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Abstract—With the increasing adoption of the HyperText
Transfer Protocol Secure (HTTPS), organizations face new chal-
lenges in monitoring traffic to defend against attacks and enforce
security policies, such as filtering malicious websites. One widely
used technique to monitor HTTPS is by scrutinizing the hostname
in the Server Name Identification (SNI) extension during the
Transport Layer Security (TLS) handshake. Parsing the SNI
typically involves Deep Packet Inspection (DPI), often performed
on general-purpose processors, which can create bottlenecks and
significantly impact network throughput. In response, this paper
introduces a novel framework for parsing and identifying SNI
hostnames in the data plane at line-rate using P4. Evaluation
results on recent publicly available datasets from various regions
and platforms demonstrate that our framework can successfully
parse 85%-99% of hostnames in P4. Furthermore, performance
analysis reveals that the proposed data plane solution can inspect
the hostname in approximately 1 microsecond (µs), representing
orders of magnitude improvement over solutions running on
Central Processing Units (CPUs).

Index Terms—TLS, SNI, HTTPS, P4 programmable switches,
high-speed network monitoring, DPI

I. INTRODUCTION

The Google Transparency Report reveals a significant surge

in the adoption of the HyperText Transfer Protocol Secure

(HTTPS) in the Chrome browser within the United States,

soaring from 44% in March 2015 to an impressive 98% by

March 2024. Furthermore, data indicates that over 94% of

requests to Google from the top ten countries globally are

now encrypted [1]. This dramatic increase can be attributed

to various factors, including heightened awareness of user

privacy, widespread adoption of HTTPS by major services

such as Gmail, Meta, and YouTube, and advancements in

computational power enabling encryption and decryption [2].

HTTPS, which runs on top of the Transport Layer Security

(TLS) protocol [3], provides significant benefits in terms

of confidentiality and authentication. HTTPS monitoring is

desirable for a multitude of reasons related to network se-

curity, such as attack detection, security policy violations, and

malicious activities [4]. This is partly due to the limitations of

traditional monitoring techniques, which struggle to keep pace

with modern network architectures and protocols. For instance,

monitoring solely based on low-level identifiers such as IP

addresses and port numbers proves ineffective when multiple

services share the same IP address (resulting in multiple

domain names associated with a single IP address) or when

dynamic port allocation mechanisms such as Network Address

Translation (NAT) are implemented [5].

Higher-level network monitoring, extending beyond net-

work layers 3 and 4, is extensively discussed in the literature

and implemented in practice. However, such mechanisms often

rely on Deep Packet Inspection (DPI), typically performed by

security middleboxes with general-purpose CPUs and GPUs,

can cause bottlenecks under high traffic [6] and raise privacy

concerns [7].

The introduction of P4 Programmable Data Plane (PDP)

switches offers a novel approach for advanced network se-

curity monitoring, including ransomware attacks, which have

wreaked havoc across the Internet [8], and botnets [9, 10].

Additionally, the Domain Name System (DNS), which maps

domain names to IP addresses, is being implemented in P4

PDP switches for domain name extraction and monitoring

[7, 11, 12].

Although raw DNS traffic can be used for monitoring and

security services, it becomes ineffective in modern browsers

that encrypt DNS traffic using the DNS over HTTPS (DoH)

protocol. As a proof of concept, we attempted to monitor and

block domain names in the Palo Alto virtual firewall using the

DNS sinkhole feature, but access to these domains remained

possible in Firefox and Chrome, where DoH is the default

setting [13, 14]. To overcome encrypted DNS hurdles, Palo

Alto virtual firewall offers other features to monitor traffic,

such as inspecting the hostname in the TLS Server Name

Identification (SNI) extension (namely, the URL filtering ca-

pability). This extension contains the DNS hostname the client

needs to contact.

Monitoring the TLS protocol in the P4 PDP switches offers

several advantages to the security and operation of the net-

work, however, it has not been addressed in the literature due

to the complexity of the TLS protocol headers and the software

and hardware limitations of P4 PDP switches [7]. To this end,

this paper proposes an efficient P4-based implementation of

the TLS header to extract the hostname in the SNI extension,

enabling both fine-grained and coarse monitoring applications.

