% DALHOUSIE
UNIVERSITY

FACULTY OF
COMPUTER SCIENCE

Utilizing Cyber Armsraces
for the Good Guys

Nur Zincir-Heywood
zincir@cs.dal.ca
http://www.cs.dal.ca/~zincir/

Dal NIMS Lab: Cybersecurity and ML

Cyber ¢ K
Networks /Applications /Services W 0 ,
Systems that can Adapt \ (‘eXt &j\ -
Identify Different Behaviours data

i

Cyber Security: Bad vs Good

S A — e

—
~
\ W\

https://www.xlingshot.com/wp=cantent/uploads/2017/07/high-speed-netwdkks-color-600w400h.jpg
{

Training Workshop for Educators and Network Engineers on High Speed Network

5/7/20 Protocols and Security 2020

An Artificial Arms

Race: Could it

Improve Mobile
Malware
Detectors?

5/7/20

Raphael Bronfman-Nadas , Nur Zincir-Heywood
Dalhousie University, Canada

John T. Jacobs
Raytheon, USA

IFIP/IEEE TMA 2018

Training Workshop for Educators and Network Engineers on High Speed Network Protocols and Security 2020 4

The State of Malware

« Malware can be easily modified
* A malware detector may see the problem like this

Modified malware type A

Known malware ‘/ to look different
type A

Known malware

type B

Training Workshop for Educators and Network Engineers on

2020-05-:07 High Speed Network Protocols and Security 2020

The State of Malware

» Detectors must adapt but also be proactive as
the “wild” changes

Modified malware type A
Known malware to look different

type A

Known malware

type B

Training Workshop for Educators and Network Engineers on

2020-05-07 High Speed Network Protocols and Security 2020

Arms Race

* This is a competition between attackers
(malware) and defenders (malware detectors)

© Warner Bros, 1948

Training Workshop for Educators and Network Engineers on

2020-05-07 High Speed Network Protocols and Security 2020

ArmsRace

* We can create the modified malware to be ready

)

Malware Generation > Malware Detection

TR 2N

Training Workshop for Educators and Network Engineers on

2020-05-:07 High Speed Network Protocols and Security 2020

Malware on Android

* Android malware
* Many categories with different examples

* Format
* Modified versions of non malware apps
« Similar Android permission request combinations

Training Workshop for Educators and Network Engineers on

2020-05-07 High Speed Network Protocols and Security 2020

Malware detection on Android

* |dentifiable by
* Permissions Requested
» Code Features

* Machine Learning
« Could be a good match
» 15 to 20 features were effective in past research

=

Training Workshop for Educators and Network Engineers on

2020-05-07 High Speed Network Protocols and Security 2020

10

Malware Detector Implementation

15 permission features known (and tested) to be related to
malware behaviours
* Internet

Read SMS

Write SMS

Read contacts

Read external storage
Write external storage

Install Packages

Admin) \ H
Accessibility services

On Boot "'
Phone information

Camera

Microphone

Calendar
GPS

e
1

Training Workshop for Educators and Network Engineers on

2020-05-07 High Speed Network Protocols and Security 2020

11

Malware Detector Implementation

8 code features counting known (and tested) to be
related to malware behaviours

2020-05-07

S

Classes oA

3
Classes using interfaces el
Classes containing annotations \

Direct methods

=
Virtual methods) \'H

Abstract methods
Class level Static variables
Class level Instanced variables

Training Workshop for Educators and Network Engineers on
High Speed Network Protocols and Security 2020

12

ARMSRACE [Arms Race]

Modify
detectors

(Coevolution)

