
Decentralized Voting Platform Based on Ethereum
Blockchain

David Khoury, Elie F. Kfoury, Ali Kassem, Hamza Harb
Department of Computer Science

American University of Science and Technology
Beirut, Lebanon

{dkhoury, ekfoury}@aust.edu.lb, {amk10062, hmh10056}@students.aust.edu.lb

Abstract—In centralized environments, the results of voting
events have always been questionable and perceived differently by
voters. Most existing E-Voting systems are based on centralized
servers where the voters must trust the organizing authority
for the integrity of the results. In this paper we propose a
novel approach for a decentralized trustless voting platform that
relies on Blockchain technology to solve the trust issues. The
main features of this system include ensuring data integrity and
transparency, and enforcing one vote per mobile phone number
for every poll with ensured privacy. To accomplish this, the
Ethereum Virtual Machine (EVM) is used as the Blockchain
runtime environment, on which transparent, consistent and
deterministic smart contracts will be deployed by organizers for
each voting event to run the voting rules. Users are authenticated
through their mobile phone numbers without the need of a third
party server. Results showed that the system is feasible and may
offer a step towards ideal environments for such experience.

Index Terms—Voting, Blockchain , Ethereum, Authentication,
EVM, Smart Contract, trustless, decentralized, MSISDN

I. INTRODUCTION

Throughout the years, Voting has always been regarded as
the primary method used by individuals to share their opinions
on controversial issues and debates . It is a democratic practice,
enabling people to formally express their choice against a
ballot question, candidate election, political party and others
[1].

The currently familiar E-Voting systems are based on the
well-known client-server architecture: The server and the vot-
ing data are governed by a trusted third party responsible for
the ownership and integrity of the votes. Unfortunately, voting
is strongly dependent on trust imposed by the organizing
authorities running the election. Over the past decades, several
allegations criticizing the election processes were reported
[2] [3]. Most of the developed E-voting solutions adopt this
architecture in which data and application’s business logic
reside on the authorities servers. While this topology seems
practical for some applications, it has major drawbacks on
others:

1) Lack of data integrity and security protection measures.
2) Single point of failure.
3) Centralized control and lack of secure transaction vali-

dation protocols.
4) Obscure run time environment.
5) Unknown business rules running in the server.

Blockchain on the other hand is an emergent technology
that provides network decentralization with no single point
of failure and ensures data immutability through crypto-
graphic functions and consensus algorithms and protocols.
The Ethereum Blockchain [4] is an open-source distributed
computing platform featuring a Turing-complete scripting
language in which software engineers can deploy decentral-
ized applications (DApps) and benefit from the distribution
property inherited from the Blockchain technology. Therefore,
DApps will have the following Blockchain features:

1) Strong data integrity.
2) Decentralized control and validation through consensus

mechanisms.
3) Transparent run time environment.
4) Public business rules running in the run-time environ-

ment.
5) High-availability.

Blockchain is gaining attention in several domains, even in
the telecommunication industry [5].

In this paper we propose a decentralized online voting plat-
form based on the Blockchain technology aiming at resolving
the trust concerns raised by conventional E-voting systems.
This system introduces a novel mechanism for authenticating
and validating the eligible voters.

The main contributions of this solution include: (1) En-
forcing voting data immutability and data integrity, (2) En-
suring robustness and reliability of the voting system, (3)
Decentralizing the registration and validation mechanisms of
voters, (4) Transparency, clarity and determinism of the voting
environment,(5) Public visualization of the smart contracts
votes, (6) Restricting each voter to have a single vote per valid
Mobile Station International Subscriber Directory Number
(MSISDN), and (7) Privacy-aware regarding the confidentiality
of the recorded votes.

The rest of the paper is divided as follows: Section II gives
an overview on Blockchain technology and Ethereum, Section
III discusses related work and highlights their limitations,
Section IV introduces the proposed system and its advantages
compared to the existing E-voting systems. Implementation
and results are demonstrated in Section V. Section VI provides
some concluding remarks and the intended future work.

224

PREPRINT

II. BACKGROUND ON BLOCKCHAIN TECHNOLOGY AND
ETHEREUM

Blockchain can be referred to as a public decentralized
database with replicas distributed over several nodes simul-
taneously [6]. In Blockchain there is no authority in charge
of managing and maintaining the ledger of transactions.
The validity of the ledger’s version is established through
a consensus mechanism among the validating nodes. The
use of Blockchain technology allows a secure validation of
transaction’s data integrity. Bitcoin, for instance, is the first
application developed over Blockchain by Satoshi Nakamoto
[7].

