Development of a Novel CO Tolerant Proton Exchange Membrane Fuel Cell Anode

Haug, Andrew T., Ralph E. White, John W. Weidner, and Wayne Huang. 2002. “Development of a Novel CO Tolerant Proton Exchange Membrane Fuel Cell Anode”. Journal of The Electrochemical Society 149 (7): A862.

Abstract

Typically Pt is alloyed with metals such as Ru, Sn, or Mo to provide a more CO-tolerant, high-performance proton exchange membrane fuel cell (PEMFC) anode. In this work, a layer of carbon-supported Ru is placed between the Pt catalyst and the anode flow field to form a filter. When oxygen is added to the fuel stream, it was predicted that the slow kinetics of Ru in this filter would become an advantage compared to Pt and Pt:Ru alloy anodes, allowing a greater percentage of to oxidize adsorbed CO to With an anode feed of 2% and up to 100 ppm CO, the filter anode performed better at 70°C than the Pt:Ru alloy. The oxygen in the anode feed stream was found to form a hydroxyl species within the filter. The reaction of these hydroxyl groups with adsorbed CO was the primary means of CO oxidation within the filter. Because of the resulting proton formation, the Ru filter must be placed in front of and adjacent to the Pt anode and must contain Nafion in order to provide the ionic pathways for proton conduction, and hence achieve the maximum benefit of the filter. © 2002 The Electrochemical Society. All rights reserved.
Last updated on 09/07/2023