Initial Random

malware detectors

Malware Detector

Population Population
[Modify] [evaluate [

malware

Aggression

and Evasion

calculation

Training Workshop for Educators and Network Engineers on

2020-05-:07 High Speed Network Protocols and Security 2020

Malware Sources

 We tested malware from

* Drebin and Genome

e datasets of malware
samples

e 700 apps used for static
training set

* 300 apps used for validation
* Co-evolved

* For testing a subsample of
10000 generated apps were
collected

* Getlar

* An app store where
malware was found

2020-05-07

Training Workshop for Educators and Network Engineers on

High Speed Network Protocols and Security 2020

Benign Sources

* We use 2 sources:
* Fdroid and G-Play

* widely used open source
app stores

e 700 apps of each used for
training

* 300 apps of each used for
testing

Training Workshop for Educators and Network Engineers on

2020-05-:07 High Speed Network Protocols and Security 2020

15

100 generation F-Droid & Google Play

“

Complexity 41 30
Features used 8 6
Precision F-Droid 97.0% 97.5%
Precision Google 97 3% 97.8%

Play
Recall on 54.5% 100%

Generated Malware

Training Workshop for Educators and Network Engineers on

2020-05-07 High Speed Network Protocols and Security 2020

Out in the wild

* Getlar

* Open Appstore
* 3 million downloads a day

* Many apps look sketchy

* All apps marked as malware were hard to detect malware
* Using Virus total, collection of public malware detectors

* Confirmed by
* All apps

* 9 of 11 correctly marked

e Getlar’s app was marked
* Virus total considers this to be safe.

Detection Rate on GetJar Apps

2020-05-07

Virus Arms
A
MicrowaveRecipies
God of war Wall paper
Facebook Password Hacker
Footcare salon
Application
Saavn_getjar
PS4 emulator
Subway Servers Hack and
cheat
Miss You - Whatsapp
Cam Scanner License

Training Workshop for Educators and Network Engineers on

X . 1
High Speed Network Protocols and Security 2020 8

Most common features

—

2020-05-07

READ PHONE_ STATE READ PHONE STATE
SEND_SMS Count of classes

INTERNET Count of static variables

Count of abstract classes READ CALENDER

Count of static variables SEND_SMS

Count of virtual methods INTERNET

Count of instanced variables Count of direct method calls
Count of classes BIND ACCESSIBILITY_ SERVICE

RECEIVE_BOOT _COMPLETED RECORD_AUDIO
Count of direct method calls Count of Classes with interfaces

Training Workshop for Educators and Network Engineers on
High Speed Network Protocols and Security 2020

19

Darwinian Malware Detectors:

Evolutionary Solutions to Android Malware

2020-05-07

Zachary Wilkins (zachary.wilkins@dal.ca)
Nur Zincir-Heywood (zincir@cs.dal.ca)

Dalhousie University

Halifax, NS, Canada

ACM SecDef 2019

Training Workshop for Educators and Network Engineers on High Speed Network
Protocols and Security 2020

20

ArmsRace

Principles
@ Simulate a competition between malware and detectors
@ Evolved malware are a prediction of future adversaries

@ Focus on privacy leakage malware
@ Detector Generation

e Linear genetic programming

e Sequence of instructions for virtual machine
o Read / write memory, read input, math ops
e Many individuals — Gradient of feedback

Training Workshop for Educators and Network Engineers on High Speed Network

2020-05-07 Protocols and Security 2020

21

Assemblyline

Principles
o Services tailored to certain file types o Services tailored to certain file types

o Rank file from -1000 to 1000, benign to malware o Rank file from -1000 to 1000, benign to malware

o Raise alert above 500 o Raise alert above 500

@ Android service: APKaye

. o Disassemble APK and extract features
o Disassemble APK and extract features o Check features against rule-base

o Check features against rule-base

o Android service: APKaye

Training Workshop for Educators and Network Engineers on High Speed Network

2020-05-07 Protocols and Security 2020

22

\VAT4 I Kol #=1

Principles Principles
o One system is good, 70+ systems is better! @ Submit file or search hash, IP, URL...
o AVG, McAfee, Kaspersky, Symantec, TrendMicro... e Primary entrypoints: web or API
o Aggregate results from detectors; more information o Basic APl is free but limited
@ No need for an account!

o Dynamic analysis also performed (if possible)

