
A Survey on Rerouting Techniques with P4
Programmable Data Plane Switches

Ali Mazloum, Elie Kfoury, Jose Gomez, Jorge Crichigno
College of Engineering and Computing, University of South Carolina, Columbia, U.S.A

Email: amazloum@email.sc.edu, ekfoury@email.sc.edu, gomezgal@email.sc.edu, jcrichigno@cec.sc.edu

Abstract—Traditionally, the networking industry has been
dominated by closed and proprietary hardware and software.
Vendors have been controlling the network by hard-coding how
packets should be processed and providing the network opera-
tors with a set of predefined protocols. Recently, the industry,
operators, and the research community have started to pay
special attention to data plane programmability, which allows
the user to define the packet processing behavior. Allowing the
network operators and programmers to define, deploy, and test
new forwarding behaviors in a relatively short time paved the way
for a significant wave of innovation and experimentation. With
the emergence of programmable data planes, traffic rerouting
has been used by the research community. Rerouting approaches
are deployed to mitigate various network issues. Despite the
considerable number of works that deploy innovative rerouting
mechanisms using programmable switches, the literature lacks
a comprehensive survey. To this end, this paper provides an in-
depth overview, detailed analysis, and unique categorization of
the recent programmable data plane-based rerouting approaches.
The survey explains the need for rerouting by highlighting the
promising results while dealing with link/node failures, load
imbalance, and congestion. It then discusses the challenges
and considerations and presents future perspectives and open
research issues.

Index Terms—Traffic rerouting, Programmable data planes,
P4 language, Challenges and solutions in P4

1. INTRODUCTION

As the network scale is increasing, failures are becoming
more frequent [1]. After link/node failures, the network en-
ters a reconvergence state, re-establishing the affected paths.
During the reconvergence period, some traffic may have an
invalid route, at which a reliable path between the sender and
the receiver may not be available. Under failures, real-time
applications might suffer from significant performance degra-
dation caused by packet loss during network re-convergence.

Besides availability, low latency becomes a key requirement
for the ongoing evolution of the Internet. For example, Tactile
Internet is the result of the giant leaps the Internet has made
over the years [2]. The International Telecommunication Union
(ITU) describes the Tactile Internet as the combination of
ultra-low latency with extremely high availability, reliability,
and security [3]. If a network node receives more data than the
outgoing link can process, the node’s buffer will be congested.
The more packets accumulated inside the node’s buffer, the
higher the queuing delay. The typical latency needed by Tactile
Internet applications is less than 1 millisecond (ms) [4]. To
achieve such low latency, Tactile Internet flows should not

suffer from any delay nor be dropped by any node on the path
[5].

Furthermore, congestion may result from unfair load bal-
ancing of traffic. Load imbalance is a major problem in
cloud computing [6]–[8]. Load balancing can be achieved by
minimizing the maximum link utilization while minimizing
resource consumption [9], [10]. In data centers and cloud
architectures, applications are replicated over multiple appli-
cation instances. All the application instances providing the
same service share the same virtual IP (VIP). An average 44%
of cloud and data center traffic is VIP traffic [11], [12]. After
connection initialization, a load balancer is required to map the
incoming packets only to the application instance serving it.
This property is known as per connection consistency (PCC).
In case PCC is broken, the connection will be reset.

Limitations of Legacy Approaches. Upon link/node fail-
ures, networking nodes forward the traffic based on the routes
computed by the control plane. Unfortunately, the average
convergence time of the control plane upon remote failures
is above 30 seconds [13]–[15]. One reason behind this slow
reaction is that the control plane is responsible for achieving
convergence through the propagation of routing updates on a
per-router and per-prefix basis.

Moreover, congestion control mechanisms of traditional
transport protocols should not be deployed over Tactile ap-
plications because modifying the sending rate is not allowed
at the Tactile source [5]. An alternative approach to these
congestion control mechanisms is the use of congestion-
signaling mechanisms (e.g., ECN [16]). Congestion-signaling
mechanisms avoid congestion as the receiver notifies the
sender to reduce the data rate before packet loss happens.
However, these mechanisms might not function if they are
not implemented on all the network devices between the
sender and the receiver [17]. Furthermore, traditional switches
partially support load-aware traffic splitting [18]. The most
deployed data plane load-balancing technique is equal-cost
multi-path routing (ECMP) [19]. ECMP does not adapt to the
state of the network and splits the traffic randomly among the
available paths, congesting the network under some circum-
stances [20].

Traditional switching Application Specific Integrated Cir-
cuit (ASIC) is not capable of holding a load balancer [11].
Instead, a software load balancer (SLB) is usually imple-
mented, which can easily keep PCC at the cost of unfair

• Limitations of legacy
approaches

• Programmable data
plane and rerouting
mechanisms

• Paper contribution
• Paper organization

Section I:
Introduction

• Comparison
with related
surveys

• Analysis and
limitations of
existing surveys

Section II:
Related Work

• Presents different
rerouting
feedback
approaches

• Compares and
discusses the
different feedback
approaches

Section V:
Feedback Phase

• Surveys different
rerouting
algorithms

• Compares and
discusses the
different
rerouting
algorithms

Section VI:
Traffic Rerouting

Phase

• Background
overview

• Comparison
with legacy
approaches

Section VII:
Performance
Comparison

• Challenges,
current initiatives,
and future work

• Security
• Table entries

modification
• Memory, etc.

Section VIII:
Challenges and

Future Work

A Survey on Rerouting in P4 Programmable Data Plane Switches

• Defines the P4
language and the
PSA architecture

• Highlights on
some of the most
used P4 features
in the rerouting
domain

Section III:
Background
Information

• Clarifies the
methodology
followed by
this paper

Section IV:
Methodology

Fig. 1. Paper roadmap.

load balancing. Compared to the characteristics required by
the tactile applications, SLBs provide high latency and jitter
and poor performance isolation [21].

Programmable Data Plane and Rerouting Mechanisms.
The emergence of programmable switches paved the way
for unprecedented innovation and experimentation in the data
plane while sustaining the same packet-processing throughput
[20], [22]. Programmable forwarding plane increases network
reliability, offers greater visibility, provides efficient use of
resources, and allows users to add new features. Programmable
switches can provide fine-grained statistics at line-rate. This
technology can achieve terabits per second (Tbps) throughputs
and can offer a line-rate speed feedback exchange between dif-
ferent nodes [5], [23]. In this survey, routers, switches, network
nodes, and forwarding elements are used interchangeably.

The research community leverages the provided character-
istics and proposes a wide range of varying rerouting ap-
proaches. Each rerouting approach can be uniquely identified
either by its rerouting feedback, its rerouting algorithm, or by
both [19], [24]. New traffic rerouting mechanisms are deployed
to deal with link/node failures, load imbalance, and congestion.
These approaches benefit from data plane level fault detection
and line-rate speed of fine-grained measurements collection
while sustaining high packet-processing throughput. Further-
more, many legacy rerouting approaches can be implemented
on the data plane, benefiting potentially from a significant
increase in performance. For instance, SWIFT [13], GONGA
[25], DRILL [26], Clove [27], and others [28] are state-
of-the-art rerouting approaches that can be deployed over
programmabledata plane switches.

1.1 Contribution

The emergence of data plane programmability resulted
in the recent adoption of different rerouting mechanisms.
However, to the best of the authors’ knowledge, no survey
has addressed rerouting approaches in programmable switches.
To this end, this paper discusses data plane programmability
and stresses which of its characteristics rerouting approaches
benefited from. The paper presents some limitations of legacy
approaches while dealing with link/node failure, load imbal-

ance, and congestion; explaining how traffic rerouting com-
bined with programmable data plane technology might result
in a promising solution for all the aforementioned issues.
The paper continues by exploring different rerouting feedback
approaches; discussing their common challenges and some
used solutions; and analyzing the rerouting logic of multi-
ple mechanisms. It provides a high-level illustration of how
internal components of programmable switches communicate
to provide a flexible yet line-rate performance while traffic is
being rerouted, discusses challenges and considerations, and
puts forward future perspectives and open research issues.

1.2 Organization

The paper’s organization is summarized in Fig. 1. Section
2 studies and compares existing surveys on programmable
data plane rerouting related topics and demonstrates the added
value of the offered work. Section 3 presents an overview of P4
programmable switches and highlights some of the P4 features
which are leveraged by the rerouting approaches. Section 4
provides the methodology followed by this survey. Section 5
analyzes what special events can trigger the rerouting process
by presenting different feedback approaches, performing inter-
nal comparison between these approaches, and concludes by
comparing feedback mechanisms in programmable approaches
with traditional mechanisms. Section 6 surveys, classifies,
analyzes, and discusses the rerouting algorithms of various
approaches. Section 6 concludes by comparing rerouting al-
gorithms in programmable switches internally and externally
with legacy algorithms. Section 7 compares the performance of
the rerouting approaches with respect to legacy mechanisms.
Section 8 outlines challenges and considerations extracted
and induced from the literature and pinpoints directions that
can be explored in the future to ameliorate the state-of-the-
art solutions. Finally, Section 9 concludes the survey. The
abbreviations used in this article are summarized in Table IX,
at the end of the article.

2. RELATED WORK

Rerouting approaches are comprised of two phases. The first
phase is the feedback phase, where a network node detects a

2

TABLE I
COMPARISON WITH RELATED SURVEYS.

Paper Programmable Switches Feedback Phase* Traffic Rerouting Phase* Discussions

Features Need Link/Node
Failures

Load Imbalance and
Congestion

Link/Node
Failures

Load Imbalance and
Congestion Challenges Future

Directions
[29] dq dq dq d dq d dq dq
[30] t dq d dq d dq dq dq
[31] t dq d dq d dq t t
[32] dq dq d d dq d dq dq
[33] t dq dq dq dq dq dq dq
[34] dq dq d d d d dq t
[35] dq dq d d d d dq t
[36] t dq d d d d t t
[37] t t d dq d dq t t
This
paper

t t t t t t t t
* Each traffic rerouting approach has two phases, a feedback phase and a traffic rerouting phase. The feedback phase describes the mechanism followed by
programmable switches to detect and notify other switches about the occurrence of a problem (e.g., link failure, load imbalance, and congestion) in the
network. The traffic rerouting phase describes the rerouting process programmable switches deploy to route the traffic.tCovered in this survey dNot covered in this survey dq Partially covered in this survey

problem in the network and notifies other nodes. The second
phase is the traffic rerouting phase, where one or more nodes
collaborate to reroute the traffic. Rerouting techniques are
used to avoid failed link/node, to load balance, and to control
congestion [18]–[20].

• Link/node failures: are common in large networks [1]. All
traffic routed through a failed link/node will be stalled.
Failed link/node are avoided by rerouting the traffic
through an alternative path.

• Load imbalance: is a major problem in cloud computing
[6]–[8]. In cloud computing, multiple resources can pro-
vide clients with the same set of services. A client can
get a certain service by communicating with any resource
providing the service. Load imbalance occurs when some
resources are overloaded while others have low workloads
[38].

• Congestion: is the primary source of packet loss in the
network [39]. Congestion occurs when a network node
receives more data than its outgoing link can forward. All
packets that cannot be directly forwarded by a congested
node are stored in the node’s buffer. The node starts to
drop packets when the buffer is full. Congestion can lead
to a significant degradation in performance [40].

The implementation of each phase can vary significantly
from one P4-based rerouting approach to another. To the
best of the authors’ knowledge, no previous work focuses on
traffic rerouting approaches in programmable switches. The
remaining of this section shows how related work falls short
in addressing the two phases of P4-based rerouting approaches.

2.1 Feedback Phase

Cordeiro et al. [32], Kaljic et al. [35], Satapathy et al. [34],
and AlSabeh et al. [36] surveyed programmable data plane
switches without discussing approaches that resolve link/node
failures, load imbalance, and congestion problems. First,
Cordeiro et al. discussed the opportunities and challenges for

network and services operations for data plane programma-
bility beyond OpenFlow. The authors presented the evolution
of SDN from OpenFlow to data plane programmability and
explained some of the domain-specific languages for the data
plane. After that, the authors discussed the opportunities the
programmable data plane offers and the challenges it proposes
over security, dependability, accounting, performance, and
configuration management. The survey implicitly mentioned
rerouting by listing a few load balancing approaches. The sur-
vey did not discuss the feedback phase of any load balancing
approach mentioned in it. Similar to Cordeiro et al., Kaljic
et al. discussed data plane flexibility and programmability in
SDN [41]. The survey started by overviewing the architecture
of the data plane and the definitions of network flexibility
and programmability in other domains. It then described the
hardware and software-based technologies which support data
plane implementations. The authors then surveyed several
problems in seven categories; however, they did not discuss
the rerouting mechanism.

Satapathy et al. presented a study report on the P4 pro-
gramming language. The study explained the P4 language and
provided some design considerations. It then described how to
set up the environment of the P4 program on Ubuntu virtual
machines. After that, it mentioned some use cases of P4 and
concluded with future work. Finally, AlSabeh et al. provided
a concise background on programmable switches and their
main features that are relevant to security. The work surveyed,
classified, and analyzed articles related to security applications
developed with P4. The authors continued by employing a
STRIDE analysis to examine vulnerabilities related to general
P4 applications. The survey was concluded by examining
general P4 challenges, presenting how they are related to the
security domain, and discussing future endeavors and open
research problems. This survey is limited to P4-based security
applications in which the rerouting topic is barely discussed.

Chiesa et al. [29] surveyed a few P4-based approaches that
focus on link/node failures. The authors discussed different

3

packet-based fast-recovery mechanisms in packet-switched
networks. The work described different networking technolo-
gies, from traditional link-layer and IP-based mechanisms,
over Border Gateway Protocol (BGP) and Multiprotocol Label
Switching (MPLS) to emerging software-defined networks and
programmable data planes. Most of the approaches that are
discussed in this work run over legacy switches. A few P4-
based approaches that resolve link failures were described in
this paper. For the described approaches, the authors did not
show what features of programmable switches are utilized to
detect the problem and to notify other switches about the
failure. On the other hand, Hauser et al [42]. focused on
P4-based approaches. The survey discussed the approaches
that resolve link failures, load imbalance, and congestion. It
described the transition from traditional networks and SDN
to data plane programming. It then described the two most
common data plane programming models and introduced
the P4 programming language. After that, it surveyed P4-
based applied approaches in monitoring, traffic management
and congestion control, routing and forwarding, advanced
networking, network security, and miscellaneous domains.
Although this survey included numerous different rerouting-
based approaches, it only described the high-level details. The
survey did not explain the feedback phase of the approaches
that were described in it.

Kaur et al. [30] and Gomez et al. [37] focused on P4-
based approaches that resolve load imbalance and congestion.
In particular, Kaur et al. discussed the scalability and perfor-
mance issues in Software-defined Network (SDN) systems and
illustrated how data plane programmability could handle these
problems. The work highlighted the need for programmable
switches and presented the working flow model of P4 pro-
grammable data plane switches. However, the feedback phase
of the rerouting approaches covered in this survey was briefly
described. Gomez et al. also discussed P4-based approaches
that resolve load imbalance and congestion. The survey fo-
cused on schemes that enhance TCP performance. It classified
the aspects that impact TCP’s behavior (e.g., congestion) and
surveyed the P4-based solutions. In this survey, only a few
rerouting approaches were discussed.

Similar to [30] and [37], Kfoury et al. [31] covered P4-
based approaches that balance the load and control congestion.
The work included the evolution, description, and features of
programmable switches, compared the P4-based approaches
internally and to legacy approaches, and discussed the chal-
lenges and future work. The paper divided the literature
into seven categories and briefly illustrated different works
under each group. The authors overviewed multiple rerouting
approaches without explaining their feedback phase.

2.2 Traffic Rerouting Phase

Chiesa et al. [29], Cordeiro et al. [32], and Hauser et al.
[42] partially described the traffic rerouting phases of some P4-
based rerouting approaches. In [29], the focus was on legacy
rerouting approaches, where the authors briefly mentioned the
traffic rerouting phase of some P4-based rerouting approaches

while dealing with link failures. In [32], the authors mentioned
some traffic rerouting techniques deployed over programmable
switches. The focus of the survey was to show the added value
of data plane programmability on SDN systems, where a few
rerouting techniques were briefly described as use cases for
programmable data planes. The authors did not show how
the rerouting phase was implemented on the switch or what
features of the data plane programmability have been utilized.
Besides discussing rerouting approaches that deal with link
failures, Hauser et al. [42] discussed P4-rerouting approaches
that resolve load imbalance and congestion. The authors did an
exhaustive survey that discusses data plane programmability
and its applications on multiple domains, including the ap-
plications that resolve link/node failures, load imbalance, and
congestion. However, the authors did not provide sufficient
details about the surveyed work, as the rerouting phase was
not explained in enough detail.

Similar to [42], Kfoury et al. [31] discussed the P4-
based applications that handle load imbalance and congestion.
However, the authors did not survey the approaches that
resolve link/node failures. Besides, the rerouting phase of the
surveyed approaches (approaches that resolve load imbalance
and congestion) was briefly discussed without showing what
features of data plane programmability each approach had
utilized. Kaur et al. [30] and Gomez et al. [37] also did
not focus on P4-related approaches that resolve link/node
failures. The authors focused on the approaches that resolve
load imbalance and congestion without explaining the different
implementations of the traffic rerouting phase.

2.3 Survey’s Scope and Novelty
Table I summarizes the topics and the features described

in the related surveys. It also highlights how this paper
differs from the existing surveys. All previous surveys lack a
critical analysis of the rising traffic rerouting mechanisms. This
survey addresses the gap by explaining clearly the need for
rerouting as a promising solution for the current challenging
requirements. This work gathers programmable data plane
mechanisms that are based on rerouting and analyzes them
deeply. The analysis includes a comprehensive explanation of
the different feedback mechanisms adopted by the rerouting
approaches and a detailed illustration of the most up-to-date
rerouting algorithms.

3. BACKGROUND INFORMATION

Table II compares P4 programmable switches and legacy
forwarding devices. This section introduces the P4 language
and the Portable Switch Architecture (PSA), and then high-
lights some of the programmable switches’ features that are
leveraged by rerouting approaches.

3.1 P4 Language and the Portable Switch Architecture (PSA)
P4 language is used to define how the data plane of a

programmable switch should process the packets. PSA defines
a set of “packet paths.” Different packet paths might have dif-
ferent processing logic. The programmer writes P4 programs
to control the flow of packets in different packet paths [43].

4

Programmable Match-action
Pipeline

...

Programmable
Parser

State ALU

Packets

Packet buffer
and replication

engine

Programmable
Deparser

Memory

Programmable Match-action
Pipeline

...

Programmable
Parser

Programmable
Deparser

Buffer
queueing

engine

Configurable
Component

Packet Resubmission Clone to Egress

Packet Recirculation

Ingress Pipeline Egress Pipeline

Stage 1 Stage N Stage 1 Stage N

Configurable
Component

Packets

Fig. 2. Portable Switch Architecture (PSA) [43]. The PSA model consists of P4 programmable blocks and fixed-function blocks. The behavior of the
programmable blocks is specified using P4. The Packet Buffer and Replication Engine (PRE) and the Buffer Queuing Engine (BQE) are target-dependent
functional blocks that may be configured for a fixed set of operations.

Consider Fig. 2. The PSA model consists of P4 pro-
grammable blocks and fixed-function blocks. The first pro-
grammable block is the Parser. Incoming packets are parsed
and validated according to the headers defined by custom
or standard protocols. The packets then move to the ingress
match-action pipeline. The match-action pipeline is used to
define the way packets are processed inside the switch. The
match-action pipeline contains multiple match-action tables. A
table has one or more entries that are populated by the control
plane. Each entry has a key, an action, and an action data. The
key is used for the lookup operation. The switch builds a key
for the incoming packets using their headers. The built key is
used to search the match-action tables. Once a hit occurs, i.e.,
the built key matches a key for one of the entries inside the
match-action tables, the action associated with the matched
entry is performed using Arithmetic Logic Units (ALUs).
Match-action tables have multiple memory blocks and ALUs.
The memory blocks can be Static Random-Access Memory
(SRAM) or Ternary Content Addressable Memory (TCAM).
SRAM holds multiple stateful objects (e.g., registers, counters,
meters) where further action logic can take place.