On another hand, Ethereum Blockchain is an open-source,
distributed and decentralized computing infrastructure that
executes programs called smart contracts [4]. It is developed to
enable decentralization for applications and not only for a dig-
ital currency. It is achieved using a virtual machine (Ethereum
Virtual Machine, EVM) to execute a Turing-complete scripting
language. Unlike Bitcoin in which only Boolean evaluation of
spending conditions are considered, EVM is somehow similar
to a general-purpose computer that simulates what a Turing
machine can execute. Changing the state of a contract in the
Blockchain requires transaction fees which are priced in Ether.
Ether is considered as the fuel for operating the distributed
application platform.

A. Account Types in Ethereum

There are two types of accounts in Ethereum:
1) Externally Owned Accounts (EOA): An account iden-

tified by a wallet address and controlled by a private key.
The holder of this private key can transfer ether and sign
transactions from this account. EAOs are considered user type
accounts and are linked to unique cryptographic keys pair,
generated upon account creation. The public key is used to
reference the account and also called EOA address whereas
the private key on the other hand is used to sign transaction
before executing any type of transaction on the network to
prove authenticity. EOAs have balances which hold Ether
cryptocurrency [8].

2) Smart Contract: A smart contract is an account that
is controlled by its own code [9]. It is considered as an
autonomous agent executed by the EVM and is the core
foundation and the main building blocks of any DApp [10].
Once this code is deployed on the Blockchain, the EVM will
take care of running it as long as the conditions apply. It is
important to note that smart contracts once deployed to the
Blockchain network, they can be publicly visited and viewed
via their address with all their associated transactions (to
address, from address, timestamp, etc...).

Triggering functions in the smart contract can be performed
from any account as long as the following two conditions
are met: 1) Address of the smart contract is known, 2) The
function caller has sufficient Ether to trigger.

Smart Contracts provide an important added value: The code
ruling the business logic is now public (easily verifiable) and
not obscure as in conventional servers.

B. The Light Ethereum Subprotocol

As mentioned previously, the Blockchain’s ledger must
be stored on each validating node. However, this requires a
considerable amount of memory and storage as the history of
all transactions from the genesis block (the first mined block)
till the current block must be downloaded. The Ethereum
chaindata size as of March 2018 is approximately 440 GB.
This imposes a severe problem on mobile phones and Internet
of Things (IoT) devices. For this purpose, an alternative
to the Ethereum full node, is developed [11] to overcome
the aforementioned limitations. The Light node chaindata is
approximately 0.005 GB (March 2018), a relatively small
size compared to the full validating nodes. This chaindata is
downloaded once on a mobile (or other devices as well), and
maintained (synchronized) for all DApps. The main building
block of the light client is Merkle Tree [12]. This data
structure invented by Ralph Merkle allows secure and efficient
verification of the queried data from the Blockchain. A light
client initiates a query to light client servers, and the server in
turn replies back with the requested data along with the Merkle
branch. The branch allows the client to verify the integrity and
the authenticity of the data by going through the list of hashes
from the returned object up to the tree’s root.

C. Private Ethereum Blockchain

Not only public Blockchain is available, but also a per-
missioned version exist. This version is also referred to as
Private Blockchain [13]. The question whether to adopt each
type depends heavily on the application’s requirements. In a
public Blockchain, any EOA can send transactions to other
addresses and explore the network using online explorers such
as Etherscan. In a permissioned Blockchain, a central authority
is needed to control and maintain its own ledger. In a country
election process for instance, a permissioned Blockchain is
preferred as the government is in control of the election
process.

III. LITERATURE REVIEW & RELATED WORK

We present in this section various solutions that attempt to
integrate E-voting and Blockchain to enable decentralization
of voting services. We then highlight the added value of our
proposed system compared to the others.

a) Towards Secure E-Voting Using Ethereum Blockchain:
Ali Kaan Ko et al. discuss in their paper entitled ”Towards
Secure E-Voting Using Ethereum Blockchain” [14] a decen-
tralized voting solution based on Ethereum Blockchain. It
states that an E-Voting system must be secure by being fully
transparent (privacy-aware) and not allowing duplicated votes.
It suggests deploying the E-Voting application as a smart
contract and allowing users with valid EOAs to vote on that
contract (once per address to a single question). Nevertheless,
this solution lacks true automated address verification protocol
since the EOAs get their right to vote from a Centralized Au-
thority to become eligible voters. The main advantages it offers
are business rules transparency and single vote restriction per
EOA.