Training Workshop for Educators and Network Engineers on High Speed Network

2020-05-07 Protocols and Security 2020

23

Android Malware Dataset (AMD)

@ Academic dataset from University of South Florida
@ 24 553 malware samples from 2010 to 2016

@ 135 varieties from 71 families

Training Workshop for Educators and Network Engineers on

2020-05-07
020-05:0 High Speed Network Protocols and Security 2020

24

CICAndMal2017 (UNB)

2020-05-07

@ Academic dataset from University of New Brunswick
@ 426 malware and 1,700 benign from 2015 to 2017

@ Four categories and 42 families

Training Workshop for Educators and Network Engineers on
High Speed Network Protocols and Security 2020

25

@ Community dataset from anonymous donors
@ 35,397 malware samples dated 2013 and 2014
@ Over 10,000 corrupted files (impossible to decompile)

Training Workshop for Educators and Network Engineers on

2020-05-07
020050 High Speed Network Protocols and Security 2020

Experiment Setup

Overview of training / testing

Train
——» Detection Rate

- False Positives

Test

Malicious and Benign
APKs

Training Workshop for Educators and Network Engineers on High Speed Network

2020-05-07 Protocols and Security 2020

VirusTotal Unknown Results

2020-05-07

Dataset Seen Unseen Avg Min Max
AMD 24553 0 4950 19.30 81.97
UNB Ben 1700 O 09.99 99.84 100.00
UNB Mal 426 0 4795 0.00 80.00
VirusShare 35397 0 53.34 0.00 82.09

Malware avg. is consistent at ~ 50%.

Benignware is nearly perfect

Similar ordering in difficulty to other detectors
UNB Malware and VirusShare have totally undetectable

samples!

Training Workshop for Educators and Network Engineers on High Speed Network
Protocols and Security 2020

28

Assemblyline Unknown Results

Dataset Is Malicious? Detection Rate
AMD T 16850/23618 (71.34)
UNB Ben F 1154/1688 (68.36)
UNB Mal T 315/424 (74.29)
VirusShare T 16095/20884 (77.07)

@ Detection rates are ~ 15% lower than MOCDroid

@ Detection rates are ~ 23% lower than ArmsRace!

@ Poor benignware detection is a factor
e 9% and 22% lower when UNB Benign removed

Training Workshop for Educators and Network Engineers on High Speed Network
2020-05-07 Protocols and Security 2020

2020-05-07

MOCDroid Unknown Results

Unknown Malware Benign Detection Rate
AMD Drebin F-Droid 21518/24553 (87.64)
AMD Genome F-Droid 15104/24553 (61.52)
UNB Ben Genome F-Droid 1675/1700 (98.53)

UNB Ben Drebin Google Play 1584/1700 (93.18)

UNB Mal Drebin Google Play 294/426 (69.01)
UNB Mal Genome F-Droid 153/426 (35.92)

VirusShare Drebin F-Droid 19775/20984 (94.24)
VirusShare Genome Google Play 15147/20984 (72.18)

o AMD, VirusShare do very well
o UNB Benign: excellent for every model
@ No model is very good at UNB Malware

@ Train on Drebin: 22% avg. increase

Training Workshop for Educators and Network Engineers on High Speed Network
Protocols and Security 2020

30

2020-05-07

ArmsRace Unknown Results

Unknown Malware Benign Detection Rate
AMD Drebin Google Play 24254 /24449 (99.20)
AMD Genome Google Play 19020/24449 (77.79)
UNB Ben Drebin F-Droid 1642/1700 (96.59)
UNB Ben Drebin Google Play 1249/1700 (73.47)
UNB Mal Drebin Google Play 381/425 (89.65)
UNB Mal Genome F-Droid 269/425 (63.29)
VirusShare Drebin Google Play 20757/20972 (98.97)
VirusShare Genome Google Play 17680/20972 (84.30)

@ AMD, VirusShare near perfect with Drebin / Google Play
o UNB Benign: still pretty good

@ Train on Drebin: 12% avg. increase
o UNB Malware with Drebin / Google Play — Almost 90%)!

