Publications
2015
EEG sleep spindles are short (0.5-2.0 s) bursts of activity in the 11-16 Hz band occurring during non-rapid eye movement (NREM) sleep. This sporadic activity is thought to play a role in memory consolidation, brain plasticity, and protection of sleep integrity. Many automatic detectors have been proposed to assist or replace experts for sleep spindle scoring. However, these algorithms usually detect too many events making it difficult to achieve a good tradeoff between sensitivity (Se) and false detection rate (FDr). In this work, we propose a semi-automatic detector comprising a sensitivity phase based on well-established criteria followed by a specificity phase using spatial and spectral criteria. In the sensitivity phase, selected events are those which amplitude in the 10-16 Hz band and spectral ratio characteristics both reject a null hypothesis (p < 0.1) stating that the considered event is not a spindle. This null hypothesis is constructed from events occurring during rapid eye movement (REM) sleep epochs. In the specificity phase, a hierarchical clustering of the selected candidates is done based on events' frequency and spatial position along the anterior-posterior axis. Only events from the classes grouping most (at least 80%) spindles scored by an expert are kept. We obtain Se = 93.2% and FDr = 93.0% in the first phase and Se = 85.4% and FDr = 86.2% in the second phase. For these two phases, Matthew's correlation coefficients are respectively 0.228 and 0.324. Results suggest that spindles are defined by specific spatio-spectral properties and that automatic detection methods can be improved by considering these features.
Sleep spindle properties index cognitive faculties such as memory consolidation and diseases such as major depression. For this reason, scoring sleep spindle properties in polysomnographic recordings has become an important activity in both research and clinical settings. The tediousness of this manual task has motivated efforts for its automation. Although some progress has been made, increasing the temporal accuracy of spindle scoring and improving the performance assessment methodology are two aspects needing more attention. In this paper, four open-access automated spindle detectors with fine temporal resolution are proposed and tested against expert scoring of two proprietary and two open-access databases. Results highlight several findings: (1) that expert scoring and polysomnographic databases are important confounders when comparing the performance of spindle detectors tested using different databases or scorings; (2) because spindles are sparse events, specificity estimates are potentially misleading for assessing automated detector performance; (3) reporting the performance of spindle detectors exclusively with sensitivity and specificity estimates, as is often seen in the literature, is insufficient; including sensitivity, precision and a more comprehensive statistic such as Matthew's correlation coefficient, F1-score, or Cohen's κ is necessary for adequate evaluation; (4) reporting statistics for some reasonable range of decision thresholds provides a much more complete and useful benchmarking; (5) performance differences between tested automated detectors were found to be similar to those between available expert scorings; (6) much more development is needed to effectively compare the performance of spindle detectors developed by different research teams. Finally, this work clarifies a long-standing but only seldomly posed question regarding whether expert scoring truly is a reliable gold standard for sleep spindle assessment.
We present a complete framework for time-frequency parametrization of EEG transients, based upon matching pursuit (MP) decomposition, applied to the detection of sleep spindles. Ranges of spindles duration (>0.5 s) and frequency (11-16 Hz) are taken directly from their standard definitions. Minimal amplitude is computed from the distribution of the root mean square (RMS) amplitude of the signal within the frequency band of sleep spindles. Detection algorithm depends on the choice of just one free parameter, which is a percentile of this distribution. Performance of detection is assessed on the first cohort/second subset of the Montreal Archive of Sleep Studies (MASS-C1/SS2). Cross-validation performed on the 19 available overnight recordings returned the optimal percentile of the RMS distribution close to 97 in most cases, and the following overall performance measures: sensitivity 0.63 ± 0.06, positive predictive value 0.47 ± 0.08, and Matthews coefficient of correlation 0.51 ± 0.04. These concordances are similar to the results achieved on this database by other automatic methods. Proposed detailed parametrization of sleep spindles within a universal framework, encompassing also other EEG transients, opens new possibilities of high resolution investigation of their relations and detailed characteristics. MP decomposition, selection of relevant structures, and simple creation of EEG profiles used previously for assessment of brain activity of patients in disorders of consciousness are implemented in a freely available software package Svarog (Signal Viewer, Analyzer and Recorder On GPL) with user-friendly, mouse-driven interface for review and analysis of EEG. Svarog can be downloaded from http://braintech.pl/svarog.