The next programmable block is the ingress deparser which
has control over the packet contents and metadata to be
sent to the Packet Buffer and Replication Engine (PRE).
The programmer has the option to replicate (i.e., copies
made to multiple egress ports) and store the packet in the
PRE. The PRE is the first fixed-function block. The first
three programmable blocks (i.e., the programmable ingress
parser, the programmable ingress match-action pipeline, and
the programmable ingress deparser) are usually denoted by
the ingress pipeline. After the PRE, packets pass through the
egress pipeline, which has a similar structure to the ingress
pipeline. The two pipelines may share the same physical
components, which reduces the implementation cost [22], [44].

3.2 Packet Generation

Rerouting approaches can leverage the packet generators
of the programmable switches to enhance the failure detection
speed. Packet generators generate packets after being triggered
by a specific event. The packet generator hardware can monitor

the status of the ports. If one of the ports goes down, the
packet generator generates a packet with a unique header
that matches an entry in the match-action tables [45]. The
programmer can define the triggering events and the actions
to be taken after receiving the triggering signal. Rerouting
approaches can detect, report, and avoid the down ports at
line-rate by leveraging the packet generators.

The packet generators can also be used to implement
the bidirectional forwarding detection (BFD) protocol. BFD
is a network protocol used to detect link failures between
different forwarding elements [46]. By leveraging the packet
generators to deploy BFD, rerouting approaches can offload
the link failure detection to the data plane, which decreases the
dependency on the control plane and thus increases the overall
performance. With packet generators, the probe generation
gap between simultaneous probes can have a nanosecond
granularity, a feature that might not be achievable using the
control plane.

Besides, rerouting approaches can leverage the timers of
the packet generators. There are two kinds of timers. The first
one is a periodic timer. The other is a one-shot timer. Timers
can be leveraged to generate probes. Such probes are always
generated at the data plane level. The vendors provide APIs
that allow the control plane to configure all different features
in the packet generators.

Packet generation in programmable switches is not limited
to the packet generator hardware. Previous work was able to
leverage the packet recirculation and packet replication fea-
tures of programmable switches to generate 1Tbps throughput
[47]. Programmable switches are capable of generating packets
while collecting measurements with nanosecond granularity
[48]. Because the generated packets might have custom head-
ers, P4TrafficTool [49] was introduced to generate plugins for
the most common packet generators and analyzers tools (e.g.,
Wireshark [50], MoonGen [51], Scapy [52], and Pcap++ [53]),
allowing them to process custom headers.

3.3 Header Modification

Among the significant set of available actions provided by
the match-action pipelines, line-rate header modification is one

5

TABLE II
COMPARISON BETWEEN PROGRAMMABLE AND LEGACY SWITCHES IN THE CONTEXT OF REROUTING.

Feature Programmable Switches Legacy Switches Notes
Packets Generation Support failure detection; provide

periodic and one-shot timers
Not supported Switch can detect down ports and failed links at line-

rate without the control plane intervention
Header
Modification

Support custom header modifica-
tions

Restricted to the set of standardized
header modification operations

Operator can implement custom headers to propagate
rerouting signals or encapsulate rerouting paths

Multicasting Support customizable algorithms
and efficient dynamic tree updates;
result in high packet overhead

Restricted by signaling protocols;
has no packet overhead

Operator can implement a custom algorithm to prop-
agate probes and rerouting signals

Telemetry
Provide microsecond granularity;
support event-base monitoring; de-
tect microbursts; bandwidth over-
head*

Not supported; low bandwidth
overhead

Switch can translate network events into rerouting
signals at line-rate

Programmability Support custom packet processing
behaviors; simpler testing process

Fixed packet processing behaviors;
complex testing processing

Operator can define and test new rerouting ap-
proaches on a real hardware in a relatively short time

* The overhead is proportional to the percentage of packets being reported.

of the most adopted techniques by the rerouting approaches.
The programmable parser allows the programmer to define
the headers of the incoming packets according to custom
or standard protocols. The programmer can either build his
new header or modify the existing fields by programming the
actions inside the match-action tables. This characteristic is
leveraged by rerouting approaches for different reasons. Some
approaches modify the headers to propagate the link utilization
information [19], [20], [54]. Others use packet headers to
propagate the list of failed links [55].

3.4 Multicast

Multicast routing enables a source node to send a copy of a
packet to a group of nodes. Some rerouting approaches deploy
multicast techniques to control the propagation of probes.
These techniques play a fundamental role in determining the
efficiency and sometimes the feasibility of a proposed rerout-
ing algorithm. Multicast uses in-network traffic replication to
ensure that at most a single copy of a packet traverses each
link of the multicast tree [31]. The multicast tree is the set
of different paths a multicast packet should follow. In most
standard multicast techniques, the multicast tree is saved on the
switches. This adds a burden on the memory resources of the
switches as the size of the multicast tree increases. Using P4-
based multicast, the programmer can include the multicast tree
inside the packet headers. No information about the multicast
tree has to be included on the switch. Changes to the multicast
tree can then be done by modifying the headers without the
need to store any information related to the multicast tree at
the switch [56]. This feature makes the addition of a new node
straightforward.

Fig. 3 depicts a topology with two multicast trees. The
identifications of all network nodes participating in a multicast
tree are encapsulated inside a custom header. By processing
the custom header of an incoming packet, the switch identifies
the directly connected nodes to which the packet should be
delivered. If the same packet should be forwarded to multiple
next-hops, the current programmable switch utilizes the repli-
cation engine to create additional copies of the packet. Before

S4

S3

S7

S9

S6

S2

S1

S5

S10

S3

S8

S1 S2 S3 S4

S5 S6 S8

S9 S10

S7

Multicast tree 1Original packet Multicast tree 2

Fig. 3. P4-based multicast. The multicast trees are encapsulated inside a
custom header. Programmable switches process the custom header to identify
the next-hops.

forwarding the packets, the programmable switch removes its
identification from the custom header.

3.5 Fine-grained Telemetry

By using the programmable switches, operators can obtain
per-packet visibility at line-rate. This visibility allows many
rerouting approaches to leverage data plane signals to enhance
their detection mechanism. These signals can be per-node
signals (e.g., queuing and processing delays) or signals at
the level of the network (e.g., TCP retransmissions). Some
rerouting approaches leverage the per-node signals to detect
and react to congestion. Many traditional congestion control
algorithms need at least one round-trip time (RTT) to react to
the perceived congestion [5]. In contrast, using programmable
switches, the exact value of the queue occupancy can be
measured, and immediate action might be taken at line-rate.

Other rerouting approaches leverage network-wide signals
to resolve remote link failures. Traditional detection techniques
need tens of seconds to detect remote failures [13]. In con-
trast, by monitoring the data plane signals, some rerouting
approaches reduce the detection time of remote failures to one
RTT [18].

6

Rerouting approaches can mainly utilize three monitoring
techniques, flow monitoring, sketches, and In-band Network
Telemetry (INT) [57].

• Flow monitoring: in the flow monitoring technique, traffic
is monitored on a per-flow basis [33]. The collected
records can be either used by the data plane to perform
threshold-based actions [58], [59] or can be forwarded to
the control plane, where further processing can be done
[60]–[62].

• Sketches: as the number of flows increases, monitoring
all flows becomes infeasible mainly because of memory
limitations in programmable switches [31]. An alternative
technique to flow monitoring is the use of sketches.
Sketches are the output of streaming algorithms that
approximate a measurement rather than outputting its
exact value. Streaming algorithms are used when there
is a memory limitation. The accuracy of a streaming al-
gorithm depends on the number of items being monitored
and on the memory resources available. A common use
of sketches is detecting heavy flows [63], [64].

• INT: INT utilizes packet metadata to monitor the state
of the network (e.g., congestion) or the internal state
of a programmable switch (e.g., queue occupancy, link
utilization, queuing delay, etc.) [31], where the metadata
to be defined depends on the application [65], [66]. A
key advantage of INT is that data monitoring and actions
based on the collected data can happen at the data plane
level without interacting with the control plane. Switches
can have a network-wide view by exchanging their
telemetry data. Data sharing can happen by appending
the metadata to packet headers or using probes [67]–[69].
As described in Fig 4, an INT-enabled network has four
parts: 1) INT source: is the node responsible for indicat-
ing what metadata should be collected from later nodes
in the network. The node indicates the telemetry data to
be collected by appending a custom header containing the
instructions to the original packet; 2) INT transit hop: is
the node that processes the instructions encapsulated by
the INT source node and appends its metadata accord-
ingly; 3) INT sink: is the node responsible for extracting
the appended instruction custom header and metadata;
and 4) INT sink: is the device responsible for collecting
the accumulated metadata from the INT sink.

3.6 Full Programmability

For decades, the networking industry operated in a bottom-
up approach. A fixed-function ASIC is at the bottom and
enforces available protocols and features to the programmer at
the top. This closed-design paradigm has limited the capability
of the switches to proprietary implementations, which are
hard-coded by vendors, inducing a lengthy, costly, and inflex-
ible process. This limitation prevents many novel ideas from
being implemented on real hardware. As mentioned before,
the PSA architecture, which is programmed by the P416
programming language, has six fully programmable blocks.
This open-design paradigm resulted in a much faster cycle

. . .

INT transit hopINT source INT sink

. . .

Telemetry
instructions

Add
metadata

Add
metadata

...

INT Collector

Original packet Telemetry instructions Switch metadata

Extract
metadata

Host1

HostN

Fig. 4. In-band Network Telemetry (INT).

of innovation and experimentation, reduced complexity, and
enhanced resource utilization of the programmable switches.
This flexibility allows the operators and programmers to step
out of the traditional restrictions and implement their own
customized algorithms.

4. METHODOLOGY

Consider Fig. 5. The rerouting lifecycle consists of four
steps. In the first step, a forwarding device detects the oc-
currence of a networking problem (e.g., link/node failure,
load imbalance, congestion). In the second step, the device
reports the existing problem to other devices in the network.
These two steps constitute the feedback phase of a rerouting
approach. In the last two steps, the device obtains the backup
path and then modifies its forwarding rules. The last two steps
constitute the traffic rerouting phase of the rerouting approach.

Although rerouting approaches that leverage programmable
switches are not constrained by the aforementioned rerouting
lifecycle, most of them can still be described as a combination
of feedback and traffic rerouting phases.

Each phase of the rerouting process is discussed in a
separate section. The implementation of each phase is further
illustrated. Generally, there are three ways to implement the
feedback phase: 1) data plane signals can be utilized to infer
the occurrence of link/node failure or congestion; 2) probes
can be used to collect information about the links utilization
in a network or to detect failed links/nodes; and 3) packet
headers can be customized to send network-assisted conges-
tion feedback or to transmit the rerouting signals from one
device to another. In the traffic rerouting phase, rerouting can
happen either reactively or proactively. In reactive rerouting,
the calculation of the alternative path happens after detecting
the need for rerouting. In proactive rerouting, the alternative
path is calculated and stored inside the switch before detecting
the problem.

5. FEEDBACK PHASE

5.1 Traffic Behavior

Multiple approaches perform rerouting after monitoring
and analyzing the traffic behavior. Some approaches leverage
TCP reliability to detect failure. Others analyze processing
and queuing delays to infer congestion. It is proven by

7

Problem Detected Problem Reported Rules Modified

Time

Traffic Behavior (5.1)

Probing (5.2)

Packet Headers (5.3)

Reactive Rerouting (6.1)

Proactive Rerouting (6.2)

New Path Obtained

TCP Retransmissions

Processing and Queuing Delays

Links Utilization Probes

Adding New Headers

Failure Detection Probes

Adjusting Headers Fields

Data Plane Resilience

Load Balancing and Congestion Control

Alternative Path Rerouting

Other Proactive Approaches

Feedback Phase (Section 5)

Network-Assisted Congestion Feedback

Traffic Rerouting Phase (Section 6)

Fig. 5. Rerouting lifecycle and the methodology followed by the survey.

. . .

Host1

HostN

S1

S3

S6

. . .

R1

RN

Flow 2 Flow n

Time

Monitored flows
Flow 1

R
et

ra
n

sm
is

si
o

n
s

X X X

Blink

S5

Primary path Backup path

S2

S4

X

Failure occuredX

Fig. 6. Workflow of Blink. A programmable switch monitors the retrans-
missions of n flows. The switch reroutes the traffic when the flows start to
retransmit packets simultaneously.

[5], [18] that traffic has predictable behavior upon specific
changes in the Internet and that rerouting might be inferred
through monitoring the traffic.

TCP Retransmissions. TCP retransmissions occur when
the sender does not receive an acknowledgment of a sent
packet within a period of time [70]. In Blink [18], the
programmable switch monitors the incoming flows and uses
TCP retransmissions as an indication of a remote link failure.
In case multiple flows start to retransmit the same packets
repeatedly, Blink considers that link failure occurred. The
workflow of Blink is depicted in Fig. 6. Programmable
switch S1 monitors n flows out of the N flows traversing
the switch. When S3 fails, the monitored flows traversing
S3 start to retransmit packets simultaneously. S1 detects the
retransmissions and reroutes the traffic through the backup
path.

Processing and Queuing Delays. Processing delay is the

time taken by a switch to process the packet header. After
the header is processed, the packet waits in a queue until
it can be transmitted. The time the packet spent inside the
queue represents the queuing delay. Turkovic et al. [5] propose
fast network congestion detection and avoidance using P4, a
mechanism that aims to detect and react to any increase in
delays at the level of the switch. This approach leverages the
programmable data plane to access network traffic measure-
ments in real-time.

As shown in Fig. 7, fast detection deploys a local congestion
module (denoted by Local Module in the figure) that is
capable of obtaining processing and queuing delays besides
monitoring the state of low-latency flows. Low-latency flows
are characterized by a low end-to-end latency. Typically, the
end-to-end latency should be less than 1ms [5]. A central
controller can set the latency thresholds, the detection thresh-
old for processing and queuing delays, and the number of
consecutive packets with increased delay to detect congestion.
The local congestion control module detects congestion based
on the instructions received from the central controller and the
collected measurements from the data plane.

5.2 Probing

Probes are the action taken by network elements to
share information about the utilization of the links and the
occurrence of a link/node failure [71]. By considering the
shared information, the switch might decide to reroute the
traffic through an alternative path. The probing mechanism
is leveraged by the programmable data plane switches to
detect the need for rerouting. Probes can be used to gather
global link utilization. Global link utilization is collected by
measuring the utilization of all links in a network. Probes are
also used to detect failed links.

Link Utilization Probes. In [19], [20], [72], special
probes traverse the network periodically to gather global
link utilization information. These approaches leverage
programmable switches to update the load of the traversing

8

Central Controller

P4 switch

Data Plane

Local Module

Packets Packets

StatisticsEntries

Data Plane

Local Module

Packets Packets

StatisticsEntries

Thresholds

Fig. 7. Workflow of [5]. A central controller configures the latency thresholds
and other parameters. The P4 switch gathers statistics (e.g., processing
and queuing delays). The configured thresholds and gathered statistics are
forwarded to the local module. Upon congestion detection, the local module
modifies the entries of the data plane.

customized probes. For instance, HULA [19] probes cover all
desired paths for load balancing. These probes are sent by all
top-of-rack (ToR) switches through the uplinks that connect
them to the data center network. In a data center architecture
design, a ToR switch is used to connect servers within the
same rack to aggregate switches [73]. Aggregate switches
are used to connect ToR switches to a spine switch [74].
The spine switch is the backbone of the network, and it is
responsible for interconnecting all ToR switches. In HULA,
the probes are generated by the control plane. After that, the
probes are propagated through the network. The receiving
node adds its ports’ utilization to the probe and then forwards
it. As shown in Fig. 8, probes are sent by ToR T1, one on
each of the uplinks connecting it to the aggregate switch A1.
Once a probe reaches A1, it replicates it and forwards the
copies to all other downstream ToRs (T2) and upstream spines
(S1, S2). Spine S1 replicates the received probe onto all the
other downstream aggregate switches. When A3 receives a
probe from S1, it replicates it to all its downstream ToRs but
not to any upstream spine. This makes sure that the probes
cover all paths in the network. This also makes sure that no
probe loops forever. Once a probe reaches another ToR, its
journey ends.

Failure Detection Probes. SPIDER [23] provides a simple
failure detection scheme based on the exchanged bidirectional
“heartbeat” packets. In particular, if packets stop arriving at
a certain port for a given interval, the failure detector is
triggered, and the node asks its neighbor to send a heartbeat.
The node can assure that its neighbor is reachable by receiving
a heartbeat. However, if no heartbeat or a data packet is
received for more than a predefined interval, the idle port will
be declared down. As soon as new packets arrive, the port
will be declared up again. The authors assume that failures
are temporal. They use the packet duplication mechanism
provided by the programmable switches to periodically check

ToRs

Aggregate
Switches

Spines

T1 T2 T3 T4

A1 A2 A3 A4

S1 S2

Fig. 8. HULA probe replication logic. The probe is generated at ToR T1 and
follows the paths indicated by the orange arrows.

the availability of a failed node.

5.3 Packet Headers

Besides probing, network elements can propagate informa-
tion about the utilization of the links and about the occur-
rence of a link/node failure by encapsulating the gathered
measurements inside packet headers. The encapsulation can
be done either by adding new headers or by modifying the
load of the existing ones. In either case, the packets reflect,
dynamically, the representation of the network state, i.e., the
links’ utilization and the address of the failed link/node.

Furthermore, packet headers can be modified by the
programmable switches to send network-assisted congestion
feedback to the end hosts. The feedback is used to notify the
end hosts about the congestion before it occurs. Programmable
switches can notify end hosts by overriding header fields
(e.g., ECN field), adjusting header fields (e.g., adjusting
TCP advertised window), or trimming header fields and
modifying packets (e.g., generating NACK packets). This
section discusses how packet headers are used as a rerouting
notification mechanism and network-assisted congestion
feedback.

Adding New Headers. D2R [55] follows the detection
mechanism proposed by the Failure Carrying Packets (FCP)
protocol [75]. In FCP, each packet includes information about
the failed links it encountered in its path. D2R assumes that
network topology on the Internet does not undergo arbitrary
changes and that each router can obtain the network map.
Network topology is the physical and logical relationship of
nodes in a network. It represents the schematic arrangement of
the links and nodes [76]. A network map is a visualization of
devices on a network and is used to determine the bottlenecks
in network systems [77], [78]. D2R leverages programmable
switches to update the customized packet headers. Packets
following this approach have a dedicated header that stores the
list of the failed links they encountered through their traversal
from the sender to the receiver. The routers on the path update
their network maps based on this list.

The workflow of D2R is as follows: the sender’s router
subtracts the set of failed links from its view of the topology
and computes the path to the destination. If no valid path is
found, the packet is dropped. If the router is able to configure a

9

X

S1

S5

S6

S2 S3

S4

S5
S6

S6

Primary path

Backup path Unused path

Failure occuredX

P4Neighbor headerOriginal packet

Fig. 9. Workflow of P4Neighbor. After detecting link failure, S1 appends a
custom header containing the backup path to the original packets. S5 uses the
custom header to forward the packets. S6 uses its routing table to forward the
packets because the custom header is empty.

valid path, the next-hop is checked to see if it is up. In case the
next-hop is up, the router forwards the packet toward the next-
hop. If the next-hop link is a failed one, the list of the failed
links is updated to include the newly discovered failed node.
After that, the process is repeated, i.e., the sender subtracts
the updated list of failed links from its topology, computes a
new path, and so on.