Training Workshop for Educators and Network Engineers on High Speed Network

Protocols and Security 2020

31

2020-05-07

RETURN
ORIENTED
PROGRAMME
EVOLUTTON with
ROPER

Olivia Lucca Fraser ofraser@dal.ca

Nur Zincir-Heywood zincir@cs.dal.ca

Malcolm. Heywood mheywood@cs.dal.ca

John T. Jacobs John_T_Jacobs@raytheon.com

NIMS Laboratory @ Dalhousie University
Raytheon Space & Airborne Systems
https://github.com/oblivia-simplex

ACM SecDef 2017

Training Workshop for Educators and Network Engineers on High Speed Network
Protocols and Security 2020

32

RETURN
ORIENTED
PROGRAMME
EVOLUTION with
ROPER

Questions:
What is return oriented
programming?
How might evolutionary methods
be applied to ROP?

How ‘do we best cultivate the
evolution of ROP payloads?

What sort of things are they
capable of?

Training Workshop for Educators and Network Engineers on High Speed Network

2020-05-07 Protocols and Security 2020

33

2020-05-07

ROPER is a system for evolving populations of ROP-chains for a
target executable.

Training Workshop for Educators and Network Engineers on High Speed Network
Protocols and Security 2020

34

NA@@WER

BACK IN ACT) ON READY FOR DA

SITUATION: You have found an
exploitable vulnerability in a target
process, and are able to corrupt the
instruction pointer.

PROBLEM: You can’t write to
executable memory, and you can’t
execute writeable memory. 0ld-school
shellcode attacks won’t work.

SOLUTION: You can’t introduce any
code of your own, but you can reuse
pieces of memory that are already
executable. The trick is rearranging
them into something useful.

Training Workshop for Educators and Network Engineers on High Speed Network

Protocols and Security 2020

35

A ‘gadget’ is any chunk of
machine code that

is already mapped to
executable memory

allows us to regain control
of the instruction pointer
after it executes

2020-05-07

since all we control is the
data being read by the

process, the only ‘gadgets’
useful to us are those that

perform some helpful

operation, and then

alter the instruction pointer

according to data we control
ideally, each gadget will
perform its operation, and
then finish by sending the
instruction pointer to the
next gadget we want to make
use of

Training Workshop for Educators and Network Engineers on High Speed Network 36
Protocols and Security 2020

2020-05-07

the precise meaning of a ‘return’ instruction is
architecture-dependent; not all architectures implement return
as a pop into PC (MIPS, e.g.)

the essential idea we’re after is stack-controlled jumps

this means we don’t need to limit our search to ‘return’s

we can broaden it to include any sequence of instructions that
culminates in a jump to a location that’s determined by the data
on the stack

this gives us what’s commonly called “JOP’, or jump-oriented
programming

Training Workshop for Educators and Network Engineers on High Speed Network
Protocols and Security 2020

37

Uneven Raw Materials
Register usage in tomato-RT-N18U-httpd, an ARM router HTTP daemon

|
I
I

. Jli e e 5. L - |

2020-05-07

Data or

Pattern

Script
(3)

genotype

fitness

criteria Genetic
Process

(4)

genetic

material
phenotype

Gadget
Extraction

(2)

Training Workshop for Educators and Network Engineers on High Speed Network
Protocols and Security 2020

39

The most basic type of problem
that ROPER can breed a population
of chains to solve is that
achieving a determinate register
state in the CPU, specified by a
simple pattern consisting of
integers and wildcards.

This isn’t the most intriguing
thing that ROPER cam do, but it is
fairly useful, automating the
ordinary, human task of assembling
a ROP chain that prepares the CPU
for a system call - to spawn a
process, write to a file, open a
socket, etc.

