
Security Applications in P4: Implementation and

Lessons Learned

Ali Mazloum, Ali AlSabeh, Elie Kfoury, Jorge Crichigno

College of Engineering and Computing, University of South Carolina, Columbia, U.S.A.

amazloum@email.sc.edu, aalsabeh@email.sc.edu, ekfoury@email.sc.edu, jcrichigno@cec.sc.edu

Abstract—The data plane, which used to provide a limited
and fixed set of operations in legacy networking devices, is
now programmable. The de-facto language to program the data
plane is Programming Protocol-independent Packet Processors
(P4). After compiling a P4 program, the resulting binary is
loaded into the Application Specific Integrated Circuit (ASIC).
The ASIC processes the packets based on the logic defined
by the P4 program. The flexibility and granularity offered
by programmable data plane devices allowed many security
applications to be offloaded to the data plane. Thus, P4 and
programmable devices allow the security applications to run on
the hardware while sustaining the software’s flexibility, which
enhances their performance. However, developing a P4 program
is not straightforward.

The complexity associated with developing P4 applications has
often been an obstacle for researchers. They mainly follow a trial-
and-error approach to compile and fit their program into the
ASIC. This paper tackles the issue by providing a comprehensive
guide to the process of designing P4 security applications. It
goes beyond theory and delves into practical implementation by
showcasing the creation of several security applications on P4
programmable switches and sharing the P4 source code of these
applications. In this paper, the authors will discuss the lessons
they learned from implementing multiple security applications
on programmable switches using P4, providing the reader with
guidelines and insightful considerations.

Index Terms—P4, Programmable Data Planes (PDP), Security
Applications, DNS DPI, Stateful Packet Filter, DDoS.

I. INTRODUCTION

Traditional networking devices (e.g., routers and switches)

implement fixed functionalities hard-coded by the vendors. The

lack of flexibility and programmability of these devices has

limited the innovation and the immediate response required

by the ever-growing networking industry. For instance, in the

presence of a zero-day exploit attacking the network infras-

tructure, traditional networking devices cannot be programmed

as a defense strategy, thus, they are deemed ineffective [1].

Such limitations led to the emergence of the Software-Defined

Networking (SDN) paradigm [2]. SDN reduces the complexity

of the network and enables innovation on the control plane

at the speed of software development. However, SDN is

constrained by the OpenFlow specifications and the fixed-

function data plane [3]. As a result, attack mitigation has

This work was supported by the U.S. National Science Foundation, Office
of Advanced Cyberinfrastructure, Award #2403360 and Award #2346726.

either been offloaded to the control plane or to third-party

middleboxes, which cannot operate at the speed of the data

plane [4, 5]. As the scale of some attacks, such as Denial of

Service (DoS), reached a peak of Terabits per second (Tbps),

software-based defenses lagged behind [1].

An alternative and widely used approach to keep up with the

increasing scale of attacks is the use of traffic scrubbing centers

[6]. Scrubbing centers deploy proprietary hardware appliances

to achieve high-performing defenses. Despite their effective-

ness, scrubbing centers have some limitations. Cost can be a

significant factor, as implementing and maintaining scrubbing

center infrastructure can be expensive. Scalability can be an

issue as well, with large-scale Distributed DoS (DDoS) attacks

potentially overwhelming the center’s resources, leading to

partial or ineffective mitigation [7].

Programmable data plane (PDP) has emerged as a cost-

effective solution that combines the flexibility of software-

based approaches and the efficiency and performance of

hardware-based approaches. PDP is the natural evolution of

SDN, which allows network administrators to perform custom

packet processing at the data plane level. P4, which stands

for Programming Protocol-independent Packet Processors, is

the de-facto language for defining the forwarding behavior of

PDPs. It allows the processing behavior of the devices to be

adjusted by programmers based on their needs. The flexibility

offered by PDPs does not entail any processing overhead.

PDP devices can apply the logic described in a compiled

P4 program at line rate with Tbps processing speed. While

programming a PDP, the programmer describes protocols and

features in the Application Specific Integrated Circuit (ASIC).

However, developing a P4 program is not straightforward. De-

velopers are rarely sure if their program can fit into the ASIC,

and consequently, they follow a trial-and-error approach to

compile the program [8]. In P4, developers should account for

the low-level hardware limitations when writing the programs.

This paper discusses the process of writing security pro-

grams in P4 and analyzes how different decisions made by

the programmer are reflected in the resource usage of the

programmable switches. The paper also describes the lessons

learned from implementing the applications, providing the

reader with guidelines and insightful considerations. The se-

curity applications discussed are stateful packet filters, DDoS

defenses, DNS deep packet inspection (DPI), anti-spoofing

 Programmable match-action pipeline Programmable
deparser

Packet

Programmable
parser

……

Stage 1 Stage n

: Match logic : Action logic

Packet

ASIC

Fig. 1: The Protocol-Independent Switch Architecture (PISA).

defenses, and cryptographic functions.

A. Contributions

The literature is rich with P4-related works that either focus

on describing the technology and its corresponding work [1, 8–

10] or on utilizing the technology to produce innovative sys-

tems [11–18]. However, to the best of the authors’ knowledge,

no previous work focuses on the methodology of writing P4

applications as the complexity of developing P4 applications is

one of the main barriers for researchers. To this end, this paper

aims to explain the methodology of designing P4 security

applications, illustrate the effects of different implementation

approaches on the resource utilization of PDP devices, and

present the main considerations required to integrate multiple

security applications in a single P4 program. The provided im-

plementations are based on Tofino Native Architecture (TNA)

and target Tofino programmable switches. All related source

codes are released at Github [19].

B. Paper Organization

The paper is organized as follows: Section II provides

background information on PDPs; Section III discusses im-

plementing stateful packet filters in P4; Section IV discusses

implementing DDoS defense in P4; Section V discusses imple-

menting DNS DPI in P4; Section VI discusses implementing

spoofing defense in P4; Section VII discusses implementing

cryptography in P4; Section VIII summarizes the learned

lessons; Section IX discusses future directions, and Section

X concludes the paper.

II. BACKGROUND

A. Data Plane Programmability and PISA Architecture

Data plane programmability allows the user to define the

processing behavior of the data plane by implementing custom

algorithms. Programmable switches are networking devices

with a programmable data plane. Besides enabling the user to

deploy the standard forwarding functionalities, programmable

switches can provide per-packet visibility, custom packet pro-

cessing at line rate, stateful memory elements, and APIs to

interact with the data plane during the run time, among others.

Ethertype

Start

 0x0806 0x0800

Ethernet

Accept

ARP IPV4

default

Accept

default

ICMPTCP

Protocol

 6 1

Reject

default

Accept

default

default

default

Reject

: User defined state

Fig. 2: Example of a parser that accepts packets with Ethertype
0x0806 and 0x0800, packets with Protocol 6 and 1, and rejects all
other packets.

The Protocol Independent Switch Architecture (PISA) is

a widely used architecture for programmable switches. As

depicted in Fig. 1, PISA includes three programmable blocks, a

programmable parser, a programmable match-action pipeline,

and a programmable deparser. The parser defines the headers

and parses them. Headers are defined based on custom or

standard protocols. The programmable match-action pipeline

executes operations on packet headers and intermediate results.

The pipeline comprises multiple stages. Each stage contains

memory blocks (tables and registers) and Arithmetic Logic

Units (ALUs). This arrangement enables parallel lookups and

actions, ensuring efficient packet processing. The stages are or-

ganized sequentially to manage data dependencies (i.e., when

the results of one stage are required as input to another stage).

After processing the parsed headers, the deparser assembles

and serializes them for transmission.

B. Programmable Switches

The flexibility offered by programmable switches allows

multiple security applications to be offloaded to the data plane

[1]. The five security applications that will be discussed in

this paper are stateful packet filters, DDoS mitigation systems,

DNS DPI, anti-spoofing defenses, and cryptographic functions.

The main components of the programmable switches that

allow these applications to be offloaded to the data plane

are the programmable parser, the match-action tables, and the

registers.

1) Programmable parser: When developing a P4 program,

the programmer defines the set of headers to be extracted and

processed by the programmable switch. The programmable

parser is the component responsible for extracting the headers

from the incoming packets. It operates as a finite state machine

with an explicit start state, two ending states (Accept and

Reject), and the user-defined states in between. Transitioning

between states can be either conditional or unconditional. In

conditional transitioning, the parser checks if the headers of the

packet satisfy a given condition (e.g., check if the Ethertype is

0x0806). If the condition is satisfied, the parser transitions to

the state associated with the condition. On the other hand, an

Key Action ID Action Data

H
it / M

iss S
e

le
cto

r

A
ctio

n

ID

Data

Hit

Default Action

ID Data

M
iss

Lookup

Key

Matching
Metadata

Headers

Metadata

Headers

Metadata

Headers

Control Plane

Data PlanePopulating the Table

Fig. 3: P4 match-action table. The lookup key is created from headers
and metadata. It is matched against keys populated by the control
plane. If a hit occurs, the action of the corresponding entry will be
applied. If no hit occurs, the default action is applied.

unconditional (also known as default) transition occurs when

no conditions are defined or satisfied.

Fig. 2 shows an example of a parser. The first state is the

Start state. The only two possible end states are Accept and

Reject. The user-defined states are Ethernet, ARP, IP, TCP,

and IMCP. In this example, each state represents a different

protocol. The parser transitions by default from the Start state

to the Ethernet state. At the Ethernet state, the parser applies

two conditions on the Ethertype field of the Ethernet header.

If the packet is ARP or IP, then one of the two conditions is

satisfied, and the parser transitions to the corresponding state.

Otherwise, the parser transitions by default to the Reject state.

Following the same logic from the ARP and IP states, the

packet is either accepted and the defined headers are extracted,

or it is rejected.

2) Match-action tables: Match-action tables are the second

programmable block in the PISA architecture. As depicted in

Fig. 3, each table has multiple entries with a key to match

on, an action performed when a packet matches the entry,

and action data (which might be empty). The key can be a

single field (e.g., source IP address) or multiple fields (e.g.,

source and destination IP addresses). The components of the

key and the matching type should be specified during the

implementation of the P4 program and cannot be altered during

the run time. The switch builds a lookup key for the incoming

packets from their metadata and header fields and then uses the

created key to search the match-action tables. There are three

main matching types: exact, longest prefix, and ternary. In the

exact matching type, the lookup key should match exactly a

key in the tables for the corresponding action to be performed.

In the longest prefix matching (LPM) type, the entry with the

longest matching prefix is selected. In the ternary matching

type, the programmer defines what portion of the key should

the incoming packets match on. For example, if the switch

should forward only the packets with source IPv4 starting with

172 and ending with 172 (i.e., 172.*.*.172), then the ternary

matching type should be used. Because a packet might match

multiple ternary entries, the control plane should specify the

priority of each entry.

3) Registers: Registers are stateful memory elements where

each register entry has an index and a value. The number

of entries (i.e., register length) for each register and the size

of each entry (register width) should be specified in the P4

program during the implementation. The defined registers’

length and width cannot be altered during the run time. Hash

functions are typically used to create the indexes of the flows.