The contributions of this paper are summarized as follows:

• Implement a line-rate P4 program that extracts the host-

name from the TLS SNI extension in ≈ 1 microsecond

(µs). The implementation is publicly available online for

deployment and research endeavors [15].



• Design a framework that can perform fine-grained mon-

itoring (exact match) on 500,000 hostnames, and coarse-

grained monitoring (ternary match) on 15,000 hostnames.

The framework is deployed entirely in the data plane,

ensuring privacy-preserving monitoring.

• Evaluate the proposed framework on recent TLS datasets

collected from various sources and platforms containing

normal and malicious hostnames. Our results show that

the proposed approach is highly effective on current TLS

traffic usage on the Internet.

• Showcase the performance gains of the proposed system

against Suricata Intrusion Detection/Prevention System

(IDS/IPS) [16]. The system can be deployed as an active

middlebox without affecting normal traffic.

The remainder of the paper is organized as follows. Section

II reviews related works and compares them to our approach.

Section III provides background information on the TLS

protocol and P4 PDP switches. In Section IV, we describe

the proposed approach and detail the P4 implementation.

Section V presents experimental results. Section VI discusses

the limitations of the proposed approach and outlines future

research directions. Finally, Section VII concludes the paper.

II. RELATED WORK

Previous works on TLS inspection have been applied to

various network security applications [17]. However, these

approaches rely on general-purpose programming languages,

which simplify DPI and TLS packet parsing.

Interest in using P4 for DPI is growing, with early efforts

focusing on the DNS protocol. Meta4 [7] is a network mon-

itoring framework that parses up to four DNS subdomains,

with a limit of 15 characters per subdomain. Kaplan et al.

[11] expand on this by parsing six subdomains, with a total of

60 characters. In our previous work [6, 12], we addressed DNS

parsing challenges using packet recirculation and truncation.

This technique processes the packet repeatedly, removing parts

in each iteration until the full domain name is parsed. Thus,

allowing more domains to be parsed at the expense of keeping

the packet for a longer period in the data plane.

DNS parsing poses challenges in P4 due to the variable

lengths of subdomains. However, DNS operates at layer 7 and

is encapsulated within a UDP packet with a fixed, short header

length, facilitating access to the DNS layer. In contrast, parsing

the TLS protocol is more complex due to the variable lengths

of header fields and the random order of TLS extensions.

Other P4-based DPI efforts focus on string matching and

domain filtering techniques. DeepMatch [18] offers a line-

rate DPI primitive in the data plane with smart NICs [19],

enabling new applications like Quality of Service (QoS),

network monitoring, and IDS for advanced security policies.

Jepsen et al. [20] developed a P4-based system to locate

string keywords in packet payloads using parallel search with

partitioned Deterministic Finite Automata (DFA). They use

packet recirculation and truncation to search the entire packet

payload. DeeP4R [21] is similar but keeps the original packet

intact during recirculation, taking ≈ 1 millisecond (ms) to

search domain names. This is primarily due to the approach

that searches byte-by-byte for any string occurring in the

packet. In contrast, our system runs at line-rate and is much

more efficient, taking ≈ 1 µs.

III. BACKGROUND

A. TLS

HTTPS is the secure version of HTTP, the primary protocol

used to transfer data between a web browser and a website.

HTTPS uses the TLS protocol, formerly known as the Secure

Socket Layer (SSL) protocol, for encryption and authentica-

tion. To establish a TLS connection, a handshake process must

occur between the client and the server. The handshake process

starts with a Client Hello message, where the client asks for

the web server’s TLS certificate. Following this, a series of

messages is exchanged between the client and the server before

the session is established.

The exhaustion of IPv4 addresses has led to shared web

hosting, where multiple domains share a single IP address. For

instance, the domains example.net and example.com

share the same IP address. As a result, the client has to indicate

the domain it is connecting to. SNI is an extension for the TLS

protocol that ensures that the clients can specify the domain

name of the server during the TLS handshake during the Client

Hello message [22]. Almost all browsers, web servers, and

OSes support the SNI extension, and it has been utilized for

several applications, such as service inspection, URL filtering,

etc. [5, 23, 24]. In the context of TLS SNI, the terms hostname

and domain name are used interchangeably.

