in the GENI testbed. [178].

GENI CloudGENI Cloud

...Student 1 Student 2 Student N

Lab library

Rspec
FIle

Lab
Instruction

Instructor

Figure 19: EdGENI lab environment. [192].

specific-purpose equipment. A management network acts
as an interface between the service network and the ex-
periment network, providing the resources experimenters
will use to run experiments. The user network inter-
acts with the service network by administering experi-
menters’ accounts. Moreover, StarBED allows the cre-
ation of links between the experiment network and the
external testbeds.

7.1.4. Grid’5000

Grid’5000 [62] is a distributed, highly reconfigurable
testbed that aims at large-scale computing experimenta-
tion. Grid’5000 provides a scientific tool for computer
scientists similar to the large-scale instruments used by
physicists, astronomers, and biologists. The testbed de-
sign goal is to study the complex interaction of inter-
connected systems, which is not realistic with simulators
and emulators. Grid’5000 comprises 15,000 CPU cores
and 800 compute nodes grouped in homogenous clusters
supporting various technologies such as Persistent Mem-
ory (PMEM), GPUs, SSD, NVMe, Infiniband [196], and
others. The testbed is highly reconfigurable and pro-
grammable, allowing researchers to experiment with a
fully customized software stack running on bare-metal de-
ployments. With this feature, experimenters can obtain
isolation at the networking layer. Moreover, the testbed
supports advanced monitoring and measurement features
collecting network traces and power consumption to pro-
vide a deep understanding of experiments. Finally, the
authors designed Grid’5000 to be an environment that
supports open science and reproducible research.

The testbed supports various experiments ranging
from resource-intensive distributed systems to IoT
orchestration. Grinsztajn et al. [197] used the testbed to
experiment with a reinforcement learning-based strategy
for heterogeneous dynamic scheduling. The proposed

Design a new technology

Evaluate the idea a simulator

Create an implementation for a real
environment

Run the experiment in a laboratory-
level testbed

Run the experiment in a large-scale
testbed

Introduce the implementation to a
real envrionment

Fix the problem

Fix the problem

Fix the problem

The problem is in
idea level

Figure 20: StarBED experiment lifecycle [61].

31

Experiment
Network
Switches

Management
Network
Switches

Operation
Clients

Service
Server

(SpringOS,
NS, NTP, etc)

User
Terminals

User
Equipment

Experiment
Nodes

External Testbeds Internet

Firewall

StarBED Network User Network

Experiment
Network

Management
Network

Service Network

Gateway Network

Figure 21: StarBED architecture [61].

system is a reinforcement learning algorithm for the dy-
namic scheduling of computations modeled as a Directed
Acyclic Graph (DAG) where allocation and scheduling
decisions are performed at runtime. Brandón et al. [198]
deployed different service-oriented architectures in Grid’
5000 to evaluate an analysis framework that aims at
identifying the root cause of anomalies in applications.
Results show that the author’s approach is 19.41% more
effective than a machine learning method that does not
consider the relationship between elements. Donassolo
et al. [199] created an IoT fog environment in Grid’ 5000
to implement an orchestrator. This orchestrator aims
to automate the deployment, scale the management,
and migrate microservice-based IoT applications. The
authors reported that the testbed successfully repro-
duced most fog characteristics, such as geographical
distribution and heterogeneity. Sarmiento et al. [200]
used Grid’ 5000 to implement the proof-of-concept
of a mechanism that provides network virtualization
operations to the users while dealing with scalability
and intermittent network properties of geo-distributed
infrastructures. The system can reduce management
traffic overhead, automate multitenancy configuration,
and enhance collaboration.

7.1.5. Comparison, Discussion, and Limitations

Emulab is a network testbed that allows researchers
to create and test experimental network topologies. It
provides a web-based interface for creating and manag-
ing experiments on a shared pool of resources. Emulab’s
strength lies in its ease of use and support for various
network experiments, making it suitable for researchers of
different expertise levels. However, Emulab’s accessibility
might be limited to certain research institutions, affecting
its availability for researchers outside those institutions.
The Emulab testbed supported many experiments and fa-
cilitated education in several computing areas [201–204].
Siaterlis et al. [174] analyzed the use of Emulab to run sci-
entifically rigorous experiments by assessing the fidelity,
repeatability, and accuracy of the testbed. Their finding
pointed out that Emulab can realistically reproduce the
performance of real networks even with the emulated de-
lay. The authors recommended obtaining realistic results
in scenarios with emulated delay, and the bandwidth uti-
lization must not exceed 30%. The authors also pointed

out that Emulab presented high repeatability in scenarios
with moderate network load and recommended increasing
hardware allocation to reproduce more accurate results.
Finally, the authors suggested that experimenters must
be aware of the interference from the tools used to con-
duct the experiments.

GENI is a large-scale network testbed that allows
researchers to experiment with advanced network
technologies. It offers a federated infrastructure of
resources across multiple institutions. GENI’s strength
lies in its extensive infrastructure, providing researchers
with a distributed platform for conducting experiments
on a larger scale. Setting up experiments on GENI
may be more complex due to the distributed nature
of the infrastructure, and access to resources requires
administrative approval. Edwards et al. [205] evaluated
the GENI testbed to provide general guidelines on
conducting networking experiments in shared, public
testbeds. The authors describe a methodology to be
followed by new experimenters to write and deploy
repeatable and sharable experiments. They emphasize
that defining the experiment’s goal at early stages is
essential to anticipate the number of resources to be
allocated. This guideline suggests that an experimenter
must design the experiment to decide how the resources
will be employed to conduct repeatable tests. Then, the
authors provide guidelines on automating experiments’
execution following the best practices. Automating
a task involves combining the scientific method with
software engineering and system administration skills.
The authors recommend starting with a small test to
detect misconfigurations and keeping a version control
to track the working configurations. Finally, the paper
explains the steps to build scalable experiments: starting
with a small deployment and ensuring that produced
results meet the expectations.

StarBED is a network testbed designed for large-scale
experiments with a high number of nodes. It aims to
provide a realistic environment for testing and validating
network protocols and technologies. StarBED can handle
large-scale experiments, offering researchers the ability to
test network protocols under realistic conditions. The
hardware and infrastructure requirements for StarBED
might be challenging for smaller research groups or insti-
tutions.

Grid’5000 is a large-scale experimental testbed
that provides resources for researchers to conduct
experiments in various fields, including networking. It
allows researchers to deploy custom environments on
a distributed infrastructure. Grid’5000’s strength lies
in its distributed infrastructure, enabling researchers
to conduct experiments in realistic, geographically dis-
tributed settings. Setting up experiments on Grid’5000
may involve administrative steps and access to resources
requires administrative approval. Balouek et al. [206]
evaluated Grid’5000 software and services stack to
support large-scale experiments using virtualization
technologies as building blocks. The evaluation included
customized software environments, the reservation of
dedicated network domains, the isolation capabilities of
the testbed, and the automation of experiments using
APIs. The experiments consisted of orchestrated tests
that used many VMs (i.e., 4̃000) across several locations.

32

Results show that Grid’5000 experiences some challenges
when managing applications that use large volumes of
data. The authors acknowledge that a main limitation
of the platform is the diversity of the software stack used
to manage the testbed. Simplifying the management
interface can add more visibility to the experiments and
facilitate the orchestration of more complex experiments.

7.2. Specific-Purpose Testbeds

This category comprises testbeds dedicated to spe-
cific types of experimentation, such as cybersecurity,
routing protocols, and cloud-specific applications. These
testbeds aim to push innovation in a specific field that
requires specialized hardware, custom configuration, and
dedicated access to resources that are not available in
regular testbeds. These requirements intend to enforce
consistency in the results and facilitate scaling up the
tested prototypes.

7.2.1. CloudLab

CloudLab [10] is a testbed for cloud computing re-
search. It provides access and control over bare-metal
servers comprising large computing, storage, and net-
working resources. With CloudLab, a researcher can
run fully observable and repeatable experiments that can-
not be conducted on traditional clouds. CloudLab gives
control, visibility, and performance isolation, supporting
experiments on cloud architectures and distributed sys-
tems. Therefore, experimenters can use, see, instrument,
modify, and monitor all levels of the cloud stack and
applications, including virtualization, networking, stor-
age, and management abstractions. CloudLab comprises
more than 25,000 cores distributed across three main sites
the University of Wisconsin, Clemson University, and the
University of Utah. The CloudLab deployment can also
interoperate with existing testbeds such as GENI, Emu-
lab, Chameleon Cloud, and, most recently, FABRIC.

With CloudLab, researchers request on-demand re-
sources to run experiments. The Cloudlab staff handles
these requests and takes charge of the testbed’s construc-
tion, maintenance, and operation, allowing researchers to
only focus on their experiments. Experiments in Cloud-
Lab are instantiated as profiles, which contain a descrip-
tion of the hardware resources (i.e., servers, switches,
VMs) that the experiment will use. The profile also de-
scribes the software needed to run the experiment. This
software comes in the form of disk images, GitHub repos-
itories, and scripts. Instantiating a profile is how Cloud-
Lab allocates the available hardware that meets the pro-
file’s specifications and provisions the software and con-
figuration options described in the profile. The most
popular cloud software in CloudLab is OpenStack [142].
CloudLab’s workflow to run an experiment starts by cre-
ating a new profile that involves disk images, installing
custom software, and describing the hardware that meets
the experiment’s needs. Each profile expires after a few
hours, which can be extended if needed for additional
hours. If the experimenter wants to extend more (e.g.,
for weeks or months) he/she must submit a request to the
administrator. The testbed comprises various hardware,
including programmable Ethernet switches, GPUs, bare
metal servers, Infiniband NICs, and high storage capac-
ity. The CloudLab user interface leverages in-house soft-

ware designed to support its research testbeds. CloudLab
prioritizes the reproducibility of the experiments rather
than on elasticity. Thus, in CloudLab, experimenters can
easily describe their experiments and port them to other
environments. CloudLab comprises three data centers in
the following locations:

• CloudLab Utah: this data center hosts servers
with modest specifications. There are 585 HPE
Moonshot servers, which consist of 45 low-power
Intel Xeon-D or ARM-based servers in each chassis.
Each chassis supports two 10 Gbps switches which
work as top-of-rack switches and are connected to
a 160 Gbps switch. Another group of resources
consists of 200 servers connected to a traditional 25
Gbps Ethernet network and to a layer 1 network
for controlling the physical layer. This layer aims
to wire nodes to Ethernet switches controlled by
the user.

• CloudLab Wisconsin: The goal of this facility is to
reproduce the hardware available in modern data
centers. The servers are provisioned with dual sock-
ets and have a mix of spinning and Hard Drives
Disks (HDD) and Solid State Drives (SSDs). The
servers have a large number of disks allowing the
user to configure a Storage Area Network (SAN).
These servers are also equipped with GPUs, which
enable experimentation on machine learning and
large-scale computing.

• CloudLab Clemson: This data center specializes in
providing more CPU cores and a greater amount
of RAM per core. These resources make it appro-
priate for hosting big data analytics applications,
running high-performance computing workloads,
and supporting a large number of VMs. The
deployment also comprises an Ethernet experi-
ment network topology that interconnects three
core switches, each connected to a companion
top-of-rack switch handling direct server connec-
tivity. Additionally, experimenters can also use
a 40 Gbps Infiniband [196] network dedicate to
High-Performance Computing (HPC) and Remote
Direct Memory Access (RDMA).

The hardware at each site is scheduled to grow up
over time. No hardware has yet been retired.

Park et al. [208] integrated into CloudLab SDN se-
curity hands-on training labs. The authors developed
an open laboratory leveraging the unique features (i.e.,
OpenFlow switches) provided by CloudLab where stu-
dents can engage with SDN security concepts by following
a step-by-step lab manual. The set of labs covers vari-
ous security issues that include denial-of-service (DoS)
attacks and application attacks.

Ngo and Denton [209] designed a hands-on environ-
ment to learn cluster computing topics using CloudLab.
The authors employed virtualization to dedicate com-
puting resources for each learner. In this lab environ-
ment, the learner uses network elements to like geograph-
ically distributed VMs running on top of bare metal hy-
pervisors. The cluster computing course covers topics
that include the Beowulf model of networked computers,

33

Provisioning
server (Boss)

Storage server
(Users)

ISIBerkeley USC

Experiment
switch

Control
switch

Experiment
switch

Control
switch

Experiment
switch

Control
switch

10Gbps

10Gbps

10Gbps

10Gbps

1Gbps

1Gbps

10Gbps 10Gbps

1Gbps

1Gbps

Experiment Node Experiment Node Experiment Node

Figure 22: DETERLab architecture [207].

distributed file systems, the message-passing program-
ming paradigm, scheduling on a cluster of computers,
big data, and the map-reduce programming paradigm.
The course aims at providing the fundamental concepts
of cluster computing through hands-on training with real-
world technologies and platforms.

Ngo et al. [210] used CloudLab to support teach-
ing Parallel and Distributed Computing (PDC) in under-
graduate courses. The authors solve the class prepara-
tion and lab configuration overheads by offloading the
classroom resources by unifying on-site resources with
remote computing resources hosted in CloudLab. The
course covers PDC programming and architectural con-
cepts, including speedup methods, real-time results, vi-
sual results, interactivity, active learning, reproducibil-
ity, and accessibility. Results show that CloudLab suc-
cessfully supported training sessions with many learners.
Moreover, a survey conducted at the beginning and the
end of the course indicated that the students felt more
affinity towards topics such as Message Passing Interface
(MPI), MapReduce, Spark, and parallel programming.

7.2.2. DETERLab

The cyber DEfense Technology Experimental Re-
search Laboratory (DETERLab) is a scientific computing
testbed that enables experimenters to research, develop,
discover, and test cybersecurity ideas [9]. DETERLab
serves a broad community that involves academia,
industry, and government. Projects in DETERLab
cover behavior analysis and defensive technologies,
including Distributed Denial of Service (DDoS) attacks,
worm and botnet attacks, encryption, pattern detection,
and intrusion-tolerant storage protocols. DETERLab
facilitates a large-scale experimentation environment
for rigorous and repeatable tests. With DETERLab,
experimenters can securely observe and interact with
malicious software operating in real-world network

environments. The testbed aims to lead cyber-defense
innovations focused on developing robust systems.
DETERLab supports sharing resources among multiple
concurrent experiments, providing an incrementally
developed library of tools, interfaces, and datasets for
security experiments. Moreover, DETERLab offers a
wide range of components to enable hands-on training
for colleges and universities via the DETER Project
[211], which is committed to promoting research in cyber
security through the use of DETERLab’s innovative
methods and advanced tools.

DeterLab comprises around 700 nodes distributed in
three locations: the University of Southern California
(USC), the Information Science Institute (ISI) in Cali-
fornia and Virginia, and the University of California at
Berkeley. Each location is connected via a public 10
Gbps link. Figure 22 shows a high-level architecture of
the testbed. The architecture involves two service nodes,
Boss and Users, to run provisioning and storage services.
Each node has one control interface and multiple inter-
faces connecting to various switches. Experiments are
isolated via VLANs at the experimental and control net-
work. The boss node runs the ControlNet-Isolation (CI)
software to implement isolation. The CI software ensures
that each node can only send traffic to other nodes in the
same experiment [207].

7.2.3. ScionLab

Kwon et al. [64] proposed ScionLab. This global
testbed enables network experimentation in inter-domain
routing areas, including path-aware routing, routing
policies, and security policies against DDoS attacks.
ScionLab leverages the Scalability, Control, and Isola-
tion On Next-Generation Networks (SCION) Internet
architecture, which aims to offer high availability and
efficient point-to-point packet delivery, including the
mitigation of malicious network operators and devices.

34

Applications

Control Plane

Routing Policy

BS PS CSBS PS CS

Data Plane

Border Router

SCION Transport
Protocol

Open VPN

SCIONLab AS

User ASes

SCIONLab Infrastructure

Attachment Points

Global Infrastructure Network

Global Coordination (Coordinator)

Figure 23: ScionLab architecture. A global coordinator service
connects the experimenters’ ASes to the global coordination service
[64].

In the SCION paradigm, Autonomous Systems (ASes)
are organized into groups of independent routing planes
known as isolation domains (ISDs). The goal of an ISD
is to provide global connectivity. The administration
of an ISD is performed by a group of ASes called ISD
core, which define the certificate issuance policy in the
ISD. When the ISDs are validated, they can establish a
trusted route. SCION considers security aspects, routing
infrastructure, and forwarding mechanisms. SCION is a
path-based architecture that implements source routing
[212] to establish end-to-end inter-domain paths. A
cryptographic mechanism restricts the path construction
to the routing policies defined by the ISPs and receivers.
This way, SCION allows senders, receivers, and ISPs to
enable path-aware Internet.

Figure 23 illustrates the testbed architecture. The
ScionLab administrators operate the network infrastruc-
ture and the global coordinator. The global topology is
created to support a variety of paths between any two
ASes, which empowers multipath operations. The infras-
tructure offers several attachment points, to which user
ASes connect to participate in the ScionLab network.
Depending on who owns them, two AS types exist infras-
tructure AS, which ScionLab administrators run, and
user AS, which is run by the users. Both AS types are
regular SCION ASes, with a beacon service (BS), cer-
tificate service (CS), path service (PS), and one or mul-
tiple border routers. Some infrastructure ASes provide
an attachment point that provides connectivity to user
ASes. ScionLab operates with full cryptographic sup-
port. Each ISD defines its own roots of trust within a
trust root configuration, where the core ASes control the
root keys for the control plane. Each AS has a globally
unique AS number (ASN) and a public/private key pair,
which is validated through a certificate signed by a core
AS. The certification infrastructure that includes the cer-
tificate authority and the validation mechanisms are part
of the SCION architecture [213].