225

PREPRINT

b) The Future of E-Voting: In their paper entitled ”The
Future of E-Voting”, Tarasov et. al discussed E-Voting and its
potential use with Blockchain [15]. In addition to transparency,
privacy, and integrity which became inherent properties of
Blockchain DApps, this solution proposes a registration phase
to verify the users’ identities. Registration is the first step of
the protocol, and is required as part of the identity verification
for audit purposes. It helps keeping track of which voters
have cast a ballot. Although the verification process is done
using a Challenge-Response handshake protocol, it involves
again a server (Centralized Authority) to handle the verification
process and add the users’ data (email addresses) to the
database. It is worth mentioning that email addresses are
relatively easy to spoof nowadays.

c) Decentralized, Transparent, Trustless Voting on the
Ethereum Blockchain: Fernando Lobato Meeser, in his paper
entitled ”Decentralized, Transparent, Trustless Voting on the
Ethereum Blockchain” [16] discusses two types of ongoing
issues with E-Voting solutions. First, the capability of anyone
to tally the results from the smart contract before having all
the votes casted, and second, the anonymity of the votes since
public keys can be associated with the recorded votes. In
this paper, the author presents the implementation of a voting
system as a smart contract running on Ethereum that uses
threshold keys and linkable ring signatures. Nevertheless, this
solution again includes a registration phase, and voters rely on
a Centralized Authority to register their public key for casting
a vote.

d) ”Removing Trusted Tallying Authorities Self-
Enforcing E-Voting over Ethereum”: Published paper by
Patrick McCorry et at. [17], claim that while preserving
the voters privacy, their protocols allow anyone, including
observers, to verify the integrity of the election without
having to trust authorities. They achieve by namely Open
Vote Network (OV-net), Direct Recording Electronic with
integrity (DRE-i), and DRE-i with enhanced privacy (DRE-
ip)[13]. In spite of that, their system requires an authority
to setup a list of eligible voters and transfer them to the
Ethereum Blockchain before the elections starts. Although
having a predefined list of voters is a good choice for certain
use cases, but the challenge remains in fully decentralizing
the voting process.

IV. PROPOSED SYSTEM

In this section we introduce our proposed voting system
that aims at solving the existing barriers in Blockchain-based
E-Voting systems. Fig. 1 illustrates at high level the proposed
system architecture and the interaction between the system’s
components.

A. System Components

The proposed platform consists of the following compo-
nents:

1) Web application: The web application aids event admin-
istrators in creating and managing new voting events. Each
Voting event is represented as a separate Smart Contract in

Fig. 1. System Architecture

the Blockchain network. The administrator fills-in the list of
questions and their corresponding answers and then initiate
an HTTP request to the Event Management Server containing
the entered data. The goal of this Web application is to be
available as an Application Programming Interface (API) [18]
allowing any user to create new voting events.

2) Event Management Server: The main goal of the Event
Management Server is to deploy the Smart Contract to the
network with the data (questions and answers) received from
the web application. Therefore, it contains an Ethereum Wallet
(address) which is required to deploy the contract, a full node
to interface the Ethereum network, and a database to store the
list of contract addresses which will be fetched later by the
mobile application.

3) Smart contracts: Two types of smart contracts exist in
our system: 1) Registration contract, 2) Voting contract. The
registration contract is deployed once for all voting events. It
serves at securely registering and authenticating the voters.
The voting contract is written once at development time,
and deployed several times by the Event Management Server
with different questions and answers specified by the event
administrator as explained previously. Appendices A and B
list the code of both contracts.

4) SMS Gateway: An SMS Gateway [19] is ultimately
mandatory in our system as it plays an important role in
authenticating the users via sending SMS messages to the
destined MSISDNs.

5) Mobile application: The mobile application is used by
voters to register themselves in the system and then vote.
It also provides the users the ability to fetch events, view
questions and options, and visualize in real-time the results.
Moreover, the application provides a detailed report showing
the voting event statistics related to the frequency of votes
per time slot, location, and others ... As the voting process
takes place in the Ethereum network, it is mandatory to
have an interface connecting the mobile application to the

226

PREPRINT

Blockchain network. Therefore, an Ethereum light client (dis-
cussed in Section II Part B) is integrated within the mobile
app. All transactions transmitted from the app are sent to the
Blockchain network through this client.