B. Programmable Switch Primer

The Protocol Independent Switch Architecture (PISA) is a

data plane programming model that includes the following

elements: programmable parser, programmable match-action

pipeline consisting of multiple stages, and programmable

deparser. The programmable parser is represented as a state

machine that can define the headers that need to be parsed

(e.g., Ethernet, IP, DNS, or even custom headers). The pro-

grammable match-action pipeline consists of multiple match-

action units to match against packet header fields and apply

actions with supplied action data. Each unit can include one

or more Match-Action Tables (MATs) that are coupled with

Static Random Access Memory (SRAM) or Ternary Content

Addressable Memory (TCAM) for storing lookup keys and

action data. Additional action logic can be implemented using

stateful objects, such as registers that are stored in SRAM.

Lastly, the programmable deparser defines how packet headers

are reassembled when they exit the switch [25]. The high-level

language used for programming PISA is P4. Unlike general-

purpose programming languages, P4 is domain-specific and

optimized to handle Tbps of network traffic. Despite the in-

creasing number of emerging applications in P4 (e.g., network

telemetry, security, etc. [26, 27]), preserving Tbps throughput

requires limiting the complexity of the pipeline stages and per-

mitting only elementary actions (e.g., simple arithmetic). Such

limitations require expertise and knowledge of the language
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and architecture to devise workarounds when implementing

complex functionalities in the switch.

IV. TLS SNI PACKET PROCESSING IN P4

A. System overview

Fig. 1 presents a high-level overview of the proposed

system. The P4 PDP switch serves as the core component,

responsible for processing TLS Client Hello packets and

extracting hostnames from the TLS SNI extension. Once the

hostname is extracted, the P4 PDP switch can enforce fine-

grained and coarse-grained monitoring on it. Fine-grained

analysis enables exact matching of hostnames, ensuring pre-

cise identification. Coarse-grained monitoring offers a more

flexible approach by allowing ternary matching (e.g., any

hostname that ends with google.com can be monitored

in a rule matching *.google.com); however, it is more

limited in the data plane. Fine-grained monitoring can be

used for real-time deny lists sourced from various intelligence

sources. Coarse-grained monitoring, on the other hand, can be

used for service monitoring and fingerprinting [23]. The P4

program operates at line-rate with basic packet routing and

forwarding functionalities, thus enabling the P4 PDP switch to

be deployed as an active privacy-preserving monitoring device.

B. P4 implementation

Fig. 2 shows the P4-based ingress parser and match-action

pipeline implementation of the proposed system, where most

of the implementation resides. The P4 PDP switch intercepts

the TLS Client Hello packet and starts parsing the fixed header

fields. The TLS header has multiple variable-length fields that

need to be parsed before reaching the hostname in the SNI

extension, namely the session ID, ciphers, and compression

methods supported by the client. Each of these header fields

is preceded by its length. The parser reads this length and

then skips the entire header using the Tofino parser “advance”

capability. To skip header fields with variable lengths, a state

is created for each possible length. For instance, in the session

ID states, the parser can parse any session ID of any length

between 1 and 32 bytes. The choice to efficiently skip these

variable-length headers, rather than extracting them into the

PHV header, is key to parsing the hostname at line-rate in

the presence of a complex header. Once the parser skips the

session ID, ciphers, and compression methods, multiple TLS

extensions (each with variable length) can be encountered

before reaching the SNI extension. Consequently, we form a

loop in the parser that keeps skipping TLS extensions until

the SNI extension is reached (SNI extension is type 0). To

comply with the parser’s limitations, each encountered TLS

extension can be parsed as long as its length is less than

30 bytes. Randomizing the order of the TLS extensions has

been specified in TLS version 1.3 [28] to reduce the risk of

ossification by external implementers that make it difficult to

deploy future modifications to TLS [29].