P4Neighbor [79] uses custom headers to store the backup
path, aiming to reduce the storage overhead of the switch.
When a packet faces link failure, this approach leverages
the programmable switch to store the backup path inside a
custom header. The switch then forwards the packet through
the backup path. Subsequent switches are able to adapt to
the new path by extracting the information stored inside the
custom header of the arriving packet. Following this approach,
only one switch entry for a backup path is needed.

The workflow of P4Neighbor is depicted in Fig. 9. The
primary route from S1 to S6 is S1-S4-S6. When Link S1-S4
fails, S1 adds a P4Neighbor header to the packets that are
routed through S1-S4. P4Neighbor header contains the ID of
the switches on the backup path. The switch then forwards the
packets to S5. S5 removes its ID from the header and uses the
P4Neighbor header to forward the packets to S6. When the
packets reach S6, the switch removes its ID from the header
and checks the ID of the next switch. Because the header is
empty, S6 removes the custom header and forwards the packets
based on its routing table.

Weighted equal-cost multi-path (W-ECMP) [54] is a pro-
grammable approach that defines a new 32-bits long header
and attaches it to the arriving packets. Leaf switches, i.e.,
switches used to aggregate traffic from servers and connect
them to the core network, use the W-ECMP header to share
the utilization of the links connecting them. Leaf switches
translate utilization to weight and reroute the traffic, at flowlets
granularity, according to the current set of weights. Flowlets

INT transit hopINT source INT sink &
collector

W-ECMP
header

Add
utilization

Modify
utilization

Extract W-ECMP
header

Utilization: 30% Utilization: 60%

Add
utilization

No
modification

Utilization: 80% Utilization: 40%

Original packet W-ECMP header

S1

S2 S4

S3 S5

S6

Fig. 10. Feedback phase of W-ECMP. Because the utilization of S4 is larger
than S2, packets traversing S2-S4 route report the utilization of S4 to S6
as the utilization of path S1-S2-S4-S6. Packets traversing S3-S5 report the
utilization of S3 as the utilization of path S1-S3-S5-S6.

are chunks of the same flow that follow different paths. A new
flowlet is created when the switch starts to forward the packets
of an ongoing flow through an alternative path. The switch
reroutes the traffic through an alternative path if an increase
in the inter-arrival time of packets is detected. In the W-ECMP
header, the first 8 bits are used to identify the ID of the source
leaf; the second 8 bits specify the route packets should follow
in order to reach the destination leaf node; the third 8 bits hold
the fingerprint of the switches along the path (Path_ID field);
the last 8 bits hold the link utilization (max_utilization field).

W-ECMP is a special application of INT. The feedback
phase of W-ECMP is depicted in Fig 10. S1 is the INT source
and S6 is the INT sink and collector. There are four paths in
the topology. Path 1 is S1-S2-S4-S6; path 2 is S1-S3-S5-S6;
path 3 is S1-S3-S4-S6; and path 4 is S1-S2-S5-S6. Switch S1
is sending traffic to switch S6 through paths 1 and 2. For a
packet traversing path 1, S2 first stores its ID in the Path_ID
field and the port utilization in the max_utilization field of
the W-ECMP header. S4 then overrides the max_utilization
filed by its port utilization because it is higher. For a packet
traversing path 2, S3 first stores its ID in the Switch_ID field
and the port utilization in the max_utilization field of the W-
ECMP header. S5 does not override the max_utilization filed
by its port utilization because it is lower. Switch S6 detects the
utilization of path 1 and path 2 by processing the W-ECMP
headers of packets traversing the paths.

Adjusting Headers Fields. In SHELL [80], the load
balancer depends on the client to route the traffic. The client
should include the index of the application instance serving it.
This index is defined at the time of connection establishment
and is included in all packets subsequent to the connection
request. The aforementioned special signal, or the application

10

IP: 10.10.10.0/24

IP: 20.20.20.0/24

IP: 30.30.30.0/24

T

Queue

Packet cloning
& forwarding

ECN Dst. IP

Value: 00
Value: 11

Packet

10.10.10.1
20.20.20.1
30.30.30.1

ECN Dst. IP

Value: 00
Value: 11

Packet

10.10.10.1
20.20.20.1
30.30.30.1

ECN Dst. IP

Value: 00
Value: 11

Packet

10.10.10.1
20.20.20.1
30.30.30.1

ECN Dst. IP

Value: 00
Value: 11

Packet

10.10.10.1
20.20.20.1
30.30.30.1

H1

H2

R1

Headers

Fig. 11. Workflow of P4QCN. The programmable switch uses the ECN header
to notify the senders about the congestion when the queue occupancy exceeds
threshold T.

instance index, is stored in the low-order bits of the TCP
timestamp. The P4 load balancer inspects the TCP timestamp
sent by clients and directs the packets to their application
instances.

Network-Assisted Congestion Feedback. P4QCN [39]
utilizes programmable switches to extend the Quantized Con-
gestion Notification (QCN) protocol to IP-routed networks
[81]. QCN is a congestion control mechanism that operates
at the Ethernet layer [82]. In QCN, a layer 2 switch monitors
the queue capacity and sends congestion feedback to end
hosts upon detecting congestion. QCN monitors the traffic
on per-flow basis, where each flow is characterized by its
source/destination MAC address. P4QCN deploys QCN on
programmable switches, allowing QCN to operate on IP-
routed networks. In P4QCN, programmable switches monitor
the queue occupancy to predict congestion. The probability of
congestion increases with queue occupancy. When the queue
occupancy reaches a predefined threshold, a programmable
switch clones the incoming packets, modifies their ECN [16]
field to 11, sets their destination IP address to be the source IP
address, and forwards them. This technique allows the early
detection of congestion. In this approach, the sender interprets
the packet with the ECN field equals to 11 as congestion
feedback.

The workflow of P4QCN is depicted in Fig. 11. Hosts H1
and H2 are sending packets to the receiver R1. The three
devices are in three different network domains. The queue
occupancy at the programmable switch reaches the predefined
threshold T. The switch then clones the incoming packet,
modifies the ECN field of the cloned packets, forwards the
original packets to R1, and forwards the cloned packet to their
senders (i.e., H1 and H2).

AAW [17] is a congestion control mechanism that utilizes
the programmable switches to explicitly notify end hosts about
the available bandwidth. This approach is an application of
INT, where programmable switches monitor the traffic and
predict the available bandwidth in the network. Programmable

. . .

H1

HN

. . .

R1

RN

Data packet Original ACK

ACK with modified TCP advertised window

Traffic direction

Predict the available
bandwidth

Modify
TCP

advertised
window

Modify
TCP

advertised
window

Modify
TCP

advertised
window

Fig. 12. Workflow of AWW. The programmable switch calculates the
available bandwidth and then distributes the bandwidth on the flows by
modifying the TCP advertised window in the ACK packets.

switches estimate the available bandwidth and distribute it
on the flows being forwarded through them. The switches
distribute the available bandwidth by notifying each end host
of the bandwidth available to him. To notify end hosts, the
programmable switches modify the advertised window field of
the ACK packets. End hosts use the advertised window of the
ACK packet to adjust the sending rate. The workflow of AWW
is depicted in Fig. 12. The programmable switch predicts the
available bandwidth by monitoring the traffic. The switch then
modifies the advertised window field of the ACK packets to
distribute the predicted bandwidth on the flows.

Feldmann et al. [83] propose a P4-enabled network-assisted
congestion feedback approach that uses NACK packets to
notify end hosts about the congestion. In this approach, pro-
grammable switches notify the senders of elephant flows only
[84]. There are two types of flow, mice, and elephants. Mice
flows dominate by their numbers, while elephants dominate
by their traffic volume [85], [86]. Switches are programmed
to hold mice flows, elephant flows, and control flows in three
different queues. When the queue occupancy (of the queue
storing elephant flows’ packets) reaches a specific limit, the
switches notify only the elephant flows. To notify elephants
flows, programmable switches keep track of the top-k elephant
flows (i.e., elephant flows that are contributing the most to byte
transferred). The switches then trim the payload of packets and
forge NACKs. The NACKs are sent to the senders of the top-k
flows.

5.4 Feedback Approaches: Comparison, Discussions, and
Limitations

Table III summarizes and compares the aforementioned
feedback approaches implementations in programmable data
planes. [5] infers congestion based on real-time measurements
collected by the data plane. The larger the number of packets
to detect congestion, the more accurate the mechanism is
at the cost of a slower detection time. Blink [18] analyzes

11

TABLE III
INTERNAL COMPARISON BETWEEN FEEDBACK IMPLEMENTATIONS IN PROGRAMMABLE SWITCHES.

Paper
Feedback Type Network

Overhead
Fault Detection

Speed Accuracy Programmable Switch ContributionsTraffic
Analysis Probing Header

Modification

[5] ✓ Low Near line-rate*
Depends on
the sampling
frequency

Analyze queuing and processing delays
from the data plane at line-rate

Blink
[18] ✓ Low Within the first RTT Medium Detect packets’ retransmissions at

line-rate
HULA [19],
MP-HULA
[87],
DASH [20],
Contra [72]

✓ Medium Depends on the
probing frequency High Process and update customized probes

at line-rate

SPIDER
[23] ✓ Low Depends on the

heartbeat interval High Implement stateful data plane packet
processing behavior; packet duplication

SQR
[24] ✓ Low Arround 30

microseconds High Packet recirculation

D2R
[55] ✓ Low Near line-rate High

Line-rate access to the customized
packet meta-data; deploy search
algorithm at the data plane level

P4Neighbor
[79] ✓ Low Near line-rate High Store forwarding rules on the packet

headers
W-ECMP
[54] ✓ Medium Depends on the

traffic Medium Import and manipulate custom header
fields at line-rate

SHELL
[80] ✓ Low Near line-rate High Modify TCP timestamp to include load

balancing parameters
AWW
[17] ✓ Low Near line-rate Depends on

the traffic
Per-packet monitoring; estimate
bandwidth; header modification

[83] ✓ Low Depends on the
used threshold

Depends on
the used
threshold

Stateful data elements; header
modification

P4QCN
[39] ✓ Low Depends on the

used threshold

Depends on
the used
threshold

Per-packet monitoring; packet
recirculation; header modification

* In some approaches, fault detection happens at near line-rate because either multiple packets are considered by the switch to increase the accuracy of
the implemented application or feedback signals upon remote failures have to pass by multiple nodes before informing the programmable switch.

the traffic and uses the data plane signals to detect link
failures by leveraging the line-rate visibility provided by the
programmable data planes. This approach can detect remote
link failures within the first retransmission round; however,
it might have some false positives. This problem can be
mitigated by increasing the set of monitored flows, but this
increases the memory overhead.

Some of the challenges that arise when dealing with data
plane signals are due to P4 programmable language spec-
ifications [88], [89], and hardware constraints. One of the
challenges is that it is impossible to monitor all the flows
because of the memory constraints [18], and often no useful
data can be gathered from tracking randomly sampled flows.
The adopted solution to this problem is to monitor useful flows
only. The usefulness of a flow depends on the approach in use.
Blink [18] monitors flows that are sending traffic continuously,
while the detection mechanism in [5] monitors low-latency
flows. The former uses a flow selector that automatically
replaces inactive flows with active ones. The latter uses a
central controller to decide on the latency threshold of the
flows.

Another challenge is to address the reason behind packet
loss. In particular, approaches that use packet loss as a noti-

fication mechanism face some trouble indicating the evidence
behind this loss. For instance, link failure and congestion are
two different problems that result in losing packets. Blink
[18] can distinguish packet loss caused by failure by focusing
on timeout-induced retransmissions and leveraging the fact
that failures affect many flows simultaneously. The work in
[5] can distinguish packet loss caused by congestion through
monitoring fine-grained measurements at the level of the
processed data.

The third problem is that unplanned rerouting might lead to
forwarding issues, especially in the case of Blink, where the
root cause cannot be inferred from the signals provided by the
data plane. Blink [18] partially solves this problem by making
the backup selection data-driven, i.e., by tracking whether
flows resume after rerouting them. [5] addresses this issue by
proactive rerouting where an alternative route is preinstalled
in the routing tables.

HULA [19], MP-HULA [87], DASH [20], and Contra [72]
use probes to infer the state of the network. By leveraging
programmable data planes, these approaches calculate the
path utilization and modify the probes at each receiving
node. Avoiding transient loops and assuring path exploration
are common challenges among periodic probing mechanisms.

12

Some approaches overcome these challenges by constraining
their range of operation on tree-based topology [19], [20].
Each switch in a tree-based topology has a defined set of
downstream and upstream neighbors; packets are received
from the downstream neighbors and sent to the upstream
ones. In tree-based topologies, loops are prevented by con-
struction, and path exploration is guaranteed. Contra [72]
finds an alternative solution rather than bounding itself to
a specific topology. Inspired by [90], [91], Contra assigns
version numbers to probes and uses flowlet switching [92] to
direct traffic to certain paths. Programmable switches discard
probes with an old version number.

Another challenge arises when Multipath TCP is in use
[87]. The importance of Multipath TCP or MPTCP has been
illustrated in many projects [93]–[96]. MPTCP is a multiple
connectivity mechanism that leverages multiple paths by ag-
gregating their capacities and providing seamless failover [97].
According to MP-HULA [87], approaches that do not leverage
MPTCP features, like HULA [19] and CONGA [25], yield low
performance. To overcome this limitation, MP-HULA adjusts
HULA to keep track of the best-k next hops and divides
MPCTP subflows accordingly. DASH [20] assigns weight to
the egress ports of the programmable switch. It then divides
new flows across multiple paths by considering the weight
assigned to each path. DASH dynamically adjusts to load
changes by modifying the assigned weights.

Besides leveraging the header manipulation property pro-
vided by the programmable switches, SPIDER [23] uses the
packet duplication feature to check if the failure problem is
solved. SPIDER adds a low overhead on the network, and
it has an accurate detection mechanism. However, compared
to other approaches that use periodic probing mechanisms,
SPIDER might take longer a time to detect failures.

D2R [55] includes the list of failed links in the packet
headers. It uses the stored topology and the list of failed
links received from the modified packet headers to start the
traffic rerouting phase. This approach has a low overhead on
the network, and the rerouting signal is relatively accurate.
P4Neighbor leverages the programmable switches to install
the reroute path inside a custom packet header. This approach
has a low overhead over the network and in most cases it is
reliable.

W-ECMP [54] defines a new header and, adds it to the on-
going traffic. This header keeps track of links’ utilization, and
it is used by the receiving nodes to alter the forwarding entries.
W-ECMP might have a considerable overhead on the network.
In W-ECMP, it is not guaranteed to collect the utilization of all
the links in a network which might affect the accuracy of this
approach. SHELL [80] leverages the programmable switch to
replace some bits of the TCP timestamp with the index of
the application instance. The index is required by the load
balancer to perform load balancing. This approach almost has
no overhead on the network as it adds no additional loads to
the packets.

AWW [17] modifies the advertised window of the flows to
avoid congestion. This approach is not scalable, as the pro-

grammable switches cannot store information about all flows
in large networks. Moreover, AWW modifies the advertised
window of mice flows also. However, mice flows are not
subjective to congestion [83], and thus, they should not be
part of the congestion avoidance mechanism. Feldmann et
al. [83] resolved the scalability issue by monitoring elephant
flows only. The authors propose using NACKs generated by
programmable switches to notify senders about the congestion.
This approach notifies the senders of the elephant flows only;
however, the approach does not guarantee that the notification
will be received by the senders.

Similar to AWW, P4QCN [39] includes mice flows in the
deployed congestion avoidance mechanism. P4QCN predicts
congestion by monitoring queue occupancy. In P4QCN, if the
detection threshold is too low, frequent ECN packets might
be sent by the switches to the end hosts. Thus, underutilizing
the available bandwidth. On the other hand, a high threshold
might not allow P4QCN to detect congestion in its early
stage. A main limitation of P4QCN is that the approach
requires modifying the end hosts to understand the congestion
feedback.

5.5 Feedback Approaches: Comparison with Legacy

Table IV shows a comparison between the feedback mecha-
nisms in programmable and traditional approaches. Traditional
mechanisms detect remote failures based on the propagation
of BGP messages. The same mechanisms use either periodic
probing or periodic heartbeats to detect local failures. The most
deployed legacy load balancing approach does not consider the
state of the network while splitting the traffic, and so it deploys
no feedback mechanism.

Moreover, traditional congestion control mechanisms utilize
packet loss as an indicator of congestion. To detect congestion
before experiencing packet loss, congestion signaling mecha-
nisms were proposed. Congestion signaling mechanisms (e.g.,
DCTCP [98], pFabric [99], PCC [100], QJUMP [101], NDP
[102], Copa [103], etc.) are used to avoid congestion. These
approaches usually depend on the receiver to notify the sender
about the congestion, which might not be scalable if the
RTT is significant. Finally, traditional layer-4 load balancing
approaches either deploy an SLB to maintain PCC or use
ECMP, which does not consider PCC.

Programmable data plane-based approaches use data plane
signals (e.g., TCP retransmissions) as an indicator of a remote
failure. The same approaches deploy both periodic probing
and periodic heartbeats concurrently to detect local failures.
Periodic probing is also used to propagate information about
the utilization of the links and to report a failed link/node in
a network. The same approaches detect congestion by mon-
itoring packet meta-data at line-rate. Besides, programmable
switches can provide senders with feedback before congestion
occurs without involving the receivers. Thus, reducing the
time needed for the feedback to reach the senders. Finally,
programmable approaches leverage packet meta-data to reflect
any updates in DIP pools.

13

TABLE IV
COMPARISON BETWEEN FEEDBACK MECHANISMS IN PROGRAMMABLE

AND COMMON LEGACY IMPLEMENTATIONS.

Problem Programmable
Approaches

Traditional
Approaches

Remote Failures Data plane signals Routing messages

Local Failures Combination of periodic
and heartbeats

Periodic probing;
periodic heartbeats

Load Imbalance Periodic probing Random splitting

Congestion

Line-rate monitoring
of packets meta-data;
periodic probing;
network-assisted
feedback

Packet loss; congestion
signaling mechanisms

DIP Changes
Use programmable
switches to monitor
flows at line-rate

Use software to
monitor flows; do not
consider PCC

6. TRAFFIC REROUTING PHASE

6.1 Reactive Rerouting

In reactive approaches, and after receiving the rerouting
signal, the programmable switch computes an alternative path
either to avoid faulty links or to perform load balancing.
After choosing the alternative path, the switch updates its
forwarding strategy accordingly.

Data Plane Resilience. In D2R [55], even if a link failure
occurs, the packets will be transmitted between the source-
destination pair as long as a path exists. This approach assures
that policies always hold, even under failures. To achieve that,
D2R implements graph traversal algorithms inside the data
plane. The traversal algorithms take as input the switch view
of the network topology and the list of the failed links.

Whenever a failure is detected, the deployed routing algo-
rithm is triggered, and the alternative path is configured at near
line-rate. D2R is able to achieve near line-rate performance
while computing a policy-compliant valid path by leveraging
the computation power, parallelism, and packet recirculation
features provided by the programmable switches. D2R ar-
chitecture is divided into three planes: the policy plane, the
control plane, and the data plane.

The policy plane is used to specify the policy requirements
for each flow. This plane operates as a centralized controller.
The control plane is waferthin [104], which programs the data
plane according to the rules provided by the policy plane. The
data plane can compute, given the FCP header, an active path
by running a graph traversal algorithm without the interference
of the control plane. The traversal graph algorithms used by
D2R are modified versions of Breadth-First Search and Depth-
First Search algorithms.

