Lamb wave imaging with actuator network for damage quantification in aluminum plate structures

Abstract

Lamb waves have been widely used for damage detection on plate-like structures. However, there are still considerable interests on quantifying damage with complex profile. In this article, quantification of complex damage in plate-like structures using a network of actuators and time-space Lamb wavefield is investigated. The actuator network inspection system is implemented with multiple PZT transducers for Lamb wave actuation in round robin pattern and scanning laser Doppler vibrometer for wavefield sensing. The PZT network is arranged in a way that the target area is fully enclosed and Lamb waves come to the damage from all directions. Waves induced by the damage are subsequently obtained through frequency-wavenumber filtering, using the experimentally acquired dispersion curves presented in the paper. The filtered waves from all wave actuators are then used to generate a synthetic image of the damage being inspected. Two cases of complex damage are evaluated on aluminum plates, mass loss with triangular profile and mass addition with a three-letter cluster profile. Our results show that the damages are not only detected but also their profiles are clearly outlined in the images. We believe the subject methods provide improved evaluation of damage profile for Lamb wavefield based damage quantification.

Last updated on 06/07/2023