A flow is a group of packets that share some common header

fields. The fields used to classify packets into flows (e.g., the 5-

tuple: source and destination IP address, source and destination

ports, and protocol) are hashed and then used to map all the

packets of a flow to the same register entry. To avoid race

conditions, P4 does not allow register entries to be accessed

by two different stages simultaneously. Furthermore, the value

of a register entry cannot be modified more than once in each

pipeline pass.

III. DEPLOYING STATEFUL PACKET FILTERS IN P4

Stateful packet filters divide connections into sessions [20].

Each session has a client-to-server (c2s) flow and a server-to-

client (s2c) flow. The endpoint initiating the connection is the

client, and the server is the other endpoint. Security rules are

defined for c2s flows only [20]. Based on the state of a c2s

flow, the corresponding s2c flow is either denied or forwarded.

There are two methods for implementing stateful packet

filters in P4. The first method is to implement the packet

filter using match-action tables. The second method is to use

both match-action tables and stateful registers. While both

implementations can provide the same functionalities, each has

its advantages. The main advantage of the first implementation

is that the forwarding rules are populated by the control

plane at runtime, allowing the administrators to have full

control over their networks. However, this implementation is

not recommended if the latency added by the control plane

cannot be tolerated. In this case, the second implementation

should be considered, as it allows the stateful packet filter to

update its rules at the data plane level.

A. Match-action Tables-based Implementation

Implementing a stateful packet filter using match-action

tables requires the administrator to define security rules for

the c2s and the s2c flows. However, the administrator only

configure the rules for the c2s flows. The control plane then

automatically populates the rules for the s2c flows. One way

for the data plane to interact with the control plane is through

digests. Digests are packets used by the data plane to report

events to the control plane. When the data plane receives

the first packet from a c2s flow, it checks the packet against

its forwarding rules. If the packet is allowed, the data plane

notifies the control plane that a new c2s flow is received. After

that, the control plane pushes a new rule for the s2c flow

corresponding to the received c2s flow.

Fig. 4 depicts the scenario where only ping packets origi-

nating from the internal network are allowed. The data plane

defines the ICMP Filter table to play the packet filter role.

The administrator populates the rules to accept c2s flows,

i.e., accept ICMP ECHO packets originating from the internal

network (1). When the switch receives the ECHO packet

from 192.168.0.5 (internal network) destined for 216.0.0.12

192.168.0.0/24

Internal network

192.168.0.0/24

Internal network

216.0.0.0/24

External network

216.0.0.0/24

External network

1 2

2 5

Data Plane

Match-action Table: ICMP Filter

216.0.0.12, 192.168.0.5, ICMP REPLY Forward Eg_port = 1

Key

(src IP, dst IP, ICMP type)

192.168.0.0/24, 216.0.0.0/24, ICMP ECHO

Action ID

Forward

Action Data

Eg_port = 2

Control Plane

1 43

P4 Switch

Fig. 4: P4-based stateful packet filter using a match-action table. The
ICMP Filter table in the data plane plays the packet filter role. (1)
A security rule is added to accept ICMP ECHO packets originating
from the internal network. (2) A device from the internal network
(192.168.0.5) sends an ICMP ECHO packet to the external network
(216.0.0.12). (3) The data plane forwards the packet through egress
port 2 because it matches the rule in the ICMP Filter table with the
action Forward. The switch then notifies the control plane that a new
flow is active. (4) The control plane pushes a new rule to accept
the ICMP REPLY packet from the external network. (5) The switch
forwards the ICMP REPLY packet from the external network through
egress port 1.

(external network) (2), it forwards it through port 2. After that,

the data plane of the switch notifies its control plane about

the new flow (3). The control plane then adds a new rule to

accept the s2c flow, i.e., the REPLY packet from 216.0.0.12 to

192.168.0.5 (4). When the external network sends the REPLY

packet, the packet filter forwards it based on the rule added

by the control plane (5).

Security policies have different matching criteria depending

on the application being deployed. For example, deploying a

packet filter that controls TCP traffic might match packets us-

ing the 5-tuple. On the other hand, a packet filter that controls

ICMP traffic might only use the source and destination IP

addresses and the ICMP type. A PDP cannot deploy a stateful

packet filter encompassing various policies and protocols using

a single match-action table. The number of tables the PDP

requires depends on the different deployed matching keys (e.g.,

having one match-action table for ICMP traffic and another

table for TCP traffic or even multiple tables for each).

Defining multiple tables provides more flexibility and might

enhance the packet filter’s security and performance. For

instance, a more secure approach than the one presented in

Fig. 4 is to use the ICMP identifier field of the ICMP protocol

to map REPLY packets to their corresponding ECHO packets.

The ICMP header has an identifier field, which is a randomly

generated number that uniquely identifies the related ICMP

Data Plane

216.0.0.12, 192.168.0.5, 154681 Forward Eg_port = 1

Match-action Table: s2c Filter

Key

(src IP, dst IP, ICMP identifier)
Action ID Action Data

Match-action Table: c2s Filter

Key

(src IP, dst IP)

192.168.0.0/24, 216.0.0.0/24

Action ID

Forward

Action Data

Eg_port = 2

:Packets generated from the internal network (192.168.0.0/24)

:Packets generated from the external network (216.0.0.0/24)

Control Plane

P4 Switch

Fig. 5: P4-based stateful packet filter using multiple match-action
tables. The c2s Filter table maintains the rules for c2s flows and is
typically populated at the beginning of the run time. The s2c Filter
table is populated during the run time based on the flows accepted
by the c2s Filter table.

ECHO and REPLY packets. As shown in Fig. 5, this approach

requires defining a separate match-action table for the s2c

flows and using the ICMP identifier as an additional matching

field beside the source and destination IP. An incoming ECHO

packet is matched against the c2s Filter table; if it hits an entry,

its identifier field will be sent to the control plane, which adds

a new rule for the s2c Filter table. An incoming REPLY packet

is matched against the s2c Filter table; if it hits an entry, the

packet will be forwarded, and the corresponding entry will be

deleted (if no other packet with the same identifier is expected

to arrive).

Listing 1 shows the TNA-based P4 code that implements

a stateful packet filter. The packet filter operates on ICMP

and TCP traffic. For ICMP traffic, the table c2s Filter ICMP

matches the c2s flows on their source and destination IP

addresses. The matching types used are LPM and ternary.

The reason for not using two LPMs is that TNA does not

support having two LPM matching types for a single key. The

action notify control plane ICMP c2s sends a notification

(i.e., digest) message to the control plane. The notification

includes the source IP, destination IP, and the identifier of

the ICMP packet. After receiving the notification, the control

plane adds a rule to the s2c Filter ICMP table. The key of

the s2c Filter ICMP table matches on the exact values of

the source IP, destination IP, and ICMP identifier. If a match

occurs, the data plane notifies the control plane which removes

the matched rule if no other ICMP REPLY packets with the

same identifier are expected.

The same logic of populating the s2c rule applies to TCP

traffic but with different keys. Note that the s2c Filter TCP

table has no action to notify the control plane when a match

occurs. Unlike ICMP, TCP s2c flows can have an arbitrary

number of packets, and consequently, an s2c rule cannot be

removed after a specific number of hits (i.e., cannot detect the

termination of the s2c flow by monitoring the number of hits).

Listing 1: TNA-based P4 code to implement stateful filters

using the tables-based approach.

/************************ICMP**************************/

table c2s_Filter_ICMP {

key = {

hdr.ipv4.src_addr: lpm;

hdr.ipv4.dst_addr: ternary;

}

actions = {

notify_control_plane_ICMP_c2s;

drop;

}

size = 10000;

}

table s2c_Filter_ICMP {

key = {

hdr.ipv4.src_addr: exact;

hdr.ipv4.dst_addr: exact;

hdr.icmp.identifier:exact;

}

actions = {

notify_control_plane_ICMP_s2c;

drop;

}

size = 250000;

}

/***********************End ICMP***********************/

/************************TCP**************************/

table c2s_Filter_TCP {

key = {

hdr.ipv4.src_addr: lpm;

hdr.ipv4.dst_addr: ternary;

}

actions = {

notify_control_plane_TCP_c2s;

drop;

}

size = 10000;

}

table s2c_Filter_TCP {

key = {

hdr.ipv4.src_addr: exact;

hdr.ipv4.dst_addr: exact;

hdr.tcp.src_port: exact;

hdr.tcp.dst_port: exact;

hdr.ipv4.protocol: exact;

}

actions = {

tcp_s2c;

drop;

}

size = 250000;

idle_timeout = true;

}

/***********************End TCP***********************/

To detect the termination of a TCP flow, the switch can

monitor FIN and RST packets. Either the client or the server

sends a FIN packet to the other communicating end to

terminate a TCP session. After receiving the FIN packet,

a handshake occurs between the communicating entities to

terminate the connection. On the other hand, by sending an

RST packet, a TCP endpoint indicates that it will not accept

more data. In an ideal scenario, monitoring FIN and RST

packets allows the switch to accurately monitor the termination

of the flows. However, in a practical setting, hosts might fail

to send a termination signal (e.g., FIN packet), preventing the

Data Plane

Match-action Table: c2s Filter

Register Array: s2c Filter

Index

Hash(src IP, dst IP, src port, dest port, protocol)
Value

0 0

0

Hash(216.0.0.9, 192.168.0.6, 80, 999, TCP) 1

0

Key

(src IP, dst IP, src port, dst port,

protocol)

Action ID Action Data

192.168.0.0/24, 216.0.0.0/24, any,

any, TCP
Forward Eg_port = 2

:Packets generated from the internal network (192.168.0.0/24)

:Packets generated from the external network (216.0.0.0/24)

P4 Switch

Fig. 6: P4-based stateful packet filter using register array. A match-
action table is needed to apply the rules on c2s flows. The state of
the accepted flows is then maintained by the s2c Filter register.

programmable switch from detecting the termination of the

flow [21].

An alternative approach to detect the termination of the

sessions is through setting idle timeouts [21]. The idle timeout

is a feature supported by programmable switches where the

data plane notifies the control plane when no hits occur on a

table entry for a specific duration. The timeout duration and

the action to be performed on idle entries are configured from

the control plane. The provided code in Listing 1 utilizes the

idle timeout method to remove s2c rules related to terminated

s2c flows.

B. Stateful Registers-based Implementation

By utilizing registers, the programmable switch can main-

tain the state of the flows without the intervention of the control

plane at run time. The c2s flows are controlled using match-

action tables, where the rules are populated once based on the

policy. The c2s rules are only modified if the policy changes.

On the other hand, the s2c flows (the flows that required the

control plane to update the match-action tables at run time

in the previous implementation) are controlled using registers.

When a new c2s flow is received, the switch checks if the flow

should be accepted based on the policy (i.e., using an entry in

the c2s table). If the flow is accepted, the switch calculates the

hash of the packet fields that identify the flow and uses them

to create an entry for the s2c flow. When a packet belonging

to an s2c flow arrives at the switch, the switch calculates the

hash of the packet fields. If the register entry index by the

hash value corresponds to an active s2c flow, the packet is

forwarded. Otherwise, the packet is dropped.

The workflow of a packet filter that filters TCP traffic

using registers is depicted in Fig. 6. There are two networks:

TABLE I: Comparison between tables-based and registers-based implementations of stateful packet filters in P4.