7.2.4. Colosseum

The Colosseum testbed [214] represents a state-of-the-
art research platform designed to facilitate large-scale ex-
perimentation in the field of wireless communications. Its
architecture embodies a highly reconfigurable and expan-

sive RF environment, providing researchers with a con-
trolled yet realistic setting for the evaluation and vali-
dation of wireless technologies and algorithms. Colos-
seum can emulate diverse wireless propagation scenar-
ios, ranging from urban to suburban and rural environ-
ments, through the use of programmable antennas. The
Colosseum architecture is highly reconfigurable and de-
signed for large-scale experimentation in wireless com-
munications. It consists of several key components that
collectively enable the emulation and evaluation of wire-
less technologies and algorithms in a realistic and con-
trolled environment. At the core of the Colosseum ar-
chitecture lies its RF environment, which encompasses
programmable antennas and extensive RF infrastructure.
This allows researchers to create diverse wireless propaga-
tion scenarios, accurately replicating real-world settings
like urban, suburban, and rural environments. Colos-
seum provides high capacity to support a large number
of concurrent wireless devices. This capability facilitates
experiments with high device density scenarios, enabling
researchers to assess the performance of wireless networks
under realistic traffic loads. The architecture supports
the deployment of heterogeneous wireless networks, in-
cluding various generations of cellular technologies like
4G LTE, 5G NR, and beyond. This ensures the emu-
lation of cutting-edge wireless communication systems.
A distinguishing feature of the Colosseum architecture
is its high level of programmability and flexibility. Re-
searchers have fine-grained control over network parame-
ters, channel characteristics, interference levels, and mo-
bility patterns, enabling precise and detailed emulations.
The architecture includes comprehensive monitoring and
data collection capabilities, providing researchers with a
wealth of network performance metrics. This data-driven
approach empowers in-depth analysis and comparison of
different wireless technologies and algorithms. Colosseum
incorporates an experimental management system that
allows researchers to configure, schedule, and monitor ex-
periments seamlessly. This enhances the efficiency and ef-
fectiveness of conducting large-scale wireless experiments

7.2.5. IEEE 5G/6G Innovation Testbed

The IEEE 5G/6G Innovation testbed [215] is a cloud-
based, end-to-end 5G network emulator that enables test-
ing and experimentation of 5G products and services.
The testbed aims at enhancing current 5G technologies
and defining the future 6G functions. The testbed is
based on open-source components. This makes it flexi-
ble and adaptable to new network functions and features.
The testbed is available to members of the IEEE Future
Networks Initiative [216], and it is also available to other
organizations on a fee-based basis.

The testbed allows experimenters to test their 5G and
6G systems in a realistic environment, helping them to
identify and address any potential problems. Addition-
ally, the testbed also helps companies to collaborate with
other organizations on 5G and 6G research and develop-
ment. The testbed offers a range of interconnected ad-
vantages for companies engaged in the development of 5G
and 6G products and services. Firstly, it provides a real-
istic environment where these companies can thoroughly
test their 5G products and services, ensuring they work
as expected. Moreover, this testbed helps these compa-

35

nies in identifying and resolving any potential issues that
may arise during testing, contributing to the overall qual-
ity of their offerings. Additionally, the testbed promotes
collaboration between different organizations involved in
5G and 6G research and development. By offering a
shared platform for experimentation and testing, it fos-
ters teamwork and knowledge exchange, potentially lead-
ing to faster advancements in 5G and 6G technologies.
Lastly, the testbed’s cost-effectiveness is noteworthy, al-
lowing companies to save on testing expenses while still
reaping the benefits of a comprehensive and reliable test-
ing environment. The IEEE 5G/6G Innovation testbed
serves as a valuable tool that not only aids in testing and
problem-solving but also acts as a catalyst for collabora-
tive progress in the field of 5G and 6G technologies.

7.2.6. Comparison, Discussion, and Limitations

CloudLab is a network testbed that allows researchers
to conduct experiments with cloud and edge computing
technologies. It provides a user-friendly interface and
supports a wide range of experimentation capabilities re-
lated to cloud computing. CloudLab’s strength lies in
its focus on cloud and edge computing, making it suit-
able for researchers interested in testing these technolo-
gies. However, CloudLab’s availability might be limited
to certain research institutions, affecting its accessibility
for researchers outside those institutions. Duplayakin et
al. [187] presented their experiences in designing and op-
erating the CloudLab environment. The paper provides
guidelines and good practices for designing and analyz-
ing computing testbeds. They studied CloudLab’s op-
erations for four years, considering 4,000 users, 79,000
experiments, and 2,250 servers, switches, and other data
center equipment. The authors focused on two sets of
attributes to understand critical aspects of the testbed.
The first set consisted of the analysis of CloudLab us-
age, which includes user interaction, the purpose of the
experiment, and the implications for facility design and
operation. The second set considered monitoring the
resource allocation, observing how different algorithms
utilized these resources, and how user experience is af-
fected by unexpected behaviors. From analyzing the first
data set, the authors concluded that providing low-level
hardware access and administrative privileges to exper-
imenters contributed to optimizing the resource utiliza-
tion in the testbed. Considering the second set of aspects,
the authors postulated that as the experimenters notice
that the available resources for their experiments become
scarce, they tend to submit more reservation requests to
use the platform.

DETERLab is a network testbed designed for cyber-
security research. It provides resources and tools for re-
searchers to conduct experiments related to network se-
curity and cyber threats. DETERLab focuses on cyber-
security research, offering a platform for testing and eval-
uating network security mechanisms. Ibrahim et al. [217]
evaluated DETERLab from an educational perspective.
The authors determined that DTERLab allows students
and researchers to deploy a wide range of defense and at-
tack mechanisms in cybersecurity scenarios. The authors
documented the challenges found in the platform to help
other educators to use the testbed effectively. Using a
qualitative approach, the authors evaluated the testbed

by launching experiments on the platform to evaluate its
usability and adaptability. The authors found that get-
ting started with an educational experiment is challeng-
ing due to the lack of appropriate documentation. There-
fore, new users (i.e., students and instructors) should ex-
pect to spend several hours trying to find the resources
and tools that work better for them. Finally, the authors
recommended improving the user interface to make it less
confusing, clarifying the online documentation [211], and
increasing the availability of resources (e.g., VMs) in the
platform.

SCIONLab is a network testbed specifically tailored
for evaluating the SCION (Scalability, Control, and Isola-
tion on Next-Generation Networks) network architecture.
It allows researchers to experiment with SCION technol-
ogy in a real-world environment. SCIONLab’s strength
lies in its specialization for SCION network architecture
evaluation, providing researchers with a dedicated plat-
form for this purpose. The scope of SCIONLab may be
limited to evaluating SCION, and it may not offer the
same level of versatility for other types of network exper-
iments. The main characteristic of the Scion architecture
is robustness and ScionLab is the testbed that globally
interconnects ASes to run experiments at a large scale.
ScionLab also provides the resources [218] that instruct
users how to use and run experiments in the testbed.
The tutorials include step-by-step instructions on run-
ning a SCION AS in SCIONLab and a list of interesting
projects using the SCION infrastructure for communi-
cation. An et al. [219] evaluated the resilience of Multi-
path Routing mechanisms against attacks and failures us-
ing ScionLab. They evaluated the performance in terms
of latency and loss rate to demonstrate how multi-hop
multi-path (MMP) routing can provide high availability
in the presence of network attacks.

Colosseum is a large-scale wireless testbed that en-
ables researchers to experiment with wireless communi-
cation technologies, including 5G and beyond. It offers a
realistic environment for evaluating wireless systems and
protocols. Colosseum focuses on large-scale wireless ex-
periments, making it suitable for researchers interested
in wireless communication technologies. The hardware
and infrastructure requirements for Colosseum might be
challenging for smaller research groups or institutions.

7.3. Production Networks as a Testbed

A vital aspect of the development process of network
protocols is validation. Evaluating a new feature implies
a trade-off between realism and cost. Testbeds can help
to estimate the behavior of a new feature. However, real
networking occurs on production networks (e.g., campus,
enterprise, and government networks). Therefore, the re-
search community leverages simulators, emulators, and
testbeds to run experiments in a reproducible controlled
environment. Although these tools are scalable and cost-
efficient, they do not use real traffic. This limitation re-
duces the chances of new network features departing the
research lab and being adopted in real-world networks
[220].

7.3.1. P4Campus

Kim et al. [65] presented P4Campus, a P4-based sys-
tem that allows network experimentation using campus

36

Idea and
design

Software
simulation

Adapt for
hardware

Replay
realistic trace

Test with
live traffic

Real-world
deployment

Regular feedback Missing feedback

Figure 24: Research stages. Dashed lines represent the missing
feedback loops that can improve the original research idea [65].

traffic. P4Campus facilitates testing network research
ideas on real deployments so that researchers can run
experiments in their network. The system uses network
tapping devices, packet brokers, commodity, and pro-
grammable switches to evaluate research ideas on a pro-
duction campus network. With these devices, P4Campus
enables migrating from software-based simulation to im-
plementation on hardware switches, capturing and re-
playing packet traces from their campus network, and
running experiments against live production traffic. The
system uses programmable switches for experimentation
at line rate and a tool to anonymize personally identi-
fiable information [221] and collect packet traces. Pre-
liminary results show that the campus network is a rich
source of research challenges that provides diverse traffic.

Figure 24 explains the conceptual research pipeline
and how P4Campus fills the gap between a research
laboratory and a production environment. The au-
thors sustain that many of today’s research ideas are
prototypes evaluated using simulations and outdated
packet traces. However, researchers find barriers when
testing their ideas beyond an experimental prototype or
laboratory. The authors argue that researchers should be
able to evaluate their ideas in production environments
(i.e., in the wild). Therefore, P4Campus is a promising
approach to test research ideas using current traces or
even live traffic without interfering with the regular
operation of the production environment.

7.3.2. AmLight

Americas Lightpaths (AmLight) [66] is a project
that aims at facilitating research and education be-
tween the United States and the nations of Latin
America. AmLight operates international network links
and connects research and education networks using
a double-ring topology. The project’s objectives are
to improve operations efficiency and provide network
programmability. The first objective refers to the
coordination among institution that participates in
AmLight. This coordination requires jointly managing
the configurations that each institution has in its network
and cooperating to troubleshoot network circuits. The
second objective includes adding programmability to
implement network functions that enable high tolerance,
low delay, end-to-end visibility, and multipath routing.
Applications such as in-network telemetry, big data, and
video streaming can utilize network programmability
to increase awareness about network conditions and
optimally react to changes. Figure 25 shows the research
and education institutions that are part of AmLight.
The project includes international locations in places
such as Miami (United States), Fortaleza (Brazil), São
Paulo (Brazil), Porto Alegre (Brazil), Buenos Aires

Miami

Fortaleza

São Paulo

Panama City

Porto Alegre

Buenos Aires
Santiago

Sangano

Cape Town

100 Gbps link 200 Gbps link

Figure 25: AmLight network topology [222].

(Argentina), Santiago (Chile), Panama City (Panama),
Sagano (Angola), and Cape Town (South Africa). The
goal of interconnecting these locations is to enable large
data transfers (up to 600Gbps of upstream aggregate
capacity). AmLight aims to isolate and detect faults and
performance degradation of data transfers in long-haul
networks with high latency.

AmLight deployed a geographical SDN/OpenFlow
network that implements slicing, allowing isolated
parallel testbeds in a production network [223]. The
testbed provides sub-second network monitoring and
performance evaluation by providing per-packet teleme-
try. This feature offers deeper visibility of network
events to optimize resource utilization and to provide an
additional security layer [224]. Measurements obtained
from the production environment shows that AmLight
can generate telemetry report and notify the network
orchestrator in less than 200ms. Moreover, it can
process 2,000,000 telemetry reports per second, enabling
microburst detection, buffer utilization profiling, per-
packet tracing, hash mismatches, packet jitter, and other
network issues. More recently, AmLight announced its
integration with FABRIC through a 100 Gbps dedicated
link between the data center at Florida International
University (FIU), and the Atlanta core node [225]. Am-
Light also integrates with ESnet and Internet2 research
facilities. Cevik et al. [226] proposed a wide-are SDN
controller prototype tested in AmLight. The system
primarily focuses on enhancing software functions and
configuration, creating a high-fidelity testing pipeline to
add realism to the testbed, and establishing a continuous
integration and deployment (CI/CD) environment. The
authors reported that the proposed system increases
software quality and development efficiency. This
outcome can facilitate a more reliable migration to a
production network deployment.

7.3.3. Entropy-based IDS

Crichigno et al. [67] presented a testbed to analyze
anomalies in the traffic traversing a campus network. The
testbed characterizes the Shannon entropy [227] on a per-
flow basis to derive when an anomaly occurs. The testbed
measured small/medium-sized flows traversing a campus
network, focusing on the entropies of flow elements such
as external IP address, external port, campus IP address,
and campus port. The entropy indicates the random-

37

Flow
collector

Flow info. exported
by border router

Campus
network

Internet

NAT &
Firewall

Border router
(metering)

Figure 26: Topology used to characterize the flow entropy in a
NATed network [67].

ness of a data set. The more random the data, the more
entropy it contains. Their findings show that entropies
widely vary in the course of a day. Therefore, the au-
thors sustained that these variations can indicate anoma-
lies in the network, which can be identified as attacks.
Figure 26 shows the testbed architecture. The border
router connects the campus network to the Internet Ser-
vice Provider (ISP) / Internet. The NAT device trans-
lates private IP addresses to a single public IP address
(campus IP). The campus network connects 15 buildings
and different departments in a campus network. There
are approximately 250 faculty/staff members, 1,500 stu-
dents, 20 general-purpose computer laboratories, and fac-
ulty and staff offices. Many students access the Internet
via WiFi using personal devices.

Results show that on a typical weekday, the external
and campus ports’ entropies may vary widely from below
0.2 to above 0.8 (considering a normalized entropy scale
of 0-1). Similarly, the entropy of the campus IP address
may vary from 0.1 to 0.4. Despite the wide range of val-
ues, findings indicate that building a granular (small time
slots) entropy characterization of flow elements facilitates
anomaly detection. Measurements show that specific at-
tacks produce entropies that deviate from the expected
patterns. They also show that the entropy of the 3-tuple
{external IP, campus IP, campus port} is high and con-
sistent over time, resembling the entropy of a uniform
distribution variable. A deviation from this pattern is an
encouraging anomaly indicator.

7.3.4. Comparison, Discussion, and Limitations

Testing research ideas in production networks reduces
the prototype and the end product gap. With production
networks, experimenters can know more realistically how
their implementation can perform, detect limitations in
the early stages, and apply the corrections. Examples
of this methodology were demonstrated by Michel et al.
[228], where they observed the performance of the Zoom
videoconferencing application on a production network.
The authors used the resources provided by P4Campus to
analyze the packet traces of Zoom sessions. They found
that although Zoom uses a proprietary protocol to en-
crypt packets, there are relevant unencrypted fields that
can be used to group streams into meetings and iden-
tify peer-to-peer meetings. Additionally, they used the
header fields to compute metrics such as media bit rates,
frame rates, latency, and jitter. Similarly, Bai et al. [229]
passively fingerprinted OSes using P4Campus. The mo-
tivation of this work is to inform network administrators
about OS-specific vulnerabilities and administer security
policies. Similarly, Kim et al. [230] proposed Meta4,
a system a provides human-readable domain names to
measure traffic, limit the rate, and identify IoT devices.

The authors used P4Campus to collect the traces in an
operational network.

7.4. On-demand Testbeds

This category describes the network emulators that
combine container-based emulation, full virtualization,
and network link emulation with real hardware to repro-
duce a hybrid environment. Using real hardware with
VMs enhances the platforms’ realism and facilitates cre-
ating and modifying network topologies efficiently. Net-
work testbeds can be quickly and easily provisioned or
set up to meet the needs of researchers or developers.
These testbeds typically leverage virtualization and cloud
computing technologies to enable researchers to access
a wide range of networking resources, including routers,
switches, servers, and storage, as well as various network
topologies and configurations. These testbeds can also
integrate VMs with real hardware to increase the real-
ism of the experimentation testbed. On-demand testbeds
are designed to provide researchers with greater flexibil-
ity and control over their experiments, allowing them to
reserve predefined environments that meet their specific
needs. This can be especially useful for researchers who
need to consistently access the same pool of resources.

7.4.1. FABRIC

FABRIC (Adaptive Programmable Research Infras-
tructure for Computer Science and Science Applications)
is a novel research infrastructure aimed to support large-
scale research in networking, distributed computing, ma-
chine learning, and science applications [68]. Its main
goal is to provide an experimentation testbed to explore
methods and techniques to overcome the current architec-
tural limitations of the Internet. One of these limitations
is produced by the middleboxes in the network, which
breaks the Internet architectural principles and compli-
cates the process of troubleshooting connection problems
and testing novel ideas. FABRIC will remove these lim-
itations to allow researchers to study and prototype dis-
tributed architectures and applications. Moreover, FAB-
RIC integrates existing testbeds such as GENI, Cloud-
Lab, and the Chameleon Cloud, with the possibility of
expanding to more testbeds across borders.

The FABRIC architecture consists of distributed re-
sources along national labs, campuses, and commercial
collocation spaces. Each FABRIC site provides a large
amount of computing (i.e., CPUs, GPUs, and FPGAs)
and storage, interconnected by high-speed, dedicated op-
tical links. Additionally, FABRIC integrates specialized
testbeds in areas such as 5G, IoT, and cloud computing
to create a rich environment for a wide range of experi-
ments. Figure 27 shows the FABRIC core topology in the
United States that comprises the following components:

• A Terabit network and several 100 Gbps links cover-
ing coast to coast. These sites incorporate FABRIC
nodes interconnected by fiber links and collocation
spaces from several organizations.

• Programmable edge nodes hosted on university
campuses connected through regional network
providers.

38

San Diego

Dallas

Atlanta

Seattle

Salt Lake City

Kansas City

StarLight

Washington

New York

CloudLab &
POWDER

LBNL

SRI

UCSD

LEARN

TAAC

TAAC &
Chameleon

Chameleon

NCSA

IU

UKY

UMichGPN

Utah

ClemsonGaTech

CloudLab

FIU & AMAPATH

RENCI

MAX

PSC

Rutgers

COSMOS

Princeton
UMass

MGHPCC

FABRIC Node Facility 100G Core Terabit Core

To Asia

To South America

To Europe

Internet2
AWS
GCP

MS Azure

Internet2
AWS
GCP

MS Azure

Internet2
AWS
GCP

MS Azure

Internet2
AWS
GCP

MS Azure

Figure 27: FABRIC core topology.

• A set of cyber resources provided by the community.
These sites will connect to FABRIC nodes via an
external link.

FABRIC nodes are interconnected via isolated opti-
cal links to guarantee predictable performance to experi-
menters. This characteristic will separate the production
network from the FABRIC network. Therefore, an ex-
perimenter using FABRIC has access to a wide variety
of public cloud platforms, computing centers, and scien-
tific instruments. Moreover, an experimenter can con-
nect custom hardware to a FABRIC node. Table 7 sum-
marizes current organizations participating in FABRIC,
their roles, and the type of experiments they support.

Experiments in FABRIC are conducted in a
reservation-based portal. This portal provides the
experimenter with the tools to reserve resources in the
platform [231]. Experiments in FABRIC are described
using JupyterHub notebooks [232] and, more recently a
GUI that permits creating topologies by dragging and
dropping components into a slice. In the context of the
FABRIC testbed, a slice refers to the set of resources re-
served for an experiment. The slice isolates the resources
and performance from other slices to ensure reproducible
experiments. A slice belongs to a single experiment that
can be shared with multiple users. Experimenters can
add resources to a slice depending on their availability
and remove them in case they are not being used.