2020-05-07

Training Workshop for Educators and Network Engineers on High Speed Network
Protocols and Security 2020

For example, suppose we wanted to
prime the CPU for the call

execv("/bin/sh", ["/bin/sh"], 0);

We’d need a ROP chain that sets ro
and r1 to point to some memory
location that cemtains "/bin/sh",

sets r2 to 0, and r7 to 11. Once
that’s in place spawning a shell
is as simple as jumping to any
given address that contains an svc
instruction.

One of ROPER’s more peculiar
solutions to this problem - using
gadgets from a Tomato router’s
HTTP daemon - is on the next
slide...

40

2020-05-07

Payload:

00002d38 deadbeef

0000bb3d 00OOEEAO 4b4e554b
0002569 0OOEOOOO 4b4e554b 4b4e554c
0000bb3d 0POOOEEAO OEOOEEOb
00001804 4b4e554a 0OOOOOODb

Source:

Runtime:

00002d38 pop {ro,
0000bb3d pop {ri,
000256f9 pop {r2,
0000bb3d pop {ri,
00001804 svc 0x0O
00001808 pop {r4,
0000180C bx 1r

rg}

Long Le, ARM Exploitation ROPMAP, Blackhat 2011

Training Workshop for Educators and Network Engineers on High Speed Network

Protocols and Security 2020

41

:: Gadget O 988 166«c cmp 2,1

aeael18efc mov o, rS 2886156 O Dl SO xa8

eee16186 1drd r4_,[r6]. .1 28815734 mov r2 _, 88

aeeel1e184a cmp r4 20 28815738 cmp 9, r2

aeeel1e188 Dne #MOxFFFFFfLE ;; = -@Gx48 988157 3c =tr 2, [r4 _6>x280]

8ee1e18c rsh S, r5,.r9 288915748 bDeqg #0x10

eeel1e11e cmp S, #08x88 28815758 cmp r3 .80

eeele1lla movgt ro,s6 eae16754 beqg #Ox14

eeel1e118 movie ro,#1 28815758 1dr 3, [r3 .26>x20]

eee181l1l1c pop {rd4_.r5_r6 _ pc) 98816 75c 1dr r2, [r4a _6>280]
28815768 cmp 3,02

3 Gadget 1 28815764 =trgt r3,[r4_28x28]

aeaeael12786 Dne 2O x18 28815768 1dr r3, [r4a :6>x20]

aeeel12798 mwvn 7,80 988167 6c mov 9, rd

ae8e1279c mov e, r7 28815778 add r3,r3_ 21

eeel127a0 pop {r3.r4.rS5 . r6 . r7.pc} eae1s7 74 str r3, [r4,20x201
28815778 pop {rd4_pch