Breadth-First Search is modified because P4 supports only
stack structure. The traditional Breadth-First Search is imple-
mented using a first-in-first-out queue. Further, Depth-First
Search might yield a very long path compared to Breadth-
First Search; thus, D2R implements a new variant called
Iterative Deepening Depth-First Search, where the length of
the discovered paths can be bound.

Chiesa et al. propose PURR [105], a new Fast Rerouting
(FRR) primitive which is used as a building block implementa-
tion for any FRR mechanism regardless of whether it acts over
single or multiple link failures [1], [106]. PURR’s primary goal
is to support the fast transition to the alternative active port by
avoiding packet recirculation. In FRR approaches, each packet
is assigned to multiple output ports and forwarded through the
first active one.

For example, assume that any packet can be forwarded
through any egress port and that a switch failed to send a
packet from port J. The switch tries ports J+1, J+2,..., J+n
until it finds an active port or it tries all the indices. If the
number of ports is five and the primary output port is 3,
then the order of ports that are tried starting from port 3 is
<3,4,5,1,2>. If the primary output port is 2, then the order of
the ports that are tried starting from port 2 is <2,3,4,5,1>.
The resulting orderings are called circular FRR sequences.
Each circular FRR sequence can be obtained from any other
sequence by performing L shifts knowing that L is less than
the number of ports.

PURR shows that recirculating the packet while searching
for the first active port degrades the flow completion time
and wastes hardware resources. It proposes a parallel search
to overcome these problems. In particular, PURR leverages
the programmable switch to include a sequence of if-else
statements inside the TCAM memory that searches for the
active port in parallel. This allows for the identification of the
first active port in one shot.

Ye et al. propose W-ECMP [54], a weighted ECMP load
balancing scheme for data centers using a P4 switch. This
approach makes ECMP congestion aware by increasing the
probability of choosing low-utilized paths. Path utilization
is calculated by comparing the amount of traffic a path is
forwarding with its maximum forwarding capacity. Because
a single path between two communicating devices might
incorporate multiple links, the path utilization is set to be the
utilization of the most congested link. W-ECMP defines a new
header to track the link with maximum utilization in a given
path. The W-ECMP header contains a Switch_ID field and
max_utilization field. When a programmable switch receives
a packet containing the W-ECMP header, it first stores its ID
on the header and then compares the utilization of its port
to the max_utilization value stored in the W-ECMP header.
The switch overrides the max_utilization value stored in the
header if the utilization of its port is larger. When this packet is
received by the destination switch (i.e., the last programmable
switch the packet will pass through before reaching the final
destination), the switch extracts the IDs of the switches the
packet passed through to identify the path used by the packet.
The switch then uses the utilization value from the W-ECMP
header to assign a weight to the path. The probability to choose
a path to forward packets is equal to the weight of the path
divided by the accumulation of the weights of all the paths.

The traffic rerouting phase of W-ECMP is depicted in
Fig 13. S1 is the source switch (INT source), and S6 is
the destination switch (INT sink and INT collector). There

14

INT transit hopINT source INT sink &
collector

W-ECMP
header

Add
utilization

Modify
utilization

Utilization: 30% Utilization: 50%

Add
utilization

No
modification

Utilization: 80% Utilization: 40%

Original packet W-ECMP header

S1

S2 S4

S3 S5

S6

Utilization to weight mapping

Extract W-ECMP
header

Path selection table

<= 10%

Utilization (%) Weight

<= 25%

<= 50%

<= 75%

otherwise

4

3

2

1

0

<= 10%

Utilization (%) Weight

<= 25%

<= 50%

<= 75%

otherwise

4

3

2

1

0

Path_ID Weight Prob.

1

2

3

4

2

1

0

0

2/3

1/3

0/3

0/3

Path_ID Weight Prob.

1

2

3

4

2

1

0

0

2/3

1/3

0/3

0/3

Fig. 13. Traffic rerouting phase of W-ECMP. The probability of choosing
a path is equivalent to its weight divided by the accumulated weights of all
paths. Path S1-S2-S4-S6 has ID 1; path S1-S3-S5-S6 has ID 2; path S1-S2-
S5-S6 has ID 3; and path S1-S3-S4-S6 has ID 4.

are four paths in the topology. Path 1 is S1-S2-S4-S6; path
2 is S1-S3-S5-S6; path 3 is S1-S2-S5-S6; and path 4 is
S1-S3-S4-S6. The W-ECMP headers of packets traversing
path 1 notify S6 that the utilization of the path is 50%. S6
is also notified about the utilization of path 2 (80%) by the
packets traversing that path. S6 then uses the utilization to
weight table to assign weights to paths. Note that paths 3 and
4 have no weights because S6 did not receive any packets that
traversed those paths. To calculate the probability of using
each path, S6 divides the weight of a path by the summation
of all the weights. The summation of all the weights in the
path selection table is 3. The probability of choosing path 1 is
2/3. The probability of using path 2 is 1/3. As the utilization
of a path decreases, its weight increases, and consequently,
the probability of choosing the path for future transmissions
increases.

Load Balancing and Congestion Control. Katta et al.
propose a hop-by-hop utilization-aware load balancing archi-
tecture (HULA). In HULA [19], new paths are configured
according to the load of the probes. Each programmable
switch has dedicated tables populated and updated to keep
track of the least utilized path. Usually, there are multiple
paths that connect any two nodes in a network. The least
utilized path represents the path with the maximum available
bandwidth. In HULA, the receiving switch leverages the data
encapsulated inside the probes to infer the best next-hop
toward any destination and updates its tables accordingly.
The best next-hope is the one that minimizes the maximum
utilization of all links along the path.

After updating its tables, the receiving switch forwards
the probes to other switches. HULA probe is a minimum-
sized packet of 64 bytes. This probe contains a customized
HULA header. The header consists of the ID of the ToR that
generated the probe and the utilization of the best path. Each
programmable switch estimates the link utilization per port
according to an exponential moving average generator.

When a new probe enters the switch, new path utilization
is computed at line-rate, and the result is compared with the
stored path utilization. The tables are updated to reflect the new
value if the newly calculated value is smaller than the stored
one. After that, the probe’s header is updated, and the probe
is forwarded to other switches. Probes propagate as discussed
in the previous section.

By leveraging the programmable switch, HULA can store
the arriving time of the last arrived packet of each single flow.
HULA divides flows into flowlets [107], where a flowlet is
detected by the switch when the time interval between two
consecutive packets is greater than a predefined threshold. This
threshold should be big enough to avoid packet reordering. If a
new flowlet is detected, the switch forwards it along the best-
next hop, which might or might not be the same next-hop the
previous flowlet has followed.

Benet et al. propose MP-HULA [87], an extension for
HULA that supports MPTCP. The key difference here is that
the tables added by MP-HULA hold the congestion state of
the best-k next-hops instead of only holding the state of the
best next-hop. Multipath HULA or MP-HULA switch parses
the MPTCP headers to be able to associate MPTCP subflows
to an MPTCP connection.

After obtaining the subflow information, the switch uses
the congestion state of the best-k next-hops to reroute the
traffic. MP-HULA balances the load at the granularity of
flowlets, where it assures that no two MPTCP sub-flows are
transmitting data through the same path. It leverages the
programmable switch to keep track of the flowlet of each
subflow. In particular, when a new flowlet is established, the
switch checks if any other flowlet that belongs to the same
MPTCP connection is assigned to the best available path. If
this is the case, the switch directs the newly established flowlet
to the first unused best path. In this way, the switch avoids
sending multiple sub-flows of the same MPTCP connection to
the bottleneck link while performing load balancing.

The switch manipulates the forwarding action by defining
new tables. Flowlet table stores the needed information about
each flowlet, i.e., the flowlet ID, its destination, its timestamp-
ing, the ID of the MPTCP connection, the number of subflows,
and the best-next hop. Best k-hops table stores the utilization
of the best-k next-hops. MPTCP subflow mapping table stores
which subflow is forwarding throw which next-hop.

Hsu et al. propose DASH [20], a data plane adaptive
splitting with hash threshold (DASH). DASH partitions the
hash space into unique regions and assigns them to different
routing paths. The hash space is the set that contains all the
hash values of a hash function [108]. A hash function is a
mathematical formula that takes data as an input and produces
an output known as a hash [109]. DASH balances the load
by assigning weights to paths according to their utilization
and divides the hashing space among paths according to
the assigned weights. If the links’ utilization in the network
change, only a small number of region boundaries changes are
required.

DASH can adapt to the traffic conditions and yield efficient

15

Packets

P4 switch

Header
Fields

Header
Fields

Hash

Path A

Packets

P4 switch

Hash Function Range

A B C

1/6 2/6 3/6
B = 1 B = 3 B = 6

Hash
Values
Hash

Values

ProbeProbe

(a) (b)

Hash Function Range

B

3/6 2/6 1/6
B = 3 B = 5 B = 6

A C

Hash Function Range

B

3/6 2/6 1/6
B = 3 B = 5 B = 6

A C

Parser

Path B

Path C

Distribution
Desired

Fig. 14. Workflow of DASH. (a) The hash value of the arriving packets headers is checked against the boundaries. If the calculated value is less than the
boundary of path A, the corresponding packet is forwarded along this path. Otherwise, the hash value is compared against the other boundaries, in an ascending
order, and will be forwarded accordingly. (b) The distribution is adjusted based on the weights carried by the arriving probe.

utilization of the network capacity by leveraging a multi-
stage pipeline, per-stage stateful ALUs, and adjusting the
distribution at line-rate. When a packet arrives, the receiving
switch calculates the hash value of its headers and infers the
associated path by comparing the obtained hash value to the
region boundaries.

Consider Fig. 14(a). There are three paths, A, B, and C. The
current distribution is 1:2:3, which means that path A has 1/6
of the total hashing space, path B has 1/3 of the total hashing
space, and path C has 1/2 of the total hashing space. When a
packet arrives, its hash value is compared against region A’s
boundary. It is forwarded through the path associated with A
if its value is smaller than the boundary. Otherwise, the hash
value of the packet is compared sequentially against the re-
maining paths regions’ boundaries and forwarded accordingly.

The path’s boundary is stored inside register memory.
The boundary comparison and packet hash value are made
using a stateful ALU (SALU). Consider Fig. 14(b). The new
distribution of weights is calculated based on the last received
probe within a certain period. The boundaries are updated
sequentially by adding the cumulative sum of previous path
boundaries with the current path region size. For instance,
path A boundary is equal to the path region size only; path
B boundary is equal to the sum of path A boundary and its
region size.

Pit-Claudel et al. propose SHELL [80], a stateless load-
aware balancing in P4. In the data center and cloud archi-
tectures, applications are replicated over multiple application
instances. All the application instances that share the same
services have the same VIP. This VIP is advertised to the
Internet. Each instance is capable of serving some incoming
queries independently [110]–[112].

SHELL aims at forwarding new connections to a set of ap-
plication instances that can decide locally to accept the connec-
tion. Each connection should be accepted by one instance only.
The subsequent packets of the accepted connection should
be marked such that the load balancer can know to which
application instance to forward them without maintaining a

per-connection-state. In particular, the control plane of SHELL
holds a consistent table and a choice history table. The first
table is used to direct the new connection request packets
identified by their 5-tuple (IP source, IP destination, source
port, destination port, transport protocol) hashing to a set
of candidate application instances proposed by the control
plane. These packets are directed through the set of application
instances until one instance accepts the connection. Adopting
the strategy followed by [113], the last instance in the set
always accepts new connections.

The second table is used to direct subsequent packets to the
accepted instance. This is done by keeping track of the index
ci of the application instance that accepted the connection
and communicating it back to the client. The client includes
the application instance’s index in all the subsequent packets.
More details about the instance’s index are presented in the
previous section.

Consistent hashing buckets are used to store hash keys
[114]. A hash key is the input of a hash function [115]. In
SHELL, the application indices are the hash keys. In case
any modification is done to the consistent hashing buckets
due to changes in the set of application instances, the P4
load balancer directs the subsequent packets to two different
application instances. The first application instance is the one
that is currently associated with index ci, and the second
instance is the one that previously carried ci.

6.2 Proactive Rerouting

In proactive approaches, an alternative path is precomputed
and stored inside the routing tables. In most cases, proactive
approaches are used to protect the connection against failures
by switching the traffic to another path after receiving the
rerouting signal. In some cases, the concept of proactive
rerouting still exists where the alternative path is precom-
puted; however, the usage of the alternative path is approach-
dependent.

16

(a)

Packets

R1 R2

R3

R4

R5 R6

Packets
//

R1 R2

R3

R4

R5 R6

(b)

Packets

R1 R2

R3

R4

R5 R6

(c)

// Failed link

Tag=F5

Tag=0

//

// Failed link

Tag=F6

Tag=0

Fig. 15. SPIDER local link failure with respect to R2. (a) Packets are moving from R1 to R6 when there is no link failure. (b) Tag F5 is added to the rerouted
packets at R2 after link R2-R5 has failed.

Alternative Path Rerouting. Qu et al. assume that the
network is responsible for recovering the lost packets and
propose Shared Queue Ring (SQR) [24]. This mechanism
recovers packets that are lost during network convergence after
a link failure occurrence. In SQR, the switch saves a copy
of the recently sent packets, by leveraging the recirculation
feature of the programmable switches, and retransmits them
through an alternative path when a link fails; thus, packet loss
can be avoided.

A predefined interval decides how recent the packet should
be to be cached. This interval is typically an upper bound
estimation of the time needed to detect and recover from the
link failure. SQR is mainly used to protect the packets that
belong to a latency-sensitive flow, i.e., a flow that requires low
end-to-end latency. The arriving packets that are not protected
by SQR are forwarded to specific egress ports based on the
forwarding rules. However, if a packet that needs protection
arrives, SQR makes a copy of it and caches this copy. After
that, SQR checks if the packet’s forwarding egress port is
up. If the port is up, SQR infers that the packet is delivered
safely, and the cached copy is removed. Otherwise, the packet
is copied and cached again. This assures that the packet is
safely sent out of the switch.

Holterbach et al. propose Blink [18], a fast connectivity
recovery system that happens entirely in the data plane. Blink
uses data plane signals (TCP retransmissions) to infer link
failure. It routes the traffic through a precomputed alternative
path. Holterbach et al. define four major requirements for fast
rerouting using data plane signals: i) rerouting should only
be triggered upon major disruption events, and it should be
immune to noise and ordinary protocol behavior, ii) failure
should be detected within the first retransmission round, iii)
detection should be based on the most active flows, iv)
backup next-hop should be chosen by the data plane under
the condition that connection resumes.

Blink fulfills the first two requirements based on the detec-
tion mechanism discussed in the previous section. To achieve
requirement three, Blink deploys two levels of filtering. It
does not monitor all the forwarding keys (IP prefixes) of the

routing table because that adds additional overhead and might
affect its efficiency. Instead, Blink focuses on the most popular
destination prefixes. Choosing the previously mentioned set of
prefixes is a feature of Blink. Most of the Internet traffic is
handled by a small set of prefixes due to the skewness of the
Internet traffic [116].

The second stage of filtering is at the level of the flows.
Blink deploys a Flow Selector that tracks, at line-rate, a subset
of active flows for each monitored prefix. The default number
of tracked flows is 64. The Selector defines active flows as
the ones that send a packet within an interval of time. This
time has a default value of 2 seconds. The Selector replaces
the tracked flows as soon as they become inactive or after an
interval of time which is 8.5 minutes by default. Blink achieves
the last requirement by precomputing a set of alternative paths
and dividing the flows among them to check their validity.
Blink reroutes the traffic through the primary next-hop if all
the next-hops are assessed as not working. It then waits for
the convergence of the control plane to update the forwarding
table.

Xu et al. propose P4Neighbor [79], an efficient link failure
recovery mechanism based on programmable switches. Each
switch in this approach is required to calculate an alternative
path to all its neighbors. It then encapsulates the calculated
path inside a packet’s custom header. Once a link failure
is detected, the switch uses the custom header to forward
the packet through the precomputed alternative path. After
recovering from the failure, the custom header is removed.

Each packet has a one-bit field that represents the current
state of the packet. If this field holds value 0, then the packet
is considered in the normal state and should be forwarded
according to the routing table configuration. However, if the
one-bit field holds value 1, then the packet is considered in
the link failure recovery state, and the backup path should be
installed at the custom header.

Once a new packet arrives, the programmable switch checks
the one-bit field to identify the state of the packet. If the state
of the packet is normal, the packet is forwarded according to
its destination address. The port associated with the destination

17

path is checked for validity; if valid, the packet is forwarded
normally. Otherwise, the state of the packet is changed to
recovery, and the backup path is computed and installed inside
the custom header. The custom header operates as a stack
data structure. In the stack data structure, the values are stored
sequentially where the first added value resides at the top of the
stack. The second added value is stored directly after the first
added one, and so on. After that, the packet is forwarded again
to the ingress port, but this time the one-bit field indicates that
this packet is in the recovery state.

The custom header is used to choose the alternative path
the packet should follow when it is in the recovery state.
The switch parses the set of headers and checks the head of
the stack to forward the packet. When this packet reaches a
new switch, the receiving switch parses it and detects that the
packet is in the recovery state. After that, the switch checks
the head of the stack to infer the forwarding path. However,
if the stack is empty, the switch indicates that the packet has
recovered from the failure. The switch then changes the state
of the packet to the normal state.

Cascone et al. propose SPIDER [23], a fast failure detection
and recovery mechanism in SDN with a stateful data plane.
SPIDER differentiates between local and remote failures ac-
cording to the number of nodes between the current node and
the failed node. It defines the failure state as Fi, such that i is
the index of the failed element. If the failed node is directly
connected to the current node, the situation is defined as a
local failover. Otherwise, the situation is defined as a remote
failover.

For every possible Fi, there should be a backup path that
can contain any elements from the primary path other than
node i. The backup path should have a detour around node
i. The reason behind this requirement is that SPIDER does
not differentiate between link and node failures, and thus the
worst-case scenario is always considered (any path to node
i from its neighbors is a failed one, too). This consideration
results in a very short failover delay (< 1ms). When a local
failover is detected, the current node tags the incoming packets
by the index of the failed node. Assume the index is i and
that the tag is Fi. The node either sends the packet to a
backup port if it has a detour around node i, or sends them
back through their input port. Each receiving switch on the
backward primary path back propagates the tagged packets
till they reach a node capable of forwarding them through an
alternative detour.

Consider Fig. 15. Node R2 detected a local failure at node
R5. It tagged the packets with tag F5 and forwarded the
packets through node R3. On the other hand, consider Fig. 16,
node R5 detected the failure. It tagged the packets with tag F6
and checked if it had an alternative path that detours over the
failed link. It had no alternative route, so it back propagated
the packets to R2, which was able to find an alternative path
through node R4. After that, node R2 forwarded incoming
packets that should go through node R6 to the alternative path
through node R4.

Miao et al. propose SilkRoad [11], an approach that makes

(a)

Packets

R1 R2

R3

R4

R5 R6

Packets
//

R1 R2

R3

R4

R5 R6

(b)

Packets

R1 R2

R3

R4

R5 R6

(c)

// Failed link

Tag=F5

Tag=0

//

// Failed link

Tag=F6

Tag=0

Fig. 16. SPIDER remote link failure with respect to R2.

stateful layer 4 load balancing fast and cheap using pro-
grammable switches. SilkRoad assures per-connection consis-
tency and provides a direct path between the sender and the
serving application instances by maintaining the connection
state at the switch. In particular, the load balancer holds four
tables, the VIPTable, the ConnTable, the DIPPoolTable, and
the Transmittable.