Figure 28 shows the components of a FABRIC node,
which consists of programmable network elements (i.e.,
P4-programmable data planes, programmable NICs, and
NetFPGAs), CPUs, GPUs, and different storage devices.
A node can also support user-provisionable devices to
integrate a wide variety of technology solutions and
scientific instruments. A FABRIC node comprises a
rack of high-performance servers (Dell 7525 [233]), pro-
grammable network interface cards, and kernel bypass
technologies. The kernel bypass is performed by VMs
and containers that support full-rate Data Plane Devel-
opment Kits (DPDK) to access directly programmable
NICs, FPGAs, and GPUs via PCI pass-through [234].

A FABRIC node has a GPS-disciplined clock at most
of the sites, which allows experimenters to conduct ac-
curate measurement experiments. This capability can
be complemented with packet sampling and timestamp-
ing features available in the programmable NIC. Other
capabilities of a FABRIC node include programmable
port mirroring, smart Power Distribution Units (PDUs)
to measure energy consumption, optical layer measure-
ments, and monitoring tools to observe CPU, memory,
and disk consumption as a function of time.

P4 or BYOE Switch

Data Plane Switch

SSDSSD SSDSSD

Smart NICs FPGAs

GPUs

Head Node & Storage Server

Worker Servers

Storage

Management Switch Administrative Domain

User-provisionable

Local FABRIC Node

Remote FABRIC Node

To local resources and other
testbeds

Figure 28: FABRIC Node (“Hank”). The node integrates compute
(i.e., GPUs, CPUs, and FPGAs) and storage (i.e., SSDs and storage
servers) into the path of fast packet flows.

39

Table 7: Facilities participating in FABRIC.

Organization Role
Type of
Experiments

The Texas Advanced
Computing Center
(TACC) [240]

• FABRIC node
• Computing

facilities
• Private

clouds

• Data analytics
• Cybersecurity
• Artificial intelligence
• Software and

applications

National Center for
Supercomputing
Applications
(NCSA) [241]

• FABRIC node
• Computing

facilities

• HPC
• Machine learning
• Artificial intelligence
• Cloud computing
• Elastic Storage

Lawrence Berkeley
National Laboratory
(LBNL) [242]

• FABRIC node
• Computing

facilities
• Science

instruments

• High-speed networks
• Cloud computing
• SDN
• Deep learning
• Physics
• Climate change

San Diego,
Supercomputer
Center
(SDSC) [243]

• FABRIC node
• Computing

facilities

• Engineering
• HPC
• Big data
• Cloud Computing
• High-speed

networks

CloudLab [10]
• FABRIC node
• Computing

facilities

• Cloud Computing
• SDN
• Software and

applications

Chameleon [69]
• FABRIC node
• Computing

facilities

• Cloud Computing
• SDN
• Programmable

data planes
• Software and

applications

Platform for Open Wireless
Data-driven Experimental
(POWDER) [244]

• Research
facility

• Wireless Networks
• SDN
• 5G
• RF monitoring

Aerial Experimentation and
Research for Advanced
Wireless (AERPAW) [245]

• Research
facility

• Aerial
experimentation

• 5G
• Wireless

networks

PEERING [246]
• FABRIC node
• Computing

facilities
• Routing protocols

7.4.2. Chameleon

Chameleon [69] is a testbed system that supports
high-performance hardware to run computer science
experiments. The testbed is designed to be deeply re-
configurable by providing a wide range of capabilities for
networking, distributed, and cybersecurity experiments.
It also aims to reduce the entry barrier for experimenters
by offering a user-friendly interface. Its user interface
is based on OpenStack, which is an open-source cloud
technology that proved to be practical for users and
operators [38]. Chameleon gives experimenters access to
hardware resources that support deep reconfigurability,
orchestration, scalability, and isolation. Since its creation
in 2015, Chameleon has supported numerous projects
facilitating a broad set of experiment setups, data collec-
tion, and reproducibility. The experimentation testbed
supports big data applications, Internet of Things (IoT),
Software-defined Network (SDN) protocols, machine
learning, and other distributed computing applications
[235–239]. Chameleon also has the ability to connect
ad hoc testbeds to larger pools of shared resources
(e.g., data centers) so that experimenters can extend
the capabilities of their local testbeds. The Chameleon
testbed comprises two sites: one at the University of
Chicago (UC) and the other at the Texas Advanced
Computing Center (TACC). The goal of its hardware
design is to balance scale and diversity so that the
testbed can support HPC and Big Data experiments.

Experiments in Chameleon are specified using a GUI
or a JupyterHub notebook, which makes it easier to share
and reproduce experiments. An experimenter creates an
account in Chameleon to have access to the environment.
This process consists of signing up through an affiliated
institution or through a Principal Investigator (PI) who
is responsible for managing a project. The requirements
to be eligible as a project PI are specified in [247]. After
completing the signup process, an experimenter has ac-
cess to his/her Chameleon profile, webinars, and shared
community resources. Then, the user interacts with the
testbed resources by creating a project. Once the ex-
perimenter participates in a project, he or she can re-
serve resources that are available in the Chameleon In-
frastructure at TAAC (CHI@TACC) or Chameleon In-
frastructure at the University of Chicago (CHI@UC). A
dashboard displays an overview of the available resources.
Based on that information, the experimenter can reserve
a node that runs on a bare metal server. The user can
specify the reservation period, which can last from one
day to up to seven days. Longer reservations are subject
to the organization’s approval [248]. Once the node is
reserved, the experimenter can launch an instance. An
instance in the Chameleon testbed is referred to as an
operating system running on a VM. This VM resides in
a bare metal hypervisor and brings all the functionalities
of the host Operating System (OS). The instance takes
a few minutes to launch. Afterward, the experimenter is
provided with the public and private Secure Shell (SSH)
keys to access the instance and run experiments. The
platform also provides access through a GUI that runs
on OpenStack [142], an open standard cloud computing
platform. The goal of this interface is to facilitate exper-
imenters grouping the set of resources used in the project
and taking snapshots of the VM states. A snapshot saves
the current state of the virtual machine so that the experi-
menter can establish checkpoints to go back when testing
features that might or might not produce an expected
result[249].

The testbed facilities host twelve Haswell racks: two
at UC and ten at TACC. These racks are equipped with
computing and storage nodes interconnected using the
InfiniBand (IB) standard [196] to facilitate high-speed
communication between interconnected nodes. The facil-
ities also have deployed three SkyLake (two at UC, one
at TACC) racks and one CascadeLake rack at TACC.
These racks contain SDN-enabled switches connected to
100Gbps networks to support experiments involving large
flows. There are also smaller cluster nodes that sup-
port specialized experiments, including GPUs, FPGAs,
low-power CPUs (i.e., ARM-based CPUs), memory hi-
erarchy nodes, and arrays of solid and spinning stor-
age. Chameleon facilitates users to allocate and config-
ure based on the experiment’s requirements, such as the
model constraints, the node type, the resources available
at a specific node, on-demand reservations, and advance
reservations. The resources vary depending on the node
type, and configurations are supported at the bare-metal
level. The testbed also supports network stitching by
implementing the Bring Your Own Controller (BYOC)
abstraction, which enables attaching an external device
to the testbed. The latter feature enables deeply pro-
grammable and SDN experimentation [250].

40

Vmware ESXi
Hypervisor

Vmware
vCenter VM

NDG Netlab+
VM

Vmware ESXi
Hypervisor

Vmware
vCenter VM

NDG Netlab+
VM

Firewall Campus
Network

Remote
Users

NDG
Support

User Hosts Management
Hosts

Campus
Users

...
Vmware ESXi

Hypervisor

User VMs

Vmware ESXi
Hypervisor

User VMs

Server 1

Vmware ESXi
Hypervisor

User VMs

Server 1

Vmware ESXi
Hypervisor

User VMs

Vmware ESXi
Hypervisor

User VMs

Server 2

Vmware ESXi
Hypervisor

User VMs

Server 2

Server N

Figure 29: Netlab+ architecture deployed in a campus network
[252].

Chameleon provides fine-grained resource discovery
for experimentation. This feature allows identifying the
underlying hardware resources of a Chameleon node so
that the experimenter can request access, reserve the
node, and run experiments. Experimenters can consult
the registry of resources via the resource discovery web
interface or REST APIs [251]. This resource registry con-
tains the hardware catalog with its corresponding avail-
ability status. Hardware resources in the Chameleon
testbed include computing resources, InfiniBand support,
GPUs, Storage, Field-Programmable Gate Arrays (FP-
GAs), low-power CPU servers, and ARM-based CPUs.

7.4.3. Netlab+

Netlab+ [70] is a network virtualization platform
designed for educational, training, and experimentation
purposes. It allows students and instructors to create
and manage virtual networks, integrate hardware,
and reproduce various networking scenarios using a
web-based interface. Netlab+ integrates software and
hardware resources to enable remote access to VMs,
Docker containers, and real hardware. The platform
allows users to interact with real equipment such as
switches, routers, firewalls, and other appliances. The
platform is supported by the Network Development
Group (NDG) [163], a company that aims at training
Information Technology (IT) students through hands-on
experiences. The platform provides the elements to
administer user accounts, create courses, manage pods
and infrastructure, and develop content. Hardware and
software resources in Netlab+ are organized as pods,
a logical group of interconnected equipment that can
be reserved as isolated instances using the platform’s
scheduler. Netlab+ also provides advanced capabilities
such as network automation, virtual machine manage-
ment, and remote access, enabling students to develop
real-world skills in network administration, security,
and automation. With Netlab+, instructors can easily
create and deliver custom labs and assessments, monitor
student progress, and provide feedback and support.
Netlab+ is a powerful and flexible tool for network
education, training, and experimentation.

The Netlab+ platform is a virtual appliance that re-

Academic Cloud

a b

c

d H1 H2

Figure 30: Accessing the cloud system. (a) A learner enters the
system. (b) The learner reserves a virtual lab to conduct an exper-
iment. (c) The learner enters the lab, and a scenario is recreated.
The scenario consists of a pod of virtual devices. In this example,
the learner clicked on the “Tofino Switch” device, which opened a
window. (d) The learner operates the device via a CLI.

lies on VMware vSphere [164] to host VMs and interact
with real devices. The vSphere components used in Net-
lab+ are a bare-metal server, the VMware ESXi hyper-
visor [253], and the VMware VCenter [254], which is the
appliance that centrally coordinates the system’s com-
ponents. Figure 29 illustrates the basic Netlab+ archi-
tecture that can be deployed in the data center of an
academic institution. Netlab+ architecture consists of
several key components that work together to provide
a comprehensive network experimentation environment.
The main components of the Netlab+ architecture are a
central server, lab servers, client machines, a networking
infrastructure, and a database. The central server is the
heart of the Netlab+ system, responsible for managing
user accounts, course content, and lab assignments. It
also hosts the web interface and API that users access
to manage and interact with the virtualized network en-
vironments. Lab servers are dedicated virtual machines
that host virtualized network environments for students
to work on. Each lab server can host multiple virtual ma-
chines and can be configured to simulate different types
of network topologies, devices, and protocols. Client ma-
chines are the devices that students use to access the
virtual lab environment hosted on the lab servers. These
can be physical devices or virtual machines, and they
connect to the lab servers via a web browser or remote
desktop connection. The networking infrastructure is the
backbone of the virtualized lab environment, consisting of
virtual switches, routers, firewalls, and other devices that
simulate the behavior of a real-world network. Netlab+
uses advanced network virtualization technologies such as
VLANs and network address translation (NAT) to create
complex and realistic network topologies. Finally, the
Netlab+ system uses a database to store user account in-
formation, course content, lab assignments, and other rel-
evant data. The database is hosted on the central server
and can be backed up and restored as needed.

Netlab+ is a valuable platform for providing hands-
on training in several IT disciplines, such as network-
ing, cybersecurity, operating systems, network monitor-
ing, cloud computing, and virtualization. The company
also offers NDG Online, an on-demand solution where
institutions can enroll learners into the courses available
in the catalog [255] without deploying the whole infras-
tructure. Moreover, the platform allows the development
of custom pods that can be used to create scenarios to

41

Table 8: Description of the P4 Tofino labs.
Labs Description

Lab 1: Introduction to P4 and Tofino The focus of this lab is to show the general lifecycle of programming, compiling, and running a P4
program on the Tofino switch.

Lab 2: : Introduction to P4 Tofino
Software Development Environment

This lab describes the building blocks and the general structure of a P4 program corresponding to
Tofino Native Architecture (TNA). The lab also shows how to compile, run, and track packets as they
traverse the pipeline of the software switch (Tofino model).

Lab 3: Parser Implementation This lab starts by describing how to define custom headers in a P4 program. It then explains how to
implement a simple parser. The lab further shows how to track the parsing states of a packet inside
the Tofino model.

Lab 4: Introduction to Match-Action
Tables

This lab describes match-action tables and how to define them in a P4 program. It then explains the
different types of matching that can be performed. The lab further shows how to track the misses/hits
of a table key while a packet is processed in the Tofino model.

Lab 5: Populating and Managing
Match-Action Tables at Runtime

This lab describes how to communicate with the switch’s software interface (bfshell). Within bfshell,
the lab shows a python-based tool (bfrt python) used to program, manage, and populate the tables at
runtime.

Lab 6: Checksum Recalculation and
Packet Deparsing

This lab describes how to recompute the checksum of a header. The lab also describes how a P4 program
performs deparsing to recompose the modified headers with the payload.

Lab 7: Inspecting the Resource Us-
age in the Tofino Switch

This lab describes the process of fetching the resource usage of a compiled P4 program. The lab also
shows how the parser’s states and the control blocks’ tables are mapped to the hardware resources.

train students in specific topics. This feature also en-
ables scaling-up experiments, such as the one conducted
by Kfoury et al. [153]. In this paper, the authors created
a pod consisting of a VM running Mininet. They defined
the set of experiments to evaluate the performance of
the Bottleneck Bandwidth and Round-trip Time version
2 (BBRv2) congestion control algorithm. The authors
tested BBRv2 in several scenarios that measured the RTT
Unfairness [256], Flow Completion Time (FCT), and co-
existence with traditional congestion control algorithms
such as CUBIC [257]. The experimenters created scripts
to automate the tests. Then, they cloned the pod and ran
the experiments in parallel using many VMs. This exper-
imentation methodology aimed to aggregate the measure-
ment results produced by each pod to improve the tests’
accuracy. Organizing the pods in Netlab facilitated or-
chestrating large-scale tests, collecting the results, and
troubleshooting the experiments. Gomez et al. [154] ex-
tended the experiments using a similar experimentation
methodology in Netlab+ to evaluate the performance of
BBRv2. This paper focused on the coexistence with com-
peting flows as a function of time and the transient re-
sponse of BBRv2 in the presence of new incoming flows.
Similarly, Kfoury et al. [258] used Netlab+ as an inter-
face to manage the resource to conduct experiments to
test the impact of dynamically adjusting the buffer size
in the flow completion time. The proposed system used
passive taps to observe the traffic passing through a bot-

PC1

PC2

Dual-port 100GbE NVIDIA
Mellanox ConnectX 5

Tofino Switch
(Edgecore Wedge 100BF-32X)

Tofino Model
(Debian 10 Virtual Machine)

Virtual Ethernet Link
(up to 10Gbps)

100GbE Multi-Mode
Fiber (QSFP28)

Lubuntu 20.04 Virtual Machine
(8 vCPUs, 16 GB Memory)

Out-of-Band Link

PC1

Figure 31: The Tofino pod components. PC1, PC2, and the Tofino
model are VMs that communicate using virtual Ethernet links. The
Tofino switch supports an Intel Tofino ASIC and is connected to
PC1 and PC2 using a 100Gbps Ethernet link.

tleneck link and derive the buffer size by measuring the
RTT with a P4-programmable switch. Then, the system
dynamically computes this time to set the buffer size in a
legacy router. The prototype reported improvements in
the FCT of short flows sharing the bottleneck link.

Netlab+ supports the integration of VMs with real
hardware. This approach increases the flexibility of the
type of topologies that can be deployed in the platform.
The virtual labs on P4 developed at the University of
South Carolina are an example of this integration. These
labs integrate the Intel Tofino switch [259] to Netlab+
to instruct learners through hands-on lab activities. The
lab activities explain P4 and data plane concepts follow-
ing a step-by-step methodology. These labs introduce
the fundamentals of P4 with a hardware switch and pro-
vide an environment to test new ideas. Netlab+ pro-
vides the tools to deploy pods, schedule lab reservations,
and organize course content. Graduate students and re-
searchers at USC interact with the cloud system using
a web browser without installing additional software or
acquiring the hardware resources to run the virtual labs.

Table 8 lists the labs included in the P4 Tofino library.
The lab library contains seven hands-on activities intro-
ducing the fundamentals of P4. Labs 1 and 2 introduce
the learner to the Software Development Environment
(SDE) and the lifecycle of a P4 program. Labs 3 and
4 cover parser implementation and match-action tables.
Lab 5 shows how to populate match-action tables from
the control plane at runtime. Lab 6 explains how to per-
form the checksum calculation and define the deparser.
Finally, in lab 7, the learner inspects the resource usage of
a compiled P4 program to visualize how the parser states
and control blocks are mapped to the hardware resources.

Figure 31 shows the components of the Tofino pod.
These components include three VMs (i.e., PC1, PC2,
and Tofino model), an Intel Tofino switch, Network Inter-
face Controllers (NICs), physical links, and virtual links.
PC1 and PC2 can communicate through the Tofino model
or the Tofino switch. The Tofino model runs on a Linux
Debian 10 VM, and the Tofino switch is an Edgecore
Wedge 100BF-32X [260] that supports an Intel Tofino
ASIC [261]. The Tofino model has logging enabled, which
is unavailable in the hardware switch. This feature allows
tracking the packet as it traverses across the switch’s
pipeline, facilitating debugging and troubleshooting P4
programs.

Figure 30 summarizes the steps to access the P4

42

Table 9: Testbeds comparison.

Ref. Testbed Description Scale Purpose Education
Programmable
data planes

Integrates w/
other testbeds

Cost

[11] Emulab
Emulab is used to conduct scientifically
rigorous experiments with high fidelity,
repeatability, and measurement accuracy.

Medium General Supported
Not
supported.

No Free

[12] GENI
GENI is a distributed virtual laboratory
to run network science, services, and
security experiments.

Large General Supported Supported Yes Free

[61] StarBED

StarBED allows the experimentation
with L2 switch benchmarks, multicast
protocols, performance analysis, wireless
network emulation, mobile network
experimentation, overlay networks,
and experiments with real
traffic.

Medium General
Not
supported.

Not
supported.

Yes Free

[62] Grid’5000

Grid’5000 is a distributed, highly
reconfigurable testbed that aims at
large-scale computing experimentation.
Grid’5000 provides a scientific tool
for computer scientists similar to
the large-scale instruments used by
physicists, astronomers, and biologists.

Large General Supported
Not
supported.