Criteria Tables-based Registers-based Notes

Resource usage High Low It is more practical and feasible to match on hashes in registers-
based implementations than on the exact value

Visibility High Low Tables-based implementation notifies the control plane on each
table hit, providing detailed logs of the traffic

Scalability Low High As the number of flows increases, the number of notifications re-
ceived by the control plane from the tables-based implementation
increases

Inference latency Around 600 ns Around 600 ns If a P4 application compiles, it is guaranteed to have line-rate
packet processing speed [8]

Latency of adding/up-
dating c2s rules

Around 1 ms Around 1 ms The control plane is responsible for managing the c2s rules for
both implementations

Latency of adding s2c
rules

Around 1 ms Nanosecond scale Tables-based implementation requires the intervention of the con-
trol plane to add s2c rules

Latency of removing
s2c rules

Nanosecond scale Nanosecond scale The data plane is responsible for removing s2c rules for both
implementations

an internal network and an external network. The deployed

policy only allows the TCP connections originated from the

internal network and destined to the external network. The

control plane populates the data plane by inserting a rule

at the c2s Filter table. When the internal network initiates

a TCP connection, the programmable switch forwards the

corresponding SYN packet because it is accepted by the policy.

The switch then creates an entry in the register s2c Filter

that will accept the corresponding TCP packets from the

external network. To create the entry, the hash of the 5-tuple

is calculated and used as an index of the register. The value

of the entry at the calculated hash is set to the destination port

of the flow. Using the destination port reduces the number of

false positives. A false positive occurs when a new flow has the

same hash as an active flow (i.e., hash collision). In utilizing

the destination port of the flows, a false positive occurs only if

two flows have the same hash and the same destination port.

Besides creating new entries for the s2c flows, the data plane

is responsible for removing the entries when flows terminate.

To detect flow termination without the intervention of the

control plane, the data plane should maintain a timestamp for

each register entry (i.e., s2c rule) representing the time when

the last hit occurred. When an incoming packet maps to an

s2c rule, the switch calculates the time difference between the

arrival of the packet and the last time the rule was hit. If the

difference is larger than a predefined idle timeout, the new

packet is dropped, and the s2c rule is deleted.

Listing 2: TNA-based P4 code to implement stateful filters

using the registers-based approach.

table c2s_Filter_TCP {

key = {

hdr.ipv4.src_addr: lpm;

hdr.ipv4.dst_addr: ternary;

}

actions = {

NoAction;

}

size = 10000;

}

Register<bit<16>, _>(250000) s2c_Filter;

RegisterAction<bit<16>, _, bit<16>>(s2c_Filter)

update_tcp_dst_port = {

void apply(inout bit<16> register_data,out bit<16>

result) {

if(register_data == 0){

register_data = hdr.tcp.dst_port;

result=1;

}

else{

result = 0;

}

}

};

action exec_update_tcp_dst_port(){

meta.already_occupied_tcp = update_tcp_dst_port.execute(

meta.flow_id);

}

RegisterAction<bit<16>, _, bit<16>>(s2c_Filter)

check_tcp_dst_port = {

void apply(inout bit<16> register_data, out bit<16>

result) {

if(register_data == hdr.tcp.src_port){

result =1;

}

else{

result = 0;

}

}

};

action exec_check_tcp_port(){

meta.allow_REPLY = (bit<16>)check_tcp_dst_port.execute(

meta.rev_flow_id);

}

Listing. 2 shows the TNA-based P4 code of the scenario

represented in Fig. 6. TCP traffic has a table for c2s rules and

a register for s2c rules. The tables can store and apply 10,000

different c2s rules (i.e., policies). The register can maintain the

state of 250,000 active flows simultaneously. Each register can

have one or more register actions (denoted by RegisterAction

in the P4 code). Each register action applies a set of operations

on the corresponding register at a specific index. The index is a

required argument when executing the register action. A good

practice is to define an action that executes the register action.

For instance, the action exec update tcp dst port executes the

register action update tcp dst port at the index meta.flow id.

This index should be calculated by a hash function prior to

executing the register action (refer to [19] for the full P4

program). update tcp dst port is associated with the register

s2c Filter. This means that all the operations defined by

update tcp dst port are performed on s2c Filter.

Fig. 7: SRAM and TCAM resources used by tables-based (a) and registers-based (b) stateful packet filters monitoring ICMP and TCP protocols
on a P4 programmable switch.

C. Comparing between Tables-based and Registers-based Im-

plementations

Table I compares between the tables-based and registers-

based implementations of stateful packet filter in P4. The first

major difference between the two implementation methods

is the overhead added by the control plane. In the tables-

based implementation, the control plane is responsible for

maintaining the state of the flows (i.e., adding and removing

table entries for the s2c flows). Experiments show that the

control plane requires around one millisecond (ms) to add a

new rule to the data plane. All s2c packets received before

the control plane pushes the new rule are dropped by the data

plane. On the other hand, the registers-based implementation

does not require the intervention of the control plane, allowing

it to add s2c rules at line rate.

Besides, another difference is in determining the time to

remove the s2c rules. The control plane sets an idle-timeout

threshold on the table entries. An entry is removed if no packet

hits it for the pre-defined duration. On the other hand, to

implement a self-expiry register, a timestamp is attached to

each register entry. When a new packet maps to an entry, the

time difference between the stored timestamp and the packet’s

timestamp is calculated and compared to a timeout threshold.

If the time difference is larger than the timeout threshold,

the entry is deleted, and the packet is dropped. Otherwise,

the packet is forwarded, and the timestamp at that register

entry is updated to the packet’s timestamp. However, using

the packet’s timestamp (which is 48 bits long) is memory

intensive. For this, only a portion of the packet’s timestamp is

used to implement the self-expiry functionality. Which portion

to use is application-dependent and is generally defined by two

factors. The first factor is the granularity of the timestamp

(e.g., nanosecond, microsecond, etc.). The second factor is the

maximum value the timestamp covers (e.g., 1 s, 200 ms, etc.).

For instance, using the first 32 bits of the packet’s timestamp

provides nanosecond granularity and a maximum value of

around 4.3 seconds. If only microsecond granularity is needed,

then the first 10 bits are excluded (i.e., only 22 bits are used).

Furthermore, the other difference between the two imple-

mentations is in resource usage. Fig. 7 compares the resources

used by the two implementation methods when deployed on a

hardware switch. The switch supports 12 stages, but the two

implemented packet filters utilize resources from the first seven

stages only (stage 0 to stage 6), and consequently, only the

resource usage of the first seven stages is reported. Each stage

has dedicated resources of SRAM and TCAM. The compiler

distributes the resources required by the P4 program on the

stages. The two implementations support monitoring 250,000

flows. For the tables-based implementation, more than 80%

of the SRAM resources of the first six stages and 30% of

the SRAM of the last stage are utilized. The tables-based

implementation also requires the TCAM of the first and fourth

stages (stages 0 and 3), as well as around 70% of the TCAM

resources of the second and fifth stages (stages 1 and 4).

For the registers-based implementation, only 40% of the

SRAM resources in four different stages were utilized. Al-

though both implementations can monitor the same number

of flows (250,000), the tables-based implementation used 3.5

times more SRAM than the registers-based implementation.

This difference in the utilized SRAM is mainly caused by

the difference in the matching key sizes. In tables-based

implementation, the 5-tuple is used to define flows, and

consequently, the size of the matching key is the summation

of all the fields (i.e., 96 bits). On the other hand, in registers-

Fig. 8: SRAM resources used by the tables-based implementation
with hashed matching keys.

based implementation, the hash of the fields is used to index

the register entries. As shown by Fig. 8, the SRAM resources

utilized by the tables-based implementation with hashed keys

are equivalent to the amount of SRAM resources utilized by

the registers-based implementation.

Hash size can vary depending on the number of flows to be

monitored. Because the packet filter should maintain the state

of 250,000 flows, the length of the hash is set to 18 bits. It is

important to note that this significant saving in SRAM is at the

cost of losing the state of some flows due to collisions. A hash

collision often happens due to the limited output space of hash

functions, which generate a fixed-size output. If minimizing

the number of collisions is a priority, then the size of the hash

can be adjusted according to the requirements. Increasing the

hash size does not eliminate the probability of having hash

collisions. To eliminate hash collisions, the exact values of the

matching fields should be used.

Regarding the TCAM resources, both implementations use

the same amount (the only difference is how the TCAM

resources are distributed over the stages). Both implementa-

tions utilize match-action tables to set the rules for c2s flows,

where the matching keys use LPM and ternary matching types.

Because LPM and ternary matching types are used only for

defining the c2s rules and the two implementations have the

same number of rules, they utilize exactly the same amount of

TCAM.

IV. DEPLOYING DDOS DEFENSE IN P4

DoS attacks aim at exhausting a targeted machine, pre-

venting it from replying to legitimate requests [1]. A DDoS

attack is a large-scale DoS attack where multiple compromised

machines (botnets) are utilized to flood the victim. While all

DDoS attacks aim at preventing the victim’s machine from

serving legitimate requests, they cannot be mitigated using a

single approach [7].

Different DDoS attacks utilize different protocols and re-

quire different defenses. To mitigate a specific attack, the P4

security application should monitor the protocols utilized by

the attack (e.g., track the number of SYN packets and limit

their rate to mitigate SYN flood). The programmer should

dedicate memory resources for each type of defense. The more

memory resources required per defense type, the lower the

number of different attacks that can be mitigated by a single

P4 application.

A main consideration while developing DDoS defense in

P4 is whether the application should detect the attacker or

just protect the victim [1]. If detecting the IP address or the

subnet of the attacker is a priority, the P4 application should

monitor the traffic coming from the external network based

on the source IP. Because a DDoS attack can utilize a wide

range of IP addresses using botnets, a significant portion of the

memory resources will be allocated to track the statistics of

the traffic. Consequently, a limited number of attack mitigation

defenses can be implemented in a P4 application. On the other

hand, by only focusing on protecting the victim machine, the

P4 application can utilize all the resources to monitor the

traffic by their destination IP address instead of their source

IP address. Thus, the application can defend against a wide

range of DDoS attacks [7].

Deploying a P4 application on a switch’s ASIC provides a

significant performance over a software-based DDoS defense

[1]. However, limited on-chip resources and restrictive com-

putational models are two main challenges in implementing

DDoS defense in P4 programmable switches. Complex de-

tection algorithms (e.g., puzzle for HTTP Flood) cannot be

deployed in the data plane of the switches because of the

computational models restrictions [7]. To overcome these chal-

lenges, a programmable switch can steer suspicious traffic to a

scrub center where complex algorithms can be implemented.

The remainder of this section illustrates the P4 defense

implementation of some widespread DDoS attacks:

SYN flood attack: In this attack, the victim is flooded with

fabricated SYN packets from fake source IP addresses. The

victim machine replies with a SYN-ACK packet for each

received SYN packet but never receives back the ACK packet

(i.e., the last stage in the TCP 3-way handshake). This leads to

a significant difference between the number of SYN packets

and the number of ACK packets received by the victim. The P4

switch can monitor this difference to detect the attack. There

are two ways to count the number of SYN and ACK packets.

The first way is per source IP address, which requires a number

of register entries equivalent to the number of fabricated IP

addresses, draining the memory resources of the switch if the

attacker uses a massive number of different IP addresses. The

other way is to count the number of SYN and ACK packets

per destination IP address, which requires two register entries

per a protected destination IP.