If no update is occurring, VIPTable is used to match the
newly arriving connection against the version of the DIP pool
serving it. The results are then pushed to the ConnTable
using the LearningTable such that all subsequent packets are
forwarded to the right version. The DIPPoolTable maintains
the version to DIP pool mapping. In case a DIP pool is under
update, the Transmittable keeps track of the newly arriving
connections that should be mapped to an old DIP pool version.
After the update, all the packets that miss the ConnTable obtain
the two DIP pool versions from the VIPTable. For each packet,
the two obtained DIP pool versions are checked against the
TransitTable. Entries inside the TransitTable use the old DIP
pool version, whereas the ones that miss the table use the new
DIP pool version.

SilkRoad manages to store millions of connections by
minimizing the size of the match field and reducing the size of
the action data part of each entry. In particular, this approach
does not use the 5-tuple hashing (which is 37 bytes for IPv6
connections) as the match keys. Instead, it uses a compact hash
digest (which is 2 bytes) as proposed in [117]. Regarding the
action data part, SilkRoad maps each connection to a version
of a DIP pool rather than mapping it to the actual pool. This
approach updates certain DIP pools by applying the changes
to a copy of the original DIP pool, assigning it a new version
number, and updating the VIPTable to map new connections
to the newly formed DIP pool version.

When a new packet arrives, its hash is checked against
the hash digests in the ConnTable. If it is a hit, the packet
is forwarded to the DIPPoolTable. Otherwise, the packet is
pushed to the VIPTable. If the VIPTable is not under update,
it returns the DIP pool version, which is the newest one.
The VIPTable then pushes the results to the LearningTable.

18

P4 switch
(PTE)

Legacy switch

Packet

P4 switch
(PTI)

IP-PTE P PDIP-PTE P PDIP-PTE P PD

P

IP-IH IP tunnel to legacy router IP-PTE IP tunnel to PTE

Protection headerPD Packet data

PDPD PDPD

Fig. 17. Workflow of P4-Protect.

After that, the LearningTable updates the ConnTable and
forwards the packet to the DIPPoolTable. However, if the
VIPTable is under update, the arriving packets are stored
inside the TransitTable. After the update, the packets that
miss the ConnTable are checked against the TransitTable.
The old DIP pool version is used in case these packets hit
the Transmittable, and the new version is used if it was a
miss. The DIPPoolTable matches the VIP and DIP versions
and forwards the traffic to the associated DIP.

Other Proactive Approaches. Lindner et al. propose
P4-Protect [118], a 1+1 path protection for programmable
switches. In the 1+1 protection approaches, the traffic is
transmitted safely between two nodes by leveraging two
different paths. The sending node forwards the same packets
through two paths simultaneously. The receiving node drops
the duplicates and forwards the traffic. The key insight here
is that the two paths are disjoint so that the packets are
guaranteed to be delivered even if one of the routes fails.

A protection tunnel is built between two P4 switches. The
sending node is denoted by the protection tunnel ingress (PTI)
node, and the receiving node is denoted by the protection
tunnel egress (PTE) node. The programmer can choose the
characteristics of the flows to be protected. When a new flow
arrives, the switch checks if the flow should be transmitted
in the safe mode or in the normal mode. If this flow is to
be transmitted in the normal mode, the switch forwards its
subsequent packets according to the forwarding table’s rules.
However, if the flow is to be transmitted in the safe mode,
the packets are equipped with a protection header and a new
destination IP address. The protection header is 64 bytes long
and contains the connection identifier (CID), the sequence
number (SN), and the next protocol in use. At the PTE node,
the incoming packets are parsed, and the protected packets are
identified. The PTE node uses the CID to identify the protected
packets, and then it uses the SN field to filter the duplicates.
Finally, the receiving node infers the next protocol to parse
based on the next protocol field.

Fig. 17 illustrates the workflow in the P4-Protect approach.

One packet arrives at the PTI; it hits the match-action table
where two duplicates are forwarded through two different
protection tunnels. A protection header and the IP address of
the receiving node are encapsulated in the packet headers. The
first copy of the packet holds only the IP address of the PTE
node, where the packet is forwarded directly to the node (there
are no intermediary nodes). However, the second copy has to
pass through an intermediary node. Two layers of IP addresses
are added to its headers. The intermediary node IP address
wraps the PTE node’s IP address. The PTE decapsulates the
copy that arrives first and drops the late one.

Giesen et al. propose Wharf [119], an in-network distributed
approach that mitigates faulty links. When a failure is detected,
Wharf-enabled switches activate a forward error-correction
(FEC) scheme to recover lost frames. In FEC, the transmitter
partitions the packets into multiple parts. The transmitter sends
each part multiple times. The receiver recognizes only the
portion of the data that contains no apparent errors [120].
Wharf has three building blocks: the link monitoring agent,
the sending proxy, and the receiving proxy.

The monitoring agent tries to detect link malfunction and
inform the connected pair of switches. The sending proxy
partitions the arriving packets according to a set of traffic
classes. Parity bits are added to the packets that should be
sent across a faulty link. Parity bits store the checksum of the
packet. By leveraging these bits, the receiving node can check
if the received packet is transmitted without being modified by
the network. The receiving node (receiving proxy) calculates
the checksum of the arriving packet and compares it to the
parity bit. The packet is accepted if the calculated checksum
and the received parity bits are equal. Otherwise, the received
packet is dropped.

Xie et al. propose GRED [121], a short-latency and low-
overhead data placement and retrieval service for edge com-
puting. This approach shortens the routing path and minimizes
the forwarding table size by following a greedy forwarding
algorithm. GRED utilizes an SDN controller to maintain a
virtual space. The controller associates each switch to a point
in the virtual space by computing the Delaunay Triangulation
(DT) graph [124]. In DT graphs, data is guaranteed to be
received by a destination node if a greedy forwarding approach
is applied [125]. After computing the DT graph, the controller
installs the forwarding entries on the programmable switches.
In GRED, the forwarding entries are assigned based on the
distance in the virtual space rather than per-flow information.

Kawaguchi et al. [122] design unsplittable flow edge load
factor balancing (UELB) in SDN. This approach models the
topology as a graph and formulates the problem of determining
a balanced load distribution as a UELB problem. The approach
then relaxes UELB (which is NP-hard [126]) using linear pro-
gramming (LP) and uses an LP solver to determine the optimal
routes. A controller continuously monitors link utilization. If
congestion is detected on one of the links, the controller runs
the traffic load balancing algorithm and updates the routing
tables of programmable switches.

19

TABLE V
INTRA COMPARISON BETWEEN REROUTING ALGORITHMS IN PROGRAMMABLE SWITCHES.

Paper
Rerouting Algorithm Problem Forwarding

Behavior
Packet
Loss

Programmable Switch
ContributionsReactive Proactive Link/Node

Failure
Load Im-
balance Congestion

HULA
[19] ✓ ✓ ✓ ✓

Modify path
utilization table Medium Read and write to registers

at line-rate
MP-HULA
[87] ✓ ✓ ✓ ✓

Modify the best k
hop tables Medium Increment the counters at

line-rate
DASH
[20] ✓ ✓ ✓

Adjust the region
boundaries Medium Packet recirculation; define

new data structure

Contra
[72] ✓ ✓ ✓ ✓

Modify the entries
of the forwarding
tables

Medium Dynamic code that adapts
to the implemented policies

[5] ✓ ✓
Switching to a
preinstalled
forwarding entry

Low
Provide a congestion control
program deployed within the
switch

Blink
[18] ✓ ✓

Use a precomputed
alternative path Low Choose the alternative path

at the data plane level

SPIDER
[23] ✓ ✓

Use the data stored
inside the register
arrays

Low
Modify packet meta-data at
line-rate; maintain per-flow
state at line-rate

D2R
[55] ✓ ✓

Modify the iddfs
table contents

Almost
none

Path recomputation at the
data plane level; provide
complex packet processing
pipelines at line-rate; packet
recirculation

P4-
Neighbor
[79]

✓ ✓
Include the
alternative path in
the packet headers

Almost
none

Packet header modification
at line-rate; provide complex
packet processing pipelines
at line-rate

SQR
[24] ✓ ✓

Alternative port
decided by the
control plane

Almost
none

Packet recirculation; modify
packet meta-data and have
fine-grained time measuring
capability

PURR
[105] ✓ ✓

Modify the egress
port Low Active-port search in parallel;

packet recirculation
Wharf
[119] ✓ ✓

Encapsulate
protection headers Medium Customized header processing

and manipulation

P4-Protect
[118] ✓ ✓

Follow the IP
addresses
encapsulated in the
packet headers

Almost
none

Per-flow visibility at line-rate;
header modification at line-rate

SilkRoad
[11] ✓ ✓

Define packet meta-
data fields to carry
changes

Almost
none

Modify packet meta-data at
line-rate; maintain per-flow
state at line-rate

W-ECMP
[54] ✓ ✓

Update the weighted
utilization table Medium Line-rate access to the arriving

packets’ timestamps

GRED
[121] ✓ ✓

Modify the entries
of the forwarding
tables

Almost
None

Match on next hop with
minimum distance

UELB
[122] ✓ ✓

Modify the entries
of the forwarding
tables

Almost
None

Use *P4-runtime to update
forwarding table

* P4-runtime is an API used by the control plane to interact with the data plane at run time [123].

6.3 Rerouting Algorithms: Comparison, Discussions, and
Limitations

Table V summarizes and compares the aforementioned
programmable data plane-based algorithms. HULA [19], MP-
HULA [87], and Contra [72] can deal with link failures,
load imbalance, and congestion simultaneously. DASH [20] is
limited to load imbalance and congestion. MP-HULA, Contra,
and DASH avoid congesting the primary link by spreading the
traffic among multiple paths, while HULA directs the traffic
along only one path at any given time. The operator in HULA,

MP-HULA, and DASH can adjust the probing system such
that these probes can propagate different network metrics (e.g.,
queue occupancy, queuing delay, processing delay). In Contra,
the operator has the flexibility to change the whole routing
policy. A routing policy is a set of instructions provided by
the operator and used by the routers to populate the routing
tables.

Blink [18], SPIDER [23], and D2R [55] can deal with both
remote and local link failures. SPIDER and D2R consider the
root cause of the failure, i.e., the address of failed node/link.

20

Blink can not identify the root cause of the failure. Blink and
SPIDER are proactive rerouting algorithms that highly benefit
from the line-rate visibility provided by the programmable
switches. D2R implements a reactive rerouting algorithm and
makes use of the complex packet processing pipelines feature
in the programmable switches.

SPIDER [23], D2R [55], and P4Neighbor [79] use the
header modification capability of the programmable switches
to reroute the packets. SPIDER and D2R include information
about the failed links in the packet header. SPIDER encapsu-
lates the tag of the failed node, while D2R encapsulates the
list of the failed links. On the other hand, P4Neighbor includes
the alternative path inside the packet headers.

SQR [24] and PURR [105] are two primitives used to
enhance the performance of FRR approaches. SQR’s main
goal is to prevent packet loss after link failure occurrences.
It does so by caching the packets of the protected flows
using the packet recirculation feature of the programmable
switches. PURR’s main goal is to find the first active port in a
programmable switch. It does so by leveraging the TCAM
memory to perform a parallel search. The same algorithm
makes use of the recirculation feature of the programmable
switches.

Wharf [119] deploys a reactive mechanism to mitigate
faulty links by sending packets encapsulated with parity bits.
P4-Protect [118] is a proactive rerouting mechanism that
protects specific flows by forwarding their traffic through two
independent paths simultaneously. Wharf makes use of the
flexible header processing and manipulation feature of the
programmable switches. P4-Protect makes use of the per-flow
visibility and pack header customization features provided by
the programmable switches.

Silkroad [11] is a proactive stateful layer 4 load balanc-
ing mechanism. This approach leverages the programmable
switches to maintain a per-flow connection state. W-ECMP
[54] is a reactive load balancing mechanism. It uses pro-
grammable switches to include its custom header in the
arriving packets. W-ECMP leverages the switches to update
the load of the probes.

GRED [121] and UELB [122] are proactive load balancing
approaches that rely on the control plane to calculate and
maintain the forwarding rules. In GRED, the control plane
is required to re-calculate the DT graph when new nodes are
added or removed from the topology. Similar to GRED, the
control plane of UELB models the topology as a graph and
calculated the routes that minimize the most utilized paths.
The two approaches do not adapt to changes in the topology
without the intervention of the control plane.

6.4 Rerouting Algorithms: Comparison with Legacy

Table VI compares rerouting algorithms in programmable
and legacy approaches. Traditional approaches wait for the
convergence of the control plane upon remote link failures. For
local link failures, traditional approaches use a preinstalled al-
ternative path computed offline by the control plane. The most

TABLE VI
COMPARISON BETWEEN REROUTING ALGORITHMS IN PROGRAMMABLE

AND COMMON LEGACY IMPLEMENTATIONS.

Problem Programmable
Approaches

Traditional
Approaches

Remote Failures
Use preinstalled routes;
compute new path at
near line-rate

Wait for the convergence
of the control plane

Local Failures
Use packet metadata
to reroute the traffic
at line-rate

Use preinstalled paths

Load Imbalance Modify registers values
at line-rate Random forwarding

Congestion Reroute the traffic Modify sending rate

DIP Changes Modify registers values
at line-rate

Use software to modify
table entries; random
forwarding

deployed traditional rerouting algorithm splits the traffic ran-
domly based on a hash function without considering the links’
utilization. For congestion control, traditional approaches do
not reroute the traffic through alternative routes. They adjust
the sending rate at the sender. Finally, Upon DIP pool update,
traditional approaches either deploy thousands of SLBs to keep
the PCC or deploy ECMP, which does not consider the PCC
while balancing the traffic.

Programmable data plane-based rerouting algorithms either
use a preinstalled path or compute a new path at near line-
rate to avoid remote failed links. For local link failures,
programmable algorithms use packet meta-data and prein-
stalled alternative paths to reroute the traffic. Load balancers
in programmable switches can reroute the traffic at line-rate
by modifying the values stored inside the register arrays.
To control congestion, programmable approaches divide the
nodes in a network into multiple groups. In each group, the
alternative paths are installed in one node. Other nodes within
the same group may not be capable of rerouting the traffic.
Their sole role is to inform their predecessors when congestion
is detected. Finally, programmable algorithms maintain the
PCC while balancing the traffic.

7. PERFORMANCE COMPARISON

Many approaches were proposed to solve link failures,
congestion, and load imbalance problems long before the
emergence of the programmable data planes. This section
discusses how different programmable data plane-based
approaches perform compared to the most popular legacy
ones.

7.1 Link Failure

According to [127], [128], link failure is a fundamental task,
and it is the most frequent failure in the network. The literature
proposed many approaches to mitigate this issue. This section
discusses the performance of the programmable approaches
compared with legacy ones against link failure.

Table VII compares the effectiveness of programmable data
plane-based approaches with traditional ones regarding the link

21

failure problem. In legacy approaches, where the control plane
is distributed, routers exchange protocol messages to advertise
the changes in the network topology. According to [18], [129],
it might take a very long time to inform all the routers in
the network about the failed links where severe packet losses
might occur. Subramanian et al. [55] claim that networks
might take an unreasonable amount of time to converge from
failures, even in state-of-the-art mechanisms. Besides, they
claim that no state-of-the-art approach can ensure that policies
hold [130]–[132]. On the other hand, they claim that D2R is
able to compute alternative paths to any destination at a near
line-rate while achieving policy compliance.

Obtaining sub-second convergence from link failure be-
comes achievable [133], [134] after the deployment of fast-
convergence frameworks like IPFFR [135], Loop-Free Alter-
nate [136], and MPLS Fast Reroute [15]. Nevertheless, these
approaches work well only upon internal failures, where the
average convergence time upon remote link failure is above
30 seconds [14], [15], [137]. On the other hand, Blink [18]
can detect the remote failure within the first retransmission
round and can reroute the traffic at line-rate by storing a
per-prefix next-hops list. Moreover, Xu et al. [79] claim that
P4Neighbor can achieve, in terms of forwarding entries, a
reduction rate ranging from 57.9% to 84.5% compared with
the traditional destination-based recovery mechanisms. The
same authors also claim that the only drawback of using
P4Neighbor is the increase in the number of hops by 1.08
to 1.98 hops.

The literature describes many centralized approaches which
mitigate faulty links in WAN [138] and data centers [139].
Giesen et al. [119] claim that Wharf is the first approach
of its kind that mitigates faulty links by running as an in-
network function in a distributed manner. Tests show that when
Wharf is deployed, the congestion window (cwnd) does not
decrease, even if the loss rate is increasing. Wharf is able to
sustain 5 Gigabits per second throughput under 10% packet
loss condition. If Wharf is not deployed, the throughput is
estimated to be less than 25 Megabits per second.

1+1 protection is usually deployed over the physical layer,
the link layer, or MPLS [79]. In Multiprotocol Label Switch-
ing, or MPLS, each packet is assigned a label. The forwarding
elements use the labels to forward the traffic [140]. P4-Protect
[118] extends this approach and deploys 1+1 protection over
the network layer. The drawback of P4-Protect is the increase
in the processing delay. Compared to the processing time
when P4-Protect is not deployed, the processing time at the
ingress port is 127% for the unprotected forwarding and 166%
for the protected one. At the egress port, the processing
time at both the unprotected and the protected forwarding is
127% compared to the processing time when P4-Protect is not
deployed.

Chiesa et al. [105] claim that FRR primitives from other
contexts do not support arbitrary FRR sequences. In contrast
to these primitives, the same authors claim that PURR can be a
building block for any arbitrary FRR approach. Compared with
F10 [141], the state-of-the-art FRR mechanism, PURR is able

TABLE VII
COMPARISON BETWEEN THE EFFECTIVENESS OF PROGRAMMABLE AND

COMMON LEGACY APPROACHES AGAINST LINK FAILURES.

Feature Programmable
Approaches

Traditional
Approaches

Performance High for both remote
and local failures

Low for remote failures;
medium for local failures

Policy Compliant Yes No
Memory Medium (limited fast

memory)
High (abundant slower
memory)

Failure Detection Near line-rate

Long time for remote
failures; order of
microseconds for local
failures

Packet Loss None to low Medium to high
Flexibility High Low
Performance of
FRR Primitives High Medium

to reduce the flow completion time (FCT). For small flows and
under one link failure, PURR can reduce the FCT from 653
microseconds to 384 microseconds under low network loads
conditions. Under higher loads, PURR is able to reduce the
FCT by a factor of 2x. Under two link failures, the reduction
in FCT under 10% and 70% loads reach 5.5x and 2.8x
simultaneously. Finally, the same authors claim that PURR
achieves near-optimal throughput at low network loads.

Cascone et al. [23] claim that SPIDER can detect and
recover from failures in less than 1ms, whereas traditional
OpenFlow-based solutions need 10s of milliseconds. For them,
SPIDER’s main advantage over other legacy approaches is that
it is implemented totally on the data plane. SPIDER is inspired
by legacy approaches like BFD [142] and MPLS FRR [143].
SPIDER outperforms BFD by eliminating the use of a slow
control channel and reusing the data packets to piggyback
heartbeats. SPIDER outperforms MPLS FRR by eliminating
the need for a reservation protocol. FRR uses Resource Reser-
vation Protocol (RSVP) to calculate the backup path. RSVP
is used to reserve resources in a network. The forwarding
element reserves network resources (e.g., bandwidth) before
start transmitting data. RSVP is a complex protocol. SPIDER
leverages a remote controller to provide both the primary and
the backup paths instead of using the RSVP protocol.

Qu et al. [24] claim that SQR is the first approach of
its kind that tries to recover packet losses at the in-network
level without the need for any modification at the end hosts.
SQR enhances the existing route recovery mechanisms by
avoiding packet loss during failure convergence. To evaluate
its performance, this approach is integrated with a link failure
detection and network reconfiguration scheme. The scheme
is ShareBackup [144]. ShareBackup installs shared backup
switches in a data center network. These switches are used to
replace the failed switches. After the failure has been solved,
the backup switches are set free to be used again whenever a
failure occurs. When ShareBackup is not enhanced by SQR,
the TCP cwnd size is reduced rapidly due to link failure.
However, when SQR is integrated with ShareBackup, the
cwnd is not affected by the failure. The tests show that SQR

22

is able to isolate the failure from the sender where the cwnd
sustains its value.