No Free

[10] CloudLab

CloudLab is a testbed for computing
research that provides a large set of
computing, storage, and networking
resources.

Medium
Cloud
Computing

Supported
Not
supported.

No Free

[9] DETERLab

DETERLab is a public facility for
medium-scale experimentation
in cybersecurity. The platform
is also used for instructing
cybersecurity courses.

Medium Cybersecurity Supported
Not
supported.

No Free

[64] ScionLab

ScionLab is a global testbed supporting
experimentation in areas such as inter-
domain routing that includes path-
aware routing, routing policies,
and security policies against DDoS
attacks.

Medium Routing
Not
supported.

Not
supported.

Yes Free

[214] Colosseum

Colloseum allows large-scale wireless
experimentation. It provides
state-of-the-art equipment to
test novel wireless protocols.

Large Wireless
Not
supported.

Not
supported.

Yes Free

[65] P4Campus

P4Campus is a P4-based system that
allows network experimentation using
campus traffic. P4Campus facilitates
testing network research ideas on real
deployments so that researchers can run
experiments in their network.

Medium General
Not
supported.

Supported No Free

[66] AmLight

AmLight’s goal is to facilitate research
and education between the United States
and the nations of Latin America.
AmLight operates international network
links and connects research and
education networks using a
double-ring topology. The project’s
objectives are to improve operations
efficiency and provide network
programmability.

Large General Supported Supported Yes Free

[67]
Entropy-based
IDS

The testbed analyzes anomalies in the
traffic traversing a campus network
using the Shannon entropy.

Small IDS
Not
supported.

Not
supported.

No Free

[68] FABRIC

FABRIC is a novel research
infrastructure aimed to
support large-scale research in
networking, distributed computing,
machine learning, and science.
applications.

Large
Large-scale
testing

Not
supported.

Supported Yes Free

[69] Chameleon

Chameleon is a testbed for running
computing-intensive science experiments.
It provides a broad array of state-of-
the-art hardware to support deep
reconfigurability, and enables
experimentation at scale.

Medium General Supported Supported Yes Free

[70] Netlab+

Netlab+ is a system that integrates
software and hardware resources to
enable remote access to virtual
machines, docker containers, and
real hardware through a web browser.

< 100
Research &
Education

Low Supported Yes Paid

Tofino labs in the cloud system. A learner interacts
with the cloud system using a web browser to access
the system using a username and password. Then, the
learner selects a lab activity and schedules a reservation.
As a result, the lab scenario is recreated, and the
learner can access the devices presented in Figure 31.
Then, the learner operates the hardware switch using
the Command-line Interface (CLI) and the VMs via a

Graphical User Interface (GUI).

7.4.4. Comparison, Discussion, and Limitations

FABRIC is a network testbed designed to support
cutting-edge research in networking and distributed com-
puting. It aims to provide a programmable and highly
configurable platform for experimenting with new net-
work architectures and technologies. FABRIC focuses

43

on supporting advanced research in networking and dis-
tributed computing, offering researchers a flexible and
customizable platform for testing innovative ideas. FAB-
RIC’s availability might be limited to certain research
institutions or collaborations, affecting its accessibility
for researchers outside those partnerships. FABRIC fed-
erates many affiliated testbeds as described in Table 7,
enabling a wide range of experiments running nation-
wide scale [68]. However, FABRIC is not currently avail-
able in classrooms such as Emulab, DETERLab, GENI,
CloudLab, and Chameleon. This limitation can be due
to the early stages of the project and the purpose of
the testbed, which is to facilitate the development of
next-generation Internet applications and security coun-
termeasures. FABRIC aims to provide researchers access
to an everywhere-programmable infrastructure, includ-
ing computing, storage, and networking connected with
dedicated links. Moreover, fabric facilitates the creation
of complex topologies by providing the FABLib library
and JupyterHub environment to abstract network ser-
vices and simplify the design of experiments. Ruth et
al. [262] described the network service models available
in FABRIC that help to build network experiments at
a large scale. The network service models include layers
two and three services, Virtual Private Networks (VPNs),
port mirroring, and facility ports. These resources are lo-
cated in the core of the wide-area network and can be con-
nected using user-specified network services, which are
unavailable in current testbeds. To extend FABRIC’s ca-
pabilities, the testbed aims at integrating more testbeds
outside the United States, which is part of the FABRIC
Across Borders (FAB) [263] initiative. This extension
includes testbeds in Europe, Asia, and South America,
which aims to support collaboration in topics such as
smart cities, weather and climate prediction, high energy
physics, astronomy and cosmology, and computer science.

Chameleon is a cloud computing testbed that allows
researchers to create custom virtualized environments
for testing cloud-based applications and services. It
offers a wide range of hardware configurations and
software options. Chameleon’s strength lies in its
specialization for cloud computing experimentation, pro-
viding researchers with a platform to test and evaluate
cloud-based applications in a controlled environment.
Chameleon may have limitations in terms of network-
specific experiments or support for advanced networking
research, as it is primarily focused on cloud computing.
Chameleon users can benefit from the contribution of
a large development community and have the potential
to contribute back to that community [38]. Chameleon
also provides a suite of experimental digital resources
compatible with the testbed. These resources include
VM images, orchestration templates, and executable
templates enabled by Jupyter Notebooks [232]. The
latter capability enables sharing experiment templates
to help experimenters easily replicate and modify testing
scenarios. Cevik et al. [250] evaluated the limitations of
the Chameleon testbed regarding its networking capabil-
ities. The authors evaluated the testbed’s behavior in an
SDN context. Chameleon also provides up to 100Gbps
connections using isolated layer two circuits transiting
wide-area circuit providers, such as Internet2 AL2S [264]
and ESnet On-Demand Secure Circuits and Advance

Reservation System (OSCARS) [265]. This capability
allows connecting to programmable switch hardware
between Chameleon sites at the University of Chicago
and Texas Advanced Computing Center (TACC). It
also connects Chameleon hardware to other testbeds,
facilities, or a user’s home institution.

7.5. Summary and Lessons Learned

Network testbeds play a crucial role in advancing net-
working research and innovation by providing researchers
with platforms to conduct real-world experiments and
evaluate new technologies. Each testbed serves a specific
purpose or research focus. For example, CloudLab
specializes in cloud and edge computing experiments,
FABRIC focuses on networking and distributed com-
puting research, and P4Campus provides a platform for
making improvements on production networks using the
P4 language. These testbeds can also enable experi-
menters to use P4 programmable data planes to evaluate
cybersecurity applications that operate at line rate
[266]. AmLight facilitates high-performance networking
research between the United States, Latin America, and
Africa. Some testbeds, such as FABRIC and GENI, are
collaborative efforts among research institutions. This
highlights the importance of collaboration and sharing
resources in network research to promote knowledge
exchange and foster innovation. However, researchers
should consider the accessibility of these resources and
the approval process for gaining access to the testbeds.
Emulab and GENI support a wide range of network
experiments. On the other hand, specialized testbeds
like SCIONLab and Chameleon are tailored to specific
research areas. Researchers should balance their need for
specialized features with the broader experimentation
capabilities provided by versatile testbeds. Testbeds like
StarBED and Colosseum are designed for large-scale
experiments, providing realistic environments for eval-
uating network protocols under real-world conditions.
However, these testbeds may require more significant
hardware and infrastructure, which could pose challenges
for smaller research groups or institutions.

Table 9 compares the surveyed testbed considering
the scale, purpose, educational usage, data plane pro-
grammability, and integration. Most of the testbeds sup-
port medium to large-scale experimentation topologies.
This feature allows experimenters to reproduce realistic
results with a high chance of performing in real-world
scenarios. It is also observed that not all the testbeds
are compatible with existing network equipment, such as
P4 programmable data planes and other SDN devices.
Testing the coexistence between legacy and the new gen-
eration of network devices such as IoT, programmable
data planes, firewalls, and other network appliances can
enable the development of the next Internet architecture
[68].

8. Challenges and Future Works

This section summarizes the challenges, describes the
current initiatives, and proposes future works that can
address the limitations of the surveyed works. Figure
32 depicts the challenges and their corresponding future
works with references that focus on such limitations.

44

Developing a P4
simulation
framework

Optimizing the
resource allocation

Facilitating access
to P4 hardware

Enabling hands-on
learning with

network testbeds

Providing cost-
effective solutions

Increasing the
emulated link

speed

Federating
testbeds at a
global scale

Enhancing
collaboration

Developing a P4
simulation
framework

Optimizing the
resource allocation

Facilitating access
to P4 hardware

Enabling hands-on
learning with

network testbeds

Providing cost-
effective solutions

Increasing the
emulated link

speed

Federating
testbeds at a
global scale

Enhancing
collaboration

Incentive-based
management

Removing non-
technical barriers

On-demand
testbeds

Distributed
emulation

Expanding current
deployments

Shareable
experiment forums

Incentive-based
management

Removing non-
technical barriers

On-demand
testbeds

Distributed
emulation

Expanding current
deployments

Shareable
experiment forums

Challenges Future Trends

Network Simulators,
Emulators, and

Testbeds used for
Research and

Education
Challenges and
Future Trends

Network Simulators,
Emulators, and

Testbeds used for
Research and

Education
Challenges and
Future Trends

Simplified P4
models

Enhance
emulation tools

Developing the
next Internet
architecture

Large-scale
testbeds

[267]

[3, 268]

[57, 163, 165]

[269–271]

[38, 272]

[231, 273, 274]

[275, 276]

[263]

[12, 64, 68]

Figure 32: Challenges and future trends. The references represent
examples of existing works and initiatives that tackle the corre-
sponding future trends.

8.1. Developing a P4 simulation framework

Simulation models are scalable solutions that enable
testing event-based and time-based experiments. P4 pro-
grammable data planes emerged as a promising tech-
nology to develop novel and improve existing systems.
Developing a P4 simulation framework is a valuable en-
deavor for several reasons. Firstly, P4 is an increasingly
popular language used for programming network devices,
and having a simulation framework can help researchers
and educators better understand how P4-based networks
function and perform. By simulating network topologies
and traffic patterns, learners can gain practical experi-
ence in designing, testing, and evaluating P4 programs in
a controlled environment. Secondly, P4-based networks
are becoming more complex, with a variety of devices and
technologies involved. A simulation framework can help
learners explore and experiment with complex P4-based
networks without the need for expensive or specialized
hardware. This can save time and resources while en-
abling learners to gain hands-on experience in designing
and managing complex networks. Thirdly, a P4 simu-
lation framework can facilitate collaboration and knowl-
edge sharing among researchers and educators. By pro-
viding a common platform for simulating P4-based net-
works, learners can share code, data, and best practices,
enabling faster and more efficient learning and experi-
mentation. Finally, a P4 simulation framework can help
bridge the gap between theory and practice in network-

ing education. Learners can use the simulation frame-
work to test and validate concepts they have learned in
lectures and textbooks, gaining practical experience that
reinforces their understanding of networking principles
and technologies. Developing a P4 simulation framework
can benefit learners, researchers, and educators alike by
providing a valuable tool for exploring, experimenting,
and collaborating on P4-based networking projects.

Moreover, test event-driven models with P4, some-
thing that is currently unavailable. With P4 switches,
experimenters can efficiently use the resources available
in the device (e.g., CPU and memory) by only program-
ming the necessary features demanded by the applica-
tion. This feature can enable interesting research topics
that involve IoT devices, where analyzing the variables
such as performance, energy consumption, memory, and
CPU usage are metrics that the surveyed papers look to
improve.

Current and Future Initiatives. Fan et al. [267] pro-
posed ns-4, an ns-3 module for P4 programmable data
planes. Ns-4 is a P4-driven network simulator, the first
work in this field. The authors addressed issues such
as eliminating the learning curve that current P4 emu-
lators require, the portability issue that P4 experiences
when porting the code to real hardware, and the lack
of a reliable tool to validate systems developed using the
P4 language. The authors demonstrated the effectiveness
and convenience of NS4 by simulating a data center net-
work and comparing performance metrics with the one
obtained in Mininet. Future works should consider ex-
tending ns-4 and creating libraries that simulate different
types of P4-programmable data plane pipelines such as
the simple switch, V1Model [277], the Tofino Native Ar-
chitecture (TNA) [278], and others. This P4 simulation
model can reduce the time an experimenter spends set-
ting the environment and focus more on the data plane
behavior they want to describe with P4.

8.2. Enabling hands-on learning with network testbeds

Enabling hands-on learning network testbeds provides
an opportunity for students and researchers to gain prac-
tical experience in network design, configuration, and op-
eration. Hands-on learning is a powerful educational tool
that allows learners to engage with complex concepts
in a meaningful way and develop critical thinking and
problem-solving skills. By using network testbeds, stu-
dents can learn by doing, experimenting with real-world
scenarios, and applying theoretical knowledge to practical
situations. This approach to learning can also enhance
students’ ability to work collaboratively and communi-
cate effectively as they work together to design and con-
figure network topologies. In addition to benefiting stu-
dents, network testbeds can also be used by researchers
to develop and evaluate new networking technologies in
a controlled and repeatable environment. Ultimately,
enabling hands-on learning network testbeds can help
bridge the gap between theory and practice and prepare
students and researchers for the challenges of the rapidly-
evolving field of networking.

Teaching networking concepts strongly relies on a
suitable environment to help students apply the acquired
knowledge. Simulation tools such as Packet Tracer

45

are effective in systematically training IT professionals.
However, the proprietary nature, limited performance
realism, lack of customization, and the inability to run
actual code reduce the type of experiments the platform
can support. On the other hand, using testbeds to teach
networking courses is not flexible as they require having
an agreement with the testbed management. Moreover,
there is an overhead that the learner incurs when getting
started with network testbeds.

Current and Future Initiatives. There are some
efforts to solve most of these issues. Holterbach et al. [3]
developed an open platform to teach various components
of the Internet infrastructure works practically. The
platform is called the mini-Internet project [268] and
is used to teach networking. The platform enables
students to operate and interconnect their Autonomous
Systems (ASes), aiming at reproducing Internet-wide
connectivity. Each Autonomous System (AS) exchanges
routing information via Border Gateway Protocol (BGP)
via Internet eXchange Points (IXPs) maintained by
the instructors. The platform differs from traditional
teaching courses by turning students into operators so
that they can work on topics such as network design,
network configuration, network monitoring, and network
debugging. The mini-Internet project relies on open
networking tools such as Open vSwitches [37] and Free
Range Routing (FRR) [279] to provide L2 and L3
protocols (e.g., ARP, BGP, and, Open Shortest Path
First (OSPF)). Additionally, the system supports L2
Virtual Private Network (VPN) servers and provides a
connectivity matrix for the students to check if there
is connectivity among ASes. The system scales up to
60 ASes per server supporting around 100 students
considering that each group comprises 2-3 students. The
authors believe that by using the mini-Internet project,
students can have an early experience as operators and
learn how to avoid mistakes.

Although the mini-Internet project is a scalable
solution for networking courses, it relies on emulation,
which depends on the available resources (i.e., CPU
and memory) of the host. However, with the emergence
of next-generation testbeds such as FABRIC, learn-
ers can reproduce experimentation scenarios using a
script. This means that instead of manually configuring
network topologies and experimenting with different
configurations, learners can write scripts that automate
these tasks. This not only saves time and effort but
also enables learners to reproduce experiments more
accurately and consistently. By automating repetitive
tasks and enabling accurate and consistent reproduction
of experiments, scripts can help learners focus on the
design of experiments and the analysis of results, leading
to a more efficient and effective learning experience.

8.3. Providing cost-effective solutions

Creating a suite of open-source resources to teach
networking courses can be time-consuming and requires
a dedicated staff to manage updates, maintain the plat-
forms, and increase or reduce the number of resources
to fulfill the student demands. Moreover, the cost of
commercial-grade networking equipment leads to high
student-to-equipment ratios, which limits hands-on time

per student. In many parts of the world, these costs are
prohibitive, yet the skills are essential for the growth of
the local IT economy. Practical exposure to networking
improves skills and enhances knowledge retention.

Current and Future Initiatives. The Network Devel-
opment Group (NDG) [163] supports and maintains an
academic cloud [57, 165] that aims at training IT pro-
fessionals in various topics that include networking, P4-
programmable data planes, routing protocols, SDN, In-
trusion Detection System (IDS), monitoring tools, cloud
concepts, certification training, and others. The aca-
demic cloud inherits all the benefits of cloud technology,
such as saving deployment costs, offloading maintenance
tasks, paying only for the utilized resources, accessing the
resources from anywhere at any time, and other benefits.
Therefore, the NDG academic cloud is an efficient solu-
tion for institutions that cannot afford an on-premises
deployment and want to scale up the number of students
they serve. Moreover, the NDG academic cloud also can
integrate with real hardware to not only deliver train-
ing courses but giving experimenters access to equipment
that is not widely available.

8.4. Increasing the emulated link speed

Mininet is one of the most popular network emulators
that can reproduce SDN experiments and integrate with
more specialized devices by supporting Docker contain-
ers (i.e., Containernet). Many experimenters and stu-
dents use Mininet due to its simplicity. Mininet can
work directly on the experimenter’s laptop. Moreover,
its Python APIs provide simplicity and flexibility to re-
produce complex scenarios for basic tests quickly. How-
ever, Mininet was not designed for resource-intensive ex-
periments; one computer is insufficient to support large-
scale experiments and execute tasks properly. Heller [1]
measured the network invariants to demonstrate the lim-
its where experiments running on Mininet start differing
from what is obtained with real hardware. The author
created microbenchmarks to test the OS accuracy to em-
ulate the behavior of a link for both TCP and UDP flows.
Results show that the accuracy differs as the link rate ap-
proaches 1Gbps demonstrating that errors increase as the
system runs near the CPU limits. The author highlights
that the experiment fidelity decreases as CPU utilization
increases.

Current and Future Initiatives. Di Lena et al.
[269, 270] proposed Distrinet, a solution that distributes
Mininet into several nodes as a function of the experi-
ment’s load. The system was implemented in Amazon
Web Services (AWS) by orchestrating Elastic Cloud 2
(EC2) instances. Distrinet design supports intensive
computing and I/O experiments on various experimental
infrastructures. Distrinet determines the number of
machines that can provide realism to an experiment
and deploy them using an optimization technique. The
platform can transparently provide the resources, so
experimenters do not have to know the infrastructure
details. Rizzo et al. [271] proposed an optimized link
network emulator to deliver high performance with
realism. Results show that the proposed system achieves
high accuracy for links over 40 Gbps, which is higher than

46

the ones obtained with NetEm and Dummynet. Future
initiatives should also consider adding link scheduling
and classification features that operate at high-speed
links. Future initiatives should consider integrating
improved network link emulators with container-based
emulators. Although it is resource intensive to emulate
high-speed links with a single host, distributed solutions
can balance the overheads produced by the requirements
of container-based emulators.

