A major type of infrared camera is sensitive to wavelengths in the 8–14 μm band and is mainly used for thermal imaging. Such cameras can also be used for general broadband infrared reflectance imaging when provided with a suitable light source. We report the design and properties of an infrared lamp using a heated alumina emitter suitable for active thermal infrared imaging, as well as comparisons to existing commercial light sources for this purpose. We find that the alumina lamp is a broadband non-blackbody source with a lower out-of-band emission intensity and therefore higher electrical efficiency for this application than existing commercial sources.
Publications by Author: Scott J. Hoy
O
O’Brien, Wayne, Nicholas D. Boltin, Stephanie A. DeJong, Zhenyu Lu, Brianna M. Cassidy, Scott J. Hoy, Stephen L. Morgan, and ML Myrick. (2015) 2015. “An Improved-Efficiency Compact Lamp for the Thermal Infrared”. Applied Spectroscopy 69 (12): 1511-13.
O’Brien, Wayne, ML Myrick, Nicholas D. Boltin, and Scott J. Hoy. (2014) 2014. Infrared Light Sources and Methods of Their Use and Manufacture. 14176201, issued 2014.
Infrared light sources, along with their methods of formation, are provided. The infrared light source can include a base Substrate defining an aperture; a filament extending through the aperture defined by the base substrate; a resistive metal wire wrapped around the filament to define a coil having a first end and a second end; a high temperature coating Sur rounding at least a portion of the filament and the coil; a first electrode electrically connected to the first end of the coil; and a second electrode electrically connected to the second end of the coil.