7.2 Load Balancing and Congestion Control

Load balancing that adapts to traffic fluctuation on a small
timescale and efficient congestion control is necessary to
guarantee good performance [20]. This section compares the
performance of programmable and legacy approaches when it
comes to congestion and load imbalance.

Table VIII compares the effectiveness of programmable data
plane-based approaches with traditional ones regarding load
imbalance and congestion problems. According to Katta et
al. [19], ECMP is the most deployed load balancing scheme.
ECMP does not consider congestion, at which it separates the
flows randomly based on a hash or round-robin scheduling
[54]. Besides, ECMP might congest the network by assigning
more than one large flow, i.e., flow with a high packet
rate, to the same path due to hash collision [145]–[148].
Hash collisions occur when the hash function outputs the
same hash to two different flows. ECMP performs poorly in
asymmetric topologies [25], [149]. In asymmetric topologies,
the traffic has multiple routes to enter and exit the topology
[150]. The literature proposes many approaches to address
ECMP limitations. In general, the approaches can be classified
either as centralized schemes or as in-network distributed
ones. Centralized approaches monitor the network and avoid
forwarding heavy flows over the same path by detecting
hash collisions [145], [151]. These approaches either require
additional network infrastructure [151], or they are reactive to
congestion [145]. In-network approaches might be effective;
however, they need specialized networking hardware [152].

Compared to legacy in-network approaches, HULA [19]
can achieve a lower average FCT. Under 50% and 90%
load, HULA is able to reduce average completion time by
1.6x and 3x, respectively. HULA is a congestion-aware load
balancing mechanism that reacts to link failures too. Contra
[72] is restricted by neither a network topology nor a specific
policy. Hsu et al. [72] claim that Contra has a competitive
performance, in terms of flow completion time, with state-of-
the-art systems that are based on deterministic topology and
routing policy.

Many programmable approaches like DASH [20], MP-
HULA [87], and W-ECMP [54] split the traffic over multiple
distinct paths and show enhancement in the performance. Hsu
et al. [20] claim that DASH outperforms both ECMP and
HULA. DASH is 12-25% better than ECMP in symmetric
topology, and it outperforms HULA by 22.1% and ECMP
by 16% at 80% workload. Benet et al. [87] claim that MP-
HULA with MPTCP outperforms both HULA (2.1x at 50%
load, 1.7x at 80% load) and ECMP. When combined with
MPTCP, ECMP performs the worst compared to HULA and
MP-HULA. Ye et al. [54] show that W-ECMP performs better
than HULA in the average FCT. W-ECMP enhances the FCT
by 10% for large flows when compared with ECMP and
outperforms HULA for small flows.

TABLE VIII
COMPARISON BETWEEN THE EFFECTIVENESS OF PROGRAMMABLE AND

COMMON LEGACY APPROACHES AGAINST LOAD IMBALANCE AND
CONGESTION.

Feature Programmable
Approaches

Traditional
Approaches

Performance High Medium

Cost Low (a few nodes might
suffice)

High (thousands of SLBs
are used)

Memory Medium (limited to on-
switch memory)

High (external storage
units can be used)

Visibility Per-packet at line-rate Limited

Accuracy High (can reflect the exact
state of the network)

Low (usually follow
probabilistic algorithms
to reflect the state of the
network

Flexibility
High (operator can change
the functionality of the
algorithm)

Low (limited to the set
of functionalities defined
at the deployment

Performance
Isolation High Low

Jitter Low High
Computation
Overhead Low High

Another limitation of ECMP is that it is not resilient against
the changes to the application instance set [80]. Many legacy
approaches tried to overcome this limitation by following the
consistent hashing mechanism [12], [21], [153]–[155]. In the
consistent hashing mechanism, the hash table is stored on
multiple servers. Each part of the hash table has a copy on
multiple servers. According to [21], consistent hashing does
not consider the load state of the application while assigning
the queries. This randomness might degrade the performance
of the applications that depend on the control plane to perform
multiple tasks [80]. Besides, Layer 4 load balancing, most
often, is implemented in software servers [12], [21]. According
to [11], [21], an SLB can support DIP pool changes and
ensure the PCC. However, almost 3.75% of the data center
size should be working as SLBs. Processing the packets by
an SLB can add computation overhead, high latency and jitter
[156], and poor performance isolation [11]. An SLB might be
the bottleneck of the most delay-sensitive applications [157],
[158].

On the other hand, Miao et al. [11] claim that SilkRoad is
able to replace up to hundreds of SLBs, and it can reduce 45%-
95% SRAM usage. 10 million connections can fit into Silkroad
programmable switching ASIC. It ensures the PCC under the
most frequent DIP pool updates recorded from the network
[11]. Moreover, this approach is able to perform full line-
rate load balancing with sub-microsecond processing latency
and achieves tighter performance isolation than SLBs. Pit-
Claudel et al. [80] claim that SHELL significantly increases
the PCC when compared to other stateless load balancing
implementations. SHELL can sustain sixty million packets per
second (Mpps), which is 22x the value recorded from a single-
core software implementation of an SLB used by Google [21].

Furthermore, Chord [159] is a widely deployed legacy load
balancing approach. Chord is a DHT solution for data storage

23

and retrieval in peer-to-peer (P2P) networks. In a network with
N peers, each peer holds routing information about O(log n)
other peers [160]. Chord adds virtual nodes to the network by
appending rules to the routing tables [121]. A main drawback
of Chord is that the routing paths might be significantly longer
than the shortest path. Another drawback of Chord is the
storage overhead, as multiple routing rules are added to the
routing table in order to create the virtual network [121].

Xie et al. [121] claim that GRED requires less memory and
maintains shorter paths than Chord. Their evaluation shows
that GRED uses <30% routing path lengths and performs
better load balancing compared to Chord. On average, GRED
requires 1 overlay hop to reach the destination, while Chord
requires 5. While the number of rules added by Chord in-
creases with the network size (i.e., additional O(log n) routing
rules), the number of rules added by CRED is independent of
the network size.

Besides, legacy networks use congestion signaling mecha-
nisms to avoid congestion. These mechanisms notify senders
to reduce the sending rate in order to avoid packet loss [83].
ECN [16], Data Center TCP (DCTCP) [161], and BECN [162]
are common congestion signaling mechanisms. ECN works on
the transport layer and allows the receiver to notify the sender
about the congestion before it occurs. A router on the path
between the sender and the receiver marks the ECN header
when its queue occupancy reaches a predefined threshold.
When the marked packet arrives at the receiver, the receiver
sets the ECN echo bit in the TCP header to inform the sender
that this packet has encountered congestion during its traversal
[163]. One limitation of ECN is that it operates at the transport
layer. Salim et al. [162] and Akujobi et al. [164] discussed the
need for decoupling ECN from the transport layer. Another
limitation of ECN is that some packet loss might occur before
the sender is notified. If a flow has a high RTT, some packets
might be lost before the notification from the receiver reaches
the sender.

DCTCP extends ECN and returns the number of bytes that
have encountered congestion in the network. However, this
mechanism is only recommended for data center networks
[163]. In BECN, ICMP Source Quench (ISQ) messages are
used to notify the sender about the congestion. In this ap-
proach, the router directly notifies the sender without involving
the receiver. One drawback of this approach is the additional
bandwidth used by the generated messages. Another drawback
is that the approach does not deploy any mechanism to verify
that the notification message has been received by the sender.

AWW [17], P4QCN [39], and [83] deploy network-assisted
congestion feedback, an approach that enhances congestion
signals by using the programmable switches to notify the
senders. AWW uses TCP advertised window to notify the
senders; P4QCN uses the ECN header to notify the senders;
and [83] uses NACKs to notify the senders. While AWW and
P4QCN utilize packets coming from the receiver to generate
the notification, [83] generates NACKs using the data plane of
the programmable switches. Consequently, [83] has the fastest
feedback approach compared to AWW and P4QCN. on the

Other hand, [83] requires bandwidth to notify the sender, while
AWW and P4QCN use no additional bandwidth to send the
notification.

When compared with ECN-enabled flows, AWW is able to
achieve a 5-10% increase in the throughput [17]. P4SQN is
able to achieve around a 20% decrease in latency and packet
rate loss compared to QCN [39].

Compared to BECN, the sender in AWW and P4QCN is
guaranteed to receive network-assisted notifications. AWW
and P4CN use the ongoing traffic between the two communi-
cating entities to notify the sender, assuring that the notifica-
tions will reach the sender if there are packets being exchanged
between the sender and the receiver. Another advantage of
AWW and P4QCN over BECN is that no additional messages
are generated, and thus, they use less bandwidth than BECN.

Similar to BECN, [83] generates messages instead of relying
on ongoing traffic to notify the sender. In [83], programmable
switches continuously generate messages. Switches stop gen-
erating packets only when the sender lowers his sending rate.
Thus, the approach in [83] is more reliable than BECN at the
cost of additional bandwidth usage.

8. CHALLENGES AND FUTURE WORK

This section presents challenges pertaining to programmable
switches and their effects on rerouting implementations in
P4. Furthermore, a number of current initiatives and future
directions addressing the presented challenges are discussed.
The challenges and the future trends are illustrated in Fig. 18.

8.1 Security

For the approaches that depend on data plane signals,
defending themselves against cyberattacks might be extremely
challenging. For instance, in Blink, if the hacker is able to
hold half of the monitored flows, he/she can easily abuse
the rerouting strategy. The attacker can trigger rerouting by
retransmitting the same packets. In this way, the illusion
of link failure is created, and the node reroutes the traffic
unnecessarily. The unnecessary rerouting results in wasting
bandwidth and congesting the network.

Approaches that use probes to get links’ utilization might
be targets for cyberattacks. One possible cyberattack can be
performed by pushing fabricated probes that contain wrong
links’ utilization information. In this scenario, the deployed
load balancing algorithm will reroute the traffic based on
a false indication leading to load imbalance. This kind of
attack can become even more severe if the attacker is able
to direct the traffic through one path only. The targeted path
will be over-utilized, and many connections will be lost due to
congestion. Consequently, the overall performance of the data
center will be severely affected.

Cyberattacks might target load balancing approaches that
use hashing. An attacker can flood the network with new
connection requests. The load balancer will reserve a hash
value for each incoming request. Because the hash space of a
hash function is limited, the load balancer might not be able
to serve new connections.

24

Intervention of control plane to update forwarding rulesChallenge

Store forwarding rules in packet headers; utilize stateful
elements to forward traffic

Current and
future initiatives

Table Entries ModificationSubsection 8.2

Intervention of control plane to update forwarding rulesChallenge

Store forwarding rules in packet headers; utilize stateful
elements to forward traffic

Current and
future initiatives

Table Entries ModificationSubsection 8.2

Intervention of control plane to update forwarding rulesChallenge

Store forwarding rules in packet headers; utilize stateful
elements to forward traffic

Current and
future initiatives

Table Entries ModificationSubsection 8.2

Performance of rerouting approaches is constrained by the
available memory

Challenge

Extend available memory using remote dynamic random
access memory

Current and
future initiatives

MemorySubsection 8.3

Performance of rerouting approaches is constrained by the
available memory

Challenge

Extend available memory using remote dynamic random
access memory

Current and
future initiatives

MemorySubsection 8.3

Performance of rerouting approaches is constrained by the
available memory

Challenge

Extend available memory using remote dynamic random
access memory

Current and
future initiatives

MemorySubsection 8.3

Replacing legacy devices with P4 switches is challengingChallenge

Rerouting approaches which support incremental
deployment; use P4 switches as passive devices

Current and
future initiatives

AdoptabilitySubsection 8.4

Replacing legacy devices with P4 switches is challengingChallenge

Rerouting approaches which support incremental
deployment; use P4 switches as passive devices

Current and
future initiatives

AdoptabilitySubsection 8.4

Replacing legacy devices with P4 switches is challengingChallenge

Rerouting approaches which support incremental
deployment; use P4 switches as passive devices

Current and
future initiatives

AdoptabilitySubsection 8.4

Rerouting without knowing the failed link/node might
result in blackholes or forwarding loops

Challenge

Monitor the rerouted traffic; use data plane signals to
detect the root cause of a remote failure

Current and
future initiatives

Blackholes and Forwarding LoopsSubsection 8.5

Rerouting without knowing the failed link/node might
result in blackholes or forwarding loops

Challenge

Monitor the rerouted traffic; use data plane signals to
detect the root cause of a remote failure

Current and
future initiatives

Blackholes and Forwarding LoopsSubsection 8.5

Rerouting without knowing the failed link/node might
result in blackholes or forwarding loops

Challenge

Monitor the rerouted traffic; use data plane signals to
detect the root cause of a remote failure

Current and
future initiatives

Blackholes and Forwarding LoopsSubsection 8.5

Recovery speed is constrained by the time the control
plane requires to propagate element failure notification

Challenge

Generate periodic probes at the data plane level; use FCP
protocol to propagate the list of failed links

Current and
future initiatives

Slow PropagationSubsection 8.6

Recovery speed is constrained by the time the control
plane requires to propagate element failure notification

Challenge

Generate periodic probes at the data plane level; use FCP
protocol to propagate the list of failed links

Current and
future initiatives

Slow PropagationSubsection 8.6

Recovery speed is constrained by the time the control
plane requires to propagate element failure notification

Challenge

Generate periodic probes at the data plane level; use FCP
protocol to propagate the list of failed links

Current and
future initiatives

Slow PropagationSubsection 8.6

Multicast trees should be installed on the switches;
signaling protocol is required to manage multicast trees

Challenges

Encapsulate mutlicast trees on the packet headers
Current and

future initiatives

MulticastSubsection 8.7

Multicast trees should be installed on the switches;
signaling protocol is required to manage multicast trees

Challenges

Encapsulate mutlicast trees on the packet headers
Current and

future initiatives

MulticastSubsection 8.7

Multicast trees should be installed on the switches;
signaling protocol is required to manage multicast trees

Challenges

Encapsulate mutlicast trees on the packet headers
Current and

future initiatives

MulticastSubsection 8.7

There is a trade-off between the performance and the
resources used by rerouting approaches

Challenge

Use compact hash digests; use packet generators to
mitigate probing overhead

Current and
future initiatives

Performance and Resources Trade-offSubsection 8.8

There is a trade-off between the performance and the
resources used by rerouting approaches

Challenge

Use compact hash digests; use packet generators to
mitigate probing overhead

Current and
future initiatives

Performance and Resources Trade-offSubsection 8.8

There is a trade-off between the performance and the
resources used by rerouting approaches

Challenge

Use compact hash digests; use packet generators to
mitigate probing overhead

Current and
future initiatives

Performance and Resources Trade-offSubsection 8.8

Hardware modifications might be needed; low performanceChallenges

Legacy rerouting approaches can be deployed over
programmable switches to mitigate the deployment and
performance issues

Current and
future initiatives

Legacy ReroutingSubsection 8.9

Hardware modifications might be needed; low performanceChallenges

Legacy rerouting approaches can be deployed over
programmable switches to mitigate the deployment and
performance issues

Current and
future initiatives

Legacy ReroutingSubsection 8.9

Hardware modifications might be needed; low performanceChallenges

Legacy rerouting approaches can be deployed over
programmable switches to mitigate the deployment and
performance issues

Current and
future initiatives

Legacy ReroutingSubsection 8.9

Several security threats faces P4-based rerouting
approaches

Challenge

Automatically detect the traffic that diverges the deployed
program from its normal behavior; use RL mechanisms

Current and
future initiatives

SecuritySubsection 8.1

Several security threats faces P4-based rerouting
approaches

Challenge

Automatically detect the traffic that diverges the deployed
program from its normal behavior; use RL mechanisms

Current and
future initiatives

SecuritySubsection 8.1

Several security threats faces P4-based rerouting
approaches

Challenge

Automatically detect the traffic that diverges the deployed
program from its normal behavior; use RL mechanisms

Current and
future initiatives

SecuritySubsection 8.1

Fig. 18. Challenges and future trends.

Current and Future Initiatives. To address security issues,
researchers have tried to detect attacks by monitoring unpre-
dicted traffic patterns. However, this approach has had a highly
unreliable performance [31]. An alternative approach was
proposed by [165], which automatically detects the traffic that
diverges the deployed program from its normal behavior. This

approach might be unscalable as it might be challenging to
identify when the program diverges from its normal behavior.
As future work, researchers can consider using complex algo-
rithms that leverage the advances in Machine Learning (ML)
(e.g., Reinforcement Learning (RL)). Additionally, future work
should consider defining an efficient data plane level collection
mechanism to enhance the data analysis process and thus the
attack detection speed and accuracy.

8.2 Table Entries Modification

The objective of traffic rerouting is to mitigate a networking
problem by changing the forwarding behavior of the switch
such that the traffic is rerouted from the main path to an
alternative path. Rerouting speed can be considered one of
the main concerns of any rerouting algorithm. Many rerouting
approaches calculate the alternative path proactively in order
to speed up the traffic rerouting phase. However, a traditional
unavoidable delay is the intervention of the control plane to
change the forwarding rules. The data plane cannot directly
modify the table entries. Delegating tasks to the control plane
incurs latency and affects the application’s performance.

Current and Future Initiatives. A common way to limit
the intervention of the control plane is to forward the traffic
based on a header value instead of modifying the forwarding
table entries. P4Neighbor [79] encapsulates the alternative path
rules inside the packet headers. The receiving P4Neighbor
node chooses the egress port based on the information inside
the packet header. The traffic rerouting phase in P4Neighbor
happens at line-rate at which no control plane intervention
is needed. SHELL [80] follows a similar approach as in
P4Neighbot. The programmable switch in SHELL forwards
the traffic based on the packet headers instead of using the
forwarding tables. In future work, rerouting based on the
packet headers should be used in stateful load balancing
algorithms. Future work should also consider using stateful
registers to control the forwarding behavior in link failure
problems.

8.3 Memory

In some stateful load balancing rerouting-based approaches,
a switch has to maintain the state of each flow. This might be
challenging as the memory inside the programmable switch is
limited. The available memory space in the switch is decided
based on the on-ship memory. Only a few hundred megabytes
of SRAM [11] and a hundred kilobytes of TCAM [80] are
available on the current switches. The efficiency of stateful
load balancing mechanisms highly depends on the available
memory. For instance, there is a trade-off between the size
of the hash function, the number of the flows that can be
monitored, and the performance of load balancing mechanisms
that are based on hashing. Additionally, memory constraints
might make some approaches more vulnerable to cyberattacks.

Current and Future Initiatives. Kim et al. [166], [167]
proposed exploiting remote Dynamic Random Access Memory

25

(DRAM) deployed over some data centers’ servers to extend
the available memory on programmable switches. This ap-
proach is able to achieve near line-rate throughput, where the
remote accessing overhead is estimated by 1-2 microseconds
[31]. However, because the switch’s data plane and the mem-
ory are not directly connected, packets might be lost. This
loss should be eliminated. Otherwise, this approach might not
be reliable enough to be deployed. Another limitation is that
complex matching in remote memories is not addressed where
only address-based memory access is supported. As future
work, protective rerouting approaches (e.g., P:1+1) might be
deployed between a programmable switch and the remote
DRAM to guarantee packet delivery even under link failures.
Because operators have no control over the incoming traffic,
which makes optimal load balancing nearly impossible, future
work could consider allowing programmable switches to share
resources. In this case, the load will be divided equally among
the switches even if the incoming traffic is unfairly distributed.
In other words, SRAM and TCAM capacities of all the
available programmable switches in a certain data center are
considered one big block of shareable memory. The memory
constraints might not hold unless all the deployed switches are
overly-saturated with traffic. This approach, going in parallel
with an efficient load balancing approach, might result in an
optimal bisection of the available bandwidth.

