Berge, Nicole D., Debra R. Reinhart, John Dietz, and Tim Townsend. 2006. “In Situ Ammonia Removal in Bioreactor Landfill Leachate”. Waste Management 26 (4): 334-43.
Abstract
Although bioreactor landfills have many advantages associated with them, challenges remain, including the persistence of NH3-N in the leachate. Because NH3-N is both persistent and toxic, it will likely influence when the landfill is biologically stable and when post-closure monitoring may end. An in situ nitrogen removal technique would be advantageous. Recent studies have shown the efficacy of such processes; however, they are lacking the data required to enable adequate implementation at field-scale bioreactor landfills. Research was conducted to evaluate the kinetics of in situ ammonia removal in both acclimated and unacclimated wastes to aid in developing guidance for field-scale implementation. Results demonstrate that in situ nitrification is feasible in an aerated solid waste environment and that the potential for simultaneous nitrification and denitrification (even under low biodegradable C:N conditions) in field-scale bioreactor landfills is significant due to the presence of both aerobic and anoxic areas. All rate data fit well to Monod kinetics, with specific rates of removal of 0.196 and 0.117mgN/day-g dry waste and half-saturation constants of 59.6 and 147mgN/L for acclimated and unacclimated wastes, respectively. Although specific rates of ammonia removal in the unacclimated waste are lower than in the acclimated waste, a relatively quick start-up of ammonia removal was observed in the unacclimated waste. Using the removal rate expressions developed will allow for estimation of the treatment times and volumes necessary to remove NH3-N from recirculated landfill leachate.
Last updated on 09/13/2022