This article presents predictive modeling of nonlinear guided wave propagation for structural health monitoring using both finite element method and analytical approach. In our study, the nonlinearity of the guided waves is generated by interaction with a nonlinear breathing crack. Two nonlinear finite element method techniques are used to simulate the breathing crack: (a) element activation/deactivation method and (b) contact analysis. Both techniques are available in ANSYS software package. The solutions obtained by these two finite element method techniques compare quite well. A parametric analytical predictive model is built to simulate guided waves interacting with linear/nonlinear structural damage. This model is coded into MATLAB, and the WaveFormRevealer graphical user interface is developed to obtain fast predictive waveform solutions for arbitrary combinations of sensor, structural properties, and damage. The predictive model is found capable of describing the nonlinear wave propagation phenomenon. This article finishes with summary and conclusions followed by recommendations for further work.
Journal Articles
2014
This article presents the WaveFormRevealer—an analytical framework and predictive tool for the simulation of guided Lamb wave propagation and interaction with damage. The theory of inserting damage effects into the analytical model is addressed, including wave transmission, reflection, mode conversion, and nonlinear higher harmonics. The analytical model is coded into MATLAB, and a graphical user interface (WaveFormRevealer graphical user interface) is developed to obtain real-time predictive waveforms for various combinations of sensors, structural properties, and damage. In this article, the main functions of WaveFormRevealer are introduced. Case studies of selective Lamb mode linear and nonlinear interaction with damage are presented. Experimental verifications are carried out. The article finishes with summary and conclusions followed by recommendations for further work.
This article discusses shear horizontal (SH) guided-waves that can be excited with shear type piezoelectric wafer active sensor (SH-PWAS). The paper starts with a review of state of the art SH waves modelling and their importance in non-destructive evaluation (NDE) and structural health monitoring (SHM). The basic piezoelectric sensing and actuation equations for the case of shear horizontal piezoelectric wafer active sensor (SH-PWAS) with electro-mechanical coupling coefficient are reviewed. Multiphysics finite element modelling (MP-FEM) was performed on a free SH-PWAS to show its resonance modeshapes. The actuation mechanism of the SH-PWAS is predicted by MP-FEM, and modeshapes of excited structure are presented. The structural resonances are compared with experimental measurements and showed good agreement. Analytical prediction of SH waves was performed. SH wave propagation experimental study was conducted between different combinations of SH-PWAS and regular in-plane PWAS transducers. Experimental results were compared with analytical predictions for aluminium plates and showed good agreement. 2D wave propagation effects were studied by MP-FEM. An analytical model was developed for SH wave power and energy. The normal mode expansion (NME) method was used to account for superpositioning multimodal SH waves. Modal participation factors were presented to show the contribution of every mode. Power and energy transfer between SH-PWAS and the structure was analyzed. Finally, we present simulations of our developed wave power and energy analytical models.
In this work, a predictive model of attenuated guided wave propagation in carbon fiber–reinforced polymer using Rayleigh damping is developed. After a brief introduction, this article reviews the theory of guided waves in anisotropic composite materials. It follows with a discussion of the piezoelectric wafer active sensors, which are lightweight and inexpensive transducers for structural health monitoring applications. Experiments were performed on a carbon fiber–reinforced polymer panel to measure the dispersion curves and the piezoelectric wafer active sensors tuning curves. Lamb wave damping coefficient was modeled using the multi-physics finite element method and compared with experimental results. A discussion about the capability to simulate, with multi-physics finite element method commercial software, guided wave in composite material using the Rayleigh damping is developed. This article ends with conclusion, and suggestions for further work are also presented.
Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive transducers made from ferroelectric piezoceramic wafers attached to safety-critical structure. PWAS transducers enable a large class of structural health monitoring (SHM) applications. The focus of this paper is on the predictive modeling of structurally-attached PWAS. After a brief introduction, the paper reviews the PWAS-based SHM principles. Then, it follows with a discussion of shear-lag analysis, the transfer matrix method approach and the investigation of power and energy transduction between PWAS and structure. Finally, the paper presents a multi-physics finite element (MP-FEM) simulation. The paper ends with summary and conclusion.
This paper presents a novel method for the detection of ultrasonic waves from acoustic emission events using piezoelectric wafer ac3tive sensors (PWAS) and optical fiber Bragg grating (FBG) sensing combined with mechanical resonance amplification principles. The method is best suited for detecting the out-of-plane motion of the AE wave with preference for a certain frequency that can be adjusted by design. Several issues are discussed: (a) study the mode shapes of the sensors under different resonance frequencies in order to understand the behavior of the ring in a frequency band of interest; (b) comparison of analytical results and mode shapes with FEM predictions; (c) choice of the final piezo-optical ring sensor shape; (d) testing of the piezo-optical ring sensor prototype; (e) discussion of the ring-sensor test results in comparison with conventional results from PWAS and FBG sensors mounted directly on the test structure. The paper ends with summary, conclusions, and suggestions for further work.