8.4 Adoptability

It is not easy for operators to adjust the networking
infrastructure inside data centers. Programmable switches
are no exception. Despite the significant performance
improvements they bring, most operators will probably not
exchange their legacy devices with programmable ones in
one shot [31].

Current and Future Initiatives. Multiple rerouting ap-
proaches have already been proposed, which can be incre-
mentally deployed [24]. Other approaches have suggested
delegating data analysis operation to programmable switches,
while legacy switches preserve the forwarding functionality
[59], [168], [169]. Future work should consider deploying a
hybrid system between legacy and programmable switches.
The role of the programmable ones is to detect failures, gather
legacy switches statistics, and reroute the traffic.

8.5 Blackholes and Forwarding Loops

Data plane signals are successfully leveraged to infer
remote link failure within one RTT. However, these signals
cannot have a-priori information about the root cause of a
disruption. The chosen backup path might direct the rerouted
traffic toward the failed node resulting in blackholes and/or
forwarding loops.

Current and Future Initiatives. Blink [18] monitors the
backup paths to check their validity. In this way, any blackhole
or forwarding loops might be detected. The drawback of
this approach is that it is relatively slow as Blink sends the

traffic and waits for any retransmission. If retransmission is
detected, Blink infers that this path is not working and reroutes
the traffic again; otherwise, Blink assumes that this path is
functioning and no more actions are taken. As future work,
more research should focus on the feasibility of using data
plane signals to detect the root cause of the remote failures.

8.6 Slow Propagation

After detecting link/node failure, rerouting approaches
propagate the address of the failed element to other nodes
in the network. The control plane is used to either generate
the probes to propagate the address of the failed element or
to route the probes. The intervention of the control plane
slows the time needed to propagate the failure occurrence
to other nodes. The control plane cannot generate probes
at line-rate, and it might take a non-negligible amount
of time to calculate the route of the probes. Usually,
the control plane is used to guarantee that all the nodes in
the network are informed about the address of the failed node.

Current and Future Initiatives. One approach to assure
that all nodes are informed about the failure is to flood the
network with probes. This approach does not scale well as
the number of nodes in a data center increases. HULA [19]
deploys a periodic probing mechanism that infers remote
failures. Probes are guaranteed to reach all the nodes in the
network even if a failure occurs. This approach might be
effective, but it is restricted to tree-based typologies. D2R
[55] deploys FCP protocol to propagate the list of failed links;
however, not all remote nodes are guaranteed to be notified.
Future work should consider a practical way that assures all
remote nodes are notified without flooding the network with
feedback probes.

8.7 Multicast

Traditional multicast can be considered unscalable as the
multicast tree is required to be installed on the switches.
Besides, a signaling protocol is required to manage the
multicast tree. Traditional multicast might fail to provide
service for hundreds of thousands of tenants due to the data
plane and control plane limitations [56]. As a consequence,
tenants tend to rely on unicast-based approaches to perform
multicast functionalities. This results in CPU overhead at the
end-host and imposes high and unpredictable latency.

Current and Future Initiatives. P4-based multicast can
be considered highly scalable and flexible. In P4, no status
information is required to be stored inside the switches, and
no signaling protocol is needed to manage the multicast tree
[56]. Moreover, P4-based multicast supports dynamic tree
updates and does not constrain the switch to multicast packets
based on the type of the IP address. To the best of the
writers’ knowledge, no probe-based rerouting approach has
deployed P4-based multicast. P4-based multicast can be used
by the programmable approaches to propagate information
about links’ utilization in a network. For instance, the probing

26

system deployed by HULA (discussed in Section V. B.) uses
traditional multicast. If HULA deployed the P4-based multi-
cast, the overall performance of this load balancing approach
would increase for at least two reasons. First, HULA would
save memory by using packet headers to manage the multicast
tree. Second, HULA would become more flexible as it can
support the dynamic tree updates, and it is no more constrained
by the fixed functionalities provided by the signaling protocol.
In future work, load balancing approaches should leverage the
potential of P4-multicast. Future work should also consider
using P4-multicast to propagate failure events.

8.8 Performance and Resources Trade-off

There is a trade between performance and resources in
most programmable-based rerouting approaches. For example,
in the hashing algorithms used to identify flows, there is
a trade-off between the number of bits used to identify a
flow and the memory resources used to store its ID. In link
failure detection mechanisms, the higher the frequency of
probes, the more bandwidth is wasted on these probes. On
the other hand, the lower the frequency is, the slower the
detection happens. In the approaches that monitor the data
plane signals, the higher the number of monitored flows,
the higher the accuracy of the approach at the cost of an
increase in memory usage. In load balancing approaches, the
performance depends on the speed of the generated probes,
which directly increases the bandwidth usage.

Current and Future Initiatives. Miao et al. [11] mitigate
the performance-resources trade-off by using a compact hash
digest instead of the 5-tuple (source IP address, destination
IP address, source port, destination port, transport protocol)
hashing. This approach manages to reduce the storage needed
to store each connection from 37 bytes to 2 bytes only. Pit et
al. [80] mitigate the performance-resources trade-off by stor-
ing the index of the serving instance instead of maintaining a
per-flow state while performing load balancing. The approach
reduces memory usage while sustaining high accuracy. The
main drawback of this approach is that it requires the end
host to modify the packet structure. Regarding the probing
overhead, the packet generators of the programmable switches
can be used to implement the BDF protocol at the data plane
level. Using the packet generators to implement the BDF
protocol reduces the resource usage of the control plane and
enhances the overall detection speed. The speed of detection
depends on the frequency of generating probes. In future work,
rerouting approaches should leverage the packet generation
capability of the programmable switches to maximize both
performance and resource utilization.

8.9 Legacy Rerouting

Many legacy approaches suffer from severe limitations. For
example, CONGA [25], a distributed congestion-aware load-
balancing approach, was implemented in custom silicon on
a switching chip [19]. For CONGA to be adopted, months
of hardware design and verification efforts are needed. Even

if the required modification to the hardware was applied, the
CONGA algorithm could not be enhanced.

Another example is SWIFT [13]. SWIFT is a link failure
mitigation technique that utilizes BGP withdrawal messages
to predict failed links. The main drawback of SWIFT is that
it might take minutes to detect remote link failures, as BGP
updates can take minutes to propagate after the corresponding
failure [19]. This technique uses the 48 bits of the MAC
address to store a list of links a packet will traverse to reach
its destination. It then stores a list of pre-computed backup
next-hops for the links. Thus, the number of remote failures
SWIFT can recover from and the number of backup next-hops
it can use are constrained by the size of the MAC address field.

Current and Future Initiatives. Some legacy approaches
are P4-friendly, i.e., they can be deployed over programmable
switches. The features data plane programmability provides
can mitigate different limitations of legacy approaches. For
example, CONGA can be directly deployed on a P4 pro-
grammable switch, eliminating the need for months of hard-
ware design and verification efforts. Further, programmable
data planes allow the operator to update the algorithm of
CONGA to accommodate new traffic patterns.

In the case of SWIFT, it can be improved by utilizing
different features of programmable switches. After deploying
SWIFT on a programmable switch, the approach will not be
constrained by 48 bits to store the two lists, i.e., the list of links
and the list of backup next-hops. The operator can define the
length of the custom header which stores the two lists based on
the number of links to be monitored. As a result, the trade-off
between the number of links to be monitored and the number
of backup next-hops is eliminated. Besides, SWIFT can utilize
the packet generator hardware to accurately detect failed links.
The packet generator will notify other switches of the location
of the failed link. Thus, the time required by SWIFT to predict
failed links will be eliminated, and consequently, the overall
time required by SWIFT to reroute traffic will be significantly
reduced.

Similar to SWIFT and CONGA, the performance of many
P4-friendly legacy approaches (e.g., DRILL [170], Clove [27],
and others [28]) can be significantly improved if they are
implemented on programmable switches.

9. CONCLUSION

This article presents a detailed survey on different rerouting
mechanisms based on programmable data planes. The survey
describes the crucial need and wide deployability of traffic
rerouting in fulfilling the current requirements. Afterward, the
survey discusses the feedback mechanisms implemented by
the recent rerouting approaches. It then presents the pros and
cons of using one approach over the other. The survey explains
how packets’ headers are modified, how forwarding tables are
altered, and how control signals are exchanged to guarantee
near line-rate traffic rerouting and assure connectivity contin-
uation. After that, rerouting approaches are classified based
on networking issues they tackled and compared against the

27

state-of-the-art legacy approaches. The survey concludes by
discussing challenges and considerations as well as various
future trends and initiatives and explaining the potential of
deploying rerouting in new research fields.

ACKNOWLEDGMENT

This work was supported by the U.S. National Science
Foundation under grant number 2118311.

TABLE IX
ABBREVIATIONS USED IN THIS ARTICLE.

Abbreviation Term
ASIC Application Specific Integrated Circuit
ALU Arithmetic Logic Unit
API Application Programming Interface
BFD Bidirectional Forwarding Detection
BGP Border Gateway Protocol
BMv2 Behavioral Model Version 2
BQE Buffer Queuing Engine
CID Connection Identifier
CPU Central Processing Unit
CWND Congestion Window
DASH Data plane Adaptive Splitting with Hash threshold
DCTCP Data Center TCP
DRAM Dynamic Random Access Memory
DT Delaunay Triangulation
ECMP Equal-Cost Multi-Path Routing
FCT Flow Completion Time
FEC Forward Error Correction
FIFO First-in-First-out
FRR Fast Rerouting
HULA Hop-by-hop Utilization-aware Load balancing Architec-

ture
IP Internet Protocol
ISQ ICMP Source Quench
ITU International Telecommunication Union
ML Machine Learning
MPLS Multiprotocol Label Switching
Mpps Million Packet Per Second
LP Linear Programming
P4 Programming Protocol-Independent Packet Processors
PCC Per Connection Consistency
PISA Protocol Independent Switch Architecture
PRE Packet buffer and Replication Engine
PSA Portable Switch Architecture
PTE Protection Tunnel Egress
PTI Protection Tunnel Ingress
QCN Quantized Congestion Notification
RL Reinforcement Learning
RTT Round Trip Time
SALU Statefull Arithmetic Logic Unit
SDN Software-Defined Networking
SLB Software Load Balancer
SN Sequence Number
SQR Shared Queue Ring
SRAM Static Random-Access Memory
Tbps Terabits per Second
TCAM Ternary Content Addressable Memory
TCP Transport Control Protocol
ToR Top-of-Rack
VIP Virtual Internet Protocol
W-ECMP Weighted Equal-Cost Multi-Path

REFERENCES

[1] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” in Proceedings
of the ACM SIGCOMM 2011 Conference, pp. 350–361, 2011.

[2] N. Promwongsa, A. Ebrahimzadeh, D. Naboulsi, S. Kianpisheh,
F. Belqasmi, R. Glitho, N. Crespi, and O. Alfandi, “A comprehensive
survey of the tactile Internet: State-of-the-art and research directions,”
IEEE Communications Surveys & Tutorials, 2020.

[3] K. Sacha and M. Jon, “What is the tactile Internet.” [online]. Available:
https://tinyurl.com/hynmp8bu.

[4] D. Van Den Berg, R. Glans, D. De Koning, F. A. Kuipers, J. Lugten-
burg, K. Polachan, P. T. Venkata, C. Singh, B. Turkovic, and
B. Van Wijk, “Challenges in haptic communications over the tactile
Internet,” IEEE Access, vol. 5, pp. 23502–23518, 2017.

[5] B. Turkovic, F. Kuipers, N. van Adrichem, and K. Langendoen, “Fast
network congestion detection and avoidance using P4,” in Proceedings
of the 2018 Workshop on Networking for Emerging Applications and
Technologies, pp. 45–51, 2018.

[6] R. Kaur and P. Luthra, “Load balancing in cloud computing,” in Pro-
ceedings of international conference on recent trends in information,
telecommunication and computing, ITC, Citeseer, 2012.

[7] R. R. Malladi, “An approach to load balancing in cloud computing,”
Int. J. Innov. Res. Sci., Eng. Technol, vol. 4, no. 5, pp. 3769–3777,
2015.

[8] Y. Jadeja and K. Modi, “Cloud computing-concepts, architecture and
challenges,” in 2012 international conference on computing, electronics
and electrical technologies (ICCEET), pp. 877–880, IEEE, 2012.

[9] J. Crichigno, N. Ghani, J. Khoury, W. Shu, and M. Wu, “Dynamic
routing optimization in wdm networks,” in 2010 IEEE Global Telecom-
munications Conference (Globecom), 2010.

[10] J. Crichigno, W. Shu, and M. Wu, “Throughput optimization and traffic
engineering in WDM networks considering multiple metrics,” in 2010
IEEE International Conference on Communications (ICC), 2010.

[11] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching ASICS,”
in Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, pp. 15–28, 2017.

[12] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu, et al., “Ananta: Cloud scale
load balancing,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4, pp. 207–218, 2013.

[13] T. Holterbach, S. Vissicchio, A. Dainotti, and L. Vanbever, “Swift:
Predictive fast reroute,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pp. 460–473, 2017.

[14] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet
routing convergence,” ACM SIGCOMM Computer Communication
Review, vol. 30, no. 4, pp. 175–187, 2000.

[15] R. Oliveira, B. Zhang, D. Pei, and L. Zhang, “Quantifying path
exploration in the Internet,” IEEE/ACM Transactions on Networking,
vol. 17, no. 2, pp. 445–458, 2009.

[16] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ECN) to IP,” tech. rep., 2001.

[17] J. Jiang and Y. Zhang, “An accurate congestion control mechanism
in programmable network,” in 2019 IEEE 9th Annual Computing and
Communication Workshop and Conference (CCWC), pp. 0673–0677,
IEEE, 2019.

[18] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast connectivity recovery entirely in the data
plane,” in 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pp. 161–176, 2019.

[19] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of the Symposium on SDN Research, pp. 1–12, 2016.

[20] K.-F. Hsu, P. Tammana, R. Beckett, A. Chen, J. Rexford, and D. Walker,
“Adaptive weighted traffic splitting in programmable data planes,” in
Proceedings of the Symposium on SDN Research, pp. 103–109, 2020.

[21] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A fast and reliable software network load balancer,” in 13th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), pp. 523–535, 2016.

[22] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 99–
110, 2013.

[23] C. Cascone, D. Sanvito, L. Pollini, A. Capone, and B. Sanso, “Fast
failure detection and recovery in SDN with stateful data plane,”

28

International Journal of Network Management, vol. 27, no. 2, p. e1957,
2017.

[24] T. Qu, R. Joshi, M. C. Chan, B. Leong, D. Guo, and Z. Liu, “Sqr:
In-network packet loss recovery from link failures for highly reliable
datacenter networks,” in 2019 IEEE 27th International Conference on
Network Protocols (ICNP), pp. 1–12, IEEE, 2019.

[25] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, et al., “CONGA:
Distributed congestion-aware load balancing for datacenters,” in Pro-
ceedings of the 2014 ACM Conference on SIGCOMM, pp. 503–514,
2014.

[26] S. Ghorbani, “Micro load balancing for low-latency data center net-
works,”

[27] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and
J. Rexford, “Clove: Congestion-aware load balancing at the virtual
edge,” in Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies, pp. 323–335, 2017.

[28] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker,
“Ensuring connectivity via data plane mechanisms,” in NSDI, pp. 113–
126, 2013.

[29] M. Chiesa, A. Kamisiński, J. Rak, G. Rétvári, and S. Schmid, “A
survey of fast-recovery mechanisms in packet-switched networks,”
IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1253–
1301, 2021.

[30] S. Kaur, K. Kumar, and N. Aggarwal, “A review on P4-programmable
data planes: Architecture, research efforts, and future directions,”
Computer Communications, vol. 170, pp. 109–129, 2021.

[31] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey
on P4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE Access, 2021.

[32] W. L. da Costa Cordeiro, J. A. Marques, and L. P. Gaspary, “Data plane
programmability beyond openflow: Opportunities and challenges for
network and service operations and management,” Journal of Network
and Systems Management, vol. 25, no. 4, pp. 784–818, 2017.

[33] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A survey on data plane programming with
P4: Fundamentals, advances, and applied research,” Journal of Network
and Computer Applications, p. 103561, 2022.

[34] A. Satapathy, Comprehensive study of P4 programming language and
software-defined networks. PhD thesis, Institute for Development and
Research in Banking Technology, 2018.

[35] E. Kaljic, A. Maric, P. Njemcevic, and M. Hadzialic, “A survey on data
plane flexibility and programmability in software-defined networking,”
IEEE Access, vol. 7, pp. 47804–47840, 2019.

[36] A. AlSabeh, J. Khoury, E. Kfoury, J. Crichigno, and E. Bou-Harb,
“A survey on security applications of P4 programmable switches
and a STRIDE-based vulnerability assessment,” Computer Networks,
vol. 207, p. 108800, 2022.

[37] J. Gomez, E. F. Kfoury, J. Crichigno, and G. Srivastava, “A survey
on TCP enhancements using P4-programmable devices,” Computer
Networks, vol. 212, p. 109030, 2022.

[38] E. J. Ghomi, A. M. Rahmani, and N. N. Qader, “Load-balancing
algorithms in cloud computing: A survey,” Journal of Network and
Computer Applications, vol. 88, pp. 50–71, 2017.

[39] J. Geng, J. Yan, and Y. Zhang, “P4QCN: Congestion control using
P4-capable device in data center networks,” Electronics, vol. 8, no. 3,
p. 280, 2019.

[40] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and
C. Yan, “Speeding up distributed request-response workflows,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 219–
230, 2013.

[41] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[42] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A survey on data plane programming with
P4: Fundamentals, advances, and applied research,” arXiv preprint
arXiv:2101.10632, 2021.

[43] T. P. A. W. Group, “P416 portable switch architecture (PSA).” [online].
Available: https://tinyurl.com/yanh5wz3.

[44] V. Gurevich, “P4 mapping to barefoot tofino(tm).” P4 Language Con-
sortium, Oct. 2019, [online]. Available: https://tinyurl.com/4j97r2t5.

[45] V. Gurevich and A. Fingerhut, “P416 programming for intel tofino
using intel P4 studio.” P4 Language Consortium, May 2021, [online].
Available: https://tinyurl.com/37vbxeyy.

[46] Barefoot Networks, “Packet generation in the data plane of a forward-
ing element.” [online]. Available: https://tinyurl.com/j6e6zya9.

[47] Z. Xi, Y. Zhou, D. Zhang, J. Wang, S. Chen, Y. Wang, X. Li,
H. Wang, and J. Wu, “Hypergen: High-performance flexible packet
generator using programmable switching asic,” in Proceedings of the
ACM SIGCOMM 2019 Conference Posters and Demos, pp. 42–44,
2019.

[48] R. Kundel, F. Siegmund, J. Blendin, A. Rizk, and B. Koldehofe, “P4sta:
High performance packet timestamping with programmable packet
processors,” in NOMS 2020-2020 IEEE/IFIP Network Operations and
Management Symposium, pp. 1–9, IEEE, 2020.

[49] D. Jindal, R. Joshi, and B. Leong, “P4traffictool: Automated code
generation for p4 traffic generators and analyzers,” in Proceedings of
the 2019 ACM Symposium on SDN Research, pp. 152–153, 2019.

[50] Wireshark. [online]. Available: https://www.wireshark.org/.
[51] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,

“Moongen: A scriptable high-speed packet generator,” in Proceedings
of the 2015 Internet Measurement Conference, pp. 275–287, 2015.

[52] Scapy, “Packet crafting for Python2 and Python3.” [online]. Available:
https://scapy.net/.