:: Gadget 2

eeel16884 bDeg #Ox1lc 3; Extended Gadget 1

aeeel16888 1dr 9, [r4 s68x1c] eae12780 Dne 2O x18

aeel1688c LL SOxFFFFFFfO ;; = -8x10 ea8e12784 add S5, 7

8eael1687c push r4 1r eael12788 red r4_ r7 _,r4

aeel168806 s=ub=s r4_r9 _ 20 988127 8c cmgp 4,20

aeael16884 Deg MO x1lc eae12798 bgt MOxFFFfFffc8 ;;: = -8>x38

eeel168a0 mov e, rl e8e1275a b &8

eeel168a4 pop {rda.pc} ©881279c mov 9, r7
28812720 pop {r3.r4 . r5 _ r6_ r7 pc}

:: Extended Gadget @

eeel16896 =tr rO,[r4 #68x1c] 3; Extended Gadget 2

eeel168954a mov 9, r4a 988 155ec b #O9xlc

eeels898 pop {r4a.1r} eae1sses add =p,sp,#OxS8

aeae1689c b SOxFFfFffad8 ;; = -@x228 988 156868c pop {rd4_.r5_.r6 _pch

aeael1s6674 push r4 1r

aee16678 mov r4,r9 3; Extended Gadget 3

8881667 c 1dr rO, [re . s#6x18] 28615918 mov rl,.rS

aee16680 1dr r3, [r4a #68x1c] 988159 1c mov r2_,r6

eeel16684a cmp r9, 20 98615926 LL #SOGxFFFFff88 ;; = -Ox78

aee16688 1Tdrne rl, [rO9_ 28x20] 288158 a8 push {r4 r5 r6 r7 . r8 _1r}

8881668 c moveqg rl,re 988158 ac subs r4_r8 . #06

aeeel166986 cmp r3 .80 9861580 mov rS_.rl

aee16694a 1drne r2, [r3_ 8#8x20] 288 158ha mov 6, r2

eee16698 moveqg r2,r3 28915858 bDeqg #MOxTc

8881669 c rsty 2, r2_.r1 988 168hc mov e, rl

aeel166a8 crmn r2 &1 888168 cO mov rl,r43

aeel166a4a bhoge 2O xa8 288158 ca bBix r2

Table 5.2: Execution trace of a chain that generates the register pattern required
for a call to execv("/bins/sh", ["/bin/sh"], NULL) in tomato-RT-N18U-httpd,
by modifying its own call stack and executing numerous "stray” or "extended" gad-
gets, in the Pocluxr population. Modifications to the gadget stack are in red, jumps
are in violet, and completion of target CPU pattern is in blue. Free branches are
separated by blank lines. The final instruction jumps to the designated stop address,
O0x00000000.

Training Workshop for Educators and Network Engineers on High Speed Network

Protocols and Security 2020 42

2020-05-07

Classifying flowers using using HTTP daemon ROP Chains — Detection
Rate 96.6%

4.5 T T T T T T 2
| | Sepal
™ Petal
4 " u
u
l n
-
as | |
: Fu
| n 1
3F -. [| | lrI q
|
u
25 | | -
| BNy 2
" E X f 1
2 o B
A
AA A
15 A A2 B
A AMA
AAA A
1r AAA M -
A
05 A -
AddhA
A
S A
(A Ak
0 L L L L L L 0
1 2 3 4 5 6 7 8
Map of iris.dat

Figure 5.15: Map of the Iris dataset. Triangle points represent petal measurements,
and square points represent sepal measurements, with length on the X-axis and width
on the Y-axis. Colour maps to species: green for setosa, maroon for versicolor, and
pink for virginia

5/7/20

Training Workshop for Educators and Network Engineers on High Speed Network
Protocols and Security 2020

T
Setosa Difficulty —
Versicolor Difficulty ——
Virginia Difficulty

Mean Detection Rate Error
Champion's Detection Rate Error
1l Crash Rate

0 1 1 L 1
50 100 150 200

Season

Figure 5.18: A very good run on the Iris classification task, employing the fitness
sharing algorithm documented in §4.4.4 (Ragweb population). The filled curve sur-
rounding each mean difficulty line again represents the standard deviation of difficulty
for that exemplar class.

43

What did we |learn?

Data driven
* New insight and knowledge

Input — representation
* Traffic / Text / Usage

Generalization
* Time & Location & Evasion

Output — objectives
* Known behavior
* Behaviour changed
* Unknown / new behaviour
* Value of certainty

How much prior knowledge?

Data and Objectives
More prior info = Constraints search space
More prior info = Creates Blind side

How much ground truth?
What is the cost of providing labels?
What is the deployment environment?

Location, Time, Evasion

Training Workshop for Educators and Network Engineers on

2020-05-07 High Speed Network Protocols and Security 2020

45

What is next?

Ever changing cycle

“Always” Learning to model the “change”

Training Workshop for Educators and Network Engineers on

2020-05-07 High Speed Network Protocols and Security 2020

46

Thank You ©
Questions?

Web: https://web.cs.dal.ca/~zincir

Dal NIMS Lab: https://www.youtube.com/watch?v=dJYWzpW1boo

Training Workshop for Educators and Network Engineers on

2020-05-:07 High Speed Network Protocols and Security 2020

47

https://web.cs.dal.ca/~zincir/newNZH/Welcome.html
https://www.youtube.com/watch%3Fv=dJYWzpW1bqo