To parse the variable-length hostname, its length is first read,

and then the parser starts extracting it if it is less than 31

characters to avoid partial extraction. A straightforward, but

impractical, approach to extracting the hostname is to define

a header for each possible length and extract the entirety of

the hostname at once. This would require N headers, where

N is the maximum number of characters that can be parsed.

However, this approach is not scalable and would waste scarce

resources. Alternatively, the proposed system follows a more

efficient approach by extracting a predefined number of bytes

that is an exact power of two. The proposed system defines

headers with lengths of 20 = 1, 21 = 2, 22 = 4, 23 = 8,

and 24 = 16, thus, accommodating a total length of 31

bytes/characters. For instance, the hostname example.com,

with a length of 11, will be extracted into the headers 1, 2,

and 8.

After parsing the hostname, the ingress match-action

pipeline implements a two-fold monitoring technique: fine-

grained and coarse-grained. In fine-grained monitoring, the

extracted hostname is hashed using CRC32, and the output

is matched to a table that performs exact matching. Thus,

allowing the inspection of 500, 000 hostnames. In coarse-

grained monitoring, the entirety of the extracted hostname

is matched to a table that performs ternary matching. Since

the hostname is much longer than the hash and the ternary

match occupies more resources, the table can inspect 15, 000

entries. The coarse-grained monitoring table is associated with

counters to collect packet and byte counts for each entry for

service monitoring use cases.

V. EVALUATION

A. Dataset

Virus Total malware traffic. Using their academic services,

we crawled and retrieved hundreds of gigabytes of malware

samples between 2017 and 2021 from Virus Total [30]. Sam-

ples that do not initiate TLS connections are removed using the

metadata file associated with each sample. Subsequently, each

sample was instrumented in an isolated environment to capture

its network traffic behavior, i.e., the Packet Capture (PCAP),

file for 5 minutes. The resulting dataset contains 276 malware

samples. We make this dataset, along with the others, available

online for analysis of the network behavior in contemporary

malware samples [15].
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Fig. 2: Parsing TLS SNI and applying it for fine-grained and coarse-grained analysis using P4.

CTU normal and botnet traffic. This dataset contains Zeek

[31] log files captured at CTU University [32], which include

a large amount of real botnet traffic mixed with normal and

background traffic. The Zeek log files contain information on

TLS connections, including the hostname.

Cross platform and browser traffic. This dataset is col-

lected by the authors of Flowprint [33] and is publicly avail-

able. The cross-platform dataset consists of user-generated

data from 215 Android and 196 iOS applications in the US,

India, and China. The browser traffic contains traces from

scraping the top 1, 000 Alexa websites with Chrome, Firefox,

Samsung Internet, and UC browsers.

B. P4 TLS Parsing Capabilities

The complexity of the TLS header, combined with the

limited hardware resources of P4 PDP switches, results in two

main cases where TLS Client Hello packets cannot be parsed

up to the hostname. The first case occurs when the hostname

length is greater than 31. The second case occurs if any of the

TLS headers preceding the SNI extension (e.g., the session ID,

cipher, compressions, or other prior extensions) have a length

greater than the specified threshold in P4.

To study the effectiveness of the implemented system,

the length of hostnames from various normal and malicious

dataset sources was analyzed in Fig. 3. In the top 1 million

hostnames from Cloudflare [34] and normal CTU traffic,

0.31% and 5.9% of hostnames, respectively, cannot be parsed

in P4 since they have a length greater than 31 characters. As

for malicious hostnames from CTU botnet and Virus Total,

15.9% and 4.8% of hostnames are missed, respectively. In

this experiment, only the hostname length is analyzed since

packet capture files were not available or were truncated due to

privacy reasons (except the Virus Total dataset). Nonetheless,

this shows us that the chosen threshold for the hostname length

(31 characters) is effective enough to cover the vast majority

of hostnames.

Moreover, we study the effectiveness of the proposed ap-

proach on the entirety of TLS headers from traces in the

cross platform and browser datasets. Fig. 4 shows the ratio

of traffic missed due to headers that could not be parsed in

P4. Noticeably, TLS traffic in iOS applications has the highest

ratio of missed traffic (maximum of 12%) due to the large
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number of ciphers supported.