[53] Clementperon, “PcapPlusPlus.” [online]. Available: https://github.com/
seladb/PcapPlusPlus.

[54] J.-L. Ye, C. Chen, and Y. H. Chu, “A weighted ECMP load balancing
scheme for data centers using P4 switches,” in 2018 IEEE 7th Inter-
national Conference on Cloud Networking (CloudNet), pp. 1–4, IEEE,
2018.

[55] K. Subramanian, A. Abhashkumar, L. D’Antoni, and A. Akella, “D2R:
Dataplane-only policy-compliant routing under failures,” arXiv preprint
arXiv:1912.02402, 2019.

[56] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich, and
M. Hira, “Elmo: Source routed multicast for public clouds,” in Pro-
ceedings of the ACM Special Interest Group on Data Communication,
pp. 458–471, 2019.

[57] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM, vol. 15, 2015.

[58] W. Wang, P. Tammana, A. Chen, and T. E. Ng, “Grasp the root causes
in the data plane: Diagnosing latency problems with spidermon,” in
Proceedings of the Symposium on SDN Research, pp. 55–61, 2020.

[59] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, and T.-Y. Wang, “Fine-grained queue measurement in the
data plane,” in Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies, pp. 15–29, 2019.

[60] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboflow:
Information rich flow record generation on commodity switches,” in
Proceedings of the Thirteenth EuroSys Conference, pp. 1–16, 2018.

[61] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
hardware accelerated network monitoring to concurrent and dynamic
queries with* flow,” in 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), pp. 823–835, 2018.

[62] GitHub: FlowLens, “.” [online]. Available: https://github.com/dmbb/
FlowLens.

[63] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, pp. 164–176, 2017.

[64] L. Tang, Q. Huang, and P. P. Lee, “Mv-sketch: A fast and compact
invertible sketch for heavy flow detection in network data streams,”
in IEEE INFOCOM 2019-IEEE Conference on Computer Communi-
cations, pp. 2026–2034, IEEE, 2019.

[65] B. Niu, J. Kong, S. Tang, Y. Li, and Z. Zhu, “Visualize your ip-over-
optical network in realtime: A p4-based flexible multilayer in-band
network telemetry (ml-int) system,” IEEE Access, vol. 7, pp. 82413–
82423, 2019.

[66] J. Vestin, A. Kassler, D. Bhamare, K.-J. Grinnemo, J.-O. Andersson,
and G. Pongracz, “Programmable event detection for in-band network
telemetry,” in 2019 IEEE 8th international conference on cloud net-
working (CloudNet), pp. 1–6, IEEE, 2019.

[67] Z. Liu, J. Bi, Y. Zhou, Y. Wang, and Y. Lin, “Netvision: Towards
network telemetry as a service,” in 2018 IEEE 26th International
Conference on Network Protocols (ICNP), pp. 247–248, IEEE, 2018.

29

[68] T. Pan, E. Song, Z. Bian, X. Lin, X. Peng, J. Zhang, T. Huang, B. Liu,
and Y. Liu, “Int-path: Towards optimal path planning for in-band
network-wide telemetry,” in IEEE INFOCOM 2019-IEEE Conference
On Computer Communications, pp. 487–495, IEEE, 2019.

[69] Y. Lin, Y. Zhou, Z. Liu, K. Liu, Y. Wang, M. Xu, J. Bi, Y. Liu, and
J. Wu, “Netview: Towards on-demand network-wide telemetry in the
data center,” Computer Networks, vol. 180, p. 107386, 2020.

[70] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz,
“A comparison of mechanisms for improving TCP performance over
wireless links,” IEEE/ACM Transactions on Networking, vol. 5, no. 6,
pp. 756–769, 1997.

[71] TechTarget, “Probe.” [online]. Available: https://tinyurl.com/35a36dbu.
[72] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra: A

programmable system for performance-aware routing,” in 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20), pp. 701–721, 2020.

[73] E. Earls, “Top-of-rack switching.” [online]. Available: https://tinyurl.
com/ypamrrye.

[74] G. Lee, “Cloud data center networking topologies.” [online]. Available:
https://tinyurl.com/yf3mz99r.

[75] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,
and I. Stoica, “Achieving convergence-free routing using failure-
carrying packets,” ACM SIGCOMM Computer Communication Review,
vol. 37, no. 4, pp. 241–252, 2007.

[76] Gartner, “Network topology.” [online]. Available: https://tinyurl.com/
8uuznpj5.

[77] Techopedia, “Network map.” [online]. Available: https://tinyurl.com/
2p87fvtj.

[78] M. McGee, “What is a network map?.” [online]. Available: https:
//tinyurl.com/26t8yhpt.

[79] J. Xu, S. Xie, and J. Zhao, “P4Neighbor: Efficient link failure recovery
with programmable switches,” IEEE Transactions on Network and
Service Management, vol. 18, no. 1, pp. 388–401, 2021.

[80] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, and
T. Clausen, “Stateless load-aware load balancing in P4,” in 2018 IEEE
26th International Conference on Network Protocols (ICNP), pp. 418–
423, IEEE, 2018.

[81] R. Pan, B. Prabhakar, and A. Laxmikantha, “QCN: Quantized conges-
tion notification,” IEEE802, vol. 1, pp. 52–83, 2007.

[82] M. Alizadeh, A. Kabbani, B. Atikoglu, and B. Prabhakar, “Stability
analysis of QCN: the averaging principle,” in Proceedings of the
ACM SIGMETRICS joint international conference on Measurement and
modeling of computer systems, pp. 49–60, 2011.

[83] A. Feldmann, B. Chandrasekaran, S. Fathalli, and E. N. Weyulu, “P4-
enabled network-assisted congestion feedback: A case for nacks,” in
Proceedings of the 2019 Workshop on Buffer Sizing, pp. 1–7, 2019.

[84] A. Feldmann, J. Rexford, and R. Caceres, “Efficient policies for carry-
ing web traffic over flow-switched networks,” IEEE/ACM transactions
on Networking, vol. 6, no. 6, pp. 673–685, 1998.

[85] A. M. Abdelmoniem and B. Bensaou, “Reconciling mice and elephants
in data center networks,” in 2015 IEEE 4th International Conference
on Cloud Networking (CloudNet), pp. 119–124, IEEE, 2015.

[86] L. Guo and I. Matta, “The war between mice and elephants,” in
Proceedings Ninth International Conference on Network Protocols.
ICNP 2001, pp. 180–188, IEEE, 2001.

[87] C. H. Benet, A. J. Kassler, T. Benson, and G. Pongracz, “Mp-hula:
Multipath transport aware load balancing using programmable data
planes,” in Proceedings of the 2018 Morning Workshop on In-Network
Computing, pp. 7–13, 2018.

[88] “The P4 language specification.” The P4 Language Consortium, May
2017, [online]. Available: https://tinyurl.com/5n8evdey.

[89] “P416 language specification.” The P4 Language Consortium, May
2017, [online]. Available: https://tinyurl.com/2dkpj7ck.

[90] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers,” ACM SIGCOMM
Computer Communication Review, vol. 24, no. 4, pp. 234–244, 1994.

[91] J. Chroboczek, “The babel routing protocol, rfc 6126,” Quagga Routing
Software Suite, GPL licensed, 2011.

[92] S. Sinha, S. Kandula, and D. Katabi, “Harnessing TCP’s burstiness
with flowlet switching,” in Proc. 3rd ACM Workshop on Hot Topics in
Networks (Hotnets-III), Citeseer, 2004.

[93] J. He, M. Suchara, M. Bresler, J. Rexford, and M. Chiang, “Rethinking
Internet traffic management: From multiple decompositions to a prac-

tical protocol,” in Proceedings of the 2007 ACM CoNEXT Conference,
pp. 1–12, 2007.

[94] N. Michael and A. Tang, “HALO: Hop-by-hop adaptive link-state
optimal routing,” IEEE/ACM Transactions on Networking, vol. 23,
no. 6, pp. 1862–1875, 2014.

[95] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the
tightrope: Responsive yet stable traffic engineering,” ACM SIGCOMM
Computer Communication Review, vol. 35, no. 4, pp. 253–264, 2005.

[96] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive
traffic engineering,” in Proceedings IEEE INFOCOM 2001. Confer-
ence on Computer Communications. Twentieth Annual Joint Confer-
ence of the IEEE Computer and Communications Society (Cat. No.
01CH37213), vol. 3, pp. 1300–1309, IEEE, 2001.

[97] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “Blest: Blocking
estimation-based MPTCP scheduler for heterogeneous networks,” in
2016 IFIP Networking Conference (IFIP Networking) and Workshops,
pp. 431–439, IEEE, 2016.

[98] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),”
in Proceedings of the ACM SIGCOMM 2010 Conference, pp. 63–74,
2010.

[99] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4,
pp. 435–446, 2013.

[100] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey,
and M. Schapira, “{PCC} vivace: Online-learning congestion control,”
in 15th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18), pp. 343–356, 2018.

[101] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W.
Moore, S. Hand, and J. Crowcroft, “Queues don’t matter when you
can {JUMP} them!,” in 12th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 15), pp. 1–14, 2015.

[102] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore,
G. Antichi, and M. Wójcik, “Re-architecting datacenter networks and
stacks for low latency and high performance,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communica-
tion, pp. 29–42, 2017.

[103] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in 15th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 18), pp. 329–342, 2018.

[104] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
G. Xie, J. Zhan, and H. Zhang, “Network-wide decision making:
Toward a wafer-thin control plane,” in Proc. HotNets, pp. 59–64, 2004.

[105] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich, A. Kamisiński,
G. Nikolaidis, and S. Schmid, “PURR: A primitive for reconfigurable
fast reroute: Hope for the best and program for the worst,” in Proceed-
ings of the 15th International Conference on Emerging Networking
Experiments And Technologies, pp. 1–14, 2019.

[106] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an IP backbone,” in IEEE
INFOCOM 2004, vol. 4, pp. 2307–2317, IEEE, 2004.

[107] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 2, pp. 51–62, 2007.

[108] IBM, “Db2 hash spaces.” [online]. Available: https://tinyurl.com/
5c44c43e.

[109] Ben, “What does it mean to hash data and do I really care?.” [online].
Available: https://tinyurl.com/46xttw3e.

[110] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[111] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and
tomorrow,” Present and Ulterior Software Engineering, pp. 195–216,
2017.

[112] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.,” in NSDI, vol. 11, pp. 22–22, 2011.

[113] Y. Desmouceaux, P. Pfister, J. Tollet, M. Townsley, and T. Clausen,
“6lb: Scalable and application-aware load balancing with segment
routing,” IEEE/ACM Transactions on Networking, vol. 26, no. 2,
pp. 819–834, 2018.

[114] N. Salunke, “Extendible hashing (dynamic approach to dbms).” [on-
line]. Available: https://tinyurl.com/2p9waret.

30

[115] A. Zola, “Hashing.” [online]. Available: https://tinyurl.com/bdhbcje3.
[116] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang, “Lever-

aging zipf’s law for traffic offloading,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 1, pp. 16–22, 2012.

[117] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of
the 10th ACM International on Conference on emerging Networking
Experiments and Technologies, pp. 75–88, 2014.

[118] S. Lindner, D. Merling, M. Häberle, and M. Menth, “P4-protect: 1+
1 path protection for P4,” in Proceedings of the 3rd P4 Workshop in
Europe, pp. 21–27, 2020.

[119] H. Giesen, L. Shi, J. Sonchack, A. Chelluri, N. Prabhu, N. Sultana,
L. Kant, A. J. McAuley, A. Poylisher, A. DeHon, et al., “In-network
computing to the rescue of faulty links,” in Proceedings of the 2018
Morning Workshop on In-Network Computing, pp. 1–6, 2018.

[120] TechTarget, “Forward error correction (FEC).” [online]. Available:
https://tinyurl.com/44vdcfnh.

[121] J. Xie, C. Qian, D. Guo, X. Li, S. Shi, and H. Chen, “Efficient data
placement and retrieval services in edge computing,” in 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS),
pp. 1029–1039, IEEE, 2019.

[122] E. Kawaguchi, H. Kasuga, and N. Shinomiya, “Unsplittable flow edge
load factor balancing in sdn using p4 runtime,” in 2019 29th Inter-
national Telecommunication Networks and Applications Conference
(ITNAC), pp. 1–6, IEEE, 2019.

[123] N. McKeown, “P4 Runtime – Putting the Control Plane in Charge of
the Forwarding Plane.” https://tinyurl.com/2hpxr848, 2017. [Online;].

[124] C. D. Toth, J. O’Rourke, and J. E. Goodman, Handbook of discrete
and computational geometry. CRC press, 2017.

[125] P. Bose and P. Morin, “Online routing in triangulations,” SIAM journal
on computing, vol. 33, no. 4, pp. 937–951, 2004.

[126] H. Kasuga, M. Yamada, and N. Shinomiya, “A traffic load leveling
method for communication links with paired tiesets in a distributed
management network,” in Abstracts of IEICE TRANSACTIONS on
Fundamentals of Electronics, Communications and Computer Sciences,
pp. 126–136, 2018.

[127] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”
IEEE/ACM Transactions on Networking, vol. 6, no. 5, pp. 515–528,
1998.

[128] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, “An approach to
alleviate link overload as observed on an IP backbone,” in IEEE
INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE
Computer and Communications Societies (IEEE Cat. No. 03CH37428),
vol. 1, pp. 406–416, IEEE, 2003.

[129] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet
routing convergence,” IEEE/ACM Transactions on Networking, vol. 9,
no. 3, pp. 293–306, 2001.

[130] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” ACM Sigplan Notices, vol. 49, no. 1, pp. 113–126, 2014.

[131] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,
“Don’t mind the gap: Bridging network-wide objectives and device-
level configurations,” in Proceedings of the 2016 ACM SIGCOMM
Conference, pp. 328–341, 2016.

[132] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, “En-
forcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), pp. 543–546, 2014.

[133] A. K. Atlas, G. Choudhury, and D. Ward, “IP fast reroute overview and
things we are struggling to solve,” North American Network Operators
Group (NANOG), vol. 33, 2005.

[134] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving
sub-second IGP convergence in large IP networks,” ACM SIGCOMM
Computer Communication Review, vol. 35, no. 3, pp. 35–44, 2005.

[135] M. Shand and S. Bryant, “IP fast reroute framework,” 2010.
[136] A. Atlas and A. Zinin, “Basic specification for IP fast reroute: Loop-

free alternates,” 2008.
[137] P. Huang, A. Feldmann, and W. Willinger, “A non-instrusive, wavelet-

based approach to detecting network performance problems,” in Pro-
ceedings of the 1st ACM SIGCOMM Workshop on Internet Measure-
ment, pp. 213–227, 2001.

[138] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter,
“Traffic engineering with forward fault correction,” in Proceedings of
the 2014 ACM Conference on SIGCOMM, pp. 527–538, 2014.

[139] D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Förster, A. Krishnamurthy,
and T. Anderson, “Understanding and mitigating packet corruption in
data center networks,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pp. 362–375, 2017.

[140] Paloalto Networks, “MPLS | what is multiprotocol label switching.”
[online]. Available: https://tinyurl.com/y7wjuanw.

[141] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A
fault-tolerant engineered network,” in 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pp. 399–
412, 2013.

[142] D. Katz and D. Ward, “Bidirectional forwarding detection (BFD)(RFC
5880),” IETF, 2010.

[143] P. Pan et al., “Fast reroute extensions to RSVP-TE for LSP tunnels",
rfc 4090,” 2005.

[144] D. Wu, Y. Xia, X. S. Sun, X. S. Huang, S. Dzinamarira, and T. E. Ng,
“Masking failures from application performance in data center net-
works with shareable backup,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, pp. 176–
190, 2018.

[145] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat,
et al., “Hedera: dynamic flow scheduling for data center networks.,” in
Nsdi, vol. 10, pp. 89–92, San Jose, USA, 2010.

[146] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz, “Per-packet load-balanced, low-latency routing
for clos-based data center networks,” in Proceedings of the Ninth ACM
conference on Emerging Networking Experiments and Technologies,
pp. 49–60, 2013.

[147] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact of
packet spraying in data center networks,” in 2013 Proceedings IEEE
INFOCOM, pp. 2130–2138, IEEE, 2013.

[148] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “Detail:
Reducing the flow completion time tail in datacenter networks,” in
Proceedings of the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tion, pp. 139–150, 2012.

[149] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “WCMP: Weighted cost multipathing for improved fairness
in data centers,” in Proceedings of the Ninth European Conference on
Computer Systems, pp. 1–14, 2014.

[150] TREND MICRO, “What is symmetric vs. asymmetric mode?.” [on-
line]. Available: https://tinyurl.com/36dfmu2v.

[151] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca, “Planck: Millisecond-scale monitoring and
control for commodity networks,” ACM SIGCOMM Computer Com-
munication Review, vol. 44, no. 4, pp. 407–418, 2014.

[152] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 465–
478, 2015.

[153] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Pro-
ceedings of the Twenty-ninth Annual ACM Symposium on Theory of
Computing, pp. 654–663, 1997.

[154] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi, “Web caching
with consistent hashing,” Computer Networks, vol. 31, no. 11-16,
pp. 1203–1213, 1999.

[155] D. G. Thaler and C. V. Ravishankar, “Using name-based mappings
to increase hit rates,” IEEE/ACM Transactions on Networking, vol. 6,
no. 1, pp. 1–14, 1998.

[156] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 27–38, 2014.

[157] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pp. 249–264, 2016.

[158] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron,
J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang, “Congestion
control for large-scale rdma deployments,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 523–536, 2015.

31

[159] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” ACM SIGCOMM computer communication review, vol. 31,
no. 4, pp. 149–160, 2001.

[160] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A
survey and comparison of peer-to-peer overlay network schemes,” IEEE
Communications Surveys & Tutorials, vol. 7, no. 2, pp. 72–93, 2005.

[161] S. Bensley, D. Thaler, P. Balasubramanian, L. Eggert, and G. Judd,
“Data center TCP (DCTCP): TCP congestion control for data centers,”
tech. rep., 2017.

[162] J. H. Salim, B. Nandy, and N. Seddigh, “A proposal for backward
ECN for the internet protocol (IPv4/IPv6),” Internet Draft, draft-salim-
jhsbnns-ecn-00. txt, 1998.

[163] S. Shahzad, E.-S. Jung, J. Chung, and R. Kettimuthu, “Enhanced
explicit congestion notification (EECN) in TCP with P4 programming,”
in 2020 International Conference on Green and Human Information
Technology (ICGHIT), pp. 35–40, IEEE, 2020.

[164] F. Akujobi, I. Lambadaris, R. Makkar, N. Seddigh, and B. Nandy,
“BECN for congestion control in TCP/IP networks: study and com-
parative evaluation,” in Global Telecommunications Conference, 2002.
GLOBECOM’02. IEEE, vol. 3, pp. 2588–2593, IEEE, 2002.

[165] Q. Kang, J. Xing, and A. Chen, “Automated attack discovery in
data plane systems,” in 12th USENIX Workshop on Cyber Security
Experimentation and Test (CSET 19), 2019.

[166] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic external
memory for switch data planes,” in Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, pp. 1–7, 2018.

[167] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan, “Tea:
Enabling state-intensive network functions on programmable switches,”
in Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication, pp. 90–
106, 2020.

[168] E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Srivastava, “Dy-
namic router’s buffer sizing using passive measurements and P4
programmable switches,” in 2021 IEEE Global Communications Con-
ference (GLOBECOM), pp. 01–06, IEEE, 2021.

[169] E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Srivastava, “Enabling
TCP pacing using programmable data plane switches,” in 2019 42nd
IEEE International Conference on Telecommunications and Signal
Processing (TSP), 2019.

[170] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“Drill: Micro load balancing for low-latency data center networks,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pp. 225–238, 2017.

32