Another approach to detecting SYN flood attacks is moni-

toring the number of SYN packets only. In this approach, the

network administrator defines an activate threshold that limits

the number of SYN packets to be allowed per unit of time. If

the threshold is exceeded, the firewall starts probabilistically

dropping packets. As the gap between the activate threshold

and the number of received SYN packets increases, the proba-

bility of dropping packets increases. To implement this method

using P4, the data plane should periodically report the count

of SYN packets. The control plane compares the count to

the activate threshold and configures the data plane with the

probability of dropping packets (which is 0% if the number is

smaller than the threshold). Listing 3 shows the TNA-based

P4 implementation of the registers used by this approach.

The syn counts register maintains the count of SYN packets

for 65535 flows simultaneously. The last period timestamp

register checks if a new report should be sent based on the

difference between the timestamp of the current packet and

the timestamp of the last report.

Listing 3: TNA-based P4 definition of the registers used by

SYN flood defense.

Register<bit<32>, bit<16>>(65535) syn_counts;

RegisterAction<bit<32>, bit<16>, bit<32>>(syn_counts)

update_syn_counts = {

void apply(inout bit<32> register_data, out bit<32>

result) {

if (time_period_expired == 0) {

register_data = register_data + 1;

} else {

result = register_data + 1;

register_data = 0;

}

}

};

action apply_update_syn_counts() {

meta.syn_count = update_syn_counts.execute(meta.

flow_hash);

}

Register<bit<16>, bit<16>>(65535) last_period_timestamp;

RegisterAction<bit<16>, bit<16>, bit<1>>(

last_period_timestamp) update_last_report_timestamp = {

void apply(inout bit<16> register_data, out bit<1>

result) {

if (register_data == 0) {

register_data = ig_intr_md.ingress_mac_tstamp

[44:29];

} else {

bit<16> tmp;

tmp = ig_intr_md.ingress_mac_tstamp[44:29] -

register_data;

if (tmp > 1) {

register_data = ig_intr_md.

ingress_mac_tstamp[44:29];

result = 1;

} else {

result = 0;

}

}

}

};

action apply_update_last_report_timestamp() {

time_period_expired = update_last_report_timestamp.

execute(meta.flow_hash);

}

ICMP flood attack: In this attack, a target system or network

is flooded with a high volume of ICMP packets, particularly

ICMP Echo packets, often with forged source IP addresses.

By doing so, the attacker overwhelms the target’s available

network bandwidth, CPU resources, and memory, disrupting

legitimate network traffic and rendering the target unrespon-

sive. To defend against this attack, the P4 switch should track

the count of ICMP ECHO packets. The switch drops ICMP

packets when their number exceeds a predefined threshold.

As discussed before, the switch can track the count either by

source or destination IP address of the packets. The drawback

of using the source IP is the memory resources overhead. On

the other hand, using the destination IP address to track the

Fig. 9: Resources used by a DDoS application running on a P4
programmable switch.

number of ICMP packets prevents the switch from detecting

the source of the attack. Thus, the switch will not be able

to distinguish between benign and fabricated ICMP ECHO

packets when the threshold is exceeded. Upon detecting an

ICMP flood, the switch will drop all ICMP packets, including

the benign ones.

DNS amplification attack: In this attack, the victim is

flooded with DNS replies from multiple public DNS servers.

To perform this attack, the attacker sends DNS queries with

the IP of the victim to public DNS servers. The servers then

flood the victim’s machine by directing the replies to it. To

mitigate this attack, the P4 switch should drop all DNS replies

that do not belong to DNS queries requested by the victim.

The switch should store the IP addresses of the machines that

issued DNS queries and allow only the corresponding DNS

replies. The number of register entries required to implement

DNS amplification defense is equivalent to the number of

machines to be protected. Each entry will be indexed by the

hash of the source IP address (if the packet is coming from the

internal network) or by the destination IP address (if the packet

is coming from the external network). The value stored by each

register entry represents the number of DNS queries requested

by the corresponding IP address and yet to be resolved. The

switch will drop any DNS response that maps to an entry with

a value of 0.

SlowLoris attack: Unlike conventional DoS attacks that

involve flooding the target with massive amounts of data,

SlowLoris operates by opening multiple connections to the tar-

get server and maintaining them for an extended period. It does

this by sending HTTP requests in a slow, fragmented manner,

using partial request headers, and deliberately prolonging the

completion of these requests. The typical defense solution is to

limit the number of TCP connections per IP source that send

a few bytes. This requires the switch to count the number

of bytes each connection sends. Although this implementation

can limit the number of connections that send a few bytes, it

might exhaust the resources of the switch. Another approach

is to get the average number of bytes per connection for each

IP address and block IP addresses that send a few bytes per

connection. This implementation requires two register entries.

The first entry to store the number of flows for a given IP

address and the other entry to get the number of bytes received

from the same IP address. The second implementation reduces

0

200

400

R
ec
ei
v
in
g
ra
te

[M
b
p
s]

wo/ mitigation w/ mitigation

0 20 40 60 80 100 120

Time [s]

0

20

40

C
P
U

[%
]

Activate Thresh Max Thresh

Fig. 10: DDoS detection and mitigation using P4 pro-

grammable switch.

the number of register entries from being equal to the number

of connections to being equal to the number of IP addresses.

This reduction might be significant as a single IP address can

have multiple connections.

Fig. 9 presents the resources used by deploying SYN

flood, ICMP flood, and DNS amplification defenses on a

programmable switch. The P4 program can simultaneously

monitor the count of SYN packets, ICMP packets, and DNS

packets for 65,536 different IP sources. A fixed threshold is

used on the count of packets per millisecond. If the threshold is

exceeded, the data plane notifies the control plane. The control

plane then constructs a configuration rule that probabilistically

drops packets based on the attack volume. This technique is

known as the Random Early Discard (RED) and is used by

modern firewalls [22]. This program mainly utilized SRAM

and Hashbit resources because it applies different hashing

functions based on the packet protocol (e.g., TCP, ICMP, and

UDP), and it utilizes registers to store the count of packets per

source IP address.

To evaluate the performance of the application, a SYN

flood attack was generated alongside background traffic from

CAIDA captured from high-speed monitors on a commercial

backbone link [23]. Fig. 10 shows the receiving rate and the

CPU percentage of the SYN flood victim under attack. It can

be seen that the RED method was successfully implemented

as the receiving rate continuously decreases when the Activate

threshold was surpassed.

V. DEPLOYING DNS DPI IN P4

DNS DPI is a network security and monitoring technique

that inspects the contents of DNS packets. DPI goes beyond

traditional DNS processing by analyzing the payload of DNS

packets to identify potentially malicious or unauthorized ac-

tivities. This technique is crucial for detecting and mitigating

various cybersecurity threats like DNS tunneling, data ex-

filtration, and malware communication. DPI solutions often

use pattern matching, heuristics, and anomaly detection to

identify suspicious DNS traffic patterns. However, it also raises

privacy concerns as it can be used to monitor user activities,

emphasizing the need for responsible and transparent use of

DPI technologies.

P4 switches provide a new vantage point for analyzing

DNS traffic without the need to relay it to an external server.

Thus reaping the benefits of its fast processing speed and

privacy-preserving manner (domains are analyzed within the

data plane) [11, 24, 25]. However, parsing the domain name

in P4 switches has several challenges stemming from their

hardware and software restrictions. This section discusses the

challenges of parsing and processing domain names in the

parser and match-action pipeline of P4 switches. Furthermore,

it presents different solutions to overcome these challenges.

A. Parser

To understand the challenges of parsing domain names in

a P4 switch, it is essential to understand how the variable-

length domain names are encoded in DNS packets. A domain

name is separated into labels, each delineated by a period.

Each label is preceded by a single octet indicating the length

of the label that follows, and the last label is followed

by the 0x00 octet, indicating the end of the domain name.

For instance, the domain name “google.com” is encoded as

(0x06)google(0x03)com(0x00). The length of a label can go

up to 63 characters, and the maximum length of the entire

domain name is 253 characters [3].

To preserve the line-rate processing speed of P4 pro-

grammable switches, parsers are not versatile enough to parse

variable-length header fields. Although the latest P416 lan-

guage provides a type varbit that can be used for header fields

with variable length (e.g., IP options header field), the number

of operations permitted on such a field is very limited. For

instance, TNA does not allow the varbit field as a table key,

thus making it unsuitable for domain name analysis.

One approach to parse the variable-length labels in P4 is

depicted in Fig. 11. The parser defines a set of states for each

possible label length and makes different parsing decisions

by switching to different parser states based on the length of

the label. Despite the fact that this method is effective for

domain name parsing, the TCAM of the parser is limited and

cannot cover all possible combinations in today’s hardware. A

straightforward solution in P4 is to define a header for each

possible length, as depicted in Listing 4.

Listing 4: Header definitions in P4 to cover all possible lengths

for one DNS label.

header Label1_1 {

bit<8> one_character;}

header Label1_2 {

bit<16> two characters;}

header Label1_3 {

bit<24> three_characters;}

header Label1_4 {

bit<32> four_characters;}

...

header Label1_63 {

bit<504> sixty_three_characters;}

The problem with the straightforward solution is that it

would be inefficient and a waste of resources to extract the

Len == 1 Len == 2 Len == 63

Starting stage

Parsing

subdomain 1

Parsing

subdomain 2

Parsing

subdomain n

Fig. 11: Parsing DNS header. A state should be created for each
possible length of a subdomain (1 .. 63), where the length of the
domain is limited to 255.

whole label at once as this requires a header for each possible

length for each label. The required resources per label are the

summation of all the definitions, which is
∑63

i=1 8i = 16, 128
bits. An alternative approach that is adopted by P4 developers

implementing DNS solutions [24, 25] is to store domain name

labels in header fields with sizes in bytes that are exact power

of 2 (e.g., 1, 2, 4, 8, 16 bytes). Listing 5 shows the P4 code

required to define headers for a variable length label under the

optimized approach. Only six definitions are needed to cover

all possible lengths per domain. The required bits per label

can be calculated as the sum of a geometric series following

the formula:

S =
a · (rn − 1)

r − 1

Where S is the sum of the series; a is the first term of the

series; r is the common ratio; and n is the number of terms in

the series. The first term is eight (which represents the number

of bits to parse one character). The common ratio is two, and

the number of terms is six. By plugging the values in the

formula, the resulting number of bits is 504.

Listing 5: Optimized header definitions in P4.

header Label1_1 {

bit<8> one_character;}

header Label1_2 {

bit<16> two characters;}

header Label1_4 {

bit<32> four_characters;}

header Label1_8 {

bit<64> eight_characters;}

header Label1_16 {

bit<128> sixteen_characters;}

header Label1_32 {

bit<256> thirty_two_characters;}

In general, the number of bits saved by this technique is

S = 8 · l · (

n∑

i=1

i− (2log2
(⌈n

2
⌉)+1

− 1)

Where l is the number of labels, and n is the number of

characters. For example, the number of bits saved by defining

headers to parse one label with 63 characters is S = 8 · 1 ·

(
∑63

i=1 i− (2log2
(⌈ 63

2
⌉)+1

− 1) = 15, 624 bits.

