Modeling the Rotating Disk Electrode for Studying the Kinetics of Electrochemical Reactions

Adanuvor, P. K., R. E. White, and S. E. Lorimer. 1987. “Modeling the Rotating Disk Electrode for Studying the Kinetics of Electrochemical Reactions”. Journal of The Electrochemical Society 134 (3): 625-31.

Abstract

A general mathematical model for studying the kinetics of electrochemical reactions at a rotating disk electrode under steady-state potentiostatic conditions is presented. The model, apart from predicting the net and partial current densities at given values of the applied potential, the ohmic potential drop, and the concentration and potential profiles in the solution, also accounts for homogeneous reactions of any order in the solution and noncharge transfer reactions at the electrode surface. The versatility of the model is demonstrated by the application of the model to a variety of complex reaction schemes. © 1987, The Electrochemical Society, Inc. All rights reserved.
Last updated on 09/07/2023