2013
This article presents a combined finite element method and analytical process to predict the one-dimensional guided-wave propagation for nondestructive evaluation and structural health monitoring application. Analytical methods can perform efficient modeling of wave propagation but are limited to simple geometries. In response to today’s most complex cases not covered by the simulation tools available, we aim to develop an efficient and accessible tool for structural health monitoring application. This tool will be based on a hybrid coupling between analytical solution and time-domain numerical codes. Using the principle of reciprocity, global analytical calculation is coupled with local finite element method analysis to utilize the advantages of both methods and obtain a rapid and accurate simulation method. The phenomenon of interaction between the ultrasonic wave, the defect, and the structure, leading to a complex signature, is efficiently simulated by this hybrid global–local approach and is able to predict the specific response signal actually received by sensor. The finite element mesh is used to describe the region around the defects/flaws. In contrast to other hybrid models already developed, the interaction between Lamb waves and defects is computed in the time domain using the explicit solver of the commercial finite element method software ABAQUS.
This paper presents a hybrid finite element and analytical method to predict the 1-D guided wave propagation interaction with damage for nondestructive evaluation (NDE) and structural health monitoring (SHM) application. The finite element mesh is used to describe the region around the damage (defects or flaws). In contrast to other hybrid models developed elsewhere, the interaction between Lamb waves and defects is computed in the time domain using the explicit solver of the commercial finite element method (FEM) software ABAQUS. Analytical methods can perform efficient modeling of wave propagation but are limited to simple geometries. Realistic structures with complicated geometries are usually modeled with the FEM. However, to obtain an accurate wave propagation solution at ultrasonic frequencies is computationally intensive and may become prohibitive for realistic structures. In response to today's complex cases not covered by the simulation tools available, we aim to develop an efficient and accessible tool for SHM applications. This tool will be based on a hybrid coupling between analytical solutions and time domain numerical codes. Lamb wave interaction with a notch is investigated by using this method, and the results obtained are with respect to transmission, reflection and mode conversion. Because of the symmetric mode shape, SO is more sensitive to the shallow notch than A0. By making use of the fact that the reflection increases with increase in notch depth and mode conversion are maximized when the notch is around half through the thickness of the plate, the reflection and conversion coefficients can be used to characterize the depth of the notch.
This paper presents numerical and experimental results on the use of guided waves for structural health monitoring (SHM) of crack growth during a fatigue test in a thick steel plate used for civil engineering application. Numerical simulation, analytical modeling, and experimental tests are used to prove that piezoelectric wafer active sensor (PWAS) can perform active SHM using guided wave pitch-catch method and passive SHM using acoustic emission (AE). AE simulation was performed with the multi-physic FEM (MP-FEM) approach. The MP-FEM approach permits that the output variables to be expressed directly in electric terms while the two-ways electromechanical conversion is done internally in the MP-FEM formulation. The AE event was simulated as a pulse of defined duration and amplitude. The electrical signal measured at a PWAS receiver was simulated. Experimental tests were performed with PWAS transducers acting as passive receivers of AE signals. An AE source was simulated using 0.5-mm pencil lead breaks. The PWAS transducers were able to pick up AE signal with good strength. Subsequently, PWAS transducers and traditional AE transducer were applied to a 12.7-mm CT specimen subjected to accelerated fatigue testing. Active sensing in pitch catch mode on the CT specimen was applied between the PWAS transducers pairs. Damage indexes were calculated and correlated with actual crack growth. The paper finishes with conclusions and suggestions for further work.
Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive transducers that enable a large class of structural health monitoring (SHM) applications such as: (a) embedded guided wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays; (b) high-frequency modal sensing, i.e., electro-mechanical impedance method; and (c) passive detection. The focus of this paper is on the challenges posed by using PWAS transducers in the composite laminate structures as different from the metallic structures on which this methodology was initially developed. After a brief introduction, the paper reviews the PWAS-based SHM principles. It follows with a discussion of guided wave propagation in composites and PWAS tuning effects. Then, the mechanical effect is discussed on the integration of piezoelectric wafer inside the laminate using a compression after impact. Experiments were performed on a glass fiber laminate, employing PWAS to measure the attenuation coefficient. Finally, the paper presents some experimental and multi-physics finite element method (MP-FEM) results on guided wave propagation in composite laminate specimens.