B. Match-action Pipeline

The parsed characters should be assigned as keys to tables

in the match-action pipeline so that domain names can be

identified. Fig. 12 shows a simplified example of how match-

action tables identify DNS domains. The tables in this example

identify at most four labels. Each label can be at most 15

characters. The first table matches on the four headers defined

for label one (L1). L1 is extracted into the four headers L1 1,

L1 2, L1 3, and L1 4. The remaining tables match on the

remaining labels sequentially, i.e., label two (L2), label three

(L3), and label four (L4). Note that the data plane can only

track domain names that are populated by the control plane.

For instance, any domain other than www.google.come and

www.another.domain.com will not be identified by the tables

in Fig. 12.

This poses a challenge for identifying domain names in the

data plane since the processing pipeline has a limited number

of stages and memory (i.e., a limited number of tables can be

applied). For instance, Meta4 [24] can parse up to 4 labels with

15 characters each; Kaplan et al. [25] developed a solution that

can parse up to 6 labels with 31 characters each.

To overcome the limited number of stages and memory in

the hardware, which restricts the number of characters parsed

and analyzed in a domain, packet recirculation is utilized (i.e.,

reiterating the packet multiple times) as done in P4DDPI and

P4DGA [11, 13]. In a single packet pipeline pass, a limited

number of characters can be matched. At the end of each

pipeline pass, the labels that were matched are removed from

the packet so that new labels appear in the next recirculation.

Packet recirculation can be applied multiple times so that

multiple labels can be matched. However, each recirculation

adds more latency to the parsed packet. Also, note that packets

are damaged after recirculation due to the removed header.

Thus, for inline deployments (e.g., the switch is placed as a

forwarding device), header manipulation should be performed

on a cloned packet rather than the original one that will be

forwarded to the next hop.

The resource usage of a P4 program that deploys the DNS

DPI application [25] is depicted in Fig. 13. The figure shows

that most of the exact matching resources of the programmable

switch are occupied. This is because the parser contains many

states to parse headers of variable length. The P4 program

also supports monitoring up to 250 different domain names.

The SRAM and TCAM resources are not reported because the

DNS DPI application does not consume a noticeable amount

(e.g., TCAM resource usage of the programmable match-

action pipeline is 0).

Key ID Data

L1_1 = “w”
L1_2 = “ww”
L1_4 = “”
L1_8 = “”

L2 L3
Action

Key ID Data

L2_1 = “g”
L2_2 = “oo”
L2_4 = “gle”
L2_8 = “”

Action

Lookup Key

L2 L3L1L1

Lookup Key

Key ID Data

L3_1 = “c”
L3_2 = “om”
L3_4 = “”
L3_8 = “”

Action
L2 L3L1

Lookup Key

L1

L1_1

L1_2

L1_4

L1_8

L1_1

L1_2

L1_4

L1_8

L2

L2_1

L2_2

L2_4

L2_8

L3

L3_1

L3_2

L3_4

L3_8

L2_1 = “a”
L2_2 = “no”
L2_4 = “ther”
L2_8 = “”

L3_1 = “d”
L3_2 = “om”
L3_4 = “ain”
L3_8 = “”

L4 L4 L4

Key ID Data

L4_1 = “c”
L4_2 = “om”
L4_4 = “”
L4_8 = “”

Action
L2 L3L1

Lookup Key

L4

L4_1

L4_2

L4_4

L4_8

L4

Fig. 12: Identifying the labels of DNS domains using match-action tables. Note that the number of tables can be more or less than the number
of labels depending on the number of entries and the size of each entry.

Fig. 13: Resources used by a DNS DPI application running on a P4
programmable switch.

The performance comparison between a DNS DPI applica-

tion running over a programmable switch and a DNS DPI

application running over Suricata is presented in Fig. 14.

Suricata is a high-performance, open-source network analysis

and threat detection software [26]. The graph to the left

shows packet loss percentage with respect to DNS rates in

Mbps. The packet loss percentage of the Suricata-based system

increases with the increase in the DNS rate to reach around

60% at 400 Mbps. After that, the percentage starts to fluctuate

between 52% and 65%. On the other hand, no packet losses

are observed for the P4-based system.

The graph to the right shows the cumulative distribution

function (CDF) of the latency. The latency represents the time

a system requires to process a DNS domain. For the Suricata-

based system, around 40% of the DNS domains are processed

0 250 500 750 1000
DNS rates (Mbps)

0

13

26

39

52

65

Pa
ck

et
 lo

ss
 %

Suricata w/ 250 rules P4 w/ 250 rules

0.0 0.1 0.2 0.3 0.4
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Fig. 14: Performance comparison between a DNS DPI application
running over a P4 programmable switch and a DNS DPI application
running over Suricata.

in less than 10 ms, 60% are processed in less than 200 ms,

and 80% are processed in less than 250 ms. On the other hand,

the latency required by the P4-based system is in the order of

hundreds of nanoseconds.

VI. IMPLEMENTING SPOOFING DEFENSE IN P4

Spoofing is a cybersecurity threat that involves an attacker

disguising as a trusted entity to deceive a system or user.

Spoofing is often employed in various cyberattacks, such

as phishing, session hijacking, and DDoS amplification. It

remains a challenge due to the evolving sophistication of

attackers, underscoring the need for continuous monitoring

and adaptive defenses. This section will focus on IP address

spoofing attacks and defending mechanisms in P4.

Offloading spoofing defenses to the data plane has captured

the attention of researchers as the existing defenses fail to

cope with the increasing rate of attacks [1]. For example, using

software-based solutions to handle typical attack scale (∼Tbps)

requires hundreds of server [27]. As the packet processing

capabilities of a single PDP switch could match tens to

hundreds of servers, multiple novel anti-spoofing defenses

have been implemented on PDP switches. There are two

main approaches to implementing anti-spoofing defenses in P4.

The first approach uses the P4 PDP switch as a filter where

whitelisting or blacklisting rules are hard coded by the control

plane and require knowledge of the full topology [28]. The

second approach utilizes the P4 PDP switch to dynamically

build the rules to detect spoofed traffic and require minimal to

no information about the topology [27, 29, 30].

A. Hard Coding Anti-spoofing Rules in P4

P4 applications following this implementation method ac-

cept a list of rules from the control plane to block/accept

packets. Rules are described as hard coded because the are

derived from the topology and not from the traffic exchanged

at run time. The type of rules adopted by the P4 application

is determined by the anti-spoofing mechanism being deployed.

Some of the main anti-spoofing mechanisms that fall under this

implementation method are Network Ingress Filtering (NIF)

[31], Reverse Path Forwarding (RPF) and its variants [32],

and Spoofing Prevention Method (SPM) [33].

Listing 6: Implementing NIF in P4.

table NIF_table {

key = {

hdr.ipv4.src_addr: ternary;

ig_intr_md.ingress_port : exact;

}

actions = {

NoAction;

drop;

}

default_action = drop;

}

For NIF, the network administrator defines a set of IP

prefixes per interface to accept packets. This mechanism

can be implemented in P4 using a single match-action table

that utilizes ternary matching as shown in listing 6. Ternary

matching is used to specify the IP prefix of IP addresses to be

permitted by the switch. If the IP address and ingress port of

the packet do not match any entry of the NIF table, the default

action is to drop the packet. RPF depends on the router’s

forwarding table to accept packets. The P4 implementation

is similar to NIF, where a single match-action table can be

used to detect spoofed packets. The entries in this table are

the forwarding rules.

Listing 7: Implementing SPM in P4.

action set_spm_key(bit<16> key){

hdr.ipv4.id = key;

}

table SPM_arrival {

key = {

hdr.ipv4.src_addr: ternary;

hdr.ipv4.dst_addr: ternary;

ig_intr_md.ingress_port: exact;

hdr.ipv4.id: exact;

}

actions = {

NoAction;

drop;

}

default_action = drop;

}

table SPM_departure {

key = {

hdr.ipv4.src_addr: ternary;

hdr.ipv4.dst_addr: ternary;

}

actions = {

NoAction;

set_spm_key;

}

default_action = NoAction;

}

For SPM, multiple routers should cooperate to detect and

drop spoofed packets. This technique is deployed at the

Autonomous System Boundary Routers (ASBRs). Commu-

nication between neighbor Autonomous Systems (ASs) is

performed through ASBRs. ISPs maintain globally unique

keys for each pair of ASs, such that packets exchanged

between the two ASs should be market with this key. The

P4 implementation of SPM is described in listing 7. Table

SPM arrival verifies that packets coming from a remote AS

carry the legitimate SPM key by maintaining a mapping

between the source-destination IP prefix pairs and the key. If

the packet hits the table, no action will be taken, and the packet

will be forwarded. Otherwise, the packet will be dropped.

Table SMP departure stamps the packets departing from the

AS with the legitimate SPM key. The key is stored in the

identification field of the IP header.

B. Dynamically Populating Anti-spoofing Rule in P4

P4 applications following this implementation method de-

termine the rules to detect spoofed packets from the live traffic

at run time. One anti-spoofing mechanism that falls under

this implementation method is Hop-Count Filtering (HCF)

[34, 35]. HCF mitigates spoofed IP traffic by maintaining IP-

to-Hop-Count (IP2HC) mapping table [27]. The number of

hops traversed by the packets is compared with the IP2HC

table. If they match, the packet will be forwarded. Other-

wise, the packet will be classified as spoofed and dropped.

Implementing this approach in P4 requires the interference

of the control plane. Because of the hardware limitation of

the P4 PDP switches, the approach maintains a case for the

most observed IP addresses in the data plane and utilizes the

control plane to keep track of the less active IP addresses.

The data plane maintains three modules: the IP2HC inspecting

module, the TCP session monitoring module, and the cache

statistics modules. The IP2HC module inspects the validity of

the packets where the data plane compares the number of hops

traversed by the packets with its records. It is implemented

in at least three different stages in the P4 pipeline. The first

stage hosts a table to match packets on their IP address and

returns the cache index associated with that IP. The second

stage utilizes a register array to retrieve the recorded hop count

for that IP address. The last stage/s compares the time-to-live

field to the extracted hope count and verifies that the packet

traversed the correct number of hops; thus, it is not a spoofed

packet.

The TCP session monitoring module is responsible for

updating the number of hops per IP address at run time. This

module monitors the sequence and acknowledgment numbers

of the TCP sessions to validate their integrity. TCP sessions

that completed the 3-way handshake and are transmitting data

are classified as trusted traffic and used to determine/update

the IP2HC table entries. The P4 implementation of this module

requires two register arrays. The first array maintains the TCP

sequence and acknowledgment numbers. The second register

array maintains the TCP flags of the TCP session, which allows

it to determine the state of the connection. Finally, the cache

module is responsible for identifying the IP addresses and

prefixes to be cached on the data plane and those that should

be maintained by the control plane. The cache is built using

counters that monitor the number of hits on the different entries

of the IP2HC table. If an entry has more hits than a specified

threshold, the IP prefix associated with that entry is considered

hot and will continue to be cached by the data plane. However,

if an entry has fewer hits than the threshold, it will be moved

to the control plane.