C. Performance

To showcase the performance gains of deploying TLS

inspection in the data plane, the proposed approach is im-

plemented on the Edgecore Wedge 100BF-32X, which is

designed with programmable Tofino switch silicon from Intel

Networks [35] and allows programming using the P4 lan-

guage. These obtained results from the Tofino switch are

compared with Suricata IDS/IPS version 6.0.4 running on a

virtual machine with 32 GB RAM and 8 cores allocated. For

fairness, only Suricata rules that inspect the hostnames were

installed and the delay incurred from inspecting TLS traffic is

measured. Similarly, the P4 code is modified to include built-

in timestamps and measure the delay in the switch. Fig. 5

shows that the P4 switch takes around 700 nanoseconds (ns)

to 900 ns when the TLS Client Hello packet does not have

extensions in random order preceding the SNI extension (seen

in TLS 1.2). This delay can increase to ≈ 1.5 µs, when the P4

parser uses loops to bypass extensions in random order (seen

in TLS 1.3). The obtained data plane speeds are orders of

magnitude faster than those obtained in CPU-based Suricata,

which can take tens to hundreds of microseconds.

VI. LIMITATIONS AND FUTURE WORK

The proposed framework heavily relies on the ingress parser

and match-action pipeline for its implementation. It can parse a

vast majority of hostnames in TLS traffic; however, some use

cases cannot be accommodated within the current program.

This limitation primarily stems from the parser being fully

utilized as depicted in Fig. 6. Nonetheless, our approach

can forward the small percentage of unparsed packets to the

control plane for further inspection. Future work involves

leveraging both the ingress and egress to further maximize

the percentage of hostnames that can be parsed in the data

plane. Alternatively, packet recirculation can be utilized with

some sacrifice in delay (each recirculation adds ≈ 1 µs delay).
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It is also worth mentioning two exploits where SNI inspec-

tion becomes more challenging. The first occurs when some

servers continue the handshake process even if they do not

recognize the SNI (backward compatibility exploit [36]). In

such cases, attackers can inject fake hostnames that do not

match firewall rules. The second exploit arises when servers

have alternative names that can appear in their TLS certificate.

For instance, alternative names for YouTube’s TLS certifi-

cate may include *.google.com, *.googlevideo.com,

*.google.fr. This can affect the accuracy of monitoring

and filtering services. Future work aimed at enhancing P4 in

such exploits might involve shifting focus to more DPI and

analyzing additional parameters in the TLS session handshake

[4].

Finally, the new TLS Encrypted Client Hello (ECH) ex-

tension, which encrypts the hostname, renders the proposed

approach, along with many monitoring services, impractical.

However, this extension faces several challenges and is not

widely adopted, primarily because many services use TLS 1.2,

which does not support ECH [37]. Future efforts to empower

P4 in encrypted hostname traffic might involve focusing on a

set of unencrypted metadata exchanged between the client and

the server.



VII. CONCLUSION

This paper presents a novel line-rate approach that performs

DPI on TLS Client Hello packets to extract the DNS hostname

in the SNI extension in the data plane. The scheme implements

an efficient P4 program that overcomes the complexity of

TLS headers and the hardware and software limitations of P4

PDP switches. Running at line-rate, the program allows the

PDP switch to serve as an active device for both fine-grained

and coarse-grained monitoring. The former can track 500, 000

exact hostnames, making it effective for domain name filtering,

while the latter can match 15, 000 hostnames using regular

expressions for service monitoring. Evaluations show the

proposed framework can parse 85%-99% of hostnames across

various datasets, platforms, and regions (e.g., Android, iOS,

different browsers, normal and malware traffic). Compared to

Suricata IDS/IPS, the framework processes data in ≈ 1 µs,

orders of magnitude faster than Suricata on a general-purpose

CPU. Resource usage indicates that the scheme occupies

minimal space in the match-action pipeline, leaving room for

further innovation in the data plane. Optimization techniques

could explore utilizing both the ingress and egress pipelines

to cover additional use cases.
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