B. Registration & Configuration

To become an eligible voter, a user must first register to
the system. Fig. 2 describes the voter’s registration mecha-
nism. Upon launching the application for the first time, the
application automatically retrieves the user’s MSISDN (phone
number) from the Subscriber Identity Module (SIM card).
Registration and Voting require the EOA to possess sufficient
Ether as transactions to the Blockchain cost GAS which is
priced in Ether. The application generates an empty Ethereum
wallet and requests the user to fill it through the wallet
management function method as described in [20].

Fig. 2. Voter Registration Mechanism

Once the user has sufficient Ether balance, the Regis-
ter(MSISDN) function is called with the user’s MSISDN as a
parameter. The smart contract then validates that the MSISDN
does not exist in the list of approved phone numbers. Then,
it sends an HTTP request through the Oraclize contract to a
True Random Number Generator (TRNG) server to generate a
random Personal Identification Number (PIN) code. Oraclize
is a service that offers a secure connection between the smart
contracts and external web APIs. When the PIN is generated,
the contract again interfaces Oraclize to contact the Short
Message Service (SMS) Gateway which in turn sends an SMS
to the MSISDN containing the PIN as payload.

Once the SMS is received by the MSISDN, the user then
enters the PIN code to the application which will invoke the
Approve(MSISDN, PIN) function. The contract then validates
the received transaction by checking if its address (msg.sender)
matches the address of the first register call, and checks if the
PIN is correct.

C. Creating a Voting Event

An event organizer uses the web application discussed
previously to create a new voting event. This organizer will be
able to monitor ongoing event statistics through graphs, charts
and textual representations updated at a realtime.

To create a new event, the event organizer is requested to
input the question(s) and the corresponding answer(s) through
the web.

Technically, creating a voting event means creating a voting
contract on the Blockchain. Therefore this transaction must
be charged for the event organizer as transactions cost in
Ethereum. To simplify this process for organizers, a payment
API is integrated into the web application allowing the or-
ganizer to pay using fiat currency for the transaction. After
securing the transaction cost, the web app deploys the contract
to Ethereum the network. The address of the newly created
smart contract will be returned to the organizer and also stored
in the database to track it later in the mobile application.

D. Voting

The voting mechanism is depicted in Fig. 3. While Voting,
the application calls the VoteFor(string option) method of the
designated smart contract deployed on the EVM. Next, the
voting contract contacts the registration contract to check if the
user is already registered. Then, it checks if the user already
voted or the event is finished. If the conditions are satisfied, the
contract increments the count of the selected option, marks the
user as voted, and returns a success message to the application.

Fig. 3. Voting Mechanism

The contract automatically rejects duplicate votes, allowing
to restrict one vote per MSISDN. This is considered the major
advantage of our system compared to the others.

V. IMPLEMENTATION AND RESULTS

To validate the proposed system, we implemented the
solution using various technologies. Solidity, a contract-
oriented programming language for writing both registration
and voting smart contracts [21], NodeJS [22]: Server side
scripting for the Event Management Server, Web3js to
interface the light client [21], and HTML5 web-app compiled
using Apache Cordova [23] for the mobile side. The Ropsten
Testnet [24] is used to simulate the Blockchain network.
Twilio [25] is used as the SMS gateway API.

227

PREPRINT

Fig. 4 shows the web page used by event organizers to
create a new voting event.

Fig. 4. Creating a New Voting Event

Fig. 5 demonstrates the dashboard in which event organizers
can visualize the voting results.

Fig. 5. Realtime Visualization of the Results

The registration of a user to the system took from 2 to
4 minutes. This amount of time is spent only once upon
configuration. Voting on the other hand took from 40 seconds
to 2 minutes. This time is spent on each vote.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed a decentralized voting
platform based on Ethereum Blockchain. The main contribu-
tion of this platform is the restriction of multiple votes per
mobile (MSISDN). This system could be developed further
to make it more eligible for national government elections,
based on fingerprint or a special device located in the voting
centers. The user interface and results visualization could
be customized and adapted to the customer requirements.
This platform could replace the existing centralized systems
based on SMS polling and facilitate voting organized by

governments, competitions, expositions, etc... This platform
opens up a new business model for a voting service providers
where the players include: Voting event organizers, voting
service providers, and voters. The Voting service provider
enables the voting event organizers to deploy an event voting
smart contract. The Event Management Server deploys in the
Ethereum network the voting contracts configured according
the voting event customer. The Voting service provider rev-
enues could be generated from two sources: the Voting Event
Organizers as a fixed cost to compensate for the deployment
of the smart contract in Ethereum, and from the voters upon
registration and voting.