The main drawback of implementing the HCF approach in

P4 is the limited number of IP prefixes that can be maintained

in the data plane. If the IP address of an incoming packet

does not match an entry in the IP2HC table, the data plane

forwards the packet to the control plane. The control plane

processes the packet and takes an action on whether to forward

or drop the packet. Because the control plane adds processing

time overhead for legitimate packets, P4 security applications

that leverage external processing capabilities (i.e., using the

CPUs of external servers) adopt two modes of operation.

The first mode focuses on collecting data and monitoring the

network without taking action. If the P4 application detects

malicious behavior, it switches to the second mode, which

drops suspicious packets.

Another approach to detecting spoofed packets is to use

the source IP and source MAC of the incoming packets as

a filter. The source IP and MAC of the arriving packets are

hashed, and the hash is compared to the list of permitted

entries. This approach can be deployed in P4 using the

match-action tables-based implementation or stateful registers-

based implementation. These two implementation methods are

discussed extensively in section III. The considerations for

each implementation are the same for anti-spoofing security

applications and stateful packet filter security applications.

VII. IMPLEMENTING CRYPTOGRAPHY IN P4

Cryptography is crucial in network security, where it ensures

the confidentiality, integrity, and authenticity of data as it trav-

els across networks. By encrypting data packets, cryptography

prevents unauthorized parties from intercepting or tampering

with sensitive information such as login credentials, financial

data, or private communications. Cryptographic primitives,

such as symmetric ciphers and hash functions, are typically

executed on end hosts, either using general-purpose CPUs or

specialized cryptographic accelerator co-processors. Although

deploying cryptographic algorithms in the data plane improves

the privacy and security of networks, P4 PDP switches have

multiple hardware constraints that make the P4 implementa-

tion of the algorithms challenging. This section focuses on

achieving integrity and confidentiality in P4 by describing

the implementation of some hash functions and symmetric

ciphers. To the best of the author’s knowledge, there is no P4

implementation of asymmetric ciphers that target a hardware

PDP switch.

A. Achieving Confidentiality in P4 by Implementing Symmetric

Ciphers

Symmetric ciphers achieve confidentiality by encrypting

data with a single shared secret key that both the sender

and receiver use for encryption and decryption. This process

ensures that only parties with the correct key can access the

original information. The encryption transforms plaintext into

ciphertext, rendering it unreadable to anyone without the key,

while decryption reverses this process to retrieve the plaintext.

The main challenge of implementing symmetric cipher

algorithms in P4 PDP switches arises from the limited number

of stages and the available arithmetic operations natively

supported. Symmetric ciphers require processing the data in

multiple rounds, such that the output of one round is fed to

the next round. This chain of dependancy prevents the P4

PDP switches from encrypting or decrypting the data in a

single pipeline pass due to the limited number of stages, where

recirculation is necessary. Besides, some of the arithmetic

operations required by symmetric ciphers are not supported

by the P4 PDP switches (e.g., division). To address this limi-

tation, Scrambled Lookup Table (SLT) technique is used [36],

where the complex arithmetic operations are precomputed and

installed in the data plane using match-action tables.

Advanced Encryption Standard (AES) is a standardized

symmetric algorithm that has been successfully implemented

in P4 [36]. AES is a widely used symmetric encryption

algorithm that encrypts and decrypts data in fixed block sizes

of 128 bits. It supports key lengths of 128, 192, or 256 bits,

providing varying levels of security. AES operates through a

series of transformations, including substitution, permutation,

and mixing, which enhance data security. The data block input

to AES is organized as a 4-by-4 matrix, where each cell

contains a byte of data. During an encryption round, the data

block is first XORed with a block of the key (AddRoundKey

step). After that, each byte from the resulting matrix is replaced

by another byte using a Substitution box (S-box) (SubBytes

step). Then, each row in the data block is cyclically shifted by

0, 1, 2, or 3 locations (SubBytes step). Finally, the columns are

mixed together (MixColumns step). The number of rounds to

be performed on the input depends on the AES variant, where

10, 12, and 14 rounds are needed for AES-128, AES-192, and

AES-256, respectively.

Implementing AES in P4 is based on the observation that

AddRoundKey and MixColumns steps can be deployed using a

series of XORs; ShiftRows step can be deployed by changing

variable names; and transformation table (T-table) construc-

tion can combine S-box, variable renaming and polynomial

multiplication. The T-table is a precomputed lookup table

that combines the S-box (substitution) and the finite field

multiplication operations involved in the MixColumns step of

the AES algorithm. Thus, each AES round can be implemented

using four lookup tables and a series of XORs. Although

this approach removes the obstacle of performing complex

mathematical operations in P4 using the T-table constructions,

it does not deal with the long dependency chain created from

the series of XORs. In order to fit a full AES encryption round

in a single pipeline pass, the AddRoundKey and SubBytes steps

are combined using multiple SLTs. The SLTs are built by

permuting and storing 16 look-up tables per encryption round.

Each one byte of data to be encrypted will pass by the SLTs

first to perform the AddRoundKey and SubBytes steps. The

output of the SLTs will then be fed into a look-up table that

performs the ShiftRows and MixColumns steps. Finally, the

resulting four bytes are XORed to obtain the final result. The

result of the first encryption round will then be fed to the SLTs

of the second encryption round.

AES implementation in P4 trades off the number of oper-

ations with the amount of memory used by compressing the

AddRoundKey and SubBytes steps into 16 tables per round.

Each table has 256 rules. If AES-256 is used, then there are

14 rounds, which is translated into 14 (rounds) x 16 (tables

per round) x 256 (rules per table) = 57,000 rules. Each rule

uses 6 bytes of memory. Thus, in total, this approach uses

344 kilobytes (KB) or around 15% of the available memory

resources of the P4 PDP switch. Another important aspect to

consider is the number of match-action tables utilized. P4 PDP

switches support a high, yet limited, number of match-action

tables. In a single pipeline passes, the packet data undergoes

two encryption round, which requires 32 match-action tables or

what is equivalent to 25% of the supported number of match-

action tables. Finally, P4 PDP switches have a limit on the

number of arithmetic operations to be performed in a single

pipeline stage. In each encryption round, the 16 SLTs produce

16 four-byte values grouped into four rows. Each row requires

3 XOR operations to combine the four four-byte values. Thus,

each round requires 12 XOR operations. If two rounds are

implemented in a single pipeline pass, then 24 XOR operations

are needed. This value is around 10% of the supported number

of operations.

B. Achieving Integrity in P4 by Implementing Secure Hash

Functions

Cryptographically secure hash functions achieve integrity by

generating a unique fixed-size output (called a hash or digest)

from input data. When data is sent or stored, a hash of the

original data can be calculated and sent alongside it or saved.

Upon retrieval or receipt, the hash can be recalculated and

compared with the original hash. If the hashes match, the data

has not been altered; if they differ, this indicates that the data

may have been tampered with. Unfortunately, P4 PDP switches

lack support for secure hash functions, instead offering only

CRC16 or CRC32 hashes. The limited length of these hashes

makes them vulnerable to the birthday bound [37], rendering

them susceptible to collisions. Furthermore, unlike secure

hash functions, the CRC family does not provide preimage

resistance, which is the property that makes it difficult to

recover the input message from the hash output. In the case

of a CRC32 function with known polynomials and a single

output, an adversary would only need to try a maximum of

232 messages to identify the corresponding input message. If

the polynomials are unknown, the adversary could attempt at

most 232 polynomials to determine the ones being used, given

one input message and the resulting output [38].

As an alternative to CRC, SmartCookie [39] has imple-

mented HalfSipHash-2-4 [40] in P4. HalfSipHash-2-4 is a

cryptographic hash function designed for efficiency and se-

curity, particularly suited for short inputs. It produces a 64-

bit (8-byte) output and employs a structure that includes 2

computation rounds and 4 finalization rounds for each 32-bit

word. The algorithm is seeded with secret keys to initialize 4

variables. The 2 computation rounds process the 4 variables

using Add, Shift, and XOR operations. The output of the

computation rounds is fed to the 4 finalization rounds. Finally,

the algorithm XOR the 4 variables to produce the hash value. A

main challenge in deploying HalfSipHash-2-4 in the data plane

is the long dependency chain. Each computation round requires

14 operations, and the output of one arithmetic operation is

Preprocessing(Keys)

Compression Round

Compression Round

Compression Round

Compression Round

Finalization Round

Finalization Round

Finalization Round

Finalization Round

v0 += v1 v2 += v3

v2 <<= 5 v3 <<= 8

v1 ⊕= v0 v3 ⊕= v2

v0 <<= 16

v2 += v1 v0 += v3

v1 <<= 13 v3 <<= 7

v1 ⊕= v2 v3 ⊕= v0

v2 <<= 16

One HalfSipHash Round

⊕v1 v2 v3 v4w1

⊕ ⊕
⊕w0w1

w10xff

⊕
Output

⊕

Fig. 15: The structure of HalfSipHash-2-4 [39].

fed to the next operation. Another challenge is the need for

performing 6 circular left shifts in each computation round (as

shown in Fig. 15), which is not natively supported by P4 PDP

switches [39]. In order to overcome the first challenge, the

dependency chain of HalfSipHash-2-4 can be shortened to 4

by manually distributing the operations over the stages and by

using the recirculation feature of P4 PDP devices. Manually

optimizing the distribution of operations over the stages allows

the P4 switch to perform a computation round in four stages

only per 32-bit word. If w words are to be hashed, the total

number of compression and finalization rounds is 2w + 4. The

number of pipeline passes required to hash w words is w/2 if

both the ingress and egress pipelines are used for hashing or

w + 1 if only the ingress pipeline is used.

VIII. LESSONS LEARNED

This section presents the lessons learned from implementing

security applications on P4 PDP switches. The lessons are

summarized in Table II.

A. Multiple P4 Implementations

Security applications can be implemented in multiple ways.

The programmer should decide on the implementation based

on the requirements. In the case of implementing a stateful

packet filter, the programmer can use match-action tables-

based implementation if the objective is to have full control

and per-event visibility (i.e., being notified for every flow

accepted, for every flow dropped, and for every entry added

or removed from the match-action table). On the other hand,

utilizing registers allows the programmer to run the packet

filter entirely on the data plane, increasing its performance. In

the case of implementing a DDoS defense, the programmer

should decide if detecting the IP address of the attacker is

a priority. In that scenario, traffic statistics (e.g., the rate of

SYN packets and the rate of ICMP ECHO packets) should

be grouped through the source IP address (for the traffic

destined for the internal network). Otherwise, using destination

TABLE II: Lessons learned from implementing security applications on P4 PDP switches

Lesson Description Impact on Security Applications

Multiple P4 imple-
mentations

Stateful security applications can be implemented in P4 either
following the tables-based or the registers-based approaches

Tables-based implementation provides higher visibility, while
registers-based approaches provide higher response time

Accuracy, resources,
and performance
trade-off

Resource constraints require the security applications to have
a trade-off between their accuracy and their performance

Security applications like stateful packet filters and anti-
spoofing mechanisms trade the number of security policies
with the number of tables and matching criteria

Resource allocation The distribution of the resources over the component of the
P4 application should be provisioned before compiling the
application

Insufficient planning can lead to hash collisions in flow
tracking, risking inaccurate flow identification and reduced
protection against attacks like DDoS

Parsing variable
length headers

P4 does not provide built-in functions to efficiently parse
variable length headers

DPI applications might require multiple pipeline passes (re-
circulation) to extract variable length headers

Matching on variable
length headers

P4 does not support tables with variable length matching keys DPI applications should partition a variable length header
into a set of fixed-size headers to process them, imposing
additional processing overhead

Managing dependen-
cies

P4 supports a limited number of dependent actions to be
performed in a single pipeline pass

One or more packet recirculations are needed by security ap-
plications with long dependency chains (e.g., cryptography),
which reduces the maximum achievable throughput

Control plane and
data plane interaction

The interaction between the control plane and the data plane
is unavoidable for P4 applications that require computation-
intensive tasks

P4 security applications depend on the control plane to deploy
complex detection algorithms

Cryptographic-based
functions

The set of supported arithmetic operations, and the number
of stages are the main challenges for implementing crypto-
graphic functions in P4

Cryptographic functions in P4 entail multiple packet recircu-
lations and restrict the size of data input

IP addresses is preferred in order to reduce memory utilization,

allowing more DDoS defenses to be integrated into the same

P4 program.

B. Accuracy, Resources, and Performance Trade-off

There is a trade-off between the accuracy, the resources,

and the performance of the security applications. Security

applications that utilize match-action tables to implement some

custom functionalities trade the number of different matching

keys (i.e., keys with different components) with accuracy and

performance. As the number of enforced policies increases,

more matching criteria and tables are required, thus, increasing

the resources required in the switch. At the same time, using

more keys provides more flexibility and enhances the appli-

cation’s performance. For example, increasing the number of

keys while implementing a stateful packet filter using match-

action tables allows the packet filter to accept ICMP flows that

belong to an ongoing session using the identifier field of the

ICMP header. The identifier field should be only part of the

s2c matching key. In such a scenario, the c2s and s2c flows

will have different tables. On the other hand, using a single

table for c2s and s2c flows reduces the amount of resources

used at the cost of preventing the packet filter from using the

identifier field of the ICMP header. Not using the identifier

field in a stateful packet filter prevents the packet filter from

checking if an ICMP s2c flow belongs to the existing ICMP

c2s flow. Consequently, an attacker can use this vulnerability

to trick the stateful packet filter into blocking legitimate s2c

flows.

C. Resource Allocation Planning

Another primary consideration while implementing a secu-

rity application is resource allocation. During the compilation,

the compiler checks if the P4 program can fit in the P4 switch.

The compilation will be successful if the resources can be

allocated by the compiler to the program. Otherwise, there

will be a compilation error. After compilation, the resources

utilized by a P4 program cannot be modified (e.g., the size

of tables and the number of register entries). The programmer

should be aware of the amount of resources provided by the

switch and how these resources should be distributed on the

tables (i.e., the sizes of the tables or the number of entries),

on the registers (i.e., the number of indices), and on the

other components of the programmable pipeline. For example,

the programmer should consider the number of flows before

defining the number of bits to index a register array. Flows

are indexed using their hash values. As the number of flows

increases, the length of hashes should increase. Otherwise,

collision occurrences might increase. Regardless of the size

of the input to a hash function, the output will be fixed based

on the used algorithm. For instance, a hash algorithm with 16

bits long output produces a hash value between 0 and 216.

Because the set of output is finite, the probability of having a

collision increases as the number of hashed values increases.

D. Parsing Variable Length Headers

Programmable switches have no built-in functions to effi-

ciently parse variable length headers. Although the varbit data

type allows the parser to parse headers with variable length,

a varbit header is not allowed to be used as a key in match

action tables. This keeps the programmer with two methods.

The first method is to define headers for each possible length.

For example, if a variable length header can have 10 different

possible lengths, the programmer should define ten different

headers, each covering one possibility. Although this method

is effective, the parser might not have enough resources to

cover all possible lengths.

The other method is to define headers with sizes as exact

powers of 2 and use one or more defined headers to cover

all other possible lengths. For example, if the length of a

variable header is three, then it can be parsed by using the

defined headers of lengths one and two. Note that although

this method significantly reduces memory resources compared

to the first method, it requires the same number of transitions in

the parser. For instance, a header with variable lengths between

one and seven requires only three header definitions (headers

with lengths 1, 2, and 4), it still needs one state per possible

length (i.e., seven different states in the parser).

E. Matching on Variable Length Headers

As mentioned before, the varbit data type cannot be used as

a key in match-action tables. The compiler requires a discrete

number representing the amount of resources needed and will

produce an error if a variable length header is used as the key

in match-action tables.

A variable length header should be parsed into fix-sized

headers, and then use the headers as the lookup key. An

example is identifying the labels of DNS domains. Assuming

that the P4 program supports labels with at most 15 characters,

then the parser should define four headers per label of lengths

1, 2, 4, and 8 bytes, respectively. The keys for the match-action

tables should match on the four headers simultaneously. This

means that even if a label is three characters long and can

be extracted using the headers of lengths 1 and 2, the four

headers should be set to valid. Consequently, 120 bits will

be allocated for a 24-bit header. It is worth noting that some

researchers avoid wasting resources by matching only on the

headers utilized by the parser. However, this means that more

operations are needed to detect the valid headers, which might

constrain the number and length of labels that can be identified

by the match-action pipeline.

F. Managing Dependencies

Although the limited resources of P4 programmable

switches are one of the barriers against implementing applica-

tions that require complex computation, the programmer will

face more compilation problems caused by the limited number

of stages. Because the switches should sustain nanosecond

processing speed, they contain a few stages such that a limited

number of operations can be performed per stage. The stages

are connected sequentially so that a packet can only move

forward (unless a recirculation is applied). For this, an action

that takes as input the output of another action (there is a

dependency) is placed in a later stage(s) by the compiler.

If a stage cannot handle all the operations of an action, the

compiler will distribute the action over multiple stages. If the

longest sequence of operations is longer than the available

stages on a programmable switch, the P4 program will fail to

compile. While developing a P4 application, the programmer

should minimize the number of operations per action and the

dependencies between actions.

The resources of a P4 programmable switch are divided

on the stages, such that the resources of one stage cannot be

accessed from another stage. Having dependencies between

actions might prevent the P4 compiler from utilizing all the

resources of a stage before moving to the next one. For

example, assume that a P4 program should apply some actions

on SYN packets only. To do this, the program should first

check if the packet has the IP header, then it should check if

the TCP header is valid, and finally check if the packet is a

SYN packet. Checking if the IP header is valid requires one

stage. Checking if the TCP header is valid requires another

stage. Checking if the TCP packet is SYN requires one or more

stages depending on the algorithm (e.g., only considering the

flags field of TCP or considering the size of the packet as well).

The resources required by the actions to be performed on the

SYN packets can only be allocated in the stages after which

the type of packet is identified. Consequently, the resources of

the first few stages might not be fully utilized.

G. Control Plane and Data Plane Interaction

A task running on the data plane achieves significant pro-

cessing speed and granularity over a task running on the con-

trol plane. The data plane operates through the hardware of the

programmable switch, while the control plane is constrained by

the software capabilities (e.g., limited processing, granularity,

and scalability). Typically, all the tasks should be offloaded

to the data plane. However, due to its limited resources, it is

unfeasible to run computation-intensive security applications

fully on the data plane, and consequently, the applications are

partitioned over the data and the control planes.

The two planes interact through the APIs provided by the

vendors of the programmable switches. The data plane should

be responsible for the tasks that require high precision and line-

rate processing speed. The control plane should be responsible

for the data aggregation and storage tasks, as well as any

computational unfeasible tasks on the data plane (e.g., machine

learning algorithms). An example of this interaction is when

implementing a DDoS defense in P4. The data plane collects

statistics over the packet over a short period (e.g., every one

second or 100 milliseconds) and pushes the statistics to the

control plane. Although the data plane can use fixed thresholds

to mitigate DDoS attacks, the control plane can run more

complex algorithms to enhance the accuracy of the detection.

The control plane can also archive the data for longitudinal

data analysis.

H. Cryptographic-based Functions

The implementation of cryptographic functions on P4 PDP

switches faces two primary challenges. The first challenge

stems from the limited set of operations supported by P4

switches, which include addition, subtraction, and XOR but

exclude multiplication and division. This limitation restricts

the data plane’s ability to perform computations essential for

many cryptographic algorithms. A common solution to this

constraint is to precompute outputs for a range of possible

inputs and store these results in match-action tables. While this

enables the data plane to implement cryptographic functions

like AES, it imposes restrictions on the range of input sizes

that can be processed.

The second challenge involves the limited number of

pipeline stages. To support high throughput, P4 PDP devices

restrict the number of stages available in a single pipeline

pass, limiting the number of sequential actions that can be

performed on packets. When one action depends on the result

of another, they are considered sequential and cannot execute

concurrently, prompting the P4 compiler to place them in

consecutive stages. Issues arise if a P4 application requires

more stages than the hardware provides in a single pass.

Consequently, implementing cryptographic functions in P4

often necessitates multiple pipeline passes to compensate for

the low stage count per pass.

IX. FUTURE DIRECTIONS

A. Expanding Memory Resources

The limited memory resources on P4 PDP switches prevent

security applications from maintaining per-flow records in the

data plane (e.g. DDoS defenses and stateful firewalls). A

novel approach suggested extending the memory of P4 PDP

switches using the remote Dynamic Random Access Memory

(DRAM) technology [41, 42]. Remote DRAM allows the P4

PDP switches to access external memory resources over the

network. An access channel is maintained by the data plane of

the switch and the remote DRAM, using protocols like RoCE

(RDMA over Converged Ethernet). Experiments show that the

latency added by RoCE to store or retrieve data is around

1-2 microseconds. Following this technique, the switch can

extend the number of security rules and the number of flows

monitored by the security applications. However, this approach

has a few limitations that could be addressed in the future.

First, the switch should explicitly specify the address from

which the information should be stored or retrieved. Thus, the

data plane should maintain a data structure to map flows to

memory addresses, which requires a considerable amount of

resources. Future work should focus on building a system that

allows the switch to efficiently manage the remote memory.

Second, the switch can store or retrieve information from the

remote memory using a single request. On the other hand,

updating the values in the remote memory is expensive as it

entails the request to fetch the data, update it in the data plane,

and then store it back. Future work should identify a more

efficient way to update values on the remote memory. Finally,

packet loss can significantly degrade the performance of the

system as it might lead to synchronization issues between the

switch and the remote memory. Future work should aim at

defining a mechanism to handle packet losses in P4 as well as

building well-defined APIs to facilitate the interaction between

the data plane and the remote memory.

B. Extending Arithmetic Operations

Most cryptographic functions require arithmetic operations

that are not supported by P4 PDP switches, such as division

and floating-point calculations. To implement these functions

in P4, developers typically precompute values and store them

in match-action tables, but this approach limits the input

data size and often requires packets to be recirculated mul-

tiple times. Instead of precomputing values, exploring the

capabilities of smartNICs could complement P4 applications

by expanding the range of supported arithmetic operations.

SmartNICs (Smart Network Interface Cards) are advanced

NICs equipped with domain-specific processors optimized

for infrastructure tasks, such as compression, decompression,

encryption, and decryption. Future research should focus

on integrating P4 PDP switches with smartNICs to enable

complex computations within the data plane. Additionally,

software-based acceleration techniques should be investigated

to further enhance P4-based security systems. Notably, some

studies have already demonstrated that integrating software-

based accelerators can improve the memory efficiency of P4

security applications [39]. Future work could extend these

techniques to mitigate arithmetic computation constraints in

P4.