8.5. Optimizing the resource allocation

The type of experiments supported by network
testbeds relies on the type and amount of resources
available in the testbed. A typical procedure in testbeds
allows users to describe the hardware they need. For
instance, commercial platforms such as Amazon Web
Services (AWS) and Microsoft Azure offer a variety of in-
stances that are sometimes vaguely described properties
(e.g., high I/O bandwidth). Research-oriented testbeds
allow experimenters to choose a specific hardware type
to guarantee consistency in the kind of resources they
provide and their capabilities. However, the number of
resources to conduct experiments is not always available.
If they are, these resources are usually underutilized [38].
Therefore, it is challenging for the experimenter and the
testbed administrator to balance the resource allocation
mechanism to utilize them better. The resource demand
usually fluctuates as a function of the research topics in
the research community’s interest.

Current and Future Initiatives.. Keahey et al.
[38, 272] evaluated usage and user experience in the
Chameleon testbed after five years of operations. They
considered how the testbed could support the broadest
possible set of experiments for the most extensive
possible collection of the experimenters to assess the
capabilities of the testbed. The authors pointed out
that when resources are limited, it is essential to balance
scale and support for a broad range of resources to
maximize the diversity in the experiments supported
by the platform. To derive this, the authors observed
the node availability against the percentage of time
that it was available. Starting from the overall time
since resource installation and during the busiest and
least busy months as measured by highest and least
utilization. Their observation noted that newly installed
hardware is usually the one that is less utilized at the
beginning. They also said that resources are busier
close to conferences deadlines or teaching/workshop
use. From these observations, the authors remarked
on the importance of adapting the type and amount of
resources to the community’s demands. This demand
changes based on the research interest, and it fluctuates
periodically.

8.6. Enhancing collaboration

There is no standardized procedure to define how
users will conduct testbed experiments. Each testbed
has its way of explaining how resources are accessed
and reserved and the way results are collected. Since
deploying a testbed consists of an incremental process,
the complexity grows as a function of the heterogeneity
of the supported hardware. Therefore, documenting and

maintaining appropriate documentation relies on limited
human resources. Mirkovic and Pusey [280] collected
and analyzed the user experiences on network testbeds
by surveying a representative amount of users. Their
findings show that testbeds have scarce human resources
to develop documentation or support users one-on-one.
Thus, there are limitations that new experimenters can
encounter when getting started on using testbeds. This
limitation can be worsened by user inexperience and user
support deficiencies, resulting in research or learning
obstacles.

Current and Future Initiatives. Current initiatives
include the FABRIC and Chameleon documentation,
and forum [231, 273]. The documentation provided
by this testbed shows the necessary steps new experi-
menters should follow to get started with the platform
and conduct experiments specific to the topic they want
to explore. Moreover, these platforms aim at building
a community by enabling users to post questions in
the community forum. Experimenters can share their
experiences and issues encountered using the platform in
this forum. The testbed operators are also part of the
discussions by addressing experimenters’ needs in the
form of a new release [274].

8.7. Facilitating access to P4 hardware

Current testbeds offer limited options regarding
P4-programmable data planes. In the FABRIC testbed,
the experimenter can use a virtualized version of a
P4-programmable switch (i.e., a BMv2 switch [281]),
which is mainly used for prototyping but lacks perfor-
mance realism under heavy loads. Hardware-based P4
programmable data planes are essential resources for
testing novel applications as they provide high perfor-
mance, making adopting them in production networks
attractive. However, there are barriers that testbed
developers face when planning to adopt hardware-based
P4-programmable data planes. A significant issue is the
manufacturers’ legal agreement to use their products.
This includes the inability to make the Software Devel-
opment Environment (SDE) available for experimenters
to compile and load a P4 program into a hardware
switch. Another limitation is the configuration overhead
that hardware-based P4 programmable data planes
carry. These devices come as white boxes that require
testbed developers to install a Network Operating
System (NOS), the SDE dependencies, and the SDE
itself. Therefore, this could be a cumbersome limitation
for a new entrant that incurs longer deployment times.
Lastly, the costs and availability of the devices can also
limit access to this technology.

Current and Future Initiatives. The FABRIC
testbed is currently planning to offer hardware-based
P4-programmable data planes in future releases [275].
Although the legal barrier is still a limitation, an
intermediate solution consists of making available the P4
devices for all experimenters and dividing them into two
groups. The first group will consist of experimenters that
can run precompiled P4 programs. The second group
will comprise the experimenters who fulfill the legal
requirements and can use the SDE for creating, compil-
ing, and running their P4 programs. Current initiatives

47

include works such as the one presented by Chung et al.
[276], where they proposed P4MT, a control mechanism
to enable multitenancy on a P4-programmable switch.
The goal of P4MT is to enhance collaboration among
institutions that possess P4-programmable switches.
Evaluations show that P4MT consumes small resources
and causes a negligible increment in data/control plane
latency. Future initiatives must take the necessary
action to remove the legal barriers so that the P4-based
hardware and software are aligned with the open-source
vision on which the language was founded.

8.8. Federating testbeds at a global scale

Conducting research with science workflows typically
require the federation of geographically distributed sci-
ence instruments and computing systems. These experi-
ments produce a large amount of data and demand com-
plex computation. Accessing these instruments also re-
quires several months to set up and continued coordina-
tion among multiple organizations to operate and main-
tain. Therefore, enabling high-speed access to these re-
sources is a challenge and an opportunity for testbed de-
velopers and the research community to enhance collab-
oration.

Current and Future Initiatives. FABRIC Across
Borders (FAB) [263] is an extension of the FABRIC
testbed connecting the core network in the North
American infrastructure to four nodes in Asia, Europe,
and South America. This initiative aims at creating the
networks needed to move large amounts of data across
oceans and time zones seamlessly and securely. The
project will enable international collaboration to support
federated research. FAB fulfills science needs in fields
that will form the foundations of the next generation of
Internet applications. It will offer the mechanisms to
handle and share massive amounts of data generated by
powerful new scientific instruments around the globe.
FAB’s use cases include smart cities, weather, physics,
space observation, and computer science.

8.9. Developing the next Internet architecture

The current Internet architecture comprises intrusive
middleboxes (e.g., firewalls, NAT, IDS, and others) that
violate the end-to-end principle of the IP architecture and
makes it difficult to diagnose problems for scientific re-
search. The science DMZ [13] was proposed as a solution
to overcome the barriers imposed by providers. The intro-
duction of P4-programmable data planes opened a new
horizon to experiment with more comprehensive network
monitoring applications [282] that can facilitate finding
the root cause of the problem. However, the science DMZ
architecture represents only a small portion of the current
Internet architecture which does not provide a realistic
environment for researchers to test large-scale distributed
applications. Therefore, there is a need for a large-scale,
friction-free environment to test advanced protocols and
novel distributed applications that involve handling mas-
sive data sets and having full visibility of the network
performance.

Current and Future Initiatives. Testbeds such as
ScionLab [64], GENI [12], and FABRIC [68] aim at
enabling a large environment to test the next Internet
architecture. These testbeds provide large storage,
compute resources, and programmability in the network
nodes, diverging from the current model where the end
nodes are the ones that perform the heavy computation.
They also provide the environment to test cybersecurity
applications not considered in the existing Internet
architecture. Adding programmability into the network
enables an efficient way to respond to security events
more rapidly and closer to their sources before the issue
escalates and affects the end users. Paradigms such as
path-aware networking and multipath communications
are promising approaches to address new security chal-
lenges to drive the development of the next generation
of applications.

9. Conclusion

This survey explored the network simulators, emula-
tors, and testbeds used for research and education. The
paper presents a taxonomy and summarizes works that
discuss the experimentation platforms for conducting re-
search and the tools employed in academia to deliver ed-
ucation on different computing areas. This survey aims
at providing an overview of the main features of the
surveyed experimentation platforms. With the informa-
tion presented in this survey, experimenters can gain in-
sights into selecting a platform aligned with their research
needs. The findings in this survey highlight that the ex-
perimentation platform selection depends on the type of
experiments, resource availability, and the realism the
platform provides.

10. Acknowledgement

This work was supported by the U.S. National Science
Foundation under grant number 2118311, funded by the
Office of Advanced Cyberinfrastructure (OAC).

Table 10: Abbreviations used in this survey.
Abbreviation Term

3GPP 3rd Generation Partnership Project
5G Fifth Generation

AODV Ad-hoc On-Demand Distance Vector
API Application Programming Interface
AQM Active Queue Management
ARP Address Resolution Protocol
AS Autonomous System

ASIC Application-specific Integrated Circuit
ATA Advanced Technology Attachment
AWS Amazon Web Services
BBR Bottleneck Bandwidth and Round-trip Time
BGP Border Gateway Protocol
BMv2 Behavioral Model Version 2
BYOD Bring Your Own Device
CBWFQ Class-Based Weighted Fair Queuing

CLI Command-line Interface
CML Cisco Modeling Labs
CN Core Networks

CoAP Constrained Application Protocol
CPU Central Processing Unit
DAG Directed Acyclic Graph
DASH Dynamic Adaptive Streaming over HTTP
DMA Direct Memory Access
DMZ Demilitarized Zone

48

Abbreviation Term

DNS Domain Name Server
DOE Department of Energy
DPDK Data Plane Development Kit
DRAM Dynamic Random-Access Memory
DYMO Dynamic MANET on-demand Routing Protocol
EC2 Elastic Cloud 2
EPC Evolved Packet Core
FIFO First-In First-Out
FPGA Field-Programmable Gate Array

FQ-CoDel Fair Queueing Controlled Delay
FRR Free Range Routing
GCP Google Compute Platform
GPU Graphics Processing Unit
HDS HTTP Dynamic Streaming
HLS HTTPS Live Streaming
ICMP Internet Control Message Protocol
ICS Industrial Control System
IDS Intrusion Detection System
IERP Interzone Routing Protocol
IETF Internet Engineering Task Force
INT In-band Network Telemetry
IoT Internet of Things
IP Internet Protocol
ISD Isolation Domains
ISP Internet Service Provider
JiST Java in Simulation Time
MFA Multi-Factor Authentication
MPEG Moving Picture Experts Group
MQTT Message Queueing Telemetry Transport
LLQ Low Latency Queuing
LTE Long Term Evolution

MANET Ad Hoc Networks
MSS Maximum Segment Size
MTU Maximum Transmission Unit
NACK Negative Acknowledgement
NetEm Network Emulator

NetFPGA Network Field Programmable Gate Array
NF Network Functions
NFC Near Field Communication
NFV Network Functions Virtualization
NGC Next-Generation Core
NIC Network Interface Controller
NOS Network Operating System
NPU Network Processing Unit
NSF National Science Foundation
OAI OpenAirInterface
OAC Office of Advanced Cyberinfrastructure
OLSR Optimized Link State Routing Protocol
OS Operating System

OTCL Object-oriented
OVA Open Virtual Appliance
OVS Open Virtual Switch
P4 Programming Protocol-independent Packet Processors

PDC Parallel and Distributed Computing
PI Principal Investigator
PIE Proportional-Integral controller Enhanced

PMEM Persistent Memory
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network

RDMA Remote Direct Memory Access
R&E Research and Education
RoCE RDMA over Converged Ethernet
RF Radio Frequency
RFC Request For Comments
RTT Round-Trip Time
SCSI Small Computer System Interface
SDE Software Development Environment
SDN Software-Defined Networking
SFC Service Function Chains
SLA Service Level Agreement

SRAM Static Random-access Memory
SR-IOV Single-Root Input/Output Virtualization
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TBF Token Bucket Filter

TCAM Ternary Content Addressable Memory
TLS Transport Layer Security
ToR Top of Rack
UDP User Datagram Protcol

VANET Vehicular Ad-hoc Network
VPN Virtual Private Network
VSA Vector Symbolic Architecture
VIRL Virtual Internet Routing Lab
WAN Wide Area Network
WFQ Weighted Fair Queuing
WSN Wireless Sensor Network

References

[1] H. Brandon, Reproducible network research with high-fidelity
emulation. Stanford University, 2013.

[2] M. Prvan and J. Ožegović, “Methods in teaching computer
networks: a literature review,” ACM Transactions on Com-
puting Education (TOCE), 2020.

[3] T. Holterbach, T. Bühler, T. Rellstab, and L. Vanbever, “An
open platform to teach how the Internet practically works,”
ACM SIGCOMM Computer Communication Review.

[4] R. Birkner, Improving Network Understanding. PhD thesis,
ETH Zurich, 2021.

[5] Bussiness Insider, “Amazon’s one hour of downtime on Prime
Day may have cost it up to $100 million in lost sales.” [On-
line]. Available: https://tinyurl.com/3vy789hk, Accessed
on 06-12-2022.

[6] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Sa-
tria, J. Adityatama, and K. J. Eliazar, “Why does the cloud
stop computing? lessons from hundreds of service outages,”
in Proceedings of the Seventh ACM Symposium on Cloud
Computing, 2016.

[7] T. Tsvetanov and S. Slaria, “The effect of the Colonial
Pipeline shutdown on gasoline prices,” Economics Letters,
2021.

[8] S. Rampfl, “Network simulation and its limitations,” in Pro-
ceeding zum seminar future internet (FI), Innovative Inter-
net Technologien und Mobilkommunikation (IITM) und au-
tonomous communication networks (ACN), 2013.

[9] T. D. Project, “DETERLAB.” [Online]. Available: https:

//deter-project.org/about_deterlab, Accessed on 03-21-
2022.

[10] R. Ricci, E. Eide, and C. Team, “Introducing CloudLab: Sci-
entific infrastructure for advancing cloud architectures and
applications,” The magazine of USENIX & SAGE, 2014.

[11] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An inte-
grated experimental environment for distributed systems and
networks,” ACM SIGOPS Operating Systems Review, 2002.

[12] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott,
D. Raychaudhuri, R. Ricci, and I. Seskar, “GENI: A feder-
ated testbed for innovative network experiments,” Computer
Networks, 2014.

[13] J. Crichigno, E. Bou-Harb, and N. Ghani, “A comprehensive
tutorial on science DMZ,” IEEE Communications Surveys &
Tutorials, 2018.

[14] T. Huang, F. R. Yu, C. Zhang, J. Liu, J. Zhang, and Y. Liu,
“A survey on large-scale software defined networking (sdn)
testbeds: Approaches and challenges,” IEEE Communica-
tions Surveys & Tutorials, 2016.

[15] P.-W. Tsai, F. Piccialli, C.-W. Tsai, M.-Y. Luo, and C.-S.
Yang, “Control frameworks in network emulation testbeds:
A survey,” Journal of Computational Science.

[16] N. Chouliaras, G. Kittes, I. Kantzavelou, L. Maglaras,
G. Pantziou, and M. A. Ferrag, “Cyber ranges and testbeds
for education, training, and research,” Applied Sciences,
2021.

[17] L. Nussbaum, “Testbeds support for reproducible research,”
in Proceedings of the reproducibility workshop, 2017.

[18] M. Bakni, Y. Cardinale, and L. Moreno, “Experiences on
evaluating network simulators: A methodological approach,”
journal of communications, 2019.

[19] A. R. Khan, S. M. Bilal, and M. Othman, “A performance
comparison of open source network simulators for wireless
networks,” in 2012 IEEE international conference on control
system, computing and engineering, 2012.

[20] L. Nussbaum and O. Richard, “A comparative study of net-
work link emulators,” in Communications and Networking
Simulation Symposium (CNS’09), 2009.

[21] E. Lochin, T. Perennou, and L. Dairaine, “When should i use
network emulation?,” annals of telecommunications-annales
des télécommunications, 2012.

[22] B. Martini, M. Gharbaoui, D. Adami, P. Castoldi, and
S. Giordano, “Experimenting SDN and cloud orchestration
in virtualized testing facilities: performance results and com-
parison,” IEEE Transactions on Network and Service Man-
agement, 2019.

[23] T. Issariyakul and E. Hossain, “Introduction to network sim-
ulator 2 (NS2),” in Introduction to network simulator NS2,
2009.

[24] The Defense Advanced Research Projects Agency (DARPA),
“The network simulator - ns-2.” [Online]. Available: https:

//www.isi.edu/nsnam/ns/, Accessed on 01-17-2022.
[25] Cisco Network Academy, “Packet tracer.” [Online]. Avail-

49

https://tinyurl.com/3vy789hk
https://deter-project.org/about_deterlab
https://deter-project.org/about_deterlab
https://www.isi.edu/nsnam/ns/
https://www.isi.edu/nsnam/ns/

able: https://www.netacad.com/courses/packet-tracer,
Accessed on 01-17-2022.

[26] Tom Henderson, George Riley, Sally Floyd, and Sumit Roy,
“ns3 - network simulator.” [Online]. Available: https://www.
nsnam.org/, Accessed on 01-17-2022.

[27] Galaxy Technologies, LLC, “Graphical network simulator
(GNS3).” [Online]. Available: https://www.gns3.com/, Ac-
cessed on 01-17-2022.

[28] Pranav Viswanathan and Shashikant Suman, “Netsim: Net-
work simulator.” [Online]. Available: https://www.tetcos.

com/index.html#, Accessed on 01-17-2022.
[29] Riverbed, “Opnet modeler: Optimized network en-

gineering tools riverbed modeler.” [Online]. Avail-
able: https://www.riverbed.com/en-gb/products/

network-performance-management.html, Accessed on
01-17-2022.

[30] J. Crichigno, N. Ghani, J. Khoury, W. Shu, M. Wu, “Dy-
namic routing optimization in WDM networks,” in Proceed-
ings of the 2010 IEEE 2010 IEEE Global Telecommunica-
tions Conference (GLOBECOM), 2010.

[31] J. Crichigno, W. Shu, M. Wu, “Throughput optimization
and traffic engineering in wdm networks considering multi-
ple metrics,” in Proceedings of the 2010 IEEE International
Conference on Communications (ICC), 2010.

[32] S. C. Ergen, “ZigBee/IEEE 802.15. 4 summary,” UC Berke-
ley, September, 2004.

[33] Z-Wave Alliance, “Z-Wave.” [Online]. Available: https://

www.z-wave.com/, Accessed on 09-26-2022.
[34] Square Inc., “Near Field Communication (NFC).” [Online].

Available: http://nearfieldcommunication.org/, Accessed
on 09-26-2022.

[35] Z. Lu and H. Yang, Unlocking the power of OPNET modeler.
Cambridge University Press, 2012.

[36] VMware, “Understanding full virtualization, paravirtualiza-
tion, and hardware assist.” [Online]. Available: https:

//tinyurl.com/FSVirtualization, Accessed on 01-17-2022.
[37] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Ra-

jahalme, J. Gross, A. Wang, J. Stringer, P. Shelar, et al.,
“The design and implementation of open vswitch,” in 12th
USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI15), 2015.