APPENDIX A
REGISTRATION CONTRACT

pragma solidity 0.4.24;

import "browser/OraclizeAPI1.sol";
import "github.com/willitscale/solidity-util/lib/Strings.sol";

contract Register is usingOraclize
{

using Strings for string;

mapping(address => bool) public EligbleVotersAddresses;
mapping(string => bool) RegisteredPhoneNumbers;
mapping(bytes32 => string) OraclizeIDtoResult;
mapping(address => bytes32) GeneratePINOraclizeID;
mapping(address => string) AddressesExpectedToVerify;

function isEligble(address _address) public view returns(bool) {
if (EligbleVotersAddresses[_address] == true)

return true;
else return false;

}

function verify(string code) public {
bytes32 OracleID = GeneratePINOraclizeID[msg.sender];
if (OraclizeIDtoResult[OracleID].compareTo(code)) {

EligbleVotersAddresses[msg.sender] = true;
RegisteredPhoneNumbers[AddressesExpectedToVerify[msg.sender]] = true;
delete AddressesExpectedToVerify[msg.sender];
delete OraclizeIDtoResult[OracleID];
delete GeneratePINOraclizeID[msg.sender];

}
}

function SendSMS(string phonenumber) public payable {
bytes32 OracleID;
if (RegisteredPhoneNumbers[phonenumber] == true ||

phonenumber.compareTo(AddressesExpectedToVerify[msg.sender])
|| GeneratePINOraclizeID[msg.sender] == 0)

revert();
bytes32 ID = GeneratePINOraclizeID[msg.sender];
string memory jsonStart = ’{"To" : "’;
string memory jsonMiddle = ’","From" : "+19103708518" , "Body": "’;
string memory jsonEnd = ’"}’;
OracleID = oraclize_query(’URL’, ’json(https://API:PASS@api.twilio.com..../

Messages.json).status’,
strConcat(jsonStart, phonenumber, jsonMiddle, OraclizeIDtoResult[ID], jsonEnd))

;
AddressesExpectedToVerify[msg.sender] = phonenumber;

}

function generatePIN() public payable {
bytes32 OracleID;
if (EligbleVotersAddresses[msg.sender] == true)

revert();
if (!AddressesExpectedToVerify[msg.sender].compareTo("0

x00"))
delete AddressesExpectedToVerify[msg.sender];

OracleID = oraclize_query("WolframAlpha", "2 digit integer random");
GeneratePINOraclizeID[msg.sender] = OracleID;

}

function __callback(bytes32 _OraclizeID, string _result) public {
if (_result.compareTo("Queued") == false)

OraclizeIDtoResult[_OraclizeID] = _result;
}

}

APPENDIX B
VOTING CONTRACT

pragma solidity ˆ 0.4.0;

import "browser/IRegister.sol";

contract VotingContract {
bytes32 PollWinner;
bytes32 Question;
address EventAdmin;
uint NumOfCand;

228

PREPRINT

bool completed;
uint totalNumVotes;
address system = 0x14723A09ACff6D2A60DcdF7aA4AFf308FDDC160C;
address RegistrationContractAddress = 0

x0c762d861a8873c54ed938c68ea1d5f627b562aa;

mapping(address => bool) public verify;
mapping(bytes32 => uint) public votes;
mapping(uint => bytes32) public options;

modifier onlyOwner {
require(msg.sender == EventAdmin);
_;

}

function getNumVotes() public view returns(uint) {
return totalNumVotes;

}

function getNumCandidates() public view returns(uint) {
return NumOfCand;

}

function getQuestion() public view returns(bytes32) {
return Question;

}

function isEligble(address _address) public view returns(bool) {
Register reg = Register(RegistrationContractAddress);
return reg.isEligble(_address);

}

function VotingContract(bytes32 theQuestion, bytes32[] candidateNames) {
Question = theQuestion;
EventAdmin = msg.sender;
NumOfCand = candidateNames.length;

for (uint i = 0; i < candidateNames.length; i++) {
options[i] = candidateNames[i];
votes[candidateNames[i]] = 0;

}
}

function getCandidate(uint candidateIndex) public view returns(bytes32) {
if (candidateIndex > NumOfCand - 1)

return (0);
else return (options[candidateIndex]);