C. Enabling Pattern Matching

Pattern matching is essential for DPI security systems that

block traffic containing specific keywords. For example, if a

network administrator sets a rule to block all HTTP traffic with

the term Google the security system examines each packet’s

URL to check for matches to the pattern “*Google*.” Here, the

asterisks (*) act as wildcards, allowing any characters before

or after Google. However, while this type of flexible matching

is useful, P4 does not natively support it. The main difficulty

with using wildcards in P4 is that the number of characters for

a match is set during implementation and cannot be changed

after the P4 program is compiled. A workaround is to use

ternary matching, allowing patterns like “??Google,” where

each “?” can represent any single character. Unfortunately, this

method is inefficient because covering one wildcard rule may

require multiple “?” rules to account for the maximum pattern

length. Since patterns in P4 are transformed into matching

keys, their length must be defined in advance. Besides, mul-

tiple tables might be required to cover the different possible

numbers of characters in a wildcard operation. Future work

should aim to enable pattern matching in P4-based security

applications either through a workaround in P4 or utilizing

the regular expressions accelerator of smartNICs.

D. Parsing Variable Length Protocols

Various approaches have been developed to parse protocols

with a single variable-length header, such as the domain name

in DNS or the URL in HTTP. However, to the authors’

knowledge, no P4 application is currently capable of parsing

protocols with multiple variable-length headers like Trans-

port Layer Security (TLS). TLS is a cryptographic protocol

designed to provide secure communication over a network,

ensuring data privacy, integrity, and authenticity between two

endpoints, like a web browser and a server. Security ap-

plications often monitor encrypted traffic by examining the

SNI (Server Name Indication) field in the TLS protocol, an

extension that allows clients to specify the hostname they

are connecting to during the TLS handshake. TLS includes

multiple variable-length headers, such as the session ID, cipher

suite list, and compression method, which present additional

challenges for parsing because each header requires a unique

set of states in the parser. Parsing TLS in P4 is, therefore,

significantly more complex than parsing simpler protocols like

DNS or HTTP. Future research should focus on optimizing P4

parsing logic to support protocols with multiple variable-length

headers.

X. CONCLUSION

The complexity associated with developing P4 applications

has often served as an obstacle for researchers. This paper

tackles the issue by providing a comprehensive guide to

the process of designing P4 security applications. It goes

beyond theory and delves into practical implementation by

showcasing the creation of several security applications on

P4 PDP switches and sharing the P4 code used for these

applications. Furthermore, the paper provides key insights and

outlines the critical factors to consider when developing P4

security applications.

REFERENCES

[1] A. AlSabeh, J. Khoury, E. Kfoury, J. Crichigno, and E. Bou-Harb, “A
survey on security applications of P4 programmable switches and a
STRIDE-based vulnerability assessment,” Computer Networks, vol. 207,
p. 108800, 2022.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.
[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69–74, 2008.

[4] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible and
elastic {DDoS} defense,” in 24th USENIX security symposium (USENIX

Security 15), pp. 817–832, 2015.
[5] A. Panchenko, L. Pimenidis, and J. Renner, “Performance analysis of

anonymous communication channels provided by tor,” in 2008 Third In-

ternational Conference on Availability, Reliability and Security, pp. 221–
228, IEEE, 2008.

[6] P. Zilberman, R. Puzis, and Y. Elovici, “On network footprint of traffic
inspection and filtering at global scrubbing centers,” IEEE Transactions

on Dependable and Secure Computing, vol. 14, no. 5, pp. 521–534,
2015.

[7] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric DDoS attacks with
programmable switches,” in the 27th Network and Distributed System

Security Symposium (NDSS 2020), 2020.
[8] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey

on P4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE access, vol. 9, pp. 87094–87155,
2021.

[9] J. Gomez, E. F. Kfoury, J. Crichigno, and G. Srivastava, “A survey
on TCP enhancements using P4-programmable devices,” Computer

Networks, vol. 212, p. 109030, 2022.
[10] A. Mazloum, E. Kfoury, J. Gomez, and J. Crichigno, “A Survey on

Rerouting Techniques with P4 Programmable Data Plane Switches,”
Computer Networks, vol. 230, p. 109795, 2023.

[11] A. AlSabeh, E. Kfoury, J. Crichigno, and E. Bou-Harb, “P4ddpi:
Securing P4-programmable data plane networks via DNS deep packet
inspection,” in NDSS Symposium 2022, 2022.

[12] E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Srivastava, “Dynamic
Router’s Buffer Sizing using Passive Measurements and P4 Pro-
grammable Switches,” in 2021 IEEE Global Communications Confer-

ence (GLOBECOM), pp. 01–06, IEEE, 2021.
[13] A. AlSabeh, K. Friday, J. Crichigno, and E. Bou-Harb, “Effective

DGA Family Classification using a Hybrid Shallow and Deep Packet
Inspection Technique on P4 Programmable Switches,” 2023.

[14] A. Mazloum, E. Kfoury, S. Sur, J. Crichigno, and N. Ghani, “Enhancing
Blockage Detection and Handover on 60 GHz Networks with P4
Programmable Data Planes,” 2023.

[15] E. Kfoury, J. Crichigno, and E. Bou-Harb, “P4Tune: Enabling Pro-
grammability in Non-Programmable Networks,” IEEE Communications

Magazine, vol. 61, no. 6, pp. 132–138, 2023.
[16] E. Kfoury, J. Crichigno, and E. Bou-Harb, “P4BS: Leveraging Passive

Measurements from P4 Switches to Dynamically Modify a Router’s
Buffer Size,” IEEE Transactions on Network and Service Management,
2023.

[17] E. Kfoury, J. Crichigno, and E. Bou-Harb, “P4CCI: P4-based online TCP
congestion control algorithm identification for traffic separation,” in ICC

2023-IEEE International Conference on Communications, pp. 4007–
4012, IEEE, 2023.

[18] J. Crichigno, E. Kfoury, E. Bou-Harb, N. Ghani, Y. Prieto, C. Vega,
J. Pezoa, C. Huang, and D. Torres, “A flow-based entropy characteri-
zation of a NATed network and its application on intrusion detection,”
in ICC 2019-2019 IEEE International Conference on Communications

(ICC), pp. 1–7, IEEE, 2019.
[19] A. Mazloum, “P4 codes.” [Online]. Available: https://github.com/

AliMazloum/P4-Security-Applications.git, Accessed on 11-7-2023.
[20] Palo-Alto, “Security policy fundamentals.” [Online]. Available: https:

//tinyurl.com/528ufppz, Accessed on 5-10-2023.
[21] B. Spang and N. McKeown, “On estimating the number of flows,” BS,

vol. 19, p. 4, 2019.
[22] P. Networks, “Understanding DoS protection in PAN-OS.” [Online].

Available: https://tinyurl.com/3dap6dhb, Accessed on 9-20-2023.
[23] CAIDA, “The CAIDA anonymized Internet traces 2019 dataset.” [On-

line]. Available: https://data.caida.org/datasets/passive-2019/, Accessed
on 9-20-2023.

[24] J. Kim, H. Kim, and J. Rexford, “Analyzing traffic by domain name in
the data plane,” in Proceedings of the ACM SIGCOMM Symposium on

SDN Research (SOSR), pp. 1–12, 2021.
[25] A. Kaplan and S. L. Feibish, “Practical handling of DNS in the data

plane,” in Proceedings of the Symposium on SDN Research, pp. 59–66,
2022.

[26] Suricata, “Suricata is far more than an IDS/IPS.” [Online]. Available:
https://suricata.io/, Accessed on 10-9-2023.

[27] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, and H. Duan,
“Nethcf: Enabling line-rate and adaptive spoofed ip traffic filtering,” in
2019 IEEE 27th international conference on network protocols (ICNP),
pp. 1–12, IEEE, 2019.

[28] H. Gondaliya, G. C. Sankaran, and K. M. Sivalingam, “Comparative
evaluation of IP address anti-spoofing mechanisms using a P4/NetFPGA-
based switch,” in Proceedings of the 3rd P4 Workshop in Europe, pp. 1–
6, 2020.

[29] G. Simsek, H. Bostan, A. K. Sarica, E. Sarikaya, A. Keles, P. Angin,
H. Alemdar, and E. Onur, “DroPPPP: a P4 approach to mitigating dos
attacks in SDN,” in Information Security Applications: 20th International

Conference, WISA 2019, Jeju Island, South Korea, August 21–24, 2019,

Revised Selected Papers 20, pp. 55–66, Springer, 2020.
[30] P. Kuang, Y. Liu, and L. He, “P4DAD: Securing duplicate address

detection using P4,” in ICC 2020-2020 IEEE International Conference

on Communications (ICC), pp. 1–7, IEEE, 2020.
[31] D. Senie, “Network ingress filtering: Defeating denial of service attacks

which employ ip source address spoofing,” RFC 2827, 2000.
[32] F. Baker and P. Savola, “Ingress filtering for multihomed networks,”

tech. rep., 2004.
[33] A. Bremler-Barr and H. Levy, “Spoofing prevention method,” in Pro-

ceedings IEEE 24th Annual Joint Conference of the IEEE Computer

and Communications Societies., vol. 1, pp. 536–547, IEEE, 2005.
[34] C. Jin, H. Wang, and K. G. Shin, “Hop-Count Filtering: an effective

defense against spoofed DDoS traffic,” in Proceedings of the 10th ACM

conference on Computer and communications security, pp. 30–41, 2003.
[35] H. Wang, C. Jin, and K. G. Shin, “Defense against spoofed ip traffic us-

ing hop-count filtering,” IEEE/ACM Transactions on networking, vol. 15,
no. 1, pp. 40–53, 2007.

[36] X. Chen, “Implementing AES encryption on programmable switches via
scrambled lookup tables,” in Proceedings of the Workshop on Secure

Programmable Network Infrastructure, pp. 8–14, 2020.
[37] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon

collectors, caching algorithms and self-organizing search,” Discrete

Applied Mathematics, vol. 39, no. 3, pp. 207–229, 1992.
[38] L. Wang, P. Mittal, and J. Rexford, “Data-plane security applications

in adversarial settings,” ACM SIGCOMM Computer Communication

Review, vol. 52, no. 2, pp. 2–9, 2022.

[39] S. Yoo, X. Chen, and J. Rexford, “SmartCookie: Blocking Large-Scale
SYN Floods with a Split-Proxy Defense on Programmable Data Planes,”
in USENIX Security, 2024.

[40] J.-P. Aumasson and D. J. Bernstein, “SipHash: a fast short-input PRF,” in
International Conference on Cryptology in India, pp. 489–508, Springer,
2012.

[41] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic external
memory for switch data planes,” in Proceedings of the 17th ACM

Workshop on Hot Topics in Networks, pp. 1–7, 2018.
[42] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan, “Tea:

Enabling state-intensive network functions on programmable switches,”
in Proceedings of the Annual conference of the ACM Special Interest

Group on Data Communication on the applications, technologies, archi-

tectures, and protocols for computer communication, pp. 90–106, 2020.