[38] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth,
D. Stanzione, M. Cevik, J. Colleran, H. S. Gunawi, C. Ham-
mock, et al., “Lessons learned from the chameleon testbed,”
in 2020 USENIX Annual Technical Conference, 2020.

[39] M. Stoller, R. Hibler, L. Ricci, J. Duerig, S. Guruprasad,
T. Stack, K. Webb, and J. Lepreau, “Large-scale virtual-
ization in the emulab network testbed,” in USENIX annual
technical conference, Boston, MA, 2008.

[40] A. Varga and R. Hornig, “An overview of the OMNeT++
simulation environment,” in Proceedings of the 1st interna-
tional conference on Simulation tools and techniques for com-
munications, networks and systems & workshops, 2008.

[41] OpenSim Limited, “Omnet++.” [Online]. Available: https:
//omnetpp.org/, Accessed on 07-07-2022.

[42] X. Chang, “Network simulations with OPNET,”
in WSC’99. 1999 Winter Simulation Conference
Proceedings.’Simulation-A Bridge to the Future’(Cat.
No. 99CH37038), 1999.

[43] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a library
for parallel simulation of large-scale wireless networks,” in
Proceedings. Twelfth Workshop on Parallel and Distributed
Simulation PADS’98 (Cat. No. 98TB100233), 1998.

[44] Scalable Network Technologies, “Qualnet network simula-
tion software.” [Online]. Available: https://tinyurl.com/

musb5xyy, Accessed on 07-21-2022.
[45] F. Österlind, A sensor network simulator for the Contiki OS.

Swedish Institute of Computer Science, 2006.
[46] Cisco Networking Academy, “Cisco packet tracer.” [Online].

Available: https://tinyurl.com/468bdvxv, Accessed on 07-
21-2022.

[47] B. Lantz, B. Heller, and N. McKeown, “A network in a
laptop: rapid prototyping for software-defined networks,” in
Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, pp. 1–6, 2010.

[48] M. Peuster, J. Kampmeyer, and H. Karl, “Containernet
2.0: A rapid prototyping platform for hybrid service func-
tion chains,” in 2018 4th IEEE Conference on Network Soft-
warization and Workshops (NetSoft), 2018.

[49] L. Veltri, L. Davoli, R. Pecori, A. Vannucci, and F. Zanichelli,
“NEMO: A flexible and highly scalable network EMulatOr,”
SoftwareX, 2019.

[50] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim,
“CORE: A real-time network emulator,” in MILCOM 2008-
2008 IEEE Military Communications Conference, 2008.

[51] Cisco, “Cisco modeling labs 1.0 user guide.” [Online]. Avail-
able: https://tinyurl.com/538drxkm, Accessed on 10-06-
2022.

[52] Z. Puljiz and M. Mikuc, “IMUNES based distributed network
emulator,” in 2006 International Conference on Software in
Telecommunications and Computer Networks, 2006.

[53] W. Du, “SEED: hands-on lab exercises for computer security
education,” IEEE Security & Privacy, 2011.

[54] S. Hemminger et al., “Network emulation with NetEm,” in
Linux conf au, 2005.

[55] L. Rizzo, “Dummynet: a simple approach to the evaluation
of network protocols,” ACM SIGCOMM Computer Commu-
nication Review, 1997.

[56] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Win-
stein, J. Mickens, and H. Balakrishnan, “Mahimahi: Accu-
rate record-and-replay for HTTP,” in Usenix annual techni-
cal conference, 2015.

[57] J. Crichigno, E. Kfoury, K. Caudle, and P. Crump, “A dis-
tributed academic cloud and virtual laboratories for informa-
tion technology education and research,” in 2021 44th In-
ternational Conference on Telecommunications and Signal
Processing (TSP), 2021.

[58] Amazon, “Amazon Web Services (AWS).” [Online]. Avail-
able: https://aws.amazon.com/, Accessed on 04-13-2023.

[59] Google, “Google Computing Engine (GCE).” [Online]. Avail-
able: https://tinyurl.com/3juuyb9z, Accessed on 04-13-
2023.

[60] Microsoft, “Microsoft Azure.” [Online]. Available: https:

//tinyurl.com/2p8j9yvr, Accessed on 04-13-2023.
[61] T. Miyachi, K.-i. Chinen, and Y. Shinoda, “StarBED and

SpringOS: Large-scale general purpose network testbed and
supporting software,” in Proceedings of the 1st international
conference on Performance evaluation methodologies and
tools, 2006.

[62] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez,
E. Jeannot, Y. Jégou, S. Lanteri, J. Leduc, N. Melab, et al.,
“Grid’5000: A large scale and highly reconfigurable experi-
mental grid testbed,” The International Journal of High Per-
formance Computing Applications, 2006.

[63] GÉANT, “Router for Academia Research and Education
(RARE).” [Online]. Available: https://tinyurl.com/

jkx764cb, Accessed on 10-17-2022.
[64] J. Kwon, J. A. Garćıa-Pardo, M. Legner, F. Wirz, M. Frei,

D. Hausheer, and A. Perrig, “Scionlab: A next-generation in-
ternet testbed,” in 2020 IEEE 28th International Conference
on Network Protocols (ICNP), 2020.

[65] H. Kim, X. Chen, J. Brassil, and J. Rexford, “Experience-
driven research on programmable networks,” ACM SIG-
COMM Computer Communication Review, 2021.

[66] Florida International University’s Center for Internet Aug-
mented Research and Assessment (CIARA), “Americas
Lightpaths Express and Protect.” [Online]. Available: https:
//www.amlight.net/, Accessed on 10-17-2022.

[67] J. Crichigno, E. Kfoury, E. Bou-Harb, N. Ghani, Y. Prieto,
C. Vega, J. Pezoa, C. Huang, and D. Torres, “A flow-based
entropy characterization of a NATed network and its appli-
cation on intrusion detection,” in ICC 2019-2019 IEEE In-
ternational Conference on Communications (ICC), 2019.

[68] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C.
Wang, T. Lehman, and P. Ruth, “Fabric: A national-scale
programmable experimental network infrastructure,” IEEE
Internet Computing, 2019.

[69] J. Mambretti, J. Chen, and F. Yeh, “Next generation clouds,
the chameleon cloud testbed, and software defined network-
ing (sdn),” in 2015 International Conference on Cloud Com-
puting Research and Innovation (ICCCRI), 2015.

[70] Network Development Group (NDG), “Netlab+.” [Online].
Available: https://tinyurl.com/2p9az58x, Accessed on 08-
27-2022.

[71] F. Kargl and E. Schoch, “Simulation of MANETs: a qualita-
tive comparison between JiST/SWANS and ns-2,” in Proceed-
ings of the 1st international workshop on System evaluation
for mobile platforms, 2007.

50

https://www.netacad.com/courses/packet-tracer
https://www.nsnam.org/
https://www.nsnam.org/
https://www.gns3.com/
https://www.tetcos.com/index.html#
https://www.tetcos.com/index.html#
https://www.riverbed.com/en-gb/products/network-performance-management.html
https://www.riverbed.com/en-gb/products/network-performance-management.html
https://www.z-wave.com/
https://www.z-wave.com/
http://nearfieldcommunication.org/
https://tinyurl.com/FSVirtualization
https://tinyurl.com/FSVirtualization
https://omnetpp.org/
https://omnetpp.org/
https://tinyurl.com/musb5xyy
https://tinyurl.com/musb5xyy
https://tinyurl.com/468bdvxv
https://tinyurl.com/538drxkm
https://aws.amazon.com/
https://tinyurl.com/3juuyb9z
https://tinyurl.com/2p8j9yvr
https://tinyurl.com/2p8j9yvr
https://tinyurl.com/jkx764cb
https://tinyurl.com/jkx764cb
https://www.amlight.net/
https://www.amlight.net/
https://tinyurl.com/2p9az58x

[72] K. Wehrle, M. Günes, and J. Gross, Modeling and tools for
network simulation. Springer Science & Business Media,
2010.

[73] J. Chamberlin, J. Hussey, B. Klimkowski, W. Moody, and
C. Morrell, “The impact of virtualized technology on under-
graduate computer networking education,” in Proceedings of
the 18th Annual Conference on Information Technology Ed-
ucation, 2017.

[74] A. M. Sllame and M. Jafaray, “Using simulation and mod-
eling tools in teaching computer network courses,” in 2013
International Conference on IT Convergence and Security
(ICITCS), 2013.

[75] G. Carneiro, “ns-3: network simulator 3,” in UTM Lab Meet-
ing April, 2010.

[76] U. Lamping and E. Warnicke, “Wireshark user’s guide,” In-
terface, 2004.

[77] D. A. Joseph, V. Paxson, and S. Kim, “tcpdump tutorial,”
University of California, EE122 Fall, 2006.

[78] M. Mezzavilla, M. Miozzo, M. Rossi, N. Baldo, and M. Zorzi,
“A lightweight and accurate link abstraction model for the
simulation of LTE networks in ns-3,” in Proceedings of the
15th ACM international conference on Modeling, analysis
and simulation of wireless and mobile systems, 2012.

[79] D. Ammar, T. Begin, and I. Guerin-Lassous, “A new tool for
generating realistic Internet traffic in ns-3,” in Proceedings
of the 4th international ICST conference on simulation tools
and techniques, 2011.

[80] M. Casoni, C. A. Grazia, M. Klapez, and N. Patriciello, “Im-
plementation and validation of TCP options and congestion
control algorithms for ns-3,” in Proceedings of the 2015 Work-
shop on Ns-3, 2015.

[81] R. Ford, M. Zhang, S. Dutta, M. Mezzavilla, S. Rangan,
and M. Zorzi, “A framework for end-to-end evaluation of 5G
mmWave cellular networks in ns-3,” in Proceedings of the
Workshop on ns-3, 2016.

[82] A. Marinescu, I. Macaluso, and L. A. DaSilva, “System level
evaluation and validation of the ns-3 LTE module in 3GPP
reference scenarios,” in Proceedings of the 13th ACM Sympo-
sium on QoS and Security for Wireless and Mobile Networks,
2017.

[83] B. Bojovic, S. Lagen, and L. Giupponi, “Implementation and
evaluation of frequency division multiplexing of numerologies
for 5G new radio in ns-3,” in Proceedings of the 10th Work-
shop on ns-3, 2018.

[84] L. Alberro, F. Velázquez, S. Azpiroz, E. Grampin, and
M. Richart, “Experimenting with routing protocols in the
data center: An ns-3 simulation approach,” Future Internet,
2022.

[85] X. Li, M. Peng, J. Cai, C. Yi, and H. Zhang, “OPNET-based
modeling and simulation of mobile ZigBee sensor networks,”
Peer-to-Peer Networking and Applications, 2016.

[86] P. Rukmani and R. Ganesan, “Scheduling algorithm for real
time applications in mobile ad hoc network with opnet mod-
eler,” Procedia Engineering, 2013.

[87] X. Xian, W. Shi, and H. Huang, “Comparison of OMNET++
and other simulator for WSN simulation,” in 2008 3rd IEEE
Conference on Industrial Electronics and Applications, 2008.

[88] T. Zugno, M. Polese, M. Lecci, and M. Zorzi, “Simulation of
next-generation cellular networks with ns-3: Open challenges
and new directions,” in Proceedings of the 2019 Workshop on
Next-Generation Wireless with ns-3, 2019.

[89] I. Hammoodi, B. Stewart, A. Kocian, and S. McMeekin,
“A comprehensive performance study of OPNET modeler
for ZigBee wireless sensor networks,” in 2009 Third Interna-
tional Conference on Next Generation Mobile Applications,
Services and Technologies, 2009.

[90] R. Bagrodia, R. Meyer, M. Takai, Y.-a. Chen, X. Zeng,
J. Martin, and H. Y. Song, “Parsec: A parallel simulation
environment for complex systems,” Computer, 1998.

[91] K. M. Chandy and J. Misra, “Distributed simulation: A case
study in design and verification of distributed programs,”
IEEE Transactions on software engineering, 1979.

[92] Keysight Technologies, “Qualnet network simulator.” [On-
line]. Available: https://tinyurl.com/2ywntrzc, Accessed
on 01-10-2022.

[93] E. Ahvar and M. Fathy, “Performance evaluation of rout-
ing protocols for high density ad hoc networks based on QoS
by glomosim simulator,” International Journal of Computer,
Electrical, Automation, Control and Information Engineer-

ing, 2007.
[94] Keysight Technologies, “Network modeling.” [Online]. Avail-

able: https://tinyurl.com/22xtyn2x, Accessed on 01-04-
2022.

[95] K. A. Shuaib, “A performance evaluation study of WIMAX
using QualNet,” in proceedings of the World Congress on
Engineering, 2009.

[96] RFC 5154, “Ip over ieee 802.16 problem statement and
goals.” [Online]. Available: https://tinyurl.com/ycy29abt,
Accessed on 01-10-2022.

[97] A. Goyal, S. Vijay, and D. K. Jhariya, “Simulation and per-
formance analysis of routing protocols in wireless sensor net-
work using QualNet,” International Journal of computer ap-
plications, 2012.

[98] P. Latkoski, V. Rakovic, O. Ognenoski, V. Atanasovski, and
L. Gavrilovska, “SDL+QualNet: A novel simulation environ-
ment for wireless heterogeneous networks,” in Proceedings of
the 3rd International ICST Conference on Simulation Tools
and Techniques, 2010.

[99] RFC 5677, “Ieee 802.21 mobility services framework design
(msfd).” [Online]. Available: https://www.rfc-editor.org/
rfc/rfc5677, Accessed on 01-10-2022.

[100] N. Finne, J. Eriksson, T. Voigt, G. Suciu, M.-A. Sachian,
J. Ko, and H. Keipour, “Multi-trace: multi-level data trace
generation with the Cooja simulator,” in 2021 17th Interna-
tional Conference on Distributed Computing in Sensor Sys-
tems (DCOSS), 2021.

[101] D. Jabba and P. Acevedo, “ViTool-BC: Visualization tool
based on Cooja simulator for WSN,” Applied Sciences, 2021.

[102] H. S. Zenalabdin, A. Buhari, and T. E. Nyamasvisva, “Per-
formance analysis of IoT protocol stack over dense and sparse
mote network using Cooja simulator,” in Journal of Physics:
Conference Series, 2020.

[103] Centre Tecnologic de Telecomunicacions de Catalunya, “ns-3
lena.” [Online]. Available: https://tinyurl.com/2ac2thrw,
Accessed on 07-24-2023.

[104] B. Bojović, S. Lagén, and L. Giupponi, “Realistic beamform-
ing design using SRS-based channel estimate for ns-3 5G-
LENA module,” in Proceedings of the 2021 Workshop on
ns-3, 2021.

[105] H. Assasa and N. Grosheva, “Wigig module.” [Online]. Avail-
able: https://tinyurl.com/2hcvuz7c, Accessed on 07-24-
2023.

[106] H. Assasa, N. Grosheva, T. Ropitault, S. Blandino,
N. Golmie, and J. Widmer, “Implementation and evaluation
of a WLAN IEEE 802.11 ay model in network simulator ns-
3,” in Proceedings of the 2021 Workshop on ns-3, 2021.

[107] M. Z. Khan, B. Askwith, F. Bouhafs, and M. Asim, “Limi-
tations of simulation tools for large-scale wireless sensor net-
works,” in 2011 IEEE Workshops of International Confer-
ence on Advanced Information Networking and Applications,
2011.

[108] K. Tan, D. Wu, A. J. Chan, and P. Mohapatra, “Comparing
simulation tools and experimental testbeds for wireless mesh
networks,” Pervasive and Mobile Computing, 2011.

[109] H. Sundani, H. Li, V. Devabhaktuni, M. Alam, and P. Bhat-
tacharya, “Wireless sensor network simulators a survey and
comparisons,” International Journal of Computer Networks,
2011.

[110] N. M. M. Noor, N. Yayao, and S. Sulaiman, “Effectiveness of
using Cisco Packet Tracer as a learning tool: A case study of
routing protocol,” Computer software, 2018.

[111] N. Gwangwava, T. B. Mubvirwi, et al., “Design and simula-
tion of IoT systems using the Cisco Packet Tracer,” Advances
in Internet of Things, 2021.

[112] J. Allison, “Simulation-based learning via Cisco Packet
Tracer to enhance the teaching of computer networks,” in
Proceedings of the 27th ACM Conference on on Innovation
and Technology in Computer Science Education Vol. 1, 2022.

[113] P. Li, “Selecting and using virtualization solutions: our ex-
periences with VMware and VirtualBox,” Journal of Com-
puting Sciences in Colleges, 2010.

[114] T. R. Velieva, A. V. Korolkova, and D. S. Kulyabov, “Design-
ing installations for verification of the model of active queue
management discipline RED in the GNS3,” in 2014 6th In-
ternational Congress on Ultra Modern Telecommunications
and Control Systems and Workshops (ICUMT), IEEE, 2014.

[115] P. Gil, G. J. Garcia, A. Delgado, R. M. Medina, A. Calderon,
and P. Marti, “Computer networks virtualization with

51

https://tinyurl.com/2ywntrzc
https://tinyurl.com/22xtyn2x
https://tinyurl.com/ycy29abt
https://www.rfc-editor.org/rfc/rfc5677
https://www.rfc-editor.org/rfc/rfc5677
https://tinyurl.com/2ac2thrw
https://tinyurl.com/2hcvuz7c

GNS3,” in proc IEEE Frontiers in Education Conference,
2014.

[116] R. Emiliano and M. Antunes, “Automatic network configu-
ration in virtualized environment using GNS3,” in 2015 10th
International Conference on Computer Science & Education
(ICCSE), 2015.

[117] P. Mihăilă, T. Bălan, R. Curpen, and F. Sandu, “Network au-
tomation and abstraction using python programming meth-
ods,” MACRo 2015, 2017.

[118] J.-I. Castillo-Velazquez, F. DeLaCruz-Alejandre, and
M. Huerta, “An approach to management assessment for
GEANT backbone using GNS3 for SNMPv3,” in 2018 IEEE
38th Central America and Panama Convention (CONCA-
PAN XXXVIII), 2018.

[119] N. S. Tarkaa, P. I. Iannah, and I. T. Iber, “Design and simu-
lation of local area network using Cisco Packet Tracer,” The
International Journal of Engineering and Science, 2017.

[120] U. Yaqub, A. Al-Nasser, and T. Sheltami, “Implementation
of a hybrid wind-solar desalination plant from an Internet
of Things (IoT) perspective on a network simulation tool,”
Applied computing and informatics, 2019.

[121] C. Dumitrache, G. Predusca, L. Circiumarescu, N. Angelescu,
and D. Puchianu, “Comparative study of RIP, OSPF and
EIGRP protocols using Cisco Packet Tracer,” in 2017 5th
International Symposium on Electrical and Electronics En-
gineering (ISEEE), 2017.

[122] N. A. Rashid, Z. bin Othman, R. bin Johan, and S. b. H.
Sidek, “Cisco Packet Tracer simulation as effective pedagogy
in computer networking course,” 2019.

[123] A. Musheer, O. Sotnikov, and S. S. Heydari, “Multiuser
simulation-based virtual environment for teaching computer
networking concepts,” International Journal on Advances in
Intelligent Systems, 2012.

[124] Linux Containers, “Container and virtualization tools .” [On-
line]. Available: https://linuxcontainers.org/, Accessed
on 06-23-2022.

[125] Docker Containers, “What is a Docker container? .” [Online].
Available: https://tinyurl.com/bdz3ejdh, Accessed on 06-
23-2022.

[126] W. Almesberger et al., “Linux network traffic con-
trol—implementation overview,” 1999.

[127] Mininet-HiFi experiments, “Reproducing network research.”
[Online]. Available: https://tinyurl.com/ycy3hbzb, Ac-
cessed on 01-04-2022.

[128] A. Mohammad, G. Albert, M. David, P. Jitendra, P.
Parveen, P. Balaji S. Sudipta, S. Murari, “Data center TCP
(DCTCP),” in Proceedings of the ACM SIGCOMM 2010
Conference, 2010.

[129] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A.
Vahdat, M. Yasuda, “Hedera: Dynamic flow scheduling for
data center networks.,” in Networked Systems Design and
Implementation (NSDI), 2010.

[130] Ö. Sen, D. van der Velde, S. N. Peters, and M. Henze, “An ap-
proach of replicating multi-staged cyber-attacks and counter-
measures in a smart grid co-simulation environment,” 2021.

[131] M. Amoretti, R. Pecori, Y. Protskaya, L. Veltri, and
F. Zanichelli, “A scalable and secure publish/subscribe-based
framework for industrial IoT,” IEEE Transactions on Indus-
trial Informatics, 2020.

[132] The OpenAirInterface Software Alliance, “Open air inter-
face.” [Online]. Available: https://openairinterface.org/,
Accessed on 07-24-2023.

[133] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson,
R. Knopp, and C. Bonnet, “Openairinterface: A flexible plat-
form for 5G research,” ACM SIGCOMM Computer Commu-
nication Review, 2014.

[134] srsRAN Project, “Open source ran.” [Online]. Available:
https://www.srsran.com/, Accessed on 07-24-2023.

[135] iMdea Networks, “openleon.” [Online]. Available: https:

//tinyurl.com/4edcaxuv, Accessed on 07-24-2023.
[136] C. Fiandrino, A. B. Pizarro, P. J. Mateo, C. A. Ramiro,

N. Ludant, and J. Widmer, “openLEON: An end-to-end emu-
lation platform from the edge data center to the mobile user,”
Computer Communications, 2019.

[137] M. Peuster, H. Karl, and S. Van Rossem, “Medicine: Rapid
prototyping of production-ready network services in multi-
pop environments,” in 2016 IEEE Conference on Net-
work Function Virtualization and Software Defined Networks
(NFV-SDN), 2016.

[138] J. Joy, Y.-T. Yu, M. Gerla, S. Wood, J. Mathewson, and M.-
O. Stehr, “Network coding for content-based intermittently
connected emergency networks,” in Proceedings of the 19th
annual international conference on Mobile computing & net-
working, 2013.

[139] R. C. Lunardi, R. A. Michelin, C. V. Neu, H. C. Nunes,
A. F. Zorzo, and S. S. Kanhere, “Impact of consensus on
appendable-block blockchain for IoT,” in Proceedings of the
16th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, 2019.

[140] R. Tomsett, G. Bent, C. Simpkin, I. Taylor, D. Harbourne,
A. Preece, and R. Ganti, “Demonstration of dynamic dis-
tributed orchestration of node-RED IoT workflows using a
vector symbolic architecture,” in 2019 IEEE International
Conference on Smart Computing (SMARTCOMP), 2019.

[141] J. Obstfeld, S. Knight, E. Kern, Q. S. Wang, T. Bryan, and
D. Bourque, “VIRL: the virtual internet routing lab,” in Pro-
ceedings of the 2014 ACM conference on SIGCOMM, 2014.

[142] O. Sefraoui, M. Aissaoui, M. Eleuldj, et al., “Openstack: to-
ward an open-source solution for cloud computing,” Interna-
tional Journal of Computer Applications, 2012.

[143] S. Knight, A. Jaboldinov, O. Maennel, I. Phillips, and
M. Roughan, “Autonetkit: simplifying large scale, open-
source network experimentation,” in Proceedings of the ACM
SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication,
2012.

[144] L. M. M. Zorello, S. Troia, S. Giannotti, R. Alvizu, S. Bregni,
and G. Maier, “On the network slicing for enterprise services
with hybrid SDN,” in 2020 IEEE Latin-American Conference
on Communications (LATINCOM), 2020.

[145] B. Al-Musawi, R. Al-Saadi, P. Branch, and G. Armitage,
“BGP replay tool (BRT) v0.1,” Centre for Advanced Inter-
net Architectures, Swinburne University of Technology, Mel-
bourne, Australia, Tech. Rep. A, 2016.

[146] T. T. Dinh-Trong and J. M. Bieman, “The FreeBSD project:
A replication case study of open source development,” IEEE
Transactions on Software Engineering, 2005.

[147] S. Kuman, S. Groš, and M. Mikuc, “An experiment in us-
ing IMUNES and Conpot to emulate honeypot control net-
works,” in 2017 40th International Convention on Informa-
tion and Communication Technology, Electronics and Micro-
electronics (MIPRO), 2017.

[148] D. Salopek, V. Vasić, M. Zec, M. Mikuc, M. Vašarević, and
V. Končar, “A network testbed for commercial telecommu-
nications product testing,” in 2014 22nd international con-
ference on software, telecommunications and computer net-
works (SoftCOM), 2014.

[149] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanen-
baum, “MINIX 3: A highly reliable, self-repairing operating
system,” ACM SIGOPS Operating Systems Review, 2006.

[150] J. Ahrenholz, “Comparison of CORE network emulation plat-
forms,” in 2010-Milcom 2010 Military Communications Con-
ference, 2010.

[151] D. Tyler and T. Viana, “Trust no one? a framework for
assisting healthcare organisations in transitioning to a zero-
trust network architecture,” Applied Sciences, 2021.

[152] M. Zec and M. Mikuc, “Operating system support for in-
tegrated network emulation in IMUNES,” in 1st Workshop
on Operating System and Architectural Support for the on
demand IT InfraStructure (OASIS), 2004.

[153] E. F. Kfoury, J. Gomez, J. Crichigno, and E. Bou-Harb, “An
emulation-based evaluation of TCP BBRv2 alpha for wired
broadband,” Computer Communications, 2020.

[154] J. Gomez, E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Sri-
vastava, “A performance evaluation of TCP BBRv2 alpha,”
in 2020 43rd International Conference on Telecommunica-
tions and Signal Processing (TSP), 2020.

[155] R. Lübke, P. Büschel, D. Schuster, and A. Schill, “Measuring
accuracy and performance of network emulators,” in 2014
IEEE International Black Sea Conference on Communica-
tions and Networking (BlackSeaCom), IEEE, 2014.

[156] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIG-
COMM Computer Communication Review, 2010.

[157] S. Szilágyi and I. Bordán, “Throughput performance mea-
surement of the MPT-GRE multipath technology in emulated
wan environment,” in Proceedings of the 1st Conference on
Information Technology and Data Science: CITDS, 2020.

[158] K. Noda and Y. Ito, “Study of multi-path TCP scheduler to

52

https://linuxcontainers.org/
https://tinyurl.com/bdz3ejdh
https://tinyurl.com/ycy3hbzb
https://openairinterface.org/
https://www.srsran.com/
https://tinyurl.com/4edcaxuv
https://tinyurl.com/4edcaxuv

suppress QoS fluctuation for improving WebQoE,” in 2019
International Conference on Electronics, Information, and
Communication (ICEIC), 2019.

[159] R. Al-Saadi and G. Armitage, “Dummynet AQM v0.
2–CoDel, FQ-CoDel, PIE and FQ-PIE for FreeBSD’s
ipfw/dummynet framework,” Centre for Advanced Inter-
net Architectures, Swinburne University of Technology, Mel-
bourne, Australia, Tech. Rep. A, 2016.

[160] R. A. Netravali, Understanding and improving web page load
times on modern networks. PhD thesis, Massachusetts Insti-
tute of Technology, 2015.

[161] B. Zhang, T. Teixeira, and Y. Reznik, “Performance of low-
latency HTTP-based streaming players,” in Proceedings of
the 12th ACM Multimedia Systems Conference, 2021.

[162] A. G. Moe, “Implementing rate control in NetEm: Untying
the NetEm/tc tangle,” Master’s thesis, 2013.

[163] Network Development Group (NDG), “Mission and vision.”
[Online]. Available: https://tinyurl.com/2vha2h7m, Ac-
cessed on 08-27-2022.

[164] VMware, “vSphere.” [Online]. Available: https://www.

vmware.com/products/vsphere.html, Accessed on 03-21-
2022.

[165] J. Gomez, E. F. Kfoury, and J. Crichigno, “Enabling P4
hands-on training in an academic cloud,” in 2022 18th In-
ternational Conference on Distributed Computing in Sensor
Systems (DCOSS), 2022.

[166] P. Gomez-Sanchez, S. Mendez, A. De Giusti, M. Naiouf,
E. Luque, A. Bezerra, D. Encinas, J. Panadero, and D. Rex-
achs, “Using AWS EC2 as test-bed infrastructure in the i/o
system configuration for HPC applications,” Journal of Com-
puter Science and Technology, 2016.

[167] P. Ruth and M. Cevik, “Experimenting with AWS direct con-
nect using chameleon, ExoGENI, and Internet2 cloud con-
nect,” in 2019 IEEE 27th International Conference on Net-
work Protocols (ICNP), 2019.

[168] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon,
S. Cholia, J. Shalf, H. J. Wasserman, and N. J. Wright,
“Performance analysis of high-performance computing appli-
cations on the amazon web services cloud,” in 2010 IEEE
second international conference on cloud computing technol-
ogy and science, 2010.

[169] B. Ruan, H. Huang, S. Wu, and H. Jin, “A performance study
of containers in cloud environment,” in Advances in Services
Computing: 10th Asia-Pacific Services Computing Confer-
ence, APSCC 2016, Zhangjiajie, China, November 16-18,
2016, Proceedings 10, 2016.

[170] N. Kratzke and P.-C. Quint, “Investigation of impacts on net-
work performance in the advance of a microservice design,”
in Cloud Computing and Services Science: 6th International
Conference, CLOSER 2016, Rome, Italy, April 23-25, 2016,
Revised Selected Papers 6, 2017.

[171] V. Persico, P. Marchetta, A. Botta, and A. Pescapé, “On
network throughput variability in Microsoft Azure cloud,” in
2015 IEEE Global Communications Conference (GLOBE-
COM), 2015.

[172] H. A. Hassan, S. A. Mohamed, and W. M. Sheta, “Scalability
and communication performance of HPC on Azure cloud,”
Egyptian Informatics Journal, 2016.

[173] A. AlSabeh, H. Safa, E. Bou-Harb, and J. Crichigno, “Ex-
ploiting ransomware paranoia for execution prevention,” in
ICC 2020-2020 IEEE International Conference on Commu-
nications (ICC), 2020.

[174] C. Siaterlis, A. P. Garcia, and B. Genge, “On the use of Em-
ulab testbeds for scientifically rigorous experiments,” IEEE
Communications Surveys & Tutorials, 2012.

[175] Flux Research Group, “Emulab user guide.” [Online]. Avail-
able: https://tinyurl.com/4e88yw5a, Accessed on 07-07-
2022.

[176] NS-3 Consortium, “Network simulator 3 user guide.” [On-
line]. Available: https://tinyurl.com/2p9brfe2, Accessed
on 07-07-2022.

[177] Flux Research Group, “Emulab installation documentation.”
[Online]. Available: https://tinyurl.com/2p836txk, Ac-
cessed on 07-07-2022.

[178] GENI Documentation, “Geni architecture.” [Online].
Available: https://www.geni.net/documentation/

geni-architecture/, Accessed on 05-22-2022.
[179] C. Barnes and T. E. Jackson, “Internet2: The backbone of

the future,” tech. rep., Air Force Research Lab, Meza, AZ,

2002.
[180] Juniper, “Ibm bnt g8264r.” [Online]. Available: https://

tinyurl.com/yndx38fp, Accessed on 05-24-2022.
[181] IBM, “IBM BNT G8052R rack switch.” [Online]. Available:

https://tinyurl.com/2t8bm73p, Accessed on 05-25-2022.
[182] IBM, “Ibm x3650 m3.” [Online]. Available: https://

tinyurl.com/3ptrr25u, Accessed on 05-24-2022.
[183] Hewlett Packard, “HP Procurve 2620 switch.” [Online].

Available: https://tinyurl.com/ym3hvsvx, Accessed on 05-
25-2022.

[184] Hewlett Packard, “Hp proliant dl360 g7.” [Online]. Available:
https://tinyurl.com/437ftrj7, Accessed on 05-25-2022.

[185] Dell, “Dell PowerEdge R620 series.” [Online]. Available:
https://tinyurl.com/mrwp288n, Accessed on 05-31-2022.

[186] DELL Technologies, “Force10 s2410-01-10ge-24p.” [Online].
Available: https://tinyurl.com/3j6u38yr, Accessed on 05-
24-2022.

[187] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,
E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb, et al.,
“The design and operation of CloudLab,” in 2019 USENIX
annual technical conference (USENIX ATC 19), 2019.

[188] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ra-
machandran, H. Kremo, R. Siracusa, H. Liu, and M. Singh,
“Overview of the ORBIT radio grid testbed for evaluation of
next-generation wireless network protocols,” in IEEE Wire-
less Communications and Networking Conference, 2005,
2005.

[189] J. Zamora, F. Fund, A. Koutsaftis, and S. S. Panwar, “An
open-access research testbed for visible light communica-
tion,” in Proceedings of the 4th ACM Workshop on Visible
Light Communication Systems, 2017.

[190] A. Abdelhadi, F. Rechia, A. Narayanan, T. Teixeira, R. Lent,
D. Benhaddou, H. Lee, and T. C. Clancy, “Position estima-
tion of robotic mobile nodes in wireless testbed using GENI,”
in 2016 Annual IEEE Systems Conference (SysCon), 2016.

[191] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: an overlay
testbed for broad-coverage services,” ACM SIGCOMM Com-
puter Communication Review, 2003.

[192] Y. Wang, W.-J. Hsin, and M. Lamsal, “EdGENI: Making
GENI User-Friendly for General Computer Education,” in
Proceedings of the 53rd ACM Technical Symposium on Com-
puter Science Education V. 1, 2022.

[193] GENI testbed, “The edgeni project.” [Online]. Available:
https://tinyurl.com/2p8rvtmc, Accessed on 05-25-2022.

[194] The Ethereum Foundation, “Solidity documentation.” [On-
line]. Available: https://tinyurl.com/2p9fjajc, Accessed
on 05-25-2022.

[195] The REMIX Project, “Remix ide.” [Online]. Available:
https://remix-project.org/, Accessed on 05-25-2022.

[196] InfiniBand Trade Association, “InfiniBand Architecture
Specification.” [Online]. Available: https://tinyurl.com/

2p8jc3pm, Accessed on 06-10-2022.
[197] N. Grinsztajn, O. Beaumont, E. Jeannot, and P. Preux,

“READYS: A reinforcement learning based strategy for het-
erogeneous dynamic scheduling,” in 2021 IEEE International
Conference on Cluster Computing (CLUSTER), 2021.

[198] Á. Brandón, M. Solé, A. Huélamo, D. Solans, M. S. Pérez,
and V. Muntés-Mulero, “Graph-based root cause analysis for
service-oriented and microservice architectures,” Journal of
Systems and Software, 2020.

[199] B. Donassolo, I. Fajjari, A. Legrand, and P. Mertikopoulos,
“FogIoT orchestrator: an orchestration system for IoT ap-
plications in fog environment,” in 1st Grid’5000-FIT school,
2018.

[200] D. E. Sarmiento, A. Lebre, L. Nussbaum, and A. Chari,
“Multi-site connectivity for edge infrastructures: DIMINET:
DIstributed Module for Inter-site NETworking,” in 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing (CCGRID), pp. 121–130, IEEE, 2020.

[201] G. Song, S. Park, and M. Lee, “Using Emulab for deep learn-
ing performance comparisons among network topologies,” in
Proceedings of the 2019 4th International Conference on In-
telligent Information Technology, 2019.

[202] C. C. Kuo, K. Chain, and C. S. Yang, “Cyber attack and
defense training: Using Emulab as a platform,” Int. J. Innov.
Comput. Inf. Control, 2018.

[203] G.-B. Song and M.-H. Lee, “Emulearner: Deep learning li-
brary for utilizing Emulab,” Journal of information and com-

53

https://tinyurl.com/2vha2h7m
https://www.vmware.com/products/vsphere.html
https://www.vmware.com/products/vsphere.html
https://tinyurl.com/4e88yw5a
https://tinyurl.com/2p9brfe2
https://tinyurl.com/2p836txk
https://www.geni.net/documentation/geni-architecture/
https://www.geni.net/documentation/geni-architecture/
https://tinyurl.com/yndx38fp
https://tinyurl.com/yndx38fp
https://tinyurl.com/2t8bm73p
https://tinyurl.com/3ptrr25u
https://tinyurl.com/3ptrr25u
https://tinyurl.com/ym3hvsvx
https://tinyurl.com/437ftrj7
https://tinyurl.com/mrwp288n
https://tinyurl.com/3j6u38yr
https://tinyurl.com/2p8rvtmc
https://tinyurl.com/2p9fjajc
https://remix-project.org/
https://tinyurl.com/2p8jc3pm
https://tinyurl.com/2p8jc3pm

munication convergence engineering, 2018.
[204] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad,

T. Stack, K. Webb, and J. Lepreau, “Large-scale virtual-
ization in the Emulab network testbed,” in 2008 USENIX
Annual Technical Conference (USENIX ATC 08), 2008.

[205] S. Edwards, X. Liu, and N. Riga, “Creating repeatable com-
puter science and networking experiments on shared, public
testbeds,” ACM SIGOPS Operating Systems Review, 2015.

[206] D. Balouek, A. C. Amarie, G. Charrier, F. Desprez, E. Jean-
not, E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse,
L. Nussbaum, et al., “Adding virtualization capabilities
to the Grid’5000 testbed,” in International Conference on
Cloud Computing and Services Science, 2012.

[207] J. Mikovic, P. G. Kannan, C. Mun Choon, and K. Sklower,
“Enabling SDN experimentation in network testbeds,” in
Proceedings of the ACM International Workshop on Security
in Software Defined Networks & Network Function Virtual-
ization, 2017.

[208] Y. Park, H. Hu, X. Yuan, and H. Li, “Enhancing security
education through designing SDN security labs in CloudLab,”
in Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, 2018.

[209] L. B. Ngo and J. Denton, “Using CloudLab as a scalable plat-
form for teaching cluster computing ambassador program,”
The Journal of Computational Science Education, 2019.

[210] L. B. Ngo, A. T. Srinath, J. Denton, and M. Ziolkowski,
“Unifying computing resources and access interface to sup-
port parallel and distributed computing education,” Journal
of Parallel and Distributed Computing, 2018.

[211] T. D. Project, “DETERLAB wiki.” [Online]. Available:
https://trac.deterlab.net/wiki, Accessed on 09-13-2022.

[212] C. A. Sunshine, “Source routing in computer networks,”
ACM SIGCOMM Computer Communication Review, 1977.

[213] D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk, and P. Sza-
lachowski, “The SCION internet architecture,” Communica-
tions of the ACM, 2017.

[214] Institute for the Wireless Internet of Things at Northeast-
ern, “Colosseum.” [Online]. Available: https://tinyurl.

com/3av3v3da, Accessed on 07-24-2023.
[215] IEEE Future Networks Initiative, “Ieee 5g/6g innovation

testbed.” [Online]. Available: https://testbed.ieee.org/,
Accessed on 08-04-2023.

[216] IEEE, “Ieee future networks.” [Online]. Available: https:

//futurenetworks.ieee.org/, Accessed on 08-04-2023.
[217] A. Ibrahim and V. Ford, “Observations, evaluations, and rec-

ommendations for deterlab from an educational perspective,”
Journal of Cybersecurity Education, Research and Practice,
2021.

[218] SCIONLab tutorials, “SCION Education.” [Online]. Avail-
able: https://tinyurl.com/3uj7mewj, Accessed on 09-19-
2022.

[219] H. An, Y. Na, H. Lee, and A. Perrig, “Resilience evaluation
of multi-path routing against network attacks and failures,”
Electronics, 2021.

[220] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, N. Mck-
eown, and G. Parulkar, “Can the production network be the
testbed?,” in 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 10), 2010.

[221] H. Kim and A. Gupta, “Ontas: Flexible and scalable online
network traffic anonymization system,” in Proceedings of the
2019 Workshop on Network Meets AI & ML, 2019.

[222] J. Ibarra, J. Bezerra, H. Morgan, L. F. Lopez, D. A. Cox,
M. Stanton, I. Machado, and E. Grizendi, “Benefits brought
by the use of OpenFlow/SDN on the AmLight intercontinen-
tal research and education network,” in 2015 IFIP/IEEE In-
ternational Symposium on Integrated Network Management
(IM), 2015.

[223] H. Galiza, M. Schwarz, J. Bezerra, and J. Ibarra, “Moving
an IP network to SDN: a global use case deployment experi-
ence at AmLight,” in Anais do WPEIF 2016 Workshop de
Pesquisa Experimental da Internet do Futuro, 2016.

[224] J. Bezerra, I. Brito, A. Quintana, J. Ibarra, V. Chergarova,
R. Frez, H. Morgan, M. LeClerc, and A. Paneri, “Deploying
per-packet telemetry in a long-haul network: the amlight use
case,” in 2021 IEEE Workshop on Innovating the Network
for Data-Intensive Science (INDIS), 2021.

[225] J. Ibarra, “Amlight express and protect (amlight-exp),” [Pre-
sentation] NSF Distinguished Lecture Series, 2022.

[226] M. Cevik, M. Stealey, C. Wang, J. Bezerra, J. Ibarra,

V. Chergarova, H. Morgan, and Y. Xin, “Towards produc-
tion deployment of a SDX control framework,” in 2022 In-
ternational Conference on Computer Communications and
Networks (ICCCN), 2022.

[227] C. E. Shannon, “A mathematical theory of communication,”
The Bell system technical journal, 1948.

[228] O. Michel, S. Sengupta, H. Kim, R. Netravali, and J. Rex-
ford, “Enabling passive measurement of Zoom performance
in production networks,” in Proceedings of the 22nd ACM
Internet Measurement Conference, 2022.

[229] S. Bai, H. Kim, and J. Rexford, “Passive OS fingerprinting on
commodity switches,” in 2022 IEEE 8th International Con-
ference on Network Softwarization (NetSoft), 2022.

[230] J. Kim, H. Kim, and J. Rexford, “Analyzing traffic by do-
main name in the data plane,” in Proceedings of the ACM
SIGCOMM Symposium on SDN Research (SOSR), pp. 1–
12, 2021.

[231] FABRIC, “Knowledge Base.” [Online]. Available: https:

//tinyurl.com/2b9j7mdy, Accessed on 06-09-2022.
[232] Project Jupyter, “JupyterHub.” [Online]. Available: https:

//jupyter.org/hub, Accessed on 06-09-2022.
[233] Dell Technolgies, “PowerEdge R7525 Rack Server.” [Online].

Available: https://tinyurl.com/2hfc77u4, Accessed on 06-
10-2022.

[234] Kuang-Ching Wang, Paul Ruth, “FABRIC: An Everywhere
Programmable Research Infrastructure for Network Exper-
imentation .” [Online]. Available: https://tinyurl.com/

2szb2kbw, Accessed on 06-10-2022.
[235] Z. Chai, Y. Chen, L. Zhao, Y. Cheng, and H. Rangwala, “Fe-

dat: A communication-efficient federated learning method
with asynchronous tiers under non-iid data,” 2020.

[236] R. Kumar, M. Baughman, R. Chard, Z. Li, Y. Babuji,
I. Foster, and K. Chard, “Coding the computing continuum:
Fluid function execution in heterogeneous computing envi-
ronments,” in 2021 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), 2021.

[237] M. Baughman, R. Kumar, I. Foster, and K. Chard, “Expand-
ing cost-aware function execution with multidimensional no-
tions of cost,” in Proceedings of the 1st Workshop on High
Performance Serverless Computing, 2020.

[238] V. Turina, Z. Zhang, F. Esposito, and I. Matta, “Combining
split and federated architectures for efficiency and privacy in
deep learning,” in Proceedings of the 16th International Con-
ference on emerging Networking EXperiments and Technolo-
gies, 2020.

[239] P. Yu, J. Liu, and M. Chowdhury, “Fluid: Resource-aware hy-
perparameter tuning engine,” Proceedings of Machine Learn-
ing and Systems, 2021.

[240] Univerisy of Texas, “Texas Advanced Computing Center
(TACC).” [Online]. Available: https://www.tacc.utexas.

edu/, Accessed on 06-09-2022.
[241] University of Illinois Urbana-Champaign, “National Center

for Supercomputing Applications (NCSA).” [Online]. Avail-
able: https://www.ncsa.illinois.edu/, Accessed on 06-09-
2022.

[242] U.S. Department of Energy, “Lawrence Berkeley Lab (LBL).”
[Online]. Available: https://www.lbl.gov/, Accessed on 06-
09-2022.

[243] University of Califorina, San Diego, “San Diego Supercom-
puting Center (SDSC).” [Online]. Available: https://www.

sdsc.edu/, Accessed on 06-09-2022.
[244] The University of Utah, “The Platform for Open Wireless

Data-driven Experimental Research (POWDER).” [Online].
Available: https://powderwireless.net/, Accessed on 08-
24-2022.

[245] The AERPAW development group, “The Aerial Experimen-
tation and Research for Advanced Wireless (AERPAW).”
[Online]. Available: https://aerpaw.org/, Accessed on 08-
24-2022.

[246] P. development team, “The PEERING testbed.” [Online].
Available: https://peering.ee.columbia.edu/, Accessed on
08-24-2022.

[247] Chameleon cloud, “PI eligibility.” [Online]. Available: https:
//tinyurl.com/29s2k7ar, Accessed on 06-23-2022.

[248] Chameleon cloud, “Best practices manual.” [Online]. Avail-
able: https://tinyurl.com/zsvp4mdd, Accessed on 06-23-
2022.

[249] Chameleon cloud, “Graphical User Interface.” [Online].
Available: https://tinyurl.com/yc8acn8w, Accessed on 06-

54

https://trac.deterlab.net/wiki
https://tinyurl.com/3av3v3da
https://tinyurl.com/3av3v3da
https://testbed.ieee.org/
https://futurenetworks.ieee.org/
https://futurenetworks.ieee.org/
https://tinyurl.com/3uj7mewj
https://tinyurl.com/2b9j7mdy
https://tinyurl.com/2b9j7mdy
https://jupyter.org/hub
https://jupyter.org/hub
https://tinyurl.com/2hfc77u4
https://tinyurl.com/2szb2kbw
https://tinyurl.com/2szb2kbw
https://www.tacc.utexas.edu/
https://www.tacc.utexas.edu/
https://www.ncsa.illinois.edu/
https://www.lbl.gov/
https://www.sdsc.edu/
https://www.sdsc.edu/
https://powderwireless.net/
https://aerpaw.org/
https://peering.ee.columbia.edu/
https://tinyurl.com/29s2k7ar
https://tinyurl.com/29s2k7ar
https://tinyurl.com/zsvp4mdd
https://tinyurl.com/yc8acn8w

23-2022.
[250] M. Cevik, P. Ruth, K. Keahey, and P. Riteau, “Wide-area

software defined networking experiments using Chameleon,”
in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2019.

[251] Chameleon cloud, “Resource discovery.” [Online]. Available:
https://tinyurl.com/2hzvy8fw, Accessed on 06-23-2022.

[252] Network Development Group (NDG), “Designated Operating
Environment - 2022.” [Online]. Available: https://tinyurl.
com/bp4w7wma, Accessed on 08-27-2022.

[253] VMware, “VMware ESXi: The Purpose-Built Bare Metal
Hypervisor.” [Online]. Available: https://tinyurl.com/

yx4c8w3m, Accessed on 03-22-2022.
[254] VMware, “VCenter server.” [Online]. Available: https://

www.vmware.com/products/vcenter-server.html, Accessed
on 03-22-2022.

[255] Network Development Group (NDG), “NDG online courses
and labs.” [Online]. Available: https://tinyurl.com/

3fa2c92d, Accessed on 10-17-2022.
[256] E. Gavaletz and J. Kaur, “Decomposing RTT-unfairness in

transport protocols,” in 2010 17th IEEE Workshop on Local
& Metropolitan Area Networks (LANMAN), 2010.

[257] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly
high-speed TCP variant,” ACM SIGOPS operating systems
review, 2008.

[258] E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Srivastava,
“Dynamic router’s buffer sizing using passive measurements
and P4 programmable switches,” in 2021 IEEE Global Com-
munications Conference (GLOBECOM), 2021.

[259] Intel, “Intel Tofino Ethernet Switch ASIC.” [Online]. Avail-
able: https://tinyurl.com/mry8a8c4, Accessed on 02-21-
2023.

[260] Edgecore Networks, “Wedge 100BF-32X.” [Online]. Avail-
able: https://tinyurl.com/2xay8kky, Accessed on 02-23-
2023.

[261] Intel, “Intel Tofino Ethernet switch ASIC.” [Online]. Avail-
able: https://tinyurl.com/mry8a8c4, Accessed on 02-24-
2023.

[262] P. Ruth, I. Baldin, K. Thareja, T. Lehman, X. Yang, and
E. Kissel, “FABRIC network service model,” in 2022 IFIP
Networking Conference (IFIP Networking), 2022.

[263] FABRIC, “FABRIC Across Borders (FAB).” [Online]. Avail-
able: https://fabric-testbed.net/about/fab/, Accessed
on 09-19-2022.

[264] Internet2, “Advance layer 2 service.” [Online]. Available:
https://tinyurl.com/4pje2s7w, Accessed on 09-14-2022.

[265] Energy Sciences Network, “On-demand secure circuits and
advance reservation system OSCARS.” [Online]. Available:
https://tinyurl.com/yeyk97h4, Accessed on 09-14-2022.

[266] A. AlSabeh, J. Khoury, E. Kfoury, J. Crichigno, and E. Bou-
Harb, “A survey on security applications of P4 programmable
switches and a STRIDE-based vulnerability assessment,”
Computer Networks, 2022.

[267] C. Fan, J. Bi, Y. Zhou, C. Zhang, and H. Yu, “NS4: A P4-
driven network simulator,” in Proceedings of the SIGCOMM
Posters and Demos, 2017.

[268] ETH Zurich, “An open platform to teach how the internet
practically works.” [Online]. Available: https://github.

com/nsg-ethz/mini_internet_project, Accessed on 01-04-
2022.

[269] G. Di Lena, A. Tomassilli, D. Saucez, F. Giroire, T. Turletti,
and C. Lac, “Distrinet: A Mininet implementation for the
cloud,” ACM SIGCOMM Computer Communication Re-
view, 2021.

[270] G. Di Lena, A. Tomassilli, D. Saucez, F. Giroire, T. Turletti,
and C. Lac, “Mininet on steroids: exploiting the cloud for
Mininet performance,” in 2019 IEEE 8th International Con-
ference on Cloud Networking (CloudNet).

[271] L. Rizzo, G. Lettieri, and V. Maffione, “Very high speed link
emulation with TLEM,” in 2016 IEEE International Sympo-
sium on Local and Metropolitan Area Networks (LANMAN),
2016.

[272] K. Keahey, J. Anderson, M. Sherman, C. Hammock, Z. Zhen,
J. Tillotson, T. Bargo, L. Long, T. Ul Islam, S. Babu,
et al., “CHI-in-a-Box: Reducing operational costs of research
testbeds,” in Practice and Experience in Advanced Research
Computing, 2022.

[273] FABRIC, “FABRIC forum.” [Online]. Available: https://

tinyurl.com/pb9zwauw, Accessed on 10-17-2022.

[274] FABRIC, “FABRIC testbed release 1.3.” [Online]. Available:
https://tinyurl.com/2jaevsca, Accessed on 10-17-2022.

[275] FABRIC, “FABRIC testbed release 1.3.” [Online]. Available:
https://tinyurl.com/56mtbew4, Accessed on 10-17-2022.

[276] B. Chung, C. Chen, C.-C. Tseng, J. H. Chen, and J. Mam-
bretti, “P4MT: Designing and evaluating multi-tenant ser-
vices for P4 switches,” in 2021 22nd Asia-Pacific Network
Operations and Management Symposium (APNOMS), 2021.

[277] P4 consortium, “P4 lang github repository.” [Online]. Avail-
able: https://tinyurl.com/2as9pnwn, Accessed on 07-01-
2022.

[278] Barefoot Networks, “P4 Intel Tofino native architecture -
public version.” [Online]. Available: https://tinyurl.com/

5d7nznwd, Accessed on 03-12-2022.
[279] FRRouting Project, “Frrouting.” [Online]. Available: https:

//frrouting.org/, Accessed on 02-18-2022.
[280] J. Mirkovic and P. Pusey, “User experiences on network

testbeds,” in Cyber Security Experimentation and Test
Workshop, 2021.

[281] The P4 Consortium, “The BMv2 simple switch target.” [On-
line]. Available: https://tinyurl.com/yc35ttuc, Accessed
on 10-17-2022.

[282] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive
survey on P4 programmable data plane switches: Taxonomy,
applications, challenges, and future trends,” IEEE Access,
2021.

55

https://tinyurl.com/2hzvy8fw
https://tinyurl.com/bp4w7wma
https://tinyurl.com/bp4w7wma
https://tinyurl.com/yx4c8w3m
https://tinyurl.com/yx4c8w3m
https://www.vmware.com/products/vcenter-server.html
https://www.vmware.com/products/vcenter-server.html
https://tinyurl.com/3fa2c92d
https://tinyurl.com/3fa2c92d
https://tinyurl.com/mry8a8c4
https://tinyurl.com/2xay8kky
https://tinyurl.com/mry8a8c4
https://fabric-testbed.net/about/fab/
https://tinyurl.com/4pje2s7w
https://tinyurl.com/yeyk97h4
https://github.com/nsg-ethz/mini_internet_project
https://github.com/nsg-ethz/mini_internet_project
https://tinyurl.com/pb9zwauw
https://tinyurl.com/pb9zwauw
https://tinyurl.com/2jaevsca
https://tinyurl.com/56mtbew4
https://tinyurl.com/2as9pnwn
https://tinyurl.com/5d7nznwd
https://tinyurl.com/5d7nznwd
https://frrouting.org/
https://frrouting.org/
https://tinyurl.com/yc35ttuc

	Introduction
	Contributions
	Survey Organization

	Related Surveys
	Background
	Network Simulators
	Network Emulators
	Network Testbeds
	Comparison between Simulators, Emulators, and Testbeds

	Methodology and Taxonomy
	Network Simulators
	Protocol Evaluation
	OMNeT++
	ns-3
	OPNET
	Comparison, Discussion, and Limitations

	Mobile Networks
	GloMoSim
	QualNet
	COOJA
	ns-3 LENA
	WiGig module
	Comparison, Discussion, and Limitations

	Education
	Cisco Packet Tracer
	GNS-3
	Comparison, Discussion, and Limitations

	Summary and Lessons Learned

	Network Emulators
	Container-based Emulation
	Mininet
	Containernet
	NEMO
	OAI
	srsRAN
	openLEON
	Comparison, Discussion, and Limitations

	Virtualization-based Emulation
	CORE
	Cisco CML
	IMUNES
	SEED Labs
	Comparison, Discussion, and Limitations

	Network Link Emulation
	NetEm
	Dummynet
	Mahimahi
	Comparison, Discussion, and Limitations

	Cloud-based Emulation
	Netlab Academic Cloud
	AWS
	GCE
	Microsoft Azure
	Comparison, Discussion, and Limitations

	Summary and Lessons Learned

	Network Testbeds
	General-Purpose Testbeds
	Emulab
	GENI
	StarBED
	Grid'5000
	Comparison, Discussion, and Limitations

	Specific-Purpose Testbeds
	CloudLab
	DETERLab
	ScionLab
	Colosseum
	IEEE 5G/6G Innovation Testbed
	Comparison, Discussion, and Limitations

	Production Networks as a Testbed
	P4Campus
	AmLight
	Entropy-based IDS
	Comparison, Discussion, and Limitations

	On-demand Testbeds
	FABRIC
	Chameleon
	Netlab+
	Comparison, Discussion, and Limitations

	Summary and Lessons Learned

	Challenges and Future Works
	Developing a P4 simulation framework
	Enabling hands-on learning with network testbeds
	Providing cost-effective solutions
	Increasing the emulated link speed
	Optimizing the resource allocation
	Enhancing collaboration
	Facilitating access to P4 hardware
	Federating testbeds at a global scale
	Developing the next Internet architecture

	Conclusion
	Acknowledgement