}

function CanVote() onlyOwner view returns(bool) {
if (verify[msg.sender] == true || completed == true || !isEligble(msg.

sender))
return false;

else return true;

}

function getTotalVotesFor(bytes32 candidate) public view returns(uint) {
return (votes[candidate]);

}

function VoteFor(bytes32 candidate) public payable {
if ((verify[msg.sender] == true) || (completed == true)

|| (msg.value == 0) || !isEligble(msg.sender))
revert();

else {
votes[candidate] += 1;
totalNumVotes += 1;
verify[msg.sender] = true;

}
}

function getPot() onlyOwner view returns(uint) {
return this.balance;

}

function FinishAndDistributeTheRevenues(bytes32 winner) onlyOwner returns(uint,
uint) {

EventAdmin.transfer(this.balance / 3);
system.transfer(this.balance);
PollWinner = winner;
completed = true;
return (EventAdmin.balance, system.balance);

}
}

REFERENCES

[1] A. J. Bott, Handbook of United States election laws and practices:
political rights. Greenwood Publishing Group, 1990.

[2] W. R. Mebane Jr, “Fraud in the 2009 presidential election in iran?”
Chance, vol. 23, no. 1, pp. 6–15, 2010.

[3] R. Jiménez and M. Hidalgo, “Forensic analysis of venezuelan elections
during the chávez presidency,” PloS one, vol. 9, no. 6, p. e100884, 2014.

[4] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, 2014.

[5] E. F. Kfoury and D. J. Khoury, “Secure end-to-end volte based
on ethereum blockchain,” in 2018 41st International Conference on
Telecommunications and Signal Processing (TSP). IEEE, 2018, pp.
1–5.

[6] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, “Where is
current research on blockchain technology? a systematic review,” PloS
one, vol. 11, no. 10, p. e0163477, 2016.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[8] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.
[9] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step

by step towards creating a safe smart contract: Lessons and insights
from a cryptocurrency lab,” in International Conference on Financial
Cryptography and Data Security. Springer, 2016, pp. 79–94.

[10] M. Pilkington, “11 blockchain technology: principles and applications,”
Research handbook on digital transformations, p. 225, 2016.

[11] Ethereum, “Light ethereum subprotocol.” [Online]. Available:
https://github.com/ethereum/wiki/wiki/Light-client-protocol

[12] R. C. Merkle, “Method of providing digital signatures,” Jan. 5 1982, uS
Patent 4,309,569.

[13] M. Vukolić, “Rethinking permissioned blockchains,” in Proceedings of
the ACM Workshop on Blockchain, Cryptocurrencies and Contracts.
ACM, 2017, pp. 3–7.

[14] A. K. Koç and U. C. Çabuk, “Towards secure e-voting using ethereum
blockchain.”

[15] P. Tarasov and H. Tewari, “The future of e-voting.” IADIS International
Journal on Computer Science & Information Systems, vol. 12, no. 2,
2017.

[16] F. L. Meeser, “Decentralized, transparent, trustless voting on the
ethereum blockchain,” 2017.

[17] P. McCorry, E. Toreini, and M. Mehrnezhad, “Removing trusted tallying
authorities,” Technical report, Newcastle University, 2016. Cited on,
Tech. Rep., 2016.

[18] D. Orenstein, “Quickstudy: Application programming interface (api),”
2000.

[19] V. K. Katankar and V. Thakare, “Short message service using sms
gateway,” International Journal on Computer Science and Engineering,
vol. 2, no. 04, pp. 1487–1491, 2010.

[20] E. F. Kfoury and D. J. Khoury, “Secure end-to-end voip system based
on ethereum blockchain,” Journal of Communications, vol. 13, no. 8,
pp. 450–455, 2018.

[21] C. Dannen, Introducing Ethereum and Solidity. Springer, 2017.
[22] J. Wilson, Node. js 8 the Right Way: Practical, Server-side Javascript

that Scales. Pragmatic Bookshelf, 2018.
[23] R. K. Camden, Apache Cordova in action. Manning Publications Co.,

2015.
[24] K. Iyer and C. Dannen, “The ethereum development environment,” in

Building Games with Ethereum Smart Contracts. Springer, 2018, pp.
19–36.

[25] “Twilio - connect the world with the leading platform for voice, sms,
and video.” [Online]. Available: https://www.twilio.com/

229

PREPRINT

View publication statsView publication stats

https://www.researchgate.net/publication